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Solutions of nonlinear kinetic equations on the
level of the Navier-Stokes dynamics

By

Mirostaw LAcHoOwICZ

1. Introduction

This paper is a successive step in the mathematical description of relations
between the kinetic theory of gases and the continuous fluid theory. In the
previous paper [8] the limit of kinetic equations (the Boltzmann equation, the
Enskog equation and the Povzner equation) corresponding with Euler fluid
dynamics was studied. Solutions to the kinetic equations were requested in the
form of a sum of a truncated Hilbert expansion series, of a truncated initial layer
series and of a remainder. In this way the original kinetic equation was replaced
by a system of Hilbert expansion equations, initial layer equations as well as a
(weakly nonlinear) equation for the remainder. In this paper the approach
initiated in [8] is continued. Instead of the Hilbert expansion, which results in
the nonlinear and linearized Euler equations (see [7] and [1, 2, 4, 10]), the
modified expansion proposed by Caflisch [1] is used. The equations resulting
from this modified expansion are first the system of Navier-Stokes equations
(N-SE) for compressible fluids and thereafter systems of linearized Navier-Stokes
equations. The Caflisch modified expansion would also start with the system of
Burnett equations and at higher order would yield linearized systems of Burnett
equations.

The expansion can be modified in such a way that it results in different
“hydrodynamical” systems and as in the linearized case (Ref. [3]), from the point
of view of the kinetic equations, the Navier-Stokes system can be considered as
an only one of many possible refinements of the Euler system. This “kinetic
nonuniqueness of the Navier-Stokes equation” will be discussed in Section 8.

Our main results are the existence and asymptotic behaviour theorems for
the kinetic equations (the Boltzmann, the Enskog and the Povzner equations)
under suitable smallness assumptions on the nonhydrodynamical part of the initial
datum. The analysis is carried out in C° setting with respect to the space
variable. The solutions exist macroscopically as far as a smooth solution of the
system of Navier-Stokes equations (N-SE) does and are approximated by the
solution of the N-SE. In addition, the solutions of the kinetic equations are
continuously differentiable and unique if the solution of the N-SE is unique. The
advantage of using the N-SE, instead of the Euler system, as a starting point
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for constructing the existence theorem for kinetic equations is in that we can
expect the existence of smooth solutions to the N-SE even when shocks appear
(cf. [1]). Thus the time interval, on which our solutions exist can be longer
than of the Euler system.

2. Kinetic equations

Kinetic equations are mathematical models which describe the time and space
evolution of the one-particle distribution function f=f(t, x, v), where t is the
time, x - the space variable and v - the velocity. Similarly as in Ref. [8] all kinetic
equations are assumed to be in the dimensionless form and to be singularly
perturbed by a small parameter ¢ > O representing the scale of the mean free
path. The dimensionless form of a kinetic equation is realized by referring the
variables ¢, x, v as well as the distribution function f to the suitable characteristic
quantities For such new variables we preserve the notations t, x, v and
f. Throughout the paper we assume that all functions are periodic with respect
to the space variable x with fundamental domain © = R?, where d =1,2 or 3
(for details see Ref. [7]). Consequently, the investigated problems can be written

Dfy = LJo(fi. 1), @.1)
o
Dfs = 3 Jslfer [ + 5 Eoulfi fo S (22)
Dfp = %P,(fp, Je); 2.3)
with initial data
fB|t=0=fE|r=0=fP|t=0 =F, (24)

0 . . . .
where D = o + v-grad,, 0 is a dimensionless parameter representing the scale of
t

the hard-sphere diameter in the Enskog model (2.2) and r is a dimensionless
diameter of the sphere of interaction of particles in the Povzner equation. The
reader is referred to [8] for all details as well as for the definitions of rather
complicated collision operators: J, in the Boltzmann equation (2.1), J; and E;,
in the Enskog equation (2.2) and P, in the Povzner equation (2.3). Note that
Jo is a bilinear, symmetric operator acting only on the variable v and
corresponding to Grad’s cutoff hard potentials (however the notation for
hard-spheres potential will be used for simplicity).

3. Navier-Stokes system

The macroscopic fluid-dynamic parameters are related to the distribution
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function f in the classical way: the mass density is defined by

p(t, x) = If (t, x, v)dv, (3.1a)
the macroscopic velocity vector by
u(t, x) = fvf(t, x, v)dv (3.1b)
(t, x)
and the macroscopic temperature by
1
T(t, x) = Jvzf(t, x, v)dv — p(t, x)u*(t, x). (3.1c)
3p(t, x)

An interesting problem in the analysis of relations between the kinetic theory
and the continuous fluid theory is the relationship between the macroscopic
parameters p, u, T and the corresponding solution (pys, uys, Tys) of the system
of Navier-Stokes equations (N-SE):
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(3.2¢)

where u® is the i-th component of the vector u, u and A represent the coefficient
of viscosity and that of heat conduction, respectively (cf. [2, 4, 6]), with initial data

(Pnss unss Tws)li=o0 = (Pos U, To), (3.3

where p,, uy, T, are the fluid-dynamic parameters of the initial distribution
function F (cf. (2.4)). The above problem can be formulated in terms of analysis
of relationship between the solution fg (or fz or fp) of the Boltzmann equation
(the Enskog equation, the Povzner equation) and the local Maxwellian with
fluid-dynamic parameters defined by pys, uys and Tys i.e.

_ 2
MNS(t’ X, U) = pNS(ta x)(2n TNS(t’ X))_3/2 CXp(— %) M (34)
NS\
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The reader is referred to the paper [12] for a review of results on existence of
solutions for the N-SE. In this paper the following assumption is the starting
point.

Assumption 3.1. Let t,e(0, + o) and the initial datum (3.3) be such that
A)) a sufficiently smooth solution (pys, tys, Tys) of the problem (3.2-3) exists on
the time interval [0, t,]
B.) the solution satisfies
pns(t, x) = ¢, >0, Tys(t, x) =2 cr >0 (3.5)
V(t, x)€[0, to] x £,
where ¢, and c; are constants (independent of ¢),

C.) the solution is such that the functions pyg, uys, Tys and their derivatives are
bounded independently of ¢€(0, ¢;] for some &,.

4. Some definitions

After Assumption 3.1 the local Maxwellian M s, as defined in (3.4), is related to
the solution (pys, uys, Tys) as in Assumption 3.1. Then a local and a global
Maxwellians M, and M, such that

M0=MNslr=o (4-1)
and
(1 4 03)E Mys(t, x, v) < ;M 4 (v) 4.2)

for all (t, x, v)€[0, t5] x 2 x R* and all aeR"', where the constant c, depends
only on a. Analogously as in Ref. [8] the spaces Y& and Y** equipped with
the norms

N&*{-} = Il(]-; C*(@; My D)|); BY|
and

Nes () = (1 C@)1; BAMLD)],

respectively, are introduced.

-1 .
C5(2) and C5(R2; M, 2(-, v)) are the spaces of the functions which are continuous
together with all their derivatives of orders |y| < s and equipped with the norms

ahl
nﬂmwwsw—é
0<|y|S<s 0x
and e
_1 _1 5Iv|f
If5 C(2, Mg 2(-, v))| = sup Moz(',v)w-

o<|y|<s
xe 2
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B* and B*(W) are the spaces of continuous functions on R® with the norms

I f; B*| = sll:glwafl
and

I f; B*(W)|l = slt(laplwanl

where w,(v) = (1 + v?)2 and Wis a positive continuous function. L,(R3; W) is
the space with the norm

If: Ly(R®; W) = ( J (fW)zalv)E
R3

and with the inner product

(f, g)Lz(Ri’;W) = J

R

f-gWlidv.

-1
The norm and the inner product in the space L, ys = L,(R?, My@) are defined by

1

2
||f||2,1vs=<J fZMESIdU> and (f. 9ns = Jf’gMzisldU-
R3
Finally we introduce the hydrodynamic and nonhydrodynamic subsets in
L,(R?; W):
N (W)=1ln{W2¥,: ¥,v)=1, Zi)=0 (i=1,2,3), Ps(v) =0*}
and

RW) = (¥ (W)

= geLz(R3; W):(g, W_Z.Ili)L R3:W) — 'I’,-gdl):o, l=0, 1,...,4 .
2(R3; W)

5. Caflisch expansion

The bulk expansion proposed by Caflisch [1] is intermediate between the Hilbert
and the Chapman-Enskog expansions. The equation resulting from this
expansion are the N-SE although the nature of the expansion is rather more
close to the Hilbert procedure than to that of Chapman-Enskog.

Despite of fact that the Boltzmann equation (2.1) is singularly perturbed by a
small parameter ¢, its solution is searched in the form of a power series with
respect to ¢:

f(8) = fo(t) + ef1(t) + €2 f5(8) + -+, (5.1a)
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fi=g;+h, (5.1b)
where g; and h; are the nonhydrodynamic and the hydrodynamic components of
the j-th term of the expansion, i.e.
-1 -1
g;€ R(Myg), hje &/ (Myg)
(cf. [7]).
-1
Define in L, ys projection operators Pys and Pys =1 — Pyg onto A" (My¢) and

-1
R (M @), respectively. Inserting (5.1) into (2.1) and decomposing the term g, into
g, = g1 + g{ we can obtain the following set of equations

Jo(fo, fo) =0, (5.2)
2J4(fo» 91) = P*Dfy, (5.3a)
PDf, = — ¢PDgj, (5.4a)
2Jo(fo. g1) = eP*Dh,, (5.3b)
PDh, = — PDyy, (5.4b)
2Jo(fo, 92) = éPtDh, + P*Dg, — Jo(94, 91), (5.3¢)
PDh, = — PDyg,, (5.4¢)
and
2Jo(fo, g;) = eP-Dh; + P*Dg,_, — j:zi To(fis fi-1), (53d)
PDh; = — PDg;,, (5.4d)
for j = 3.

It is well known that the only solutions of the equation (5.2) are local
Maxwellians. Thus f;, must be a local Maxwellian with fluid-dynamic parameters
g, and T We can assume that (g, éi, T) are given by Assumption 3.1:

8, 8, T) = (pns, uns: Tys) (5.5)

and then f, = Mys. In that case, in virtue of the Fredholm theory (cf. [4, 7])
the integral equations (5.3) can be solved in L, ys:

g1 = £~ 1P+ Dfy), (5.62)
gy = £ '(eP*Dhy) (5.6b)

and so on.
Now, (5.4a) leads to the equation

PDf, = — ePDZ ™1 (P*Df,) (5.7)



Nonlinear kinetic equations 37

which is precisely the N-SE (3.2) for 5, i and T (cf. [1, 2, 4]). Thus by (5.5)
the equation (5.7) is satisfied.

The equations (5.4b), (5.4c), (5.4d) lead to linearized Navier-Stokes systems for
hy, hs,....

From the mathematical point of view the present procedure needs more caution
than the Hilbert one ([7]) for the e-dependence of the expansion terms. However,
in contrast to the local Maxwellian Myg(t) for t > 0, the Maxwellians M, and
M, are independent of &. Moreover, the following lemma can be proposed.

Lemma 5.1. Let & =2Jy(Mys, ). Then
£ gll2ns < collgllans (5.8)
-1
for all ge R(My&), where ¢ is a constant independent of t, x and &. Moreover
-1 -1
1€ g; BE(My@) |l < c(@)llg; B*(Mnd)ll (5.9)

-1 -1
for all ge R(My)n B*(My¢) and a > 2, where c(a) is a constant independent of
t, x and e.

Proof. We first prove the following inequality

(9, L9)ns < — €109, Gns (5.10)

-1
for all ge R(M y¢), where ¢, > 0 is a constant independent of ¢, x and &. Denote
-3 1_;2
w() = (2n) 2exp| — 5 )

Then (cf. [8])

_fv—u V] — Uns ,
@ Lahs = JJJ“’ ( e s)“"”){“’( T )g"”
V' — Ups / U — Ups Uy — Uns
¥ “’( TP )g“’" - “’( TP )"‘”‘) - “’( e )g‘”’}

“®(n (v, — v))dn dv, dv

where
vy =0y —n(n(v; —0)),
v =v+n(n(; —v)
and
@(y) = max {0, y}.

Changing variables
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U — Uns Uy — Ups

TS e

72 and v, — ¢, =
NS

we have

(2 fg)ns=T%J j f ™ 1(9J(&) {w(€DJ(&) + w(€)g(&1)
R3JS2

R3
— w(9)g(&1) — 0(€)g(&)} P(n- (& — &) dn dE, dE, (5.11)

1
where §(&) = g(Tis& + uys)
and

&i=& —n(n( —9)
=C+n(n(& —9).
It is very well known (see [5]:(80)) that the following inequality holds:

j f f o™ (©)g90) {o)g®) + 0®)g(v]) — w®)g(v,)
R3JR3JS2

- w(vl)g(v)} D(n-(v; —v))dn dé; d < — c,(g, g)Lz(R3;w“/2) (5.12)

for ge@(w'%), where ¢, > 0 is a constant (equal to the first negative eigenvalue
of the operator J(w, *) in L,(R?; w'%)). Applying (5.12) to (5.11) we obtain

1
(9, ZLgIns < — c2Pns TNs(9s 9)ns (5.13)

L

for ge #(Mys). Thus (5.10) with ¢, = c,c}c, (cf. (3.5)) follows. Then using (5.10),
by the standard arguments, we obtain (5.8) with ¢, =c;'. Next, the operator
& can be split into regular and singular parts

Lf=Hf—-vf (5.14a)

where
v(t, x, v) = J M ys(t, x, v) @ (n- (v, — v))dn dv,. (5.14b)
R3Js2

The well-known Grad’s inequalities lead to

c; wy <v<celwy, (5.15)
-1

14 f; BP(My&)| < call fll2,ns (5.16)
-1 -1

I f; B (My@) | < c*@)] f5 B*" 1 (Mygd) |l (5.17)

for « = 1, where c3, ci,c, and c*(a) are positive constants independent of ¢, x
and & Thus, by the Grad’s arguments [5-Section V] we obtain (5.8).
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By Lemma 5.1 we conclude that none of the operations described in this Section
does not cause any singularity with respect to e.

6. The initial layer expansion

It is very well known that the bulk approximation, like that presented in Section
5, has to be completed by the initial layer approximation as in Section 4 of the
paper [7]:

fa(0) =fo(0) + ef 1(2) + e2f5(0) + -+ + folen) + efy (ex) + 2 (e7) + -, (6.1a)

where 1 =% is the “stretched” time variable, f; are the bulk approximation terms

defined in Section 5 and f~J are the initial layer terms. The latter are decomposed
fi=d;+h, (6.1b)

_1 . _1 -
where §;e R (M, ?) for j=0, 1,...; hje /(Mo ?) for j=1,2,... and hy =0. The
bulk approximation terms are expanded in the power series in t:
k—1
filer) = Y, &', (1) + e[z, e). (6.1c)
i=0
Then the representation (6.1) leads to the initial layer equations (cf. [7]):

of, . .
$=J0(f0’f0) +2J0(M0> fo)’ (62)

fo|:=o =G, (6-3)
where G=F — M,

Ohy_ Po(v-grad, f;_,), (6.4)
01
hile=o = Hj, (6.5)
0F: S . -
-%=2J0(Mo + fo» gj)+2J0(f0’hj)+.Z Jo(fis 1)
e
+ Y 2J6(fi fund — P(v-grad, f;_), (6.6)

ik,k'20

i+kl:lf'=j
gj|t=0 = —4jo0> 6.7

-1
for j=1,2,..., where P, and P§ are the projection operators onto 4" (M, 2) and

-1 ~
A(M, %), respectively, and H; has to be specified.  The initial value of §; is
determined by the solutions of Egs (5.3b), (5.3c) and (5.3d) at t =0 as in
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(6.7). Note, that in order to reduce singularities with respect to ¢ the initial
layer terms must decay rapidly (exponentially) with 7—oco. The null order
equation (6.2) is the spatially uniform nonlinear Boltzmann equation (the space
variable x is only a parameter). Note, that all its terms as well as the initial
datum (6.3) are independent of ¢ An exponentially decaying solution is
constructed for the initial datum G satisfying the smallness condition

N$°{G} <0, 68)

where 6 is a critical constant independent of & (cf. [7, 8]). As the initial layer
terms should vanish at infinity (with respect to 7), the initial data (6.5) has to be

'+ o0

ig =J Po(v-grad, f)) dr, (6.9)
0

i=12,.. (cf [7]).

This specifies the initial conditions for Eqs (5.4b), (5.4c) and (5.4d):

~

hilico= —hleco=—H;, j=12... (6.10)

7. A weakly nonlinear equation

The considerations of Sections 5 and 6 as well as the methods from [7] lead to
the following theorem.

Theorem 7.1. Let Assumption 3.1 be satisfied. Let the initial datum (2.4) be
decomposed into hydrodynamic and nonhydrodynamic parts as follows

F=M,+G, (7.1)

where M is a local Maxwellian whose fluid-dynamic parameters are pygli-o,
Unsli=0» Tnsli=o and G is a function with null fluid-dynamic parameters, i.e.

Ge.%(M; %) such that Ge Yg"® with a and s being large enough and such that the

smallness condition (6.8) is satisfied. Then

A) there exist solutions f,,....f, of the bulk expansion equations (5.3-5.6)
sufficiently smooth with respect to te[0, ty] and xeQ, and such that

o+

W,———f;

1
< const- M3 (7.2)
ot*ox?

forall 0 >0,k>=0, |y >0, je{0,1,...,a}, te[0, ty], xeQ, veR> and ¢ > 0,
where the constant denoted by “const” depends only on a, k, |y| and j;

B.) there exist solutions f,,..., fa of the initial layer equations (6.3)-(6.8) and
numbers «;, s;, 6; > 0 such that

f1€CHI0, + o0); Ygr™) (7.3a)

and
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sup N§"* {exp (6,7) f j(7)} < const (7.3b)

20
Jor j=0,...,a;

C.) the Boltzmann equation (2.1) with the initial datum F is equivalent to the
following nonlinear equation

2 2 o a -
Dz = EJO(MNS’ z) + ;Jo(an z2)+2 Z 8l_l-lo(fj +fi 2

j=1

+ e oz, 2) + 670U (7.4)
with initial data
zl=0 =0, (7.5)

where W is a complicated term depending on fy,....f, and f,...,f., but with
a regular behaviour with respect to ¢ as ¢ — 0.

Remark 7.1. Points A and B of Theorem 7.1 were proved in the paper [7]
(see also [8]). Next, inserting

110 = Mysl0) + 3ol ) + 3 050+ F(£) + 200 (1.6

into the Boltzmann equation (2.1), the equation (7.5) is obtained. The nonlinear
and nonhomogeneous terms of Eq. (7.4) are multiplied by numbers ¢! and &%,
respectively. Therefore, for a and b chosen properly, Eq. (7.4) is weakly
nonlinear. The analysis of this equation has been included in the paper [8]

where the Euler limit was studied.

Now the following theorem on the Navier-Stokes hydrodynamic limit can be
proposed.

Theorem 7.2. Let k>0 and Assumption 3.1 as well as the conditions of
Theorem 1.1 be satisfied with a and s sufficiently large depending on k. If
0 < e < ¢, where ¢, = g,(ty) is a critical value, then a solution fg of the Boltzmann
equation (2.1)-with the initial datum F -exists in L ([0, to]; YI'*) and

sup NYH{f3(t) = Mus(0) = Fol£) = e(fi)) + F1(£)} < €082 (1.7)
1[0, 1,
Sor all B >0, where c,, is a constant depending on t,. Moreover, if k>2 then

f5eC([0, to1; Y2*~HnCH([0, to]; YI*72). (7.8)

Remark 7.2. Theorem 7.2 follows from Theorem 7.1 and by an analysis of
the weakly nonlinear equation (7.4) in Ref. [8].

Remark 7.3. The asymptotic relationships between the Enskog equation (2.2)
or the Povzner equation (2.3) and the Navier-Stokes equations (3.2) can be
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formulated analogously as it has been done for the Euler system case in Ref.
[8]-Sections 10 and 11.

8. Discussion

Theorem 7.2 refers to the solution to the Boltzmann equation under the suitable
smallness assumption on the nonhydrodynamic part G of the initial datum. The
solution exists as far as a smooth solution of the Navier-Stokes equations exists
and the asymptotic relationship (7.7) is satisfied.

In addition, the solution is unique if the solution of the N-SE is unique and is
continuously differentiable in Y'*~2.

By Theorem 7.2 the corresponding theorems for the Enskog equation and the
Povzner equation can be formulated (Remark 7.3).

The paper [9] suggests that the following theorem can be proved: the local
Maxwellian Mg is well approximated by a solution of an equation describing
the dynamics of a system of spheres interacting through elastic collisions with a
stochastic distance of interaction.

The expansion used in this paper is obtained from the Hilbert expansion by
a rearrangement of terms and thus its nature is different from the Chapman-
Enskog procedure ([1, 2, 4, 6, 11]). The detailed discussion can be found in Ref.
[1]. The idea of rearrangement of terms leads to a conclusion that a system
different from that of Navier-Stokes can be used to establish hydrodynamic
approximation of the kinetic equations. Using the expansion equations

2Jo(fo> 91) = P*Dfy + P*F [ fo] (8.1a)
and
2Jo(fo, 91) = eP*Dhy — P*F [ f,] (8.1b)

instead of Eqgs (5.3a) and (5.3b) the asymptotic theory can be formulated starting
from the following “hydrodynamic” equation rather than (5.6):

PDf, = — ePDL ' PL(Dfy + Z [ £,]). (8.2)

For example, the case of #[ f,] = — Df, leads to the Euler system approximation.
The similar effect of “nonuniqueness” of the Navier-Stokes hydrodynamic
approximation has been described by Ellis and Pinsky [3] in the linearized case.
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