
J .  Math. Kyoto Univ. (JM K Y AZ)
32-2 (1992) 259-285

Vector valued Fourier hyperfunctions
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Yoshifumi IT°

Introduction

In  this paper, we study H-valued Fourier hyperfunctions. H ere H  i s  a  complex
Hilbert space which is not necessarily separable. We realize H-valued Fourier hyper-
functions a s  elements o f th e  dual space of the space of all rapidly decreasing H-valued
real analytic functions o r  a s  - boundary values" of slowly increasing H-valued holo-
morphic functions and  then show  that they a r e  t h e  twofold realization o f  th e  same
H-valued F ourier hyperfunctions. When we realize H-valued Fourier layperfunctions
using H-valued analytic functionals, our treatment is m ore general than other works
in  the  poin t that te s t functions a re  vector valued. T h is  idea is also used in  Bruning-
Nagam achi [2], which I knew after submission o f th e  present paper.

Next, we define th e  F o u rie r  tran sfo rm a tio n  o f  H-valued Fourier hyperfunctions
a n d  sh o w  th a t t h e  space o f  H-valued Fourier hyperfunctions on the entire space is
stable under the  Fourier transform ation . Further we prove th e  Paley-Wiener theorem
fo r H-valued Fourier hyperfunctions.

Until now, many mathematicians have studied (vector valued) Fourier hyperfunc-
tions : Sato [22], K aw ai [13], [14], Ito-N agam achi [8], [9], Junker [10], [11], Ito [5],
Kaneko [12], S aburi [21], N agam achi [20], Ito [6 ], [7 ]. S a t o  first introduced the
no tion  o f F ourie r hyperfunc tions in  case  o f one  variab le  and  K aw ai completed the
theory of Fourier hyperfunctions. Ito-Nagam achi studied vector valued Fourier hyper-
functions with v a lu e s  in  a  separab le H ilbert space. Ju n k e r a n d  Ito studied vector
valued Fourier hyperfunctions w ith values in  a  Fréchet space. Kaneko improved the
theory o f F o u rie r  h y p e rfu n c tio n s . S a b u ri studied modified Fourier hyperfunctions.
Nagamachi studied vector valued Fourier hyperfunctions of mixed ty p e .  Ito [6] studied
6 types of Fourier hyperfunctions and their vector valued versions by the algebro-analytic
method. Developing Junker's method, Ito [7 ]  constructed the unified theory o f (vector
valued) Sato-Fourier hyperfunctions by the  duality method.

In  this paper, we study th e  theory of F ourie r hyperfunctions w ith  v a lu e s  in  a
general H ilbert space which is not necessarily separable, by th e  duality method and
also by the algebro-analytic method, and prove their equivalence and mutual independence
o f these two methods. In  ca se  o f  th e  duality  m ethod , it is characteristic  that test
functions a r e  also vector valued. Thereby, we can use  the  vector valued version of
the  method of L 2 estimates for operator in Hijrmander [3], [4] and prove fundamental
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theorems of th is  p ap e r. T h e  proof of the equivalence o f two realizations o f  hyperfunc-
tions (or generalized functions) can be found in  sev e ra l w o rk s  a s  Schapira [24], Ko-
m atsu  [17] and etc.. B ut self-awakening description o f  th is  point in one paper is first
appeared in  th is  paper.

H ere I w ish  to  express m y hearty  thanks to  P rofessor H ira i a n d  t h e  referee for
their invaluable  advices. T h e y  a r e  v e ry  u se fu l fo r  improving th e  several points of
th e  a rg u m e n t. W ithout them, we could not have obtained this completed new version
o f  th is  paper.

C hapter 1 . P repara tions from  th e  theory  o f  (vector valued) functions o f  several
complex variables

1.1. The Oka-Cartan-Kawai Theorem B .  I n  th is  paper, w e  a lw a y s  assum e that
H is  a  complex Hilbert space which is not necessarily separable.

In  th is  section, w e  p ro v e  th e  Oka-Cartan-Kawai Theorem  B fo r the  sheaf "0  of
slowly increasing H-valued holomorphic functions and  some o f  their consequences.

H ere  w e rem em ber th e  definition o f  th e  r a d ia l  compactification D n  o f  t h e  n-
dimensional real Euclidean space Rn following Kawai [14], Definition 1.1.1.

Definition 1.1.1 (Kawai). W e denote by Dn th e  r a d ia l compactification
w hich  deno tes th e  d is jo in t  u n io n  o f  R n  a n d  th e  (n-1)-dimensional sphere S '  at
in fin ity . W hen  x  is  a  vector in  RI-H O }, w e denote  by x 00 th e  p o in t  in  SZ- 1  whose
represen ta tive  is  x  in  the identification of ,S; - '  w ith  ( I I "  {0})/R+. Here R+ denotes
the  se t o f a ll positive real num bers. Each elem ent in  R+ is considered as a  multiplca-
tion operator o n  R"\ {0} . The space Dn is endowed with the following natural topology.
Namely, ( i ) if a point x  o f  Dn belongs to R ", a  fundamental system o f  neighborhoods
o f  x  is  g iv e n  b y  th e  fam ily o f  a ll open spheres in  R n  inc lud ing  x .  (ii) If  a  p o in t x
o f D n  belongs to a  fundamental system o f  neighborhoods o f  x( , --y00) is given by
th e  fam ily {(C H -a )U C .; Cc.,D yco l. Here a  runs through all points in  R n a n d  C runs
through all open cones in  R ' w ith  the vertex  a t th e  origin which contains yE, R"
an d  Co, denotes th e  se t  {zoo ; zc C } .

W e denote by 0 " the space D' X -\/ —1 R" endowed with the direct product topology.
D " and  SLI - '  a re  identified with the  subsets o f  0" b y  the relations Dn X 1/ — 1 101
c.en and X •V-1 {O}c,en. F o r a  subset E  o f e n , w e  d e n o te  b y  int(E) its
interior and  b y  E " its closure in  el".

In  th is  paper, w e denote by (•, •) th e  inner product o f  H  a n d  b y  11 11•11 t h e  norm
o f  H.

L et U  be a  measurable set in  C ". A  m easurable H -valued function f (z )  on U  is

s a id  to  b e  square integrable if  th e  integral 1u 11 11f (z)112 d2 converges, where ca denotes

the  Lebesgue measure o n  C " .  L e t I ,, (U ; H ) be  th e  space o f  a ll square  integrable H-
valued functions on U .  A  measurable H-valued function f (z )  on U is said to be locally
square  integrable i f ,  f o r  every  re la tive ly  com pact subset co o f U, f(z)1„, belongs to
L 2 (0); H ) . Let L 2 10(U; H )  be the space of all locally square integrable H-valued func-
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tions on U.
I f  le a 1.eA is  a n  orthonormal basis o f  H , each f(z )E L 2 (U ; H ) can be expanded by

the formula
f(z)=z E f  a(z)e a f a(z)—( f (z), e a ),

tre A

where every f a (z ) is  square integrable on U  and f a (Z)=O except for at most countable
numbers of aB A. T h e n  w e  have the formula

r i
l i llf(z)112 d2= Z u l.f.(z)1 2 d2.

Here we remember the  notion  of H-valued holomorphic fu n c tio n s . L e t C" be  the
n-dimensional com plex Euclidean space a n d  Q  an open subset o f  C " .  A n H-valued
smooth function f (z ) on  Q is sa id  to  be  holomorphic if it satisfies the Cauchy-Riemann
equation af=0 on Q . W e deno te  by  0 (Q ; H ) th e  space o f H-valued holomorphic func-
tions o n  Q . W e define  th e  sheaf "O o f  H-valued holomorphic functions over C" to be
th e  sheaf {0 (Q ; H ); Q  is  an  o p en  se t in  C " I .  W e put 0=c0.

I f  {e.},eA is  a n  orthonormal basis o f  H , each f (z ) 0 (Q ; H ) can be expanded by
the formula

f  (z )= E f a(z)e., f a (z)=(f(z), en),
aEA

w h e re  e v e ry  f a (z )  i s  holomorphic o n  Q  a n d  f a (z )=0  except fo r  at most countable
numbers o f ceE,-1. A s to  the notion of an orthonormal basis of a  H ilbert space H , we
refer Bourbaki [1], § 2-3, Chapter 5 .  T h e  norm  H Ilf (z)II o f  f (z )  can be calculated  as
follows

"  f (z)I1 = ( E I f a(z)1 2 )" 2

aEA  
.

F o r every f(z ) 0(,Q ; H ), sup{HIlf(z)11; zEK} <co holds f o r  ev e ry  com pact subset of
Q . If we define a  seminorm H f M K  o f  0(Q ; H ) b y  th e  re la tio n  H Ilf II ic=suP{ H  Ilf (z)II;
zE K I ,  0 (Q ; H ) becomes a  Fréchet space w ith respect to  th e  topology defined by the
family o f seminorms ;  K  is  a  com pact set in  QI.

Definition 1.1.2 (The sheaf HO of slowly increasing H-valued holomorphic functions).
W e define  th e  sheaf HO over 0 '  to  b e  the  sheaf {(3(Q ; H ); Q is  a n  opn se t in  C"},
where the section module (9(Q; H ) on an  open  se t Q in  C" is  th e  space o f  all H-valued
holomorphic functions f (z ) o n  QnCn such  that, f o r  a n y  positive  num ber s  an d  fo r
any  compact set K in Q, the estimate sup{ H II f (z)11e(— 1 z ) ; zEKnCn} <00 holds. H ere
e(t) denotes th e  function et = exp(t) o f tE C and  we p u t  1z I =(1.211 2 + ••• +1z 7,12 )1 . We
p u t 6= c 6.

If we define a  seminorm HIfII K , o f  0(Q; H ) by the relation H Ilf Ilic..,=suPrIlf (41
e( — z 1 ) ;  z K n C h } ,  0(Q; H )  becomes a n  FS*-space w ith  respect to  the  topology
defined by th e  fam ily o f  seminorms { 11/ 11/111K,; K  i s  a  c o m p a c t  s e t  in  Q  and  s is  a
positive n u m b e d . A s to  the  notion  of FS*-spaces, w e refer K om atsu [15].

Definition 1.1.3 (T h e  sheaf H Q  o f  rapidly decreasing H -valued holomorphic func-
tions). W e define th e  sheaf HO o v e r  0 " to  b e  th e  sh e a f  {0(Q ; H ); Q  is  an open set
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in On } , w here the section module 0(Q ; H ) on  an open set Q in C " is the space of all
H-valued holomorphic functions f (z ) on Q nC " such  that, for a n y  compact set K  in

there  ex ists som e positive constant 5  s o  th a t  the estimate sup (z)11e(5 z I ) ;  z E
KnCn}  < c o  h o ld s . W e  put 0=0c.

Definition 1.1.4 (Definition of the space 0'2b(U ; H ) ) .  Let U  be an open set in C".
For 77E R , the Banach space OVU ; H ) is defined to be the space

Ovb(U ; f E C (U 'r)C li ; H); fluncn o(U nC "; H ),

sup1"11f(z)116.(- 771z1); z E U a n C n } < 0 0 1 .

Let K  be a compact set in C " .  Let 0 (K ; H ) be the space of all rapidly decreasing
H-valued holomorphic functions on a certain neighborhood o f K.

Let {U m } be a fundamental system of neighborhoods of K  such that U , , c c U m

h o ld s. H ere  U ,,,C c U m  m eans tha t U m + ,  has a compact neighborhood in U ,  w ith
respect t o  the topology o f  e". T h e n  w e  have the isomorphism 0(K; ind

' "(Um; H ).
T h e n  ,Q(K ; H ) becomes a DFS*-space. A s to the notion o f DFS*-spaces, w e refer

Komatsu [151
Let Q be an open set in e" and {K„,} b e  an exhausting  fam ily  of compact

subsets o f Q such  tha t K I C K 2C•-• cK m c ••• cS2 and u m K m =-Q, hold. T hen  w e  have
an isomorphism

042 ; proj 0(K, ; H ).

T hen  0(Q ; H ) becomes an FS*-space w ith  respect to  the projective limit topology by
the following.

Lemma A .  L et X=lim ind X n, and  Y=--lim ind Y .  be inductiv e lim its o f  sequences
In 177

o f  locally  conv ex  spaces {X m }  an d  IY respectiv ely . A ssume that, f o r ev ery  in, r m :
X m -->Y m be a  (weakly) compact linear ?napping. Pu t r=lim ind r m . T h e n  r is a (weakly)

compact linear mapping.

It is  easy  to  see  th a t n e)  cn= H 01 c. = '0  holds.
Next, constructing the soft resolution of the sheaf "6  and using it, we will prove

the Oka-Cartan-Kawai Theorem  B for the sheaf RE).
F irs t w e  mention the definition of the sheaf H E = 1

2 loc of slow ly increasing //-
valued locally square in tegrable  functions over 0".

Definition 1.1.5. W e define the sheaf H E over 0 "  to  b e  the sh e a f  {E(Q ; H); Q
is  an open set in en } , w here the section module î (Q :  H ) on an open set Q in C" is
the  space  o f a l l  f  L2,Rie(Qr1C" ; H ) such  that, for every positive number s and for
every relatively compact open subset co o f  Q ,  e ( — e l l z 1 1 ) f ( z ) I m L 2 ( c o n C " ;  H )  holds.
Here Tall denotes a C - -plurisubharmonic function as a modification of I zI 1= 1z1J
by a certain mollifier.



Fourier hyper functions 263

T hen  " f ,  constitutes a  soft sheaf and, for an open set Q  in C ,  E(Q; H ) becomes
an FS*-space.

I f  g  is  th e  sheaf o f functions o f  some class over C" an d  Q  is  an  open  se t in  e",
let F P ( Q )  b e  th e  space o f  all differential form s of type  (p , q ) w ith  coefficients in the
section module 9 Q ) ,  ( p ,  (1 ._.0). L e t  g '  d e n o t e  th e  sheaf {gP ./(Q ); Q  is an open set
in  04} .

Definition 1.1.6 (the sheaf " Z P " / ) .  W e define the  sheaf " P ' ( /  o v e r  0 "  to  b e  the
sheaf { " ( Q ;  H ) ; Q  is  a n  o p e n  se t  in  0 1 , w h e re  th e  se c tio n  m o d u le  _ef'P.q(Q; H)
on an  open  se t Q  in  C "  is th e  space of a ll f E (Q  ; H ) such that EP.g÷1([2: H).
Here a f  is defined in  the  d istribu tion  sense . Especially we p u t " I = H Z " .

T hen H:CP'q constitutes a  soft sheaf. E quipped w ith  a graph topology with respect
to  the o p r a t o r ,  1" 7". 1 (Q ;  I I )  becomes an FS*-space for an open set Q  in C".

Definition 1.1.7. A n open  se t V  in  C "  is  sa id  to  b e  an d-pseudoconvex open set
i f  it satisfies th e  conditions:

(1) s u p Im z I  ;  z E V n C " } < 0 0 , w here w e put Im z=(Im z i , •••
(2) There  exists a  strictly plurisubharmonic C - -function (p (z ) o n  V nC" having

the  following two properties:
( i ) T h e  closure o f  V t = iz E V n C " ;  y o (z )< t }  in  0" is  a  com pact subset of V  for

every
( i i )  ça(z) is bounded o n  L n C "  fo r every compact subset L  of V.

As typical examples of 6-pseudoconvex open sets, w e  h a v e  th e  fo llow ing : D" X

\ / -1 { y E R " ; in t(Iz= x-FN /-4  ,vE C "; Ix l> b , 13 '1  < s r ) ,  (b > 0 , s > 0 ). Then
th e  fam ilies {D" X Nr -- - 1 {y E R " ;  y l< s }  ;  s  is a positive num ber}, iintaz.-=x+-■/-1

G " ;  I x l> b ,  IY 1 < s } " ;  b  a n d  s  a re  p o s itiv e  num bers} and {intiz ,-= x + -\/= 1 y c  C ";

b, ly1 <r +e}" b  a n d  s  a re  p o s itiv e  numbers} a re  fundamental systems of 0- -
pseudoconvex open neighborhoods of D", an d  ST,' x  / J  {y E  ;  y l _ < r }  in  e"
respectively, where r is som e nonnegative constant.

For e=(1, 0, ••• 0 ) E S " - ',  b E / t"  a n d  a > 0 ,  w e  p u t C , , {x E R "; x F ,+ • -•+ x < s 2

(x 1 — x1>0} and B { y E ll" ;  y — b l< s } .  T hen  [2(eco+  \/-1b ; e) , int((C' e . 0")x
, / - 1 B 1, , ,  is  an 6-pseudoconvex open set in C ". T h en  the  fam ily {Q (e00-1-V-1b: s);
s > 0 }  i s  a  fundam ental system  of 6-pseudoconvex open neighborhoods of the point
e00+ \/-1b.

Further, consider a S" -- '  and  bE- I?". Then there exists a rotation T E S O (n ) such
th a t  a = T e .  I f  w e  put Q(a00-Hv i — lb ; s)_+_ int((TCe,  )")X A/-1 B b ,s f o r  a n  arbitrary
po in t a 0 0 -1 - ../ -1 b E S ,V X ../ -1 R '',  th e n  t h e  fam ily {Q (a09± ,. / - 1  b ;  e );  e > 0 }  i s  a
fundamental system of Ô-pseudoconvex open neighborhoods o f th e  p o in t aco+N/-1 b.

Theorem 1.1.8 (H6rmander-Kaneko). Pu t U = in t({z  C " ; 1 m  z l< 1 +  R e x I/ A/ 3 }")
a n d  l e t  Q  be a n  arbitrary 6-pseudoconvex open set included in  U .  T hen, f or every
f  1" 7" + 1 (Q ; LI) such that a f = 0 ,  there exists a solution u E  ;C " (Q  H )  so that au= f
holds. Here p  and q  are  nonnegative integers.



264 Yoshifumi Ito

P ro o f .  T h is  is a n  H-valued version of Kaneko [12 ], Theorem 8.6.6 (p. 412).
We can prove this in  a  similar way a s  th e  proof o f  Kaneko [1 2 ] , Theorem 8.6.6

(p. 412) using th e  following lemma 1.1.9 which is a n  H-valued version of Wirmander
[3 ], Theorem 2.2.1' (p . 105 ). (Q.E.D.)

Lemma 1.1.9. L et Q  be a pseudoconvex open set in C " ,  let ço be plurisubharmonic
in  Q and let ex where X C(Q) be a low er bound f o r th e  plurisubharmonicity of
For every f E L N , ( Q ; H ) , q>0, such that a f= 0  and

"Ilf112 e- ("x)d2<co ,Jo
one can then f ind a f orm  u E L 2 ." (Q ,  ( i9; H ) such that 6. 71,  f  and

40
1 1 11u112 e- Td2 -

(2
i 'll fire - ( ç d2.

Here L,(Q, ço; H ) denotes the space of  a l l  H-valued functions i n  Q  which are square
integrable w ith respect to  the density e- 9 '.

P ro o f .  I f  10%- a , o 1 E A  i s  a n  orthonormal basis a n d  f(z ) 4 . 1q0 , (Q ; H ) satisfies the
assumptions in  the  Lemma, f (z )  can be expanded by the formula

f(z)=z E fa(z)e,, f . (z )= (f (z ),  CO, f m (z)=0
«E A

and

1111f(Z)112e-("X)d2=‘2 aEE S0 f „(z)1 2 e- (v+x)d

holds. Here f a (z )= 0  except at most countable number o f  a E A .  N o w , applying
H tirm ander [3], Theorem 2.2.1' (p . 105) to  every  fa (z ), we can find a  form u m (z )c
Ppg - 1 (Q, y o )= .“ ." (Q , w ; C ) such that um= fa  and

q I f „ ( z ) 1 2 e- ( v+x ) d2.

If we p u t u=EaEAua(z)ea, then we have au= f  and

f (P+X ) d

holds. (Q. E. D.)

Theorem 1.1.10 (Dolbeault-Grothendieck resolution). The sequence of sheaves over C'"

a a a
0  ,. H H p  O  H  z p , 1  „  H  z p . n

is ex ac t. Here p is a  nonnegative integer.

P ro o f .  We have only to prove the  exactness o f th e  sequence

at every point xEC".
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Let U  be as in Theorem  1.1.8. A t first w e w ill prove the exactness of the above
sequence at every point x EU . The exactness o f the sequence

±)
,,HH p I

follows from the ellipticity of an d  th e  fact that, for H-valued holomorphic functions,
we can interchange sup-norm and L 2-norm locally.

As to  the exactness of the sequence

I l  1
,
 p . 0  

(1
 1 1 p , 1 I I r f , - - - >  ,

w e  h a v e  the conclusion b y  v ir tu e  o f  Theorem  1.1.8 because each point in U  has a
fundamental system o f 6-pseudoconvex open neighborhoods.

As to  the point x  outside of U , w e can show the exactness by translation.
(Q. E. D.)

Corollary 1 .1 .1 1 .  For ev ery  open set Q  in  C ", we have the isomorphism

Hq(Q, 11 6 P ) -2 _ '{ fE Z P 'q ( Q ;  I I ) ;  ) f = 0 } / { g ;  g e l P " 2 - i(Q; H)} ,

(p o, q 1).

Using this Corollary, w e can prove the Oka-Cartan-Kawai Theorem  B.

Theorem 1 .1 .1 2 .  L et U  be as in  Theorem  1.1.8 ana Q an arbitrary  6-pseudoconvex
open s e t  in  0" such that som e translation of  f 2 n C '' is included in  U . T h e n  w e  have
Hq(Q, H OP) , O,

P ro o f .  This follows from  Theorem  1.1.8 and Corollary 1.1.11. (Q. E. D.)
Now we define the sheaf --11L2,10c of rapidly decreasing H-valued locally square

integrable functions.

Definition 1 .1 .1 3 .  W e define the sheaf " L  over C" to  b e  the sheaf { L(f2 ; 11); Q
is  an open set in 0"1, w here the section module L (Q ; f i)  on an open set Q  in e. is
the space

L (Q ; H ) , { f L 2,10c(QnC”; H); for every w cCQ , there exists
some 6 >0  such  tha t e(611z11)f (z)l.ncnE L2(con C"; H )}.

T hen the sheaf " L  constitutes a s o f t  s h e a f . For a compact set K  in C", "L (K )=
L (K ; H) is defined to be the space lim ind L (U; H) where U  runs through all open neigh-

K CU -
borhoods of K  in o.. L (K ; H ) is  endow ed  w ith  the fo llow ing  topology . Let {U .}
be a fundamental system of neighborhoods of K  such that U . + ,C C U . holds. Here U.+1
C C U m  m eans that (U . + ,)“ is a compact subset of U n i . Let L z 'biN U . ; H ) be the space
of a ll f  Lz,loc(U.r1C" ; H ) such  tha t

L„ . 1 1 fV e ( Iz I/m) d 2 < 00

holds. Then the fam ily {L i ,r (U .;  M I  constitutes a weakly compact inductive sequence
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w ith  respect to  the restriction mappings and  w e  have the isomorphism

L (K ; 1/)=--lirn ; II).

By this topology, L (K ; H ) becomes a  DFS*-space.
T h e n  L(S2; H ) becomes a n  FS*-space w ith  respect to the projective limit topology :

L(Q ; proj L (K ; H ),
s2DA:

w here K  runs through all compact subsets o f  Q (see the  above Lemma A).

Definition 1.1.14 (the sheaf o f  "..EP. 1 ). W e define th e  sheaf "_EP• 7  o v e r  Cu  to  b e
the  sheaf f_EP•q(Q; H); Q is  an  open  se t in  0"1, where the section module ..CP•q(S2 ; H)
on an open set Q in  0 "  is  th e  space

S n ' q (Q•
 H ) =

 { f  .1,, "(Q ; H ); (3 f (=  te "'" 1 (Q;

W e p u t "_E=H

T hen  "Z ".a constitutes a  soft sheaf. Equipped w ith a graph topology with respect
to  the  a-operator, ii_CP.q(K) becomes a  DFS*-space fo r  a  com pact se t K  in  C " .  Then
w e have the following.

Theorem 1.1.15 (Hdrmander-Kaneko). P u t  U = in t({z  C "  ; 1 m  z  <1 +1Re z  / v/ 3 ,
lImzr<1/2+1RezI Z }a). L et Q  be an  arbitrary  6-pseudoconvex open set included in  U.
L et f  be an  element in  _CP.q+1 (Q ; H ) such that 5 f= 0 .  T hen, f o r an y  open set w ccQ ,
there ex ists a solution u e . S (a ) ;  H ) o f  th e  equation T u =f  o n  con C " .  H ere p and  q
are  nonnegative integers.

P ro o f .  L et fE  £ " ( Q ;
 H )  such that af = O . N e x t, yo(z) being a  plurisubharmonic

function S2nC 1'  which satisfies the conditions in Definition 1.1.6. For a  tE R , w e  put
(22-=int({z QnC" ; ço(z)<t}a ). T hen , fo r any open set c o c c Q , th e re  e x is ts  a  tE R
such that coC C Q t . T hen there  ex ists a  6>0 so  th a t h a f l a t r \ c n E l ' ' ( Q t ;  H )  holds,
where we p u t ha(z)=e(6-\/z 2 +1 ) and z2 -, ---4+ .• • + 4 .  Since h,3 is  holomorphic on U nC"
a n d  f  is  a -c losed  o n  Q n C " .  T h e n , b y  v irtu e  o f  Theorem  1.1.7, w e have vE ''. 2

(Q t ;  H ) so  th a t 5v=haf holds o n  Qt n C " .  P u t  u , (v/h3)1,„. T h e n  w e  have  /cc  S i "
(0); H ) and Ou, - f  on con C n .  (Q.E.D.)

Theorem 1.1.16 (Dolbeault-Grothendieck resolution). The seqnence of  sheaves over C"

a 50 _ ,  Ho p u.sp.o

is  ex act, (p 0).

P ro o f .  Since the  exactness o f the  above sequence is equivalent to the local solva-
bility of the equation, w e have the conclusion sim ilarly to Theorem  1.1.10 by virtue
o f  Theorem 1.1.15 and  the  ellipticity o f Xoperator a t  th e  te rm  ll_CP.°. (Q.E.D.)

Corollary 1.1.17. Fo r an  open set Q  in  e", w e hav e the isomorphism
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1.11 ([2, f  , L, '» . (Q  ; H ); (1f= 0}/{(1g; gE ,ff.'2-"(Q ;

T hen w e have the following.

Theorem 1.1.18. Let V  be an  open set in e" such that som e translation o f  V nC"
can he contained in  U  o f Theorem  1.1 .14 . Assume that K  is a compact subset o f en in-
cluded in V an d  h as  a fundam ental sy stem  o f neighborhoods composed of 6-pseucloconvex
open sets. T hen w e have Hq(K, "O")=0,

P ro o f .  Every open  se t in  e" is  paracompact, we have

Hq(K, "On)=Iim indHq(Q, "0 " ) .
Kcs?

Here Q runs through all open neighborhoods o f  K .  Since K  has a  fundamental system
o f neighborhoods composed of 0-pseudoconvex open  se ts , w e  have the  conclusion  by
virtue  o f  Theorem  1.1.15 and  Corollary 1.1.17. (Q.E.D.)

A t last w e  have the following.

Theorem 1.1.19 (M a lg ran ge ). For ev ery  open subset S o f D ", w e have Hq(S,
= 0, (p_O, Here w e p u t "-11= "6  I Dn.

P ro o f .  B y virtue o f th e  Grauert Theorem  in  K aw ai [14 ], Theorem 2.1.6 (p. 473),
S has a  fundamental system of neighborhoods {Q„,} composed o f  6-pseudoconvex open
s e t s .  T hus w e  have

//"(S, ind HOP)=0
nt

by virtue of Theorem  1.1.12. (Q. E. D.)

Theorem 1.1.20 (M a lg ran ge ). For every  com pact subset K  o f  D " ,  w e  have TP(K,
(1 - 1.). Here w e put "A ="01 1,„.

T h is  is  a  corollary o f  Theorem  1.1.18.

1.2. Approximation Theorem . In  this section, we prove an approximation theorem
o f Runge's type  fo r ',A .

Theorem 1.2.1. For a compact set K in D", ,A (D"; I I )  is  dense in ._A(K; H).

P ro o f .  B y virtue o f  th e  fact mentioned after Definition 1.1.4, we have the isomor-
phism ,-4(K ; indOtT/"(Um; H ) in  the  no ta tion  u se d  th e re . W e  have to prove

th a t ..A (D "; H ) is  dense in  every O w " (U . ;  H ).  N ow , le t {e”},..EA be a  complete or-
thonormal basis o f  H .  T hen  every  f e M 'I ' (U „ , ;  H ) can be expanded a s  follows :

f = f a = ( f ,  e“).
"E A
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T h en  faEOw i l"'(U.)=017 1 " ( U . ;  C )  h o ld s . T h e n  w e  have only to apply Theorem 2.2.1
of K aw ai [14] (p. 474) to  every  f (Q. E. D.)

Chapter 2 .  The realization o f H-valued Fourier hyperfunctions using H-valued
Fourier analytic functionals

2 . 1 .  H-valued Fourier analytic fu n ctin a ls . I n  t h is  sec tion , w e  in tro d u c e  the
notion of H-valued Fourier analytic functionals a s  th e  dual object o f  rapidly decreasing
H-valued holomorphic o r  real analytic functions.

Definition 2 .1 .1 .  F or an  open  se t Q  in  e", w e consider the  dual space 0(Q ;  H )'
o f  t h e  space  0 (Q ; H )  a n d  0 (Q ; H )' is endow ed w ith th e  topology o f uniform con-
vergence on every bounded set in 0(,(2 ; H ) .  A n elem ent u o f  0(S2; H)' is said  to  be
an  H-valued Fourier analytic functional o n  Q .  W e  s a y  t h a t  uEO(Q ;  H ) '  is carried
b y  a  c o m p a c t su b se t K  o f  Q  if  u can be extended to  0 (K ; H ) .  T hen  w e ca ll K  a
c a r r ie r  o f  u .  W e a lso  say  tha t u E 0 (Q ; H )' is  ca rried  b y  a n  o p e n  subset co o f Q  if
u  is  c a r r ie d  b y  s o m e  com pact subse t o f  w .  T h e n  w  is  sa id  to  b e  a  c a rr ie r  o f  u.
Similarly we define th e  spaces 0 (K ; H )', ,Â (K ; H )' and ( Q ; H ) '  fo r  a  co m p ac t se t
K  i n  e n  o r  i n  D "  an d  an  o p en  se t Q  in  D ' respectively. W e define the notion of
carrie rs in  these cases sim ilarly  to  the  case  o f  0(Q ; H )' . W e  p u t  0(0 ;  H ) '= ,JI(0
H )'= 0 .

H ere w e note th a t 0 (K ; H )' and ,A (K ; H )' become FS*-spaces.

Proposition 2 .1 .2 .  Let Q  be an open set in e". Suppose that a compact set K in
Q  has the Runge property such as 0(S2 ; H) is dense in  0 (K ;  H ).  Let u 0 (Q ; H )'.
Then u is carried by K if ana only if  u  is carried by all open neighborhood of K.

L e t  Q ; 17=i b e  a  fundamental system o f  R unge  o p e n  neighborhoods o f  K  i n  Q.
Then Proposition 2.1.2 m eans that th e  isomorphism

(lim
r -
ind 0(Q i ; H )'

h o ld s . A n  element o f  ,A (D "; H )' is said to be a n  H-valued real Fourier analytic func-
tional o r  a n  H-valued analytic functional with ca rrie r in  D".

Theorem 2 .1 .3 .  For every at most countable family {K} 1 of compact subsets of
D " , then n Ji(K i ; H )'= c1 (n  K i ; H)' holds.

i e l i e l

P ro o f .  If  I=  {1, 2}, w e can conclude that 4(K 1 ; (1,11(K2 ; 11)'---=,A(K 1 n K 2 ; H)'.
In  fac t, by  v irtue o f  Theorem 1.1.20, we have an exact sequence

0  -- A(K,UK2; H)--> cit(Kl; H)(1),A(K2; H)---> c_A(K i n K 2 ; H )

111 (K ,0 K 2 ;  ",)=O ,
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where p ( f ) = ( f  I -f I K 2 )  and  7- ( (  f  f  ) 1  f- I, a  I  i n K  2  f  K  i n K  z •  Since p  and •z- are  con-
tinuous, we have the dual exact sequence

10 '
0 — H)' ,1(K1; H)'B,11(K 2 ; H )' ,A(K1nK2 ; H)' <--- O,

b y  v irtu e  o f  Komatsu [1 5 ], Theorem 19 (p. 381). W e n o te  th a t  ,A(K1 n K 2 ; H)' c
cit(K ,; H ) 'n ,4 (K 2 ; H ) '.  O n the  other hand, from the  above e x a c t sequence, we have
{ (u, u); uEol(K i ; 11)'n,A (K 2 ; H )'IC K er u); uE-A (K 1 n K 2 ; H )' I.
w e have the above conclusion.

Assume 1 = N  T hen , by finite induction, w e have, for every n 1,

7(2)' y tI(K, ; 1 -/)'=•-,A( ; H ) .i=1

T hen, by th e  natural inclusion m ap, the fam ily {,A(r) 1 K i ; H )'}  becomes a projective
fam ily. Thus we have

n ,-4(K ; =lim  proj n ;ici - n i=1

, lim proj ,11( n H) =4( n H ) '.  (Q. E. D.)j=1 iEr

Theorem 2 .1 .4 .  Let u E ,I(D "; H ) ', T hen there ex ists the sm allest compact
set in D ", w hich  is  a carrier of u , am ong the carriers of u. W e call it the support of
u  and denote it by  supp(u).

P ro o f .  By virtue of Theorem 2.1.3, we can prove th e  theorem by way o f Zorn's
Lemma. (Q. E. D.)

We remark that, fo r  u , Il i a n d  Itz ,A (D "; H )', w e have

supp ( u uz)CsuPP (ui)UsuPP (u2),

supp(2u)Csupp(u), f o r  2E C.

Theorem 2 .1 .5 .  Let K =---U 1 -1 K1 be the union of com pact sets K i in  D '.  L e t
H ) ' .  T hen there ex ist u i EJ1(K i ; H )', 2, ••• 1)), such thatu=-- El/_ i u i .

P ro o f .  We note  first that th e  mapping

,A (K ; H) > A K i ; H ),

f ( f  Ki)Igin

is continuous, injective and of closed ra n g e . By this mapping, we can identify ,A (K; H)
w ith  a  closed subspace o f  ED11_1 ,A(K 1 ; H ) .  Since Ji(K ; H ) a n d  03,7/._1,A(K1 , H ) are
DFS*-spaces, we have the following surjection from th e  Serre-Komatsu duality theorem

IT;  H)' ---> ,,t1(K ; H)',
i -1 -

u  . (Q. E. D.)
i=1

Hence
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L et Q  be an  o p en  se t in  D " and  K  a compact subset o f  Q . T h e n  th e  envelope k
o f  K  in  Q  is defined to be the  closure o f the  un ion  o f K  a n d  th e  re la tively  compact
(in  Q) connected components o f  Q\K .

Theorem 2 .1 .6 .  L e t  Q  b e  a n  open se t in  D '', an d  K , and K 2 tw o  compact subsets
o f  Q  w ith K 1 c K 2 . F u r t h e r  assume that K i =--,k 1 h o ld s  f o r  i-, -1, 2. Then , A((Q\If2)"Y
is dense in ,11((Q\K 1 )2 )'.

P ro o f .  It is suffic ient to  see  that th e  natural restriction mapping „.11(42\K 1 r )  into
((Q\ K2)") is  in jec tiv e . B u t th is is evident under the  assumption o f  this theorem.

(Q. E. D.)

2 .2 .  The sh e a f  "sR o f  H-valued F ourier h yp erfu n ctio n s. In  this section we con-
struc t the  sheaf 

H g   of H-valued Fourier hyperfunctions. A t first we have the following.

Theorem 2.2.1. T h e  f ollow ing a re  v alid  f o r the H-valued Fourier analy tic func-
tionals w ith carriers in D ".

(1) I f  K , an a K 2 are tw o com pact subsets of  D "  w ith lf 1 c I f 2 , th e re  e x is ts  a  con-
tinuous injection 1 K 1 , K 2 : ,_4(K 1 ; H)'.

(2) I f  K ,  and  K , are  as in  (1) and  each connected component o f  K , m eets K 1 , then
i K 1 . K 2  h as  a dense image.

(3) I f  K 1 an a  K 2 a re  tw o compact subsets o f  D " an d  we p u t K =K 1 u K 2 ,  then, f or
ev ery  uE,,A (K ; H )', there ex ist u 1 E,_4(K 1 ; f l y  a n d  u 2 e ,q (K 2 ; H )' so that u=u1-1-u2
holds, w here u, an d  u , are  considered as elem ents o f  ,A (K ; H )' by  v irtue o f  (1).

(4) F o r  ev ery  at m ost countable  f am ily o f  c o m p ac t su b se ts  o f  D " ,
n H ) '= ( n  K , ;  f l ) '  holds.
;El

P ro o f .  (1) T h e  natural restriction mapping o f  ,A(K 2 ; I I )  in to  c_4(K1 ;  H)
is continuous and  has a  d e n se  ra n g e . Hence its dual  K 1 JÇ 2 i s  a  continuous injection
, 4(K 1 ; —>,A(K2; H)'.

(2) I t  is  e v id e n t f ro m  t h e  iden tity  theorem  tha t iK i .K  :  ‘_4(K i ; H)--->.A(K 2 ; 11)'
has a dense image.

(3) See Theorem 2.1.5.
( 4 )  See Theorem 2.1.3. (Q.E.D.)

Theorem 2.2.2. T here ex ists one and only  one f labby  sheaf o v er D " so that,
f or ev ery  compact subset K  o f  D ", T K (D ", H )=,A (K ; H ) ' holds. T h e  section module
gR ,(Q; H) of  the sheaf llgst, on  an open set Q  in  D " is def ined to be the space

R(Q; H)--- , ,A (S2"; f l)//,i1(6‘2; H)'.

P ro o f .  It follow s from  Theorem  2.2.1 an d  Ito  [7 ] ,  Theorem  1.2.1. (Q. E. D.)

H e r e ,  f o r  com ple teness, w e  m e n t io n  th e  Schap ira-Junker T h e o re m  ( I to  [7 ],
Theorem  1.2.1).

Theorem 2.2.3 (Schapira-Junker). L et X  b e  a a-compact locally compact topological
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space satisf y ing the second ax iom  of countability. W e assume that, fo r  every compact
subset K  o f X , there ex ists a Fréchet space F K  su c h  th at  the f ollow ing conditions are
fulf illed;

(1) For tw o compact subsets K , an d  K , of X  w ith K i C K 2 ,  there ex ists a continuous
injection 1 K,, K 2  FK 1

- » F.K2 .

(2) I f  K , an d  K, are tw o compact subsets o f  X  w ith  lf, E K 2 a n d  each connected
component o f K , m eets K „  then i K ,  K , has a dense image.

(3) I f  K 1 a n d  K, are tw o compact subsets o f  X  a n d  K = K I U K 2 h o ld s ,  th e n , for
ev ery  uEF K ,  there ex ist u,EF K , and u 2 E:FK 2  so  th at u=u l d-u 2 holds, w here u, and u2
are considered as elements of F K  b y  v irtu e  o f (1).

(4) F o r  e v e ry  at m o st c o u n tab le  f am ily  {K i ; of compact subsets o f X ,
FK,=-FK holds, w here K =  n K i .

(5) F 0 = 0 holds.
T hen  there  ex ists  one and only  one f labby  sheaf  'I ov er X  so  that, fo r  every compact
subset K  of X , F K (X , g )= F K  holds.

Definition 2 .2 .4 .  T h e  sheaf //gZ is said to be the sheaf of H-valued Fourier hyper-
functions over D "  a n d  a  se c tio n  f  o f  "g2 on an  open  se t Q in  D "  is said to be an
11-valued F o u rie r  hyperfunction o n  Q.

A t la s t w e  n o te  that H -valued F o u rie r analytic functionals w ith  c a r r ie r  in  a
compact set K  in  C'" can be considered as Fourier analytic linear mappings o n  K .  As
to the notion of Fourier analytic linear mappings, we refer Ito [7].

Theorem 2 .2 .5 .  Let K  be a compact set in C " .  T hen w e have the isomorphism

0(K; L (O (K ); H ).

P ro o f .  It goes in  a  similar way to Ito-Nagamachi [9], section 6 , p . 2 1 .  (Q. E. D.)

C hapter 3 . The realization a s  boundary values o f slowly increasing II-valued
holomorphic functions

3 .1 .  The Malgrange Theorem . In  this section we prove the Malgrange Theorem.

Theorem 3.1.1. Let D be an open set in e n  f o r  w hich Hn(i2-  , " 6 )= 0  holds and f2
an arbitrary  open set contained in  D . T h e n  w e  h av e  na  I1 6)=0.

P ro o f .  By virtue o f Corollary 1.1.11, we have only to prove th e  exactness of the
sequence

O. n - 1 (Q  H ) ,  " 0 ,  n (S 2  H )

in  the  notations o f Theorem 1.1.10. T h is  is equivalent to proving t h e  exactness of
th e  sequence

r ,° ." '(Q ; i"'n(f2; II)---->  0.
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B y  v ir tu e  o f  t h e  Serrer-K om atsu duality theorem  (Theorem  19 in  Komatsu [15], p.
381) fo r FS*-spaces, it suffices to show the injectiveness and the closedness of the range
o f  --..a = ( ) '  in  the  dual sequence

(3.1.1) L '»1(Q ; H )  ; O.

H ere LP,.'2(Q ;  H ) denotes the  space of sections w ith  com pact support o f  L i "  o n  Q.
S ince  -a  is  e l l ip t ic ,  i t s  injectivity is  a n  immediate consequence of the  unique con-
tinuation property . N ow  w e w ill prove the  closedness o f  i t s  r a n g e .  T h is  is  su re ly
t r u e  i f  Q  is  re p la c e d  b y  the open set S  in  the  assumption o f  this theorem because
then Hn(i2- , "6 )=0 h o ld s . T h u s  the  problem reduces to the  estim ation  o f support o f
the solution u °(,(2; H ) o f th e  system  — 5u= f fo r  a n  f  [Im (-0 )] - . Then there
e x is ts  a  sequence ival.EACLV(Q; H )  an d  —. a —>f in  .I... 1(Q ;  H ) .  T h en  th e  con-
vergence takes p lace in  L c," ( i) ;  H ) .  Hence by th e  closed range property of

(3.1.2) ; H)< - 5 ;  H ) < —  O,

w e can find u eL g . 0 (,(2); H ) su c h  th a t  - - i3 u =f . W e  n o te  t h a t  u  i s  holomorphic on
(S) \supp(f))n Cn an d  th a t supp(f)ccf2 . Hence if  w e  show  th a t  u=0 o n  (s)\.(2)r)Cn,
w e find  tha t supp(u)ccQ from  th e  uniqueness o f ana ly tic  con tinua tion . By th e  clo-
sedness of the  range  o f  -a in  (3.1.2), w e can  app ly  t h e  homomorphism theorem and
find some sequence v„, ;  H ) su ch  th a t —,Iv„=--au a , an d  v„—>v in
.L4'°(‘J; H ) (cf. K a t ie  [18], § 33, 4(2), p. 18). Since i s  a n  in je c tiv e  operator of
/.4'°(,(2; I I )  in to  L.. 1 ( i l ;  H ), w e m ust have v,, , u „ ,  v = u .  Hence u a —>u in  Lr(i2-  ; H).
Since supp(ua )cQ , w e find supp(u)C,Q a . (Q.E.D.)

N ote. T h e  author owe the  above proof of this theorem  to K aneko's kind advices.

Corollary. Flabby dim "6" <n.

3.2. The Serre Duality Theorem. I n  t h i s  se c tio n  w e  p r o v e  a  S e r r e  Duality
Theorem.

Theorem 3 .2 .1 .  L e t  Q  b e  a n  open s e t  in  0 "  such that dim HP(Q, 1 1 6)<00(p_1)
holds. T h e n  w e  hav e the isomorphism  [H 1)(Q , 1 1 6 ) 1 1 1 ( Q ,  H Q),

P ro o f .  B y virtue o f  Corollaries 1.1.11 a n d  1.1.17, cohomology groups H P(Q , "6)
and  H'cz- P (Q , "0 ) a re  cohomology groups respectively of the complexes

O°  ( f 2 A; H) P D  ; H )  5
5 °. "(S2 ; H)0

(3.2.1) -a — 0 — 5
0 -LI•n(Q ; H) ; H) _C»°(,0 ; H)O .

Here the  upper complex is composed o f  FS*-spaces and  the  lower complex is composed
o f  DFS*-spaces. T h e  r a n g e s  o f o p e ra to rs  r) in  the  upper complex a re  all closed by
virtue of Schw artz ' L em m a (Theorem  20 i n  K om atsu  [1 5 ]).  H ence th e  ra n g e s  o f
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operators — 5 =( ) ' in  th e  lower complex a re  also all closed and  w e  have the  isomor-
phism

CHP(Q , H6)1/ 11' - P(Q, HQ)

by virtue o f th e  Serre-Komatsu duality theorem (cf. Komatsu [1 5 ]).  (Q. E. D.)

Remark. The conclusion o f  th e  theo rem  w orks f o r  a n y  o p e n  s e t  Q  fo r which
every -4  operator in  the  diagram  (3.2.1) is  o f  closed range.

3.3. The Martineau-Harvey Theorem. In  th is  sec tion  w e  p ro v e  the  Martineau-
Harvey Theorem.

Theorem 3.3.1 (the M artineau-H arvey Theorem ). L e t  K  b e  a com pact set in en
and assume the follow ing:

(i) HP(K , 11 0)=0, (p>..1).
(ii) Q is  an open neighborhood o f  K  such that HP(S2, "6)=0, ( p .1 )  holds.

Then
(1) H V Q , "6)=-0, (p#n).
(2) I f  72 2, we have algebraic isomorphisms

H IN 2 , H6)...... Hn-1(Q\K 7 .116),--,Q(K ; H r

(3 )  I f  n =1 , w e have topological isomorphisms

IU (Q ," 6 )6 (S 2 \K ; 1 1 ) /6 (Q ; H ) .-0 (K ; H ) '.

Remark. If a  com pact set K  has a  fundam ental system  o f  d-pseudoconvex open
neighborhoods, it satisfies the  assumptions in  Theorem  3.3.1.

P ro o f .  It goes in  a  sim ilar w ay to  Kawai [14]. From a general theory of relative
cohomology groups (cf. Komatsu [16], Theorem II. 3.2), w e have

0 ----> (S 2, "6) — > H°(Q, H O ) --> H °(Q \K , "6)

u ( s 6 ) H i ( Q , Hi(Q\K , ' t d )

juz,(Q, 1 1 d) H"(Q, "6) — > H n(Q \K , "6) >

T hen  w e  have HP(Q, (p _ 1 ) by the  assumption and I I k(S2 , H 6 ) , 0  by the unique
continuation theorem . H ence  w e have an exact sequence and algebraic isomorphisms

0 — > 6 (Q ; H )— >O (Q \K ; H )--> 0,

H f(Q , HP-1(Q\K , "6),

W e also have the long exact sequence o f  cohomology g ro u p s  w ith  compact support
(cf. Komatsu [16], Theorem  11.3.15):

0 Hg(Q\K , "6..) - -> H (Q , "Q )--> H °(K , "6 )

— > H (S 2\K , H O )  - --> H (Q , " O) - >  H'(K , HO )  - >

- >  1 1 1),(Q \K  , 0 ) ---> H  P
c (Q  " O) ' M K  ,  0 ) • •
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Here HP(K, "0)=0, (p_1) b y  the  assumption on K . From Theorem 3.2.1 an d  th e  fact
HP(Q, HO)=0, (p_._1), w e also  h a v e  W .(f 2 , 0 )= 0 , (p *n ). T h e re fo re  w e  o b ta in  an
exact sequence and topological isomorphisms:

W hen n=1,

0 --> 0 (K ; H) — › IP(Q\K, "0) — > II!.(Q, "0) --> O,

w hen n . 2,
".0)--'0(K; H),

112 (Q\K, "(2)--'HP,(Q, "0)=0, (p#1, n) ,

HI(Q\K, H0) Hg(Q, "0).

Now we consider the  following dual complexes:

ao 0,
0 2 "(Q \ K ; H) (*)

- I
O _r"(Q \K ; H) ..c,n-1(f2\K; (**)

a n - 2 a n - 1(*) _ 1 ,  :CO. 72-1(Q K. ; H) ZO •n(Q \K ; H )

-

(**) _rc.' (S2\ K ; H ) <  ..E"(Q\K; H )  0 .

T hen , since HP,(Q\K, "0)=0, (p#1, n), th e  ran g e  o f  —r),=0 7,_; _1
Y is closed fo r j

n - 1 .  However i s  o f  closed range b y  the  Malgrange T heorem . H ence , by  the
Serre-Komatsu duality theorem, is  o f  closed range.

In  order to  prove th e  closedness of the  range  o f  —;"1„_i, we consider the  following
diagram :

K—,  n \  
. . f l . n ( Q \ K ; n ) - .11.12-1(Q\K-; H )

i t i
..E2'n(Q ; H ) (  .L I ' ' ' ( f2 ;  H),

w here th e  m ap i  is  th e  natural injection.
W e conclude that • 

f
,
2
) i s  o f closed range because I-11 (Q , "6 )= 0 .  Thus i s  of

c losed  r a n g e  b y  t h e  S e rre -K o m a tsu  d u a lity  th e o re m . T h e re fo re  Im i-1
(Im(- 1)) is closed by th e  continuity  o f  t h e  m a p  i. T h e re fo re  a ll — 4`K a re  o f
closed r a n g e .  Hence, by the  Serre-Komatsu duality theorem, we have the isomorphisms

[HP(Q\K," -0 )1  fIg - P(Q\K, "0), (0.<» n).

I f  n=1, by  the Serre  duality theorem , w e have the dual complexes :

0

0<
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O—  6(,(2 ; H) ---> 6(Q\K; H) —> Hk(f 2, H6) ----> 0

0 <—  li(f 2  , "0 ) —  H (Q \K , "0 ) 0 (K ; H) <—  O.

Therefore w e have topological isomorphisms

, H 0 )1 ' [Coker(O(Q ; H) — > 6(Q \K ; H ))]'

—2:Ker(H(Q\K, H Q )
H O ))

'0 (K ; H).

T hus w e have topological isomorphisms

Hic (Q, H6).--'6(Q\K; H)/6(Q ; H) -z0 (K ; H )'.

T h is  proves (3).
If  n. 2 , since FS*- o r DFS*-spaces a re  reflexive and w e  have

(Q\ K ; H0):—.-6(f2 ; H)',

w e have the isomorphism

(Q; H ) - -'6(Q\K ; H).
T hus w e have

HO).- -'6(,Q\K; H)16(Q ; H)=0.

Further, for w e  have

0, [117 - P+J(Q, HO)]'-.̂ —![Hici - P+1 (Q \ K , Ho)]

H H (Q  , 1 1 6).
T hus w e have

1ik(s2, H0)=0, (p*n).
T h is  proves (1).

In  the case p= n , w e have algebraic isomorphisms

H k(f2, Hn-'(.Q\K, H0)]'

0 (K ; H )'.

T h is  proves (2). (Q. E. D.)

Now we realize H-valued Fourier analytic functionals w ith certain compact carrier
as re la tive cohomology classes w ith  coefficients in He.

L et K 1 , K 2 , •• K , ,  be subsets o f  C  such  tha t K7., KL ••• , K  are compact sets in
C . T hen K = (K 1 X K 2 X • • X K„)a is  a  com pact set in  On.

L et K  be a  com pact set in  en. o f th e  form  K = (K i x•••X K )a  a s  a b o v e . T h e n  K
has a  fundamental system o f  6-pseudoconvex open neighborhoods. T hen w e have

H P (K , 1 1 0)=0, (p).0).

B y virtue o f th e  M artineau-Harvey Theorem , there exists the  algebraic isomorphism
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Q(K; Hk(en, 1 1 6).

L et Q  be  an  6-pseudoconvex open neighborhood o f  K .  Then

Q; =-Q niz een ;

i s  a ls o  a n  0-pseudoconvex o p en  se t fo r  1 = 1, 2 , ••• , n. T h en , pu tting  Q 0= Q , V =
if25} 1) -0  an d  cll' =42;17=

1
 form  "6-acyclic coverings o f Q  an d  Q \K .  Namely,

Hq(Q i o n,Q i i n  ••• n‘2 ; 7 3 , "6)=0,

(q>0, .11, « , jp } C { O , 1 , 2 , • ••  , n }, p=o, 1, 2, ••• , n)

h o ld .  T hus, by  L e r a y 's  Theorem  (Theorem  11.3.29 in  Komatsu [1 6 1 ) , w e  o b ta in  the
algebraic isomorphisms

M (C', " ) . . 'HI'<i(S2, "6):- .1 in(V , V ', " 6 ) .

Since th e  covering V  is composed of on ly  n + 1  open sets Q; (j=0, 1, ••• , n), we easily
obtain th e  isomorphisms

Zn(V , V', ". 6 )-C n (V , V ', H-6) - 6(Q#K ; I I ) ,

C71-1(V, V ', i()(Q#JK; H),

w here w e put

QV( = Q; , Q#J K--= f l  Q ,
j=1 i* ;

N o w  E f 6 (Q K  ; H )  deno tes th e  im a g e  in  6(Q#K ; H )  o f  EI)7]-10(S2 K : H ) b y  the
coboundary operator

: ( f ) A (-  1)i  f  ,

f ';  b e in g  the restric tion of f  ; to  Q # K . Hence we have

6Cn - 1 (V , V ', "0)= 6(,(2#; K ; H)19 # K

T hus w e  have the algebraic isomorphisms

0(K ; H )'- - Hki(Q,"6) - 117i(V , V ', "6)

Z"(V , 116)/(3Cr'(V , V ', H (5)

--61(,i2#1f; H)/E6(Q# J K ; H ).

T hus w e  have the following.

Theorem 3.3.2. W e use notations as a b o v e . T h en  w e  have the a lgeb ra ic isom orph ism s

Q(K; H](Q , (5)a, 11n(cti, V ',  H a)

()(Q#K; H)/ i
lt i 0(,(2#; K ; H ).
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For g(z) 0 (K ; H ), we define its complex conjugate g (z )=g (z ) so  th a t the  follow-
ing  conditions are satisfied :

(1) If  ge0,(K ; H ), g=g.
(2) If  f ,g E 0 (K ; I I ) ,  ( f+ g )= f+ g ,
(3) If  gEQ(K; H ) and a B C ,  (ag)=Cig.

We define the  complex conjugate o f  any  H -valued  func tion  sim ila rly . T hen  w e have
th e  following.

Theorem 3.3.3. W e use the sam e notations as in  Theorem  3.3.2. I f  w e def ine the
canonical mapping

b: 6(Q#K; H) — > 0(K; H)'

as f o llo w s. L e t f E (,Q #K ; H ) an d  gEO(K ; H ) . L e t  w=int((w i X ••• Xco n )a)CS2 be an
open neighborhood o f  K  w ith K i cw i cC (j= 1 , 2, ••• , n) and gE0((7 ); H )  where Co is an
open neighborhood o f  wa. w i t h  ii5c ,Q .  L e t  L i (j=1, 2, ••• , n ) be open sets in  C  with
regular boundary  such that K i c L i cco ;  an d  le t  T i  b e  the boundary  o f  L i  a n d  oriented
in  the positive sense. Then we define  b ( f ) 0 ( K :  H ) ' by  the form ula

<b(f), g> (-1 )n  
r ,

( f ( z ) ,  g ( z ) ) d z ,• • •  d z , , ., „
Then b is  the surjective homomorphism o f  -0(Q#K; H ) onto 0 (K ; H )' w hose k ernel is
E i 6(D#J K ; H).

R em ark 1. T h e  canonical mapping b defines th e  isomorphism

I I k̀a 2 , 11 (5).-_'0,(K; H)'.

Thereby we can realize H-valued Fourier an a ly tic  functionals a s  boundary values of
slowly increasing H-valued holomorphic functions.

Rem ark 2. If  w e  define  t h e  FS*-space to p o lo g y  o f  t h e  sp a c e  6(Q#K; H)/E,6
(,(2 K ; H ) b y  the  canonical w ay , then w e have the  topological isomorphism

0(Q#K; H)/E6(QtK; H)'.

P ro o f .  ( i )  A t first w e  note th a t  th e  integral

( - 1)" .f r i ••• S'
f ,n (f(z), g(z))dzi•••dz,„

does not depend o n  t h e  chosen curves ••• , „  a n d  defines a  continuous linear
mapping b from  e)(Q#K; H )  in to  0,(K; H)'.

( i i )  N ow  w e prove th e  surjectivity o f th e  mapping b. L e t uE 6 (K ; H )' and put

ii(z)=(27ri) - n<u$ , (e—z) - 'e(—(e—z)')> ,

(zE(Q#K)C1C'),
w here w e put

(6 — (—(6—z)2)=
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Then

<b(fl), g>

=(-27ri) - n.f r i .••S' e u e , (e—z) - 'e(—(e—z) 2 )>, g(z))dz

=<tt E, (27i) - n r i ••• .çr n g(z)(z—e) - 'e(—(z—) 2 )dz>

= <u, g>.

T hus w e have b(fi)=- u .  Hence b is  a surjection.
(iii) A t last we prove K er(b)=E,C(Q K ;  H ) .  F o r  t h e  s a k e  o f  sim plicity , w e

prove th is fac t in  the  case  n= 1 .
I f  f EC(Q ; H ), b(f)=0  is evident. C onversely  assume th a t f E6(Q\K; H ) satisfies

b (f )= 0 . L et {L ,}  be  a n  increasing exhausting sequence o f  com pact se ts  in  Q  includ-
ing  K  whose boundaries a L ,n e = r i  a re  regular curves oriented in the positive sense.
T h en , if  w e  put

F,(z)= f (C)(27ri(C— z)) - ' e(—(C — z) 2 ) (IC ,

F3(z) be longs to  (in t(I, j ) ;  H ) and F + , holdsholds (j= l, 2 , ••-). H ence w e can
d e f in e  F(z)EC(Q; H )  s o  th a t  F(z)I,,,t(L .,)=F,(z) ho lds (j= 1 , 2 , •••). T hen  F(z)louc=
f(z ) h o ld s . In  fa c t, if  w e  le t zEQ\K, there  exists som e L , so that z is in the interior
of L .  T h e n  w e  c a n  c h o o se  th e  o p en  se t L  in  th is  T h e o r e m  s o  th a t  L in t ( L )  and
z is  in  the  outside of

 L .
 T h e n ,  since f (z ) is holomorphic in  th e  region enclosed by

— T  w ith  r= a L n C , w e have

f (z) , f  (C )(2 7 ri((—  z )) -  e(— (C— z) 2 )dC

Hence we have

F(z) ,  F,(z)..= f(z)d-  f (C)(27ri(C —  z)) - l e(— (C—  z) 2 ).< •

T hen , since z  is  in  th e  outside o f  L a, (27ri(C—z)) - le(—(C—z) 2 ) b e lo n g s  to  0 (K ; H ) as
a  function o f C. T h u s ,  w e  have, b y  the  assumption,

r  f(C)(2ri(C—z)) - 'e(—(C—z) 2 )dC

=<b(f), (27ri(C—z)) - 4 e(—(C—z) 2 )>=0.

Hence, F(z)lo\K= f (z) holds. (Q. E. D.)

3 .4 .  The Sato Theorem . In  th is  section w e  p ro v e  the pure-codimensionality of
D n  w ith  respect to  " 0 .  Then we realize H-valued Fourier hyperfunctions as "boundary
values" of slowly increasing H-valued holomorphic functions or as relative cohomology
classes of slowly increasing fl-valued holomorphic functions.

Theorem 3.4.1 (T h e  S a to  T heorem ). L et Q  be an open se t in  D " a n d  V  a n  open
se t in  e n  w hich contains Q . T hen w e hav e the following :
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(1) The relative cohomology groups HPQ (V  , "6) are  z e ro  f o r P* n .
(2) T he presheaf  ov er D", ‘2 ,— *H(V , "6) is  a f labby sheaf.
(3) T his sheaf  def ined in  (2) is isom orphic to th e  sh e af  "..'Rg t  o f  H-v alued Fourier

hy perfunctions in Theorem 2.2.2.

R em ark . T he sheaf defined  in  (2) is denoted by ,gf'Din (H 6 )=D is t"(D ", 6 )  where
the notation in  the righ t hand  side  is  due to  Sato [23], p . 465.

P ro o f .  ( 1 )  It goes in  a  sim ilar w ay to  Kawai [14], (p. 482).
(2) It follow s from  (1), flabby dim" n and  Theorem  11.3.24 in  Komatsu [16].
(3) Consider th e  following exact sequence of relative cohomology groups

0 Hk (V  , "6) — > H  (V  , "6) — > H M V , "6)

— > IPQ (V , H b - 1 (V  , "6)

H HQ(V , "6) > H .(V  , "6 ) — > H M V , "6) — > O.

Here Q a deno tes th e  closure o f  Q and  an  open  se t V  is taken  so  that V D ' .  Then,
by  (1) and  the  M artineau-H arvey Theorem , w e h a v e  H 'sy '(V , " 6 )= 0 .  T h u s w e  have
the exact sequence

0 Ha(V ,  1 1 6) — > H b a (V  , "6) --> II '(V  , 1K 6) --> O.

Since, by the  M artineau-Harvey Theorem, we have isomorphisms

H a'12 (V, H )', H (17 . "6 )-2 '-,A (Q" ; H)',

w e obtain the  isomorphism

H MV, 11)7,J1(aQ ; = 5Z(S2 ; H ).

T hus the  sheaf ,(2,-4 1 b (V , "6 )  is  iso m o rp h ic  to  th e  sh e a f  " R  o f  H -valued Fourier
hyperfunctions over D " .  (Q. E. D.)

Corollary 3.4.2. L e t  Q  be  an  arb itrary  open  set in  D " an d  V  an 6-pseudoconvex
open neighborhood of  Q such that Q is a  closed subset o f  V .  Then

(1) I f  n 2 , w e have the algebraic isomorphism

116) Iin-1(v\s2 , H O ) .

(2) I f  n = 1 ,  we hav e the algebraic isomorphism

HMV , ) (I \ 2 ; 11)/6(V  ; H ).

P ro o f .  It follow s from  the long exact sequence of re la tive cohomology groups

0 H(V , "6) ---> 1-1°(V  , '6) — > H"(V \Q , "6)

— > H M V , "6 )  — > — > H " - 1 (V \Q , "6)

H 116-) l i n ( /  HO) ip t (V \ Q ,  -0) (Q. E. D.)

Now assume n _ 2 .  L et Q be  a n  open se t  in  D " .  T hen  there  ex ists an  6-pseudo-
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convex open neighborhood V  o f  Q  such that V (--)D "=Q  (cf. Kawai [14], Theorem
2.1.6). We put V 0 = V  and V ,= .17 \{z V; Imz,=0}, (j=1, 2, ••• , n ) .  Then V = { V,} 1,1=0

and cU'={17 117=1 cover V  and V \Q  respectively. Since V , and their intersections are
also 65-pseudoconvex open sets, the covering (c u, cu') satisfies the conditions of Leray's
Theorem (cf. Komatsu [16], p. 98).

Thus, by a  similar way to Theorem 3.3.2, we have the following.

Theorem 3.4.3. W e use notations as abov e. T hen w e hav e the isomorphisms

11 7.6(V ,H0):--•_H"(cti, V ,H 6 )

• -'6(1/#.(2 ; H)/ c)(1/"#» Q ; H),
J=1

where we put

V #Q , V#;Q= nv,.

Chapter 4 .  Fourier transformation of H-valued Fourier hyperfunctions

4 .1 . Definition. In this section we introduce the notion of the Fourier transforma-
tion of H-valued Fourier hyperfunctions on D".

Proposition 4.1.1. I f  w e def ine gyo by  the form ula

(g yo)(e)= R n e(-V —1(x • e))ça(x)d x

f o r v) ,A(.1in; H ), w here x •e=x11--k  ••• +x n e„, then  9" giv es a  topological isomorphism
o f  ,..,4(D n; H ) onto itself .

P ro o f .  It is evident that g  is an algebraic isomorphism. We have only to prove
the continuity of g  because the situation for g - 1  i s  similar.

Now we prove the continuity of F .  P u t  Um=D n X1/ - 113, 1? " ;  IY1< 1 im l , (m =
1, 2, 3, •••). Then we have the isomorphism

Ji(Dn ; indOlim (U.; H).
77,

By this definition of the topology of cit(D 4 ; H ), we have only to show that, for every
m(m.1), there exists some m'(m<m') such that g  0 -1,- " ( U . ;  1 1 )— >oï, 11 17. , ;  H ) is
continuous.

For an arbitrary m (m 1 ) and an arbitrary yoE.W im (U n, ;  H ), we have

= ( /-1 (x • e))ya(x)d x

For m'>m, we can easily see that

yo(C)= R n e(A/ — 1(x • C)*(x)d x (C=- + — 1  7))

can be defined and (gyo)(C).EC(U. , n C ';  H ) .  By the Cauchy integral theorem, we have

(S.TW)(C)=,
 l e i , e(•./ —1(z .C))ço(z)d x ,
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(C=E+A/-177, z = x + . / - 1 y ,  I < 1 / m ', I y  < 1 / m ).

Then if , fo r  every C=e+ -V-177, we pu t y=eV11, (s=(m+m')/(2mm')), we have the
estimate

e( I /m')"11gW(C)11

C ., sup{ ç9(z)l e( z  /m) ; zE•U in} (CEU

where C m , is some constant depending o n  m and i n ' .  T h i s  completes the  proof.
(Q. E. D.)

Definition 4 .1 .2 .  L et T  be a n  element in  11 .R(D"):.--- ( D "  ;  H ) ' .  Then we define
g * T  by the formula

<g*T , w >=<T, yp>, f o r  yoa,A(D"; H).

We also define g * T  by the formula

<S7T*T , ço> , <T, gyo>, f o r  çaE ,A (D "; H ),
where

(g0(e)=(27r)-" N/ —1(x • e))ço(x)d x .

g  an d  g  a re  topological isomorphisms o f  i i (D " ;  H ) onto itself.

4 .2 . The Paley-Wiener Theorem. If we define V o =C" and
h # 0 1 , (j= 1 , 2 , , n ), a n d  i f  w e  put U =  V } 0 a n d  ci.F =  V ,} 7,1 =1, then (cu, cU') is
an relative covering of ( e a, en\D "). Then we can define t h e  n-th cohomology group
11"(V, H e) of the  re la tive  covering (CU, CU') a s  usual.

Then we have the isomorphisms

H"(cU, coe, 11 6) - Z"(cU, cif , 11 ()/6C" - '(c , Ht))

1 n .-n 1  „ ; c(nvi; H).;.=1 Jo;

We denote H"(cU, , "6") by H " fo r  simplicity.
F o r an  n-tuple 1, ••• a n )  o f  +1  o r  —1, we denote by r a the  quadrant in  R"

such a s  I x ER" ; cr,x,>0, (j=1, 2, ••• , n)}. Then a n  element ÇoE6(V 1n•••nV,, ; H ) is
a  2"-tuple o f slowly increasing H-valued functions ç9=(ço,), E g (go„ C (D " X  A/ —1F, ; H)),
where g  denotes th e  se t o f  all n-tuples ••• , a n )  o f  +1  o r  — 1 . We denote by
[w ] the  cohomology class yo+E,C((Th i „v ,; H )a- H " .  T hen , fo r an  element [w ] in  H",
we define a n  element b [yolE ,A (D "; H )' by

(4.2.1) <brso], f>

E (-1)" sign(6) .Ç (ya  (x+ -J -1 e „), f(x-I—V—ls a ))dx
a e 9

f o r  fE ,A (D " ; H ),

where we put s ig n (a )= H a , s „  is in  r. a n d  I s„ is sufficiently small. We note that
th e  above integral does not depend on a  choice o f s„E--1"„ a s  fa r  a s  I s, is sufficiently
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sm all by C auchy's integral theorem . It follow s also from  C auchy's integral theorem
th a t (4.2.1) does not depend o n  a  choice o f  a  representative ç9 o f  a  cohomology class
[ço] H " .  Hence 6 [0  is w ell defined . W e call b the  boundary value operator o f  H"
in to  ,A (Dn; H )'. Note th a t b is continuous and  lin e a r . F u rth e r  w e  h a v e  th e  isomor-
phism

b: H"--',A(D 11 ; = .R (D "; H ).

F o r a  cone F  in  R " w ith  vertex  a t  th e  o r ig in , w e  p u t  F p = f x R " ;  x • e 0  for
every eE T  I. T h e n  w e  have the  following.

Theorem 4.2.1 (the Paley-W iener Theorem ). Let be a closed strictly convex cone
in R n  an d  K  its closure in D " .

For the sak e of  sim plicity  w e assum e that the vertex  of  the cone I' be at the origin
and K cC [{ .x 1 - 6 } ]a  holds f o r every  s>0 in the topology of  D " .  L et T .q2 (D "; H).
T hen Tc“,4 (K ; H )' if  an d  only  i f  <T, e(A/-1(z•C))>E6(D'xA/ —1 in t (/ ') ;  H ) holds.
Here w e put

z • C= ziCi+ • • +z„C„, e(-V — 1(z • C))=exp(/ - 1(z.C)).

T h is  is  a n  H-valued version of K aw ai [14 ], Theorems 3.3.1 and  3.3.2 (p . 485).

Theorem 4 .2 .2 . L et K  be the closure of  I ' ,  in D" for a=(al., a2, ••• , a,,)  w ith  ai =
+1 o r —1, (i-=1, 2, ••• , n). T hen the follow ing sequence is exact:

a
H)' —>e),,,)1(K„; H)' ..A (D "; H )' -->  0,

w here w e put

H r= i(p „ );  p , r e,A(K„nK r ; H)',
and

a -->  (E r/1 , A,,

13(dtga).1 E a [id  •

P ro o f .  It fo llow s from  th e  flabbiness o f  t h e  sh e a f  "ER. and  T heorem  8 .4 .3  in
Morimoto [19], (p . 210) and  Martineau-Harvey Theorem. (Q. E. D.)

Definition 4 .2 .3 . F o r TE gZ(D n ;  H ), we decompose T  a s  in  Theorem 4.2.2:

T = E , Œ 2T„, T A(K,; I I ) '.
Putting

FG. (— 1) 4  sign(a)<T,, „ e(A/ —1(z. C))>

f o r  CER"x A/ —1 int(n ) ,

we define g,,T b y  the form ula g,T=[(F„),, E 2 ] E H ".

T h en  g s T  is w ell-defined. In  fac t, by the Paley-Wiener Theorem, we have F,(C)c
6 (D n x — 1 in t(I);  H ) .  H e re  w e  n o te  t h a t  int(P )= --T ,, (0E 9)) h o ld s . T h e  class
[(P1,),, E 9 ] E H "  is  in d e p e n d e n t o f the  decomposition o f  T  in  Definition 4.2.3. Indeed,
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the  ambiguity o f  the decomposition in  Definition 4.2.3 comes from th e  element (S„ )
631;,„.1(K„nK r ; H ) ' w it h  S ,,,+S , =  0  b y  T h e o re m  4.2.2. T h e n  w e  h a v e  <S,,,,,
e(A/ —1(z • C))> cE 6(D" X '■,/ —1(1' ( -11',)°), (0 #r). H en ce  [(-1)" sign (a) e ( ! - 1
(z•C))>],, E  b e lo n g s  to  f _ 0 (n i ,,J V I ; H ) .  Hence the  am biguity of the decomposition of
T  does not affect g s T .  T h u s  g s T  is well-defined.

W e call this g s t h e  Fourier-Carleman-Leray-Sato transformation.
L et TER(D" ; H ) .  W e  p u t  g * T =S = E T S„, ;  H ) '.  T h e n , f o r  f  E

,A (D"; H ), w e have

K bgs(g*T ), >= ((S,,,„ e(N/-1(z•C))>, f(C))dC
ÇP Rn

,z, e(A/ — 1(z • CD f (C)(1C>

=<S ,g f >=<g*T ,g  f >=<T , f >.

T hus w e  have the following.

Theorem 4.2.4. W e have bg s =g*.

We have the following commutative diagram :

g s

,.,4(D"; — > II"

b
4(D", H ) '

Since b is  a n  isomorphism by Theorem 3.4.3 a n d  th e  M artineau-Harvey Theorem, g s

is also a n  isom orphism . T hus w e have the  following.

Theorem 4 .2 .5 .  In  the  above notations, g s i s  an  isom orphism  of  (D "; TI) onto II".

T h u s  w e  h a v e  defined th e  F o u r ie r  tra n sfo rm  o f  a n  element o f  .22.(D" ; H ) via
"boundary values" of slowly increasing H-valued holomorphic functions in tublar domains.

We pu t bg s = g * = g  and  ca ll it the  F ourie r transformation.

Definition 4 .2 .6 . L e t T E=Ji(R"; = ,_4(11" ; II)', w h o se  support is  a compact set
K  in  R " .  Then w e define the Fourier-Borel transform  D(e) o f  T  b y  the formula

l'(e)=(T, e(-V  — 1(x .$))>

T hen  w e have the  following.

Proposition 4 .2 .7 .  L et T , ii(R " ; H ) ' w hose support i s  a  com pact s e t  K  in  R".
T hen T(e) 51(D"; H ) and  T (e) can be extended to I(C) , <T.,, e( ,./-1(x •C))>E0(C"; H)
so that, f o r any  s>0 , there ex ists' a constant C,>0 such that 11 11P ( )11-<Ce(IK(72)+EICI)
holds.

P ro o f .  This can be proved directly. (Q . E. D .)
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C o r o l la r y .  L et T  be as in Proposition 4.2.8. T hen w e hav e g T = b t .

P ro o f .  W e have, for a n y  çaE A (D "; H),

<S T , ço>-- =<T x, ,,,,e(A/ — 1 (x • e)me)de>

R f l (<Tx, e( — I(x ) )> , ç o (» d e

=<bp,
T h is  com pletes the  proof. (Q . E . D .)

Theorem 4.2.8 (the P a ley -W iener T heo rem ). F o r a  TE _A (R "; H )', th e  following
are equivalent:

(1) T he support of  T  is contained in  a convex  com pact set K  in  R".
(2) T he  Fourier-B ore l transf orm  T(C )E 0(C ''; H )  o f  T  satisf ies th e  following

estimate:
f o r any  s >O there ex ists a constant C ,> 0  such that

11 111 . (C)11.- C P K ( 1))+EICO
w here w e put

/K (0=supi—x• )7;

P ro o f .  T h e  f a c t  th a t  (1) im plies (2) is evident.
N o w  w e  p ro v e  th a t (2) im plies (1). L et K ° b e  the  po la r se t o f K :

K°={77ERn; lx•Y»_<1(xEK)L

T h e n  K °  is  a  convex balanced subset o f R n . T hen , by the assum ptions, T(C)E6(D'X
A/-1 int(K°); H ) h o ld s . S in c e  K  is  a  co nv ex  c o m p a c t se t, w e  c a n  r e p r e s e n t  K  as
K = n ,K g ,  w h e re  K g  i s  the image of K ,, (a=(1, 1, ••• , 1)), b y  som e  regu la r inhomoge-
neous l in e a r  transformatin g .  S in ce  K  is  a com pact set K  in  R n , K = n g r g ,  w here
r g = K g r 1 R n .  Since K"---.(n g f ' g )°D u g T", ho ld s, w e  have

(D " > <  /-1  int (K°); H)

C n  g 6(Dn X A/ — 1(r (g, )  H ).

H en ce , w e  have li(C)E6(Dn X -■/-1 int(T); H )  f o r  e v e r y  g. H e n c e  w e  h a v e  T E

,A(K g ; H ) '  b y  t h e  g e n e ra l  version  o f T heorem  4 .2 .2 . S ince  th is  ho lds fo r  ev e ry  g,
w e  have

T n g ,A (K g ;  H ) ' -= A (n g l i g ;

= ,A (K; H )'=_A (K; H )'.

T h is  com pletes th e  proof. (Q . E . D.)
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