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Solutions of nonlinear kinetic equations on the
level of the Navier-Stokes dynamics
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1. Introduction

T his p a p e r  is  a successive s te p  in  th e  mathematical description of relations
between th e  kinetic theory o f  gases a n d  th e  continuous fluid theory. In  the
previous paper [8 ]  the  lim it o f kinetic equations (the Boltzmann equation, the
Enskog equation a n d  th e  Povzner equation) corresponding with E uler fluid
dynamics was studied. Solutions to  the kinetic equations were requested in the
form of a sum of a truncated Hilbert expansion series, of a truncated initial layer
series and of a rem ainder. In  this way the original kinetic equation was replaced
by a  system of Hilbert expansion equations, initial layer equations a s  well as a
(weakly nonlinear) equation fo r  th e  rem ainder. I n  th is  p a p e r  th e  approach
initiated in  [8 ] is continued. Instead of the Hilbert expansion, which results in
th e  nonlinear a n d  linearized E uler equations (see [ 7 ]  a n d  [1, 2, 4, 10]), the
modified expansion proposed by Caflisch [1] is  u s e d . T he equations resulting
from  this m odified expansion are first th e  system o f  Navier-Stokes equations
(N-SE) for compressible fluids and thereafter systems of linearized Navier-Stokes
equations. The Caflisch modified expansion would also start with the system of
Burnett equations and at higher order would yield linearized systems of Burnett
equations.

The expansion can be m odified in  such a  w ay  tha t it resu lts  in  different
"hydrodynamical" systems and as in the linearized case (Ref. [3 ]), from the point
of view of the kinetic equations, the Navier-Stokes system can be considered as
a n  only one  o f m any possible refinements o f the  E u ler system . This "kinetic
nonuniqueness of the Navier-Stokes equation" will be discussed in Section 8.

O ur m ain  results are the existence and asymptotic behaviour theorems for
th e  kinetic equations (the Boltzmann, the Enskog a n d  th e  Povzner equations)
under suitable smallness assumptions on the nonhydrodynamical part of the initial
d a tu m . T h e  analysis is carried o u t  in  C

°
 se ttin g  w ith  respect t o  th e  space

variable. The solutions exist macroscopically as far as a  smooth solution of the
system o f  Navier-Stokes equations (N-SE) does a n d  a re  approximated by the
solution of the N -SE . In  addition, the solutions of the kinetic equations are
continuously differentiable and unique if the solution of the N-SE is unique. The
advantage o f using the  N-SE, instead of the  E uler system, a s  a  starting point
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for constructing the existence theorem fo r kinetic equations is in  that we can
expect the existence of smooth solutions to  the N-SE even when shocks appear
(c f . [1 ] ) . T hus th e  tim e  interval, on w hich our solutions exist can be longer
than of the Euler system.

2. Kinetic equations

Kinetic equations a re  mathematical models which describe the  tim e and  space
evolution o f  th e  one-particle distribution function f = f(t, x, y), where t  is  the
time, x - the space variable and y - the velocity. Similarly as in Ref. [8] all kinetic
equations a re  assum ed  to  be  in  th e  dimensionless form a n d  to be singularly
perturbed by a  small parameter e>  0 representing th e  scale o f  th e  m ean free
p a th . T h e  dimensionless form o f  a  kinetic equation is realized by referring the
variables t, x, y as well as the distribution function f  to  the suitable characteristic
quantities F o r  s u c h  n e w  variables w e  p re se rv e  th e  n o ta t io n s  t, x , v  and
f. Throughout the paper we assume that all functions are periodic with respect
to  the  space variable x with fundamental domain 0  c  Rd ,  where d =  1, 2 or 3
(for details see R ef. [7 ]) . Consequently, the investigated problems can be written

DfB  =  Jo (fe, fe),

Df E  =  i a (fe, fe) +  ,Ea,c(fe; fe, fe),

Dfp =1 1),(fp, fp ),

with initial data

felt=o =f511=0  = fplt=o =- F,

0
where D = — + y • grad s , 6  is a  dimensionless parameter representing the scale of

Ot
th e  hard-sphere diameter in  the  E nskog  model (2.2) a n d  r  is  a  dimensionless
diameter of the sphere of interaction of particles in the Povzner equa tion . The
reader is referred to  [8] fo r all details a s  well a s  fo r  th e  definitions o f rather
complicated collision operators : J , in the Boltzmann equation (2.1), J 6  and E,5,

in the Enskog equation (2.2) and  P,. in the Povzner equation (2.3). N ote that
J ,  i s  a  bilinear, sym m etric  operator ac tin g  o n ly  o n  th e  v a r ia b le  y  a n d
corresponding  to  G ra d 's  cu toff hard  poten tia ls (how ever the  no ta tion  fo r
hard-spheres potential will be used for simplicity).

3. N avier - Stokes system

T h e  macroscopic fluid-dynamic parameters a r e  r e la te d  to  the distribution
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function f  in  the  classical way : the mass density is defined by

p(t, x) = f  f  (t, x , v)dv, (3.1a)

the macroscopic velocity vector by

u(t, x ) - 
p(t, x)

1
v f ( t ,  x ,  v ) d v (3.1b)

and the macroscopic temperature by

T(t, x ) -  1
f

v2 f (t, x , v )dv  - p(t, x )u 2 (t, x). (3.1c)
3p(t, x)

A n interesting problem in  th e  analysis of relations between th e  kinetic theory
a n d  th e  continuous fluid theory is th e  relationship between th e  macroscopic
parameters p, u, T  a n d  th e  corresponding solution (pN s , U N S , TN s )  o f the  system
of Navier-Stokes equations (N-SE):

—
Ot 

P NS ±  
I a  X ( i )

 (I)  NS 4 1 )S ) =  O.
a 3 a

i = 1 
(3.2a)

a 3 a,—
at

(p Ns u(APs) + 
i 1 X ( i )
E 

(

(PNs u(i4's u(N1)s) + 
a

a
x ( i )

l.(P NSNS TNS)
=  a

E E
J=  i axo) li(Tns) +

(0 41)s 0  4 ) )  2  a  ( a 4  V{  3  a 3

• —  3 0x(i) P(TNs) E (3.2b)=
= i axi)( )f 'axo) ax0)

0 3 1 3 a 3 1
— (PNs( -  TNS uks )) + E 

x ( i )
 (P uN)s — TNS

2
UNS) P  NS UN% T V S )at 2 2 i=  0 2 2

3 a a uNo +  a uNws  _  2 14(1,ii)s a liNt
=  E • IP(TNs) (4 ) ,  l t p  \a T N S

i = 1 a X ( i ) j =  1 aX(i) ax (i) 3 0x0) N S )  ax ,

(3.2c)

where u( i )  is  the i-th component of the vector u, and ). represent the coefficient
of viscosity and that of heat conduction, respectively (cf. [2, 4, 6]), with initial data

(PNS ,  UNS , TNS) L=0 = (PO, Uo, To), (3.3)

w here po , u o , To a r e  t h e  fluid-dynamic parameters of the initial distribution
function F (cf. (2.4)). T h e  above problem can be formulated in  terms of analysis
of relationship between the solution f ,  (or f 5  o r  f ,,) of the Boltzmann equation
(the Enskog equation, the Povzner equation) and the local M axw ellian  with
fluid-dynamic parameters defined by p iss , U N S  a n d  T N s i.e.

(  U N S ( t ,  X ) 1
2

M N S 4 , X , =  PN S (t ,  X )(2n  TN s (t, x)) -  3 1 2  exp
2TNs(t, x)

(3.4)
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The reader is referred to the  paper [12] fo r  a  review of results on existence of
solutions for the N -S E . In  this paper the  following assumption is the starting
point.

Assumption 3.1. L et to e (0, + cc) and  the  in itia l datum  (3.3) be such that
A.) a  sufficiently smooth solution (p, s , UNS, TN s ) of the problem (3.2-3) exists on

the  time interval [0, to]
B.) the solution satisfies

PN s (t, x) %- cp > 0 , TNs(t, x) % CT > 0 ( 3 . 5 )

V(t, x)e [0, to]  x Q,

where cp  a n d  c ,  are constants (independent of E),
C .) the solution is such that the functions Dr  NS ,  U N S , T N s  and their derivatives are

bounded independently of E e (0, c o]  for some c o .

4. Some definitions

After Assumption 3.1 the local Maxwellian M,,,s , as defined in  (3.4), is related to
the solution (pN s , U N S , TN s )  a s  in  Assumption 3.1. Then a  local and a  g lobal
Maxwellians M o a n d  M +  such that

M O = MNS1t= 0 (4.1)
and

(1 + y 2 )1 M,,s (t, x, y) .... ca M +  (y) (4.2)

fo r a ll (t, x, v)e [0, to ]  x 0  x .123 a n d  all ŒE R 1 ,  where the constant cx depends
only on Œ. A nalogously  as in  R ef. [8] the  spaces Yj's a n d  y - .  equipped with
the norms

_i
N j1 •1  =  WI' ; C s (Q ; M )11); B œ il

and

INPI:s {•} = 11(11'; 00)11; BŒ(M )M,

respectively, are introduced.

Cs(Q) and Cs(S2; Mo
 2 ( • ,  0 )  are the spaces of the functions which are continuous

together with all their derivatives of orders ly1 ..... s and equipped with the norms

alyif

axY

and

IIf; C s (S2)11 — sup
0- 1‘.s

xeD

- i
IIf ;  C s (S2 , M 0  2 ( . , 0)11 = sup

0,-51A.,5s
X E  12

- , al), "
M O 2 ( ,  0

oxY
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BŒ and 13"(W ) are  the spaces of continuous functions o n  R 3  w ith  the norms

IIf; B2 = suplw f  I

II

and

f ; B œ (W)11 = sup I wOE
 1411

where w(v) = (1 + v2 )  a n d  W is  a positive continuous function. L 2 (R3 ; W) is
the space with the norm

(f17102 dv) 2II f ; 1 , 2 (R 3 ; =
R3

and with the inner product

(f, 02(R3ov, — f  g w 2 dv.
f R3

_
The norm and the inner product in the space L 2 , „  =  L 2 ( R 3 ,  M )  are defined by

11 f II2,Ns = ( f  
2  

MN-Si d
v ) 2

and
g ) "

g m ;s i  dv.

F in a lly  w e  in tro d u ce  t h e  hydrodynamic a n d  nonhydrodynamic subsets in
L 2 (R3 ; W):

(W) = lin (1/V 2: (V) =  1 , Vi(v) = vu) (1 = 1, 2, 3), W4 (v) = l l 2 }

and

I l(W ) = (.1 1 ( (W))±

{= g  e L2 (R 3 ; W ): (g, W  - in2 -  id.,2(R 3 ; W) - W ig dv = 0, i = 0, 1, ... , 4 .

5. C a flisch  expansion

The bulk expansion proposed by Caflisch [1] is intermediate between the Hilbert
a n d  t h e  Chapman-Enskog expansions. T he  equa tion  resu lting  from  th is
expansion are the N-SE although the nature of the expansion is  ra ther more
close to  the Hilbert procedure than to that of Chapman-Enskog.
Despite of fac t tha t the Boltzmann equation (2.1) is singularly perturbed by a
small parameter e ,  its  solution is searched in  th e  form  of a  pow er series with
respect to  e :

= fo(() + c f 1 (t) +  E2 f 2 (t) + • • • , (5. la)
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fi -= g .  + h i , (5.1 b)

where gi  a n d  h i  a re  the  nonhydrodynamic and the hydrodynamic components of
the j-th  term of the expansion, i.e.

_1 _1
gjeM (M N 52), h e  ( M N )

(cf. [7]).
_

Define in  L.2 ,Ns projection operators PN s a n d  P-ks  = 1 — P i v s  o n to  X (A1 s
2) and

_
A MNs2 ), respectively. Inserting (5.1) into (2.1) and decomposing the term g 1 into
g, = g, + g ' w e can  obta in  the following set of equations

(fo fo) = 0,
2J0(f0, = P f 0 ,

PDfo  =  — ePDg,,

2./0 ( f0 , gf l = eP ± Dh i ,

PD/i 1 = —  PD g,

2 .10(f0, 92) = 6 1 3 1  Dh2 + Dg

PDh 2 = —  PDg 2 ,

and

2.10 ( f 0 , gi ) = 813 ± Dhi  +

PDh i  =  — PDg i ,

for j  ?, 3.
It is well known that the only solutions

— Jo(g 1, 91),

J-1
—  E J o ( f i , 4_ 1 ),

i = 1

of the equation (5.2) are

(5.2)

(5.3a)

(5.4a)

(5.3b)

(5.4b)

(5.3c)

(5.4c)

(5.3d)

(5.4d)

local
Maxwellians. Thus f o  m ust be a local Maxwellian with fluid-dynamic parameters
p, a and  7'. W e can assume that (p, a, )  are given by Assumption 3.1:

(i3 , 17 5 =  ( PNS, UNS , TNS) (5.5)

and  then f o  = M  
N S .

 I n  tha t case, in virtue of the Fredholm  theory (cf. [4, 7])
the  integral equations (5.3) can be solved in  1,2 , Ns:

gi = ' (PI  Dfo), (5.6a)

= - 1 (eP± Dh 1) (5.6b)

and so  on.
Now, (5.4a) leads to the equation

PDfo  = — E P D Y  - 1 (P ± D fo ) (5.7)
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which is precisely the  N-SE (3.2) for p, i i  a n d  1- ' (cf. [1 , 2 , 4 ]). Thus by (5.5)
the equation (5.7) is satisfied.
The equations (5.4b), (5.4c), (5.4d) lead to linearized Navier-Stokes systems for
111 ,
From the mathematical point of view the present procedure needs more caution
than the Hilbert one ([7 ]) for the c-dependence of the expansion terms. However,
in  contrast to  the local Maxwellian M N s ( t )  for t > 0, th e  Maxwellians M o and
M + are independent of E. Moreover, the following lemma can be proposed.

Lemma 5 .1 .  L et ..99 = 24(m N s , - ). Then

11-29 - 1 9112,7vs CO (I gli 2,NS (5.8)

_1
),f o r all g E  R (M where co i s  a constant independent of t, x  and E. Moreoverrd

_I _I
II Y — 1 g ; BŒ(M)1 c(oc) II g ; BI(mNs2 )11 (5.9)

_1
f o r all g e 1!(M us2)n BŒ (M N ) an d  a ..- 2, where c ( a )  is a constant independent of
t, x  and E.

Pro o f . W e first prove the following inequality

( g ,  2 g ) N s  ..., —  ci(g, g)vs( 5 . 1 0 )

for all g E  M (M N ), where c , >  0 is a constant independent of t, x and e. DenoteS2

_ 3 V
2

0 )(V ) =  (2n) 2 exp ( — — ),
2

Then (cf. [8])

( V  — UNS
(g, y l  —  U N S )

g ( v )( g , .2 9 g) N s = co   g ( v ) { c o (Ç
 R3 f R 3  f S2 TiVs2 T,,, 2

+  
co ( V '  —  UNs)

g ( v i)  
( 0  (  y  —  U N s )

g ( v , )
—

 c o
( v i  —  U N S )

T 1121VS T112IVS Tia2

• 0(n• (v, —  v))dn dv, dv

g(v)}

vi =  v,—  n•(n•(v,—  v)),

I.,' = v +  n.(n•(v, —  v))

0(y) -= max {0, y}.

where

and

Changing variables
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V — UNs V UNSV _  and v 1 1 — 
2T 2

we have

( g ,) N s  = T f (.0— 1 (0 a ( ) {CO (0 +  (.0  (0  (0
R 3  R 3  , S 2

— 0 0 0 (0  —  (* 1 )0 ( )1 0 (n • (;t — g ,  g , (5.11)

where ) = g(lVs  +  UN S )
and

= — n • (n • gi —

=  +  n • (n • gi —

It is very well known (see [5] : (80)) tha t the following inequality holds :

JR3  fR 3

co - 1 (v)g(v)Ico(vpg(e) +  co(v)g(v)—  co(v)g(v i )

— co(v i )g(v)} .0(n • (v, — v))dn g,  d —  c 2 (g, g) L 2 ( R 3 , -  i / 2 )( 5.12)

for g eM(co - 1), where c2 >  0  is a constant (equal to the first negative eigenvalue
of the operator J(co, •) in  L 2 (R3 ; - 1)). Applying (5.12) to  (5.11) we obtain

(g ,  1 1 7 g)Ns — C2 P NS TN2S(g, g) NS (5.13)

for g eR (M N s ). Thus (5.10) with c, =  c p c i c 2  (cf. (3.5)) follows. Then using (5.10),
b y  the standard arguments, we obtain (5.8) with c o  =  c i

- 1 . Next, the  operator
_99 can be split into regular and  singular parts

_ r f= — v • f (5.14a)

where

v(t, x, y) = NS.f  M  lt
,  

x, v)0 ( n  •  ( v ,  —  v))dn dv,.
R 3  R 3  

The well-known G rad's inequalities lead to

w1v C 3 w 1 ,

1111; B °(A  Ns

- 2

)II c.11f II2,Ns,

(5.14b)

(5.15)

(5.16)

II ; BŒ(MN- )M Mc() f; Ba - 1 (M Ns2 )11 (5.17)

for a 1, where c ,  c 3
4 , c ,  and c (Œ ) are positive constants independent o f  t, x

and e. Thus, by the Grad's arguments [5-Section V] we obtain (5.8).
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By Lemma 5.1 we conclude that none of the operations described in  this Section
does not cause any singularity with respect to  E.

6. The initial layer expansion

It is very well known that the bulk approximation, like that presented in Section
5, has to be completed by the initial layer approximation as in Section 4  of the
paper [7] :

fB (()= -70 (T )+  g fi(T )+  6 2 f  2 (T ) + • • • +f 0(e t) ef i (Et) + C 2  f2 (et) + • • • , (6.1a)

where t =  is the "stretched" time variable, f i  are the bulk approximation terms

defined in Section 5 and I ; are the initial layer te rm s . The latter are decomposed

(6.1b)

-k_
where -di e M(M0

 2 ) for ] = 0, 1,... ; h e  K  (M o
 2 ) for ] = 1, 2 ,... and h 0 =  0 .  The

bulk approximation terms are expanded in the power series in  1* :

k – 1
/ ( U ) =  E  f ( t )  + c k  g k ( e). (6.1c)

=o

Then the representation (6.1) leads to the initial layer equations (cf. [7 ]):

(6.2)

(6.3)

(6.4)

(6.5)

+  E  f„k) — P (v  • gradx f ; _ i), ( 6 . 6 )

(6.7)

for j  = 1, 2 ,..., where P o a n d  Pi', are the projection operators onto ./1( (M a )  and

,R(M 0
 2 ) ,  respectively, and has to be specified. The initial value of -4;  is

determ ined by th e  so lu tio n s  o f  Eqs (5.3b), (5.3c) a n d  (5.3d) a t  t =  0  as  in

f i= g i+

 J o b  f0 )  2 4(M0,at

f olt=o = G,

where G = F — mo ,

oh. ;

= Po(v • gradx f i ),
at

jls = 0 — P

a
a
4
t
i  — 2.4(4, +fo, .4) +  2J0(fo, + E fk)

i,k?- 1
i+k =j

i,k,k'
i < j

= o = o
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(6.7). N ote, th a t in  order to reduce singularities w ith respect t o  s  the initial
layer term s m ust decay rapidly (exponentially) with T —> cc. T h e  null order
equation (6.2) is the  spatially uniform nonlinear Boltzmann equation (the space
variable x is only a  param eter). Note, that a ll its term s a s  well as the initial
da tum  (6 .3 ) a r e  independent o f  e. A n  exponentially decaying so lu tion  is
constructed for the initial datum  G satisfying the  smallness condition

{G} 0, (6.8)

where 0  is  a  critical constant independent of e (cf. [7, 8]). A s the  in itia l layer
terms should vanish at infinity (with respect to -r), the initial data (6.5) has to be

= Po (v • gradx f i ) (IT, (6.9)
+.0

0

j =  1 , 2 ,... (cf. [7]).
This specifies the initial conditions for Eqs (5.4b), (5.4c) and (5.4d):

hilt=0 = 1711,=0 j  = 1, 2, .... (6.10)

7. A  weakly nonlinear equation

The considerations of Sections 5 and 6 as well as the methods from [7] lead to
the following theorem.

Theorem 7 .1 .  L et A ssumption 3.1 be satisfied. L et the initial datum (2.4) be
decomposed into hydrodynamic and nonhydrodynamic parts as follows

F = M o + G, (7.1)

w here M o i s  a local M ax w ellian whose f luid-dynamic parameters are  PNSIt -=

UNSIt= 0 >  T N S I t  = 0  an d  G  i s  a  function w ith null f luid-dynam ic param eters, i.e.

G e.1(M O
2 ) such  that G eV '' w ith  a and  s being large enough and such that the

smallness condition (6.8) is satisfied. T h e n
A.) there  ex is t solutions f 1 , . . . , f a o f  t h e  b u lk  ex pansion equations (5.3-5.6)

sufficiently smooth with respect to  te  [0, to ]  and x e S2, and such that

l a t k a f f
•

const • Mks( 7 . 2 )

  

f o r all a 0, k 0, ly1 0, je {0, 1,..., a}, t e [0, t o] ,  xeS2, v e R 3 and  e > 0,
where the constant denoted by "const" depends only o n  a, k , ly1 and j;

B.) there ex ist solutions f o , . . . , f a o f  the initial lay er equations (6.3)—(6.8) and
numbers ai , s , b i  > 0  such that

E C1
(  [ 0, + C O );  Ycl

a i
'
s i

) (7.3a)

and
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sup n 's i  {exp ((Si -Oh l ) }  c o n s t (7.3b)
r ?, 0

for j = a ;

C .)  the B oltzm ann equation (2.1) w ith the initial datum  F is equiv alent to the
following nonlinear equation

2 2 - a
Dz = - J  ( M  z 1 - 1 - ( f 2os. - N S , - , •  —  -  O s ,  0 1  Z ,  .  —  E 1.10 (f, +f,, z)

j= 1
+  8 19 —  1  

JO (Z,
c a — b 9 j

(7.4)

with initial data

Z 0  = (7.5)

where 9.1 is a  complicated term depending on f o , . . . , fa and f o ,... f a , but with
a  regular behaviour w ith respect to  e  as  e

Remark 7.1. Points A and B of Theorem 7.1 were proved in  the paper [7]
(see also [8]). Next, inserting

a

f  (t) = mNs(t) + 00(—
t ,  v

 k

f J (t)  p  t
i 8

) )  ±  E b Z (7.6)e 

into the Boltzmann equation (2.1), the equation (7.5) is obtained. The nonlinear
and nonhomogeneous terms of Eq. (7.4) are multiplied by numbers Eb - 1  a n d  e a ',
respectively. Therefore, f o r  a  a n d  b  chosen properly , E q. (7 .4) is w eakly
nonlinear. T h e  analysis o f  this equation has been included in  th e  paper [8]
where the Euler limit was studied.

N ow  th e  following theorem on the Navier-Stokes hydrodynamic limit can be
proposed.

Theorem  7.2. L e t k 0  and  A ssumption 3.1 as  w ell as the conditions of
T heorem  7.1 be satisf ied w ith a  an d  s  sufficiently large  depending o n  k. I f
O < e e c ,  where e c = e(t 0 ) is a  critical value, then a solution f ,  of the Boltzmann
equation (2.1)- w ith the initial datum  F -ex ists in L ( [O ,  t o] ;  n,k) and

t ts u p  N  f fa(t) — M N s(t)  fo( Etfi (t) + f 1( —)) I ctoe
2

te[0,t a ]

f o r all f i 0 , where c to i s  a constant depending on to . M oreov er, i f  k 2  then

f B e C
°
([0, t o] ; n C ([0, to] ; yr:k- 2). (7.8)

Remark 7.2. Theorem 7.2 follows from Theorem 7.1 and  by a n  analysis of
the weakly nonlinear equation (7.4) in Ref. [8].

Remark 7.3. The asymptotic relationships between the Enskog equation (2.2)
o r th e  P o v zn e r equation (2.3) and the N avier-Stokes equations (3.2) can be

(7.7)
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formulated analogously a s  it has been  done for the  E uler system case in Ref.
[8]-Sections 10 and 11.

8. Discussion

Theorem 7.2 refers to the solution to  the Boltzmann equation under the suitable
smallness assumption on the nonhydrodynamic part G of the initial d a tu m . The
solution exists as fa r as a  smooth solution of the Navier-Stokes equations exists
and the asymptotic relationship (7.7) is satisfied.
In addition, the solution is  unique if the solution of the N-SE is  unique and is
continuously differentiable in  W - 2 .
By Theorem 7.2 th e  corresponding theorems for the Enskog equation and the
Povzner equation can be formulated (Remark 7.3).

The paper [9] suggests that the following theorem can be proved : the local
Maxwellian M N s  is w ell approxim ated by a  so lu tion  o f an  equation describing
the dynamics o f a  system of spheres interacting through elastic collisions with a
stochastic distance of interaction.

The expansion used in  this paper is obtained from the Hilbert expansion by
a  rearrangement o f  term s a n d  thus its  nature is different from th e  Chapman-
Enskog procedure ([1, 2, 4, 6, 11]). The detailed discussion can be found in Ref.
[ 1 ] .  T h e  idea of rearrangement of term s leads to a conclusion tha t a  system
different from  that of Navier-Stokes can be used to establish hydrodynam ic
approximation of the kinetic equations. Using the expansion equations

and

2 4 ( f 0 , gi) = P± Df o + Pi gq fol

2.10(f0, g )  =  gP±Dh i  — 1)± ,9 [f0 ]

instead of Eqs (5.3a) and (5.3b) the asymptotic theory can be formulated starting
from the following "hydrodynamic" equation rather than (5.6):

PDfo  =  — 8 P D Y  P I (Dfo + [A]). (8.2)

For example, the case of gr. [ f o ]  = — Dfo  leads to the Euler system approximation.
T h e  sim ilar effect o f "nonuniqueness" of the  N avier-S tokes hydrodynamic
approximation has been described by Ellis and Pinsky [3] in the linearized case.
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