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Vector valued Fourier hyperfunctions
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Yoshifumi ITO

Introduction

In this paper, we study H-valued Fourier hyperfunctions. Here H is a complex
Hilbert space which is not necessarily separable. We realize H-valued Fourier hyper-
functions as elements of the dual space of the space of all rapidly decreasing H-valued
real analytic functions or as “boundary values” of slowly increasing H-valued holo-
morphic functions and then show that they are the twofold realization of the same
H-valued Fourier hyperfunctions. When we realize H-valued Fourier hyperfunctions
using H-valued analytic functionals, our treatment is more general than other works
in the point that test functions are vector valued. This idea is also used in Briining-
Nagamachi [2], which I knew after submission of the present paper.

Next, we define the Fourier transformation of H-valued Fourier hyperfunctions
and show that the space of H-valued Fourier hyperfunctions on the entire space is
stable under the Fourier transformation. Further we prove the Paley-Wiener theorem
for H-valued Fourier hyperfunctions. '

Until now, many mathematicians have studied (vector valued) Fourier hyperfunc-
tions: Sato [22], Kawai [13], [14], Ito-Nagamachi [8], [9], Junker [10], [11], Ito [5],
Kaneko [12], Saburi [21], Nagamachi [20], Ito [6], [7]. Sato first introduced the
notion of Fourier hyperfunctions in case of one variable and Kawai completed the
theory of Fourier hyperfunctions. Ito-Nagamachi studied vector valued Fourier hyper-
functions with values in a separable Hilbert space. Junker and Ito studied vector
valued Fourier hyperfunctions with values in a Fréchet space. Kaneko improved the
theory of Fourier hyperfunctions. Saburi studied modified Fourier hyperfunctions.
Nagamachi studied vector valued Fourier hyperfunctions of mixed type. Ito [6] studied
6 types of Fourier hyperfunctions and their vector valued versions by the algebro-analytic
method. Developing Junker’s method, Ito [7] constructed the unified theory of (vector
valued) Sato-Fourier hyperfunctions by the duality method.

In this paper, we study the theory of Fourier hyperfunctions with values in a
general Hilbert space which is not necessarily separable, by the duality method and
also by the algebro-analytic method, and prove their equivalence and mutual independence
of these two methods. In case of the duality method, it is characteristic that test
functions are also vector valued. Thereby, we can use the vector valued version of
the method of L, estimates for o operator in Hérmander [3], [4] and prove fundamental

Communicated by Prof. T. Hirai, February 9, 1989, Revised October 30, 1991



260 Yoshifum: Ito

theorems of this paper. The proof of the equivalence of two realizations of hyperfunc-
tions (or generalized functions) can be found in several works as Schapira [24], Ko-
matsu [17] and etc.. But self-awakening description of this point in one paper is first
appeared in this paper.

Here I wish to express my hearty thanks to Professor Hirai and the referee for
their invaluable advices. They are very useful for improving the several points of
the argument. Without them, we could not have obtained this completed new version
of this paper.

Chapter 1. Preparations from the theory of (vector valued) functions of several
complex variables

1.1. The Oka-Cartan-Kawai Theorem B. In this paper, we always assume that
H is a complex Hilbert space which is not necessarily separable.

In this section, we prove the Oka-Cartan-Kawai Theorem B for the sheaf 7@ of
slowly increasing H-valued holomorphic functions and some of their consequences.

Here we remember the definition of the radial compactification D* of the n-
dimensional real Euclidean space R* following Kawai [14], Definition 1.1.1.

Definition 1.1.1 (Kawai). We denote by D" the radial compactification R™|_S2!
which denotes the disjoint union of R™ and the (n—1)-dimensional sphere SZ-' at
infinity., When x is a vector in R™"\{0}, we denote by xoo the point in S2~!' whose
representative is x in the identification of S2-! with (R"\{0})/R*. Here R* denotes
the set of all positive real numbers. Each element in R* is considered as a multiplca-
tion operator on R"\{0}. The space D" is endowed with the following natural topology.
Namely, (i) if a point x of D" belongs to R", a fundamental system of neighborhoods
of x is given by the family of all open spheres in R" including x. (ii) If a point x
of D™ belongs to S:°', a fundamental system of neighborhoods of x(=yw) is given by
the family {(C+4+a)UCw; Co2Dyeo}. Here a runs through all points in R* and C runs
through all open cones in R" with the vertex at the origin which contains ye R" {0}
and C. denotes the set {zo0; z&C}.

We denote by C" the space D" X+ —1 R" endowed with the direct product topology.
D" and SZ' are identified with the subsets of C* by the relations D*=3D"x~/—1 {0}
o€ and S2'=3S2'x+/—1 {0}c,C". For a subset E of €, we denote by int(E) its
interior and by E® its closure in C".

In this paper, we denote by (-, -) the inner product of H and by #|.| the norm
of H.

Let U be a measurable set in C". A measurable H-valued function f(z) on U is

said to be square integrable if the integral SU”Ilf(z)llzdl converges, where d2 denotes

the Lebesgue measure on C". Let L,(U; H) be the space of all square integrable H-
valued functions on U. A measurable H-valued function f(z) on U is said to be locally
square integrable if, for every relatively compact subset w of U, f(z)|, belongs to
Lyw; H). Let Ly 10c(U; H) be the space of all locally square integrable H-valued func-
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tions on U.
If {es}aca is an orthonormal basis of H, each f(z)eL,(U; H) can be expanded by
the formula

f(2)="§Afa(2)ea‘ fa2)=(f(2), ed),

where every f.(z) is square integrable on U and f,(z)=0 except for at most countable
numbers of a= A. Then we have the formula

[, 17@Irdi= 2 1 fa@)1%da,

Here we remember the notion of H-valued holomorphic functions. Let C™ be the
n-dimensional complex Euclidean space and £ an open subset of C*. An H-valued
smooth function f(z) on £ is said to be holomorphic if it satisfies the Cauchy-Riemann
equation 6f=0on 2. We denote by ©(£2: H) the space of H-valued holomorphic func-
tions on £. We define the sheaf “© of H-valued holomorphic functions over C" to be
the sheaf {0(Q; H); 2 is an open set in C"}. We put ©=°0¢.

If {es}qea is an orthonormal basis of H, each f(z)e©(2; H) can be expanded by
the formula

@)= Z fal@)ea,  fa(2)=(f(2), ),

where every f.(z) is holomorphic on £ and f,(z)=0 except for at most countable
numbers of a=.A4. As to the notion of an orthonormal basis of a Hilbert space H, we
refer Bourbaki [1], §2-3, Chapter 5. The norm #|f(z)| of f(z) can be calculated as
follows:

T @I=(Z 1 fa@)*)"72.

For every f(z)e0(Q; H), sup{”|f(2)|: z£K}<co holds for every compact subset of
Q. If we define a seminorm #| f||x of ©(Q2; H) by the relation #|f|x=sup{#|f(2)|;
ze K}, ©(2; H) becomes a Fréchet space with respect to the topology defined by the
family of seminorms {¥||f||x; K is a compact set in Q}.

Definition 1.1.2 (The sheaf & of slowly increasing H-valued holomorphic functions).
We define the sheaf ¥ over C* to be the sheaf {#(2:; H); £ is an opn set in C*},
where the section module 3(£2; H) on an open set £ in C* is the space of all H-valued
holomorphic functions f(z) on 2N\C™ such that, for any positive number ¢ and for
any compact set K in £, the estimate sup{¥| f(2)]le(—e|z|); z& KNC™} <o holds. Here
e(t) denotes the function e‘=exp(t) of i€ C and we put |z|=(|z,|%+ --- +]z,]»)"% We
put 0=°0.

If we define a seminorm 7| f|x. . of 8(2; H) by the relation #| f|| k. .=sup{¥| f(2)|
e(—elz|); ze KNC™}, &(2; H) becomes an FS*-space with respect to the topology
defined by the family of seminorms {¥|f|lx..; K is a compact set in £ and ¢ is a
positive number}. As to the notion of FS*.spaces, we refer Komatsu [15].

Definition 1.1.3 (The sheaf #@ of rapidly decreasing H-valued holomorphic func-
tions). We define the sheaf O over C" to be the sheaf {9(2; H); 2 is an open set
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in €}, where the section module O(2; H) on an open set £ in C" is the space of all
H-valued holomorphic functions f(z) on 2NC" such that, for any compact set K in
Q, there exists some positive constant ¢ so that the estimate sup{”| f(2)]le(d]z]); z&
KNC"} <o holds. We put 9=0°.

Definition 1.1.4 (Definition of the space ®%U ; H)). Let U be an open set in C".
For neR, the Banach space 0% ; H) is defined to be the space

onU; H)={feCUNC"; H); flyncre0UNC"; H),
sup{?lI f(@lle(—7nlz]); zE€UNC"} <oo}.

Let K be a compact set in €*. Let O(K; H) be the space of all rapidly decreasing
H-valued holomorphic functions on a certain neighborhood of K.

Let {U .} m21 be a fundamental system of neighborhoods of K such that U ,,,CCUn
holds. Here Un,,CCU, means that U,., has a compact neighborhood in U, with
respect to the topology of C*. Then we have the isomorphism O(K; H)=lim ind
O ™(U w; H). "

Then ©(K: H) becomes a DFS*-space. As to the notion of DFS*-spaces, we refer
Komatsu [15].

Let 2 be an open set in C* and {K.).., be an exhausting family of compact
subsets of £ such that K,CK,C--CK,C--C& and U,K,=£ hold. Then we have
an isomorphism

O(Q; H)=lim proj O(Kn; H).

Then 0(2; H) becomes an FS*.space with respect to the projective limit topology by
the following.

Lemma A. Let X=limind X, and Y=limindY ,, be inductive limits of sequences

of locally convex spaces {X.} and {Y .}, respectively. Assume that, for every m, v,:
Xn—Y o bea (weakly) compact linear mapping. Put r=limindr,. Then r isa (weakly)

n

compact linear mapping.

It is easy to see that #0|cn="0 ca="0 holds.

Next, constructing the soft resolution of the sheaf ”¢@ and using it, we will prove
the Oka-Cartan-Kawai Theorem B for the sheaf #&.

First we mention the definition of the sheaf ”LN:”lj“oc of slowly increasing H-
valued locally square integrable functions over €.

Definition 1.1.5. We define the sheaf I over €" to be the sheaf {L(Q; H); Q
is an open set in €}, where the section module L(2; H) on an open set 2 in C" is
the space of all f& L, 0(2NC™; H) such that, for every positive number ¢ and for
every relatively compact open subset w of 2, e(—e¢lz])f(2)|oE LolwNC™; H) holds.
Here |lz| denotes a C=-plurisubharmonic function as a modification of |z],=>7%.,]2,]
by a certain mollifier.
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Then ¥ [ constitutes a soft sheaf and, for an open set @ in c, ZN,(Q; H) becomes
an FS*-space.

If ¢ is the sheaf of functions of some class over C* and £ is an open set in C*,
let g7-9(Q) be the space of all differential forms of type (p, ¢) with coefficients in the
section module F(R2), (p, ¢=0). Let F7'? denote the sheaf {F7%Q); £ is an open set
in C*}.

Definition 1.1.6 (the sheaf 7 777, We define the sheaf # T?7 over C" to be the
sheaf {Z7%Q; H); 2 is an open set in C*}, where the section module I7%Q; H)
on an open set £ in €" is the space of all feL”%Q; H) such that Jfelr(Q: H).
Here 6f is defined in the distribution sense. Especially we put # =" T"°,

Then # T?¢ constitutes a soft sheaf. Equipped with a graph topology with respect
to the d oprator, Z79(Q; H) becomes an FS*-space for an open set 2 in C".

Definition 1.1.7. An open set V in C" is said to be an &-pseudoconvex open set
if it satisfies the conditions:

1) sup{llmz|; zeVNC"}<oo, where we put Imz=(mz,, ---, Imz,).

(2) There exists a strictly plurisubharmonic C=-function ¢(z) on VNC" having
the following two properties:

(i) The closure of V,={zeVNC"; ¢(z)<t} in C" is a compact subset of V for
every tER.

(i1) ¢(2) is bounded on LNC™" for every compact subset L of V.

As typical examples of O-pseudoconvex open sets, we have the following: D"X
V=U{yeR"; {y|<e}, intz=x++—1yeC"; |x|>b, |y <e}?), (b>0, ¢>0). Then
the families {D"X+/—1{y=R"; |y|<e}: ¢ isa positive number}, {int({z=x++v—1y<
C*; |x|>b, |v|<e}*:; b and e are positive numbers} and {int{z=x-++v—1y=C";
[x|>b, |y|<r4e}": b and ¢ are positive numbers} are fundamental systems of O-
pseudoconvex open neighborhoods of D*, S&-' and SZ-'xX~/=1{yeR"; |y|<r} in C"
respectively, where » is some nonnegative constant,

For e=(1,0, ---,. 0)eS" ', beR" and ¢>0, we put C,.={xeR"; xj+ - +xile*
(x;—¢7")%, x,>0} and B, .={yeR"; |y—b|<e}. Then Q(eco++v—1b: e)=Int{(C, .)") X
V=18, . is an @-pseudoconvex open set in C*. Then the family {2(eoo++v—1b: &):
e>0} is a fundamental system of O-pseudoconvex open neighborhoods of the point
eco4-+/—1b.

Further, consider a=S"-! and b R". Then there exists a rotation 7€ SO(n) such
that e=Te. If we put Q(aco++v—1b; ¢) = int(TC, )" )X~ —1B, . for an arbitrary
point aco++—1H&SL 'YX~ —1R", then the family {Q(acc++—1b; ¢); e>0} is a
fundamental system of @-pseudoconvex open neighborhoods of the point aco4++/—1b.

Theorem 1.1.8 (Hérmander-Kaneko). Put U=int({z€ C"; |Imz|<l1+|Rez|/+/3}%)
and let 2 be an arbitrary O-pseudoconvex open set included in U. Then, for every
feIre(Q; H) such that §f=0, there exists a solution us IP9(Q; H) so that su=f
holds. Here p and g are nonnegative integers,
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Proof. This is an H-valued version of Kaneko [12], Theorem 8.6.6 (p. 412).

We can prove this in a similar way as the proof of Kaneko [12], Theorem 8.6.6
(p. 412) using the following lemma 1.1.9 which is an H-valued version of Hérmander
[3], Theorem 2.2.1’ (p. 105). (Q.E.D.)

Lemma 1.1.9. Let Q'be a pseudoconvex open set in C", let ¢ be plurisubharmonic
in 2 and let e* where X C(Q) be a lower bound for the plurisubharmonicity of ¢.
For every feLly(2; H), ¢>0, such that 6f=0 and

S:)Hllfllze"‘““dl<°° )
one can then find a form ue Ly T8, ¢; H) such that ou=f ana
n 2,- H 2,-Cp+X)
of Fluteedas M flre e mda.

Here Ly(82, ¢; H) denotes the space of all H-valued functions in Q which are square
integrable with respect to the density e *.

Proof. 1If {eslaeca is an orthonormal basis and f(z)e L %.(2; H) satisfies the
assumptions in the Lemma, f(z) can be expanded by the formula

f@=3 fa@en,  [u@=(f(2), ea),  3ful2)=0
and
| "Is@lre e 0da= B[ fa@l e w0z

holds. Here f,(2)=0 except at most countable number of a=A. Now, applying
Hormander [3], Theorem 2.2.1’ (p. 105) to every f.(z), we can find a form u.(z)e
Ly, 9)=L3 142, ¢; C) such that du.=f, and

flggl ua(z)|ze—¢d2§gg|fa(z)|2g-(¢+l)d2'
If we put u=3,csuua(2)e,, then we have su=/f and
of Fhutresaas mi e di
holds. (Q.E.D.)

Theorem 1.1.10 (Dolbeault-Grothendieck resolution). The sequence of sheaves over C*

0

0 > H@p > pr.o R pr.l > oee R pr.n >0
is exact. Here p is a nonnegative integer.

Proof. We have only to prove the exactness of the sequence

0 d 0

0—>H5£——->”.Z;£'°——’ fg“—»m———*fg'"—)()

at every point x&C™.
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Let U be as in Theorem 1.1.8. At first we will prove the exactness of the above
sequence at every point x&€U. ‘The exactness of the sequence

~ J -
0 > llcjg > II_Lg.u > H_Eg,l

follows from the ellipticity of 4 and the fact that, for H-valued holomorphic functions,
we can interchange sup-norm and L,-norm locally. '
As to the exactness of the sequence

u pp.o I Gpt o Ppon
Tyt I Ip— o S B TR 0,

we have the conclusion by virtue of Theorem 1.1.8 because each point in U has a
fundamental system of &-pseudoconvex open neighborhoods.
As to the point x outside of U, we can show the exactness by translation.

(Q.E.D.)
Corollary 1.1.11. For every open set 2 in C*, we have the isomorphism
HuQ, "on={fe I(2; H); if=0}/{dg; g L'(2; H)},
(h20, ¢=1).

Using this Corollary, we can prove the Oka-Cartan-Kawai Theorem B.

Theorem 1.1.12. Let U be asin Theorem 1.1.8 ana 2 an arbitrary O-pseudoconvex
open set in C" such that some translation of QNC" is included in U. Then we have
HYL, 197)=0, (p=0, ¢=1).

Proof. This follows from Theorem 1.1.8 and Corollary 1.1.11. (Q.E.D.)
Now we define the sheaf #L="L, o, of rapidly decreasing H-valued locally square
integrable functions.

Definition 1.1.13. We define the sheaf 7L over C" to be the sheaf {L(Q; H); 2
is an open set in €}, where the section module L(2; H) on an open set 2 in C" is
the space

LQ2: Hy={fE L, 10(2NC": H); for every oCCL, there exists
some 6>0 such that e(8]z])f(2)|wncn € LolwNC™; H)}.

Then the sheaf “[ constitutes a soft sheaf. For a compact set K in C*, # L(K)=
L(K; H) is defined to be the space lir,r(l igld LU ; H) where U runs through all open neigh-
C

borhoods of K in €. L(K; H) is endowed with the following topology. Let {Un}
be a fundamental system of neighborhoods of K such that U ,,,CCU , holds. Here U 4,
CCU , means that (U ».,)* is a compact subset of U,. Let L;¥™U; H) be the space
of all f€ L, 10e(UnNC™; H) such that

S,,mnanHfllze( 12| /m)dA< oo

holds. Then the family {L;%™U »; H)} constitutes a weakly compact inductive sequence
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with respect to the restriction mappings and we have the isomorphism
L(K; H)=limind L3 }™U ,.; H).

By this topology, L(/K; H) becomes a DFS*-space.
Then L(£2; H) becomes an FS*-space with respect to the projective limit topology :

L(2; H)=lim proj L(K; H),
QoK
where K runs through all compact subsets of £ (see the above Lemma A).

Definition 1.1.14 (the sheaf of ¥ £7:7). We define the sheaf # £7¢ over C"* to be
the sheaf {L£P%Q: H): £ is an open set in €*}, where the section module £7%Q; H)
on an open set £ in C" is the space

LrUQ; H)={fEL7UQ; H); 3f& L7 (Q; ).

We put }1‘;:}1!0.0.

Then # £7 constitutes a soft sheaf. Equipped with a graph topology with respect
to the d-operator, ¥ £7:9(A) becomes a DFS*-space for a compact set X in C*. Then
we have the following.

Theorem 1.1.15 (Hérmander-Kaneko). Put U=int({z C"; |Imz|<l+|Rez|/v 3,
[Imz|?<1/2+|Rez|%}%). Let Q be an arbitrary O-pseudoconvex open set included in U.
Let f be an element in LP ' (Q; H) such that 3f=0. Then, for any open set @CC L,
there exists a solution ue L”%w: H) of the equation Ju=f on wN\C*. Here p and g
are nonnegative integers.

Proof. Let feL£?982; H) such that 9f=0. Next, ¢(z) being a plurisubharmonic
function 2N\ C" which satisfies the conditions in Definition 1.1.6. For a t€ R, we put
Q,=int({ze2NC"; p(z)<t}*). Then, for any open set wCC {2, there exists a teR
such that «CC®,. Then there exists a >0 so that h;f|oncnE L7 (Q,; H) holds,
where we put hyz)=e(d+/z°+1) and z*=2z?+ --- +z2. Since h; is holomorphic on UNC*
and f is d-closed on 2NC". Then, by virtue of Theorem 1.1.7, we have ve I
(2,; H) so that gv=~hzf holds on 2,NC". Put u=(/hs)|.. Then we have ue L1
(w; H) and du=f on oNC". (Q.E.D.)

Theorem 1.1.16 (Dolbeault-Grothendieck resolution). The seqgnence of sheaves over Cr

0 0

0 — IIQIJ — > IIIp.o . 11_~£'p.l I, _a_, ”.fp‘" — 0

is exact, (p=0).

Proof. Since the exactness of the above sequence is equivalent to the local solva-
bility of the & equation, we have the conclusion similarly to Theorem 1.1.10 by virtue
of Theorem 1.1.15 and the ellipticity of d-operator at the term #£?°, (Q.E.D.)

Corollary 1.1.17. For an open set 2 in C*, we have the isomorphism
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HuQ, "on={feLru(Q: H); af=0}/{og; ge Lr*(Q; I},
(p=0, g=1).

Then we have the following.

Theorem 1.1.18. Let V be an open set in C* such thal some translation of VNC"
can he contained in U of Theorem 1.1.14. Assume that K is a compact subset of Cr in-
cluded in V and has a fundamental system of neighborhoods composed of O-pseudoconvex
open sets. Then we have HY(K, #9?)=0, (p=0, ¢=1).

Proof. Every open set in C" is paracompact, we have

HUK, "oP)=lim ind HY(2, "@").
KcQ
Here 2 runs through all open neighborhoods of /. Since K has a fundamental system

of neighborhoods composed of O-pseudoconvex open sets, we have the conclusion by
virtue of Theorem 1.1.15 and Corollary 1.1.17. (Q.E.D.)

At last we have the following.

Theorem 1.1.19 (Malgrange). For every open subset S of D", we have HYS, " A")
=0, (p=0, g=1). Here we put " A="0]pn.

Proof. By virtue of the Grauert Theorem in Kawai [14], Theorem 2.1.6 (p. 473),
S has a fundamental system of neighborhoods {£,} composed of @-pseudoconvex open
sets. Thus we have

1S, 1 Am=lim ind {4 .. 70")=0

by virtue of Theorem 1.1.12. (Q.I5.D.)

Theorem 1.1.20 (Malgrange). For every compact subset K of D", we have HYK,
Ham=0, (p=0, g=1). Here we put " A="0|,..

This is a corollary of Theorem 1.1.18.

1.2. Approximation Theorem. In this section, we prove an approximation theorem
of Runge’s type for 7 4.

Theorem 1.2.1. For a compact set K in D", AWD": H) is dense in A(K; H).
Proof. By virtue of the fact mentioned after Definition 1.1.4, we have the isomor-

phism A(K; H)=limindo,'"(U,; H) in the notation used there. We have to prove

that A(D"; H) is dense in every 0;'"(U,; H). Now, let {es}acs be a complete or-
thonormal basis of H. Then every f€0;"™(U,; H) can be expanded as follows:

f:'%‘ilfnear fa:(fy en)-
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Then f.€0;""(Un)=05"""(Ux; C) holds. Then we have only to apply Theorem 2.2.1
of Kawai [14] (p. 474) to every f,. (Q.E.D.)

Chapter 2. The realization of H-valued Fourier hyperfunctions using H-valued
Fourier analytic functionals

2.1. H-valued Fourier analytic functinals. In this section, we introduce the
notion of H-valued Fourier analytic functionals as the dual object of rapidly decreasing
H-valued holomorphic or real analytic functions.

Definition 2.1.1. For an open set 2 in C*, we consider the dual space O(2; H)'
of the space ©(2; H) and O(Q; H)' is endowed with the topology of uniform con-
vergence on every bounded set in @(Q; H). An element u of 9(2; H) is said to be
an H-valued Fourier analytic functional on £. We say that ue@(Q; H) is carried
by a compact subset K of £ if u can be extended to @(K; H). Then we call K a
carrier of u. We also say that uc@(Q; H) is carried by an open subset w of Q if
u is carried by some compact subset of w. Then w is said to be a carrier of u.
Similarly we define the spaces O(K; ), A(K; H) and A(2; H) for a compact set
K in €™ or in D" and an open set 2 in D" respectively. We define the notion of
carriers in these cases similarly to the case of @(2; H). We put 9(@; H)Y=4D;
H) =0.

Here we note that ©(K; H)' and A(K; H) become FS*-spaces.

Proposition 2.1.2. Let Q be an open set in C*. Suppose that a compact set K in
2 has the Runge property such as 9(2; H) is dense in O(K; H). Let uso(2; H).
Then u is carried by K if and only if u is carried by all open neighborhood of K.

Let {£2;}%-, be a fundamental system of Runge open neighborhoods of K in .
Then Proposition 2.1.2 means that the isomorphism

(limlind 0R;; H)Y =o(K; HY

holds. An element of A(D"; H) issaid to be an H-valued real Fourier analytic func-
tional or an H-valued analytic functional with carrier in D".

Theorem 2.1.3. For every at most countable family {K;}ie:r of compact subsets of
D", then nld(Ki; H)’:LA,{I(AQI K;: H) holds.
e 1

Proof. 1f I={l, 2}, we can conclude that A(K;; H)NAMK,; H)Y=AK.NK,; H).
In fact, by virtue of Theorem 1.1.20, we have an exact sequence

T
0 —> A(K 3 UKy ; H)—> Ay DDA, H) —> MK NKy; H)
s H(K\UKy; =0,
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where po(f)=(flx, —flx,) and t((f1, fo)=/1l knk,+f2lk\nk,. Since p and 7 are con-
tinuous, we have the dual exact sequence

T
0 «— A(K\UKe; HY <'?_ MK HYDAMK,; HY «<—— MEKNK; HY <—0,

by virtue of Komatsu [15], Theorem 19 (p. 381). We note that A(K\NK,; H)YC
MK, HYNA(K,; H). On the other hand, from the above exact sequence, we have
{(u, w); ue MK, ; HYNAK,; HY}CKer p'=Imz'={(u, u); uc MKNK;; H)'}. Hence
we have the above conclusion.

Assume I=N. Then, by finite induction, we have, for every n=1,

(AU HY =4 (K H).

Then, by the natural inclusion map, the family {A(N?- K;; H)'} becomes a projective
family. Thus we have

QAU HY=lim proj q A(Ke: HY
= n i=
=tim proj 4( (\ Ki; H) =40\ K5 HY. (Q.E.D)

Theorem 2.1.4. Let uceAWD": H), u#0. Then there exists the smallest compact
set in D*, which is a carrier of u, amonyg the carriers of u. We call it the support of
u and denote it by supp(u).

Proof. By virtue of Theorem 2.1.3, we can prove the theorem by way of Zorn’s
Lemma. (Q.E.D.)

We remark that, for u, u, and w,=4(D"; H), we have

supp (us+us)Csupp (u)\Jsupp (4z),
supp (Au)Csupp(u), for 2eC.

Theorem 2.1.5. Let K=\UZ_, K; be the union of compact sets K, in D". Let uc
MK HY. Then there exist u, s A(K;; HY, (i=1,2, -, p), such that u=3"%_,u,.

Proof. We note first that the mapping
(K3 H) — B UK H),
i=1
fr—(f1Kisisp

is continuous, injective and of closed range. By this mapping, we can identify A(K; H)
with a closed subspace of PD?., A(K;; H). Since A(K; H) and P?_, MK;; H) are
DFS*.spaces, we have the following surjection from the Serre-Komatsu duality theorem

T AU HY —> A5 HY,

(U)rziep — ié u;. (Q.E.D.)
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Let £ be an open set in D" and K a compact subset of 2. Then the envelope K
of K in £ is defined to be the closure of the union of K and the relatively compact
(in Q) connected components of Q2\K.

Theorem 2.1.6. Let 2 be an open set in D", and K, and K, two compact subsets
of Q with K,CK,. Further assume that K,=K, holds for i=1,2. Then A(\K)*Y)
ts dense in A(Q\K,)?)'.

Proof. It is sufficient to see that the natural restriction mapping A(Q\K,)*) into
A(L\K,)") is injective. But this is evident under the assumption of this theorem.
(Q.E.D.)

2.2. The sheaf "R of /i-valued Fourier hyperfunctions. In this section we con-
struct the sheaf ¥ ® of H-valued Fourier hyperfunctions. At first we have the following.

Theorem 2.2.1. The following are valid for the H-valued Fourier analytic func-
tionals with carriers in D".

(1) If K, ana K, are two compact subseis of D" with K,CK,. Lhere exists a con-
tinuous injection ix x,: A(K; HY—A(Ky,; H).

2) If K, and K, are as in (1) and each connected component of K, meets K,, then
ik, Kk, has a dense image.

(3) If K, ana K, are two compact subsets of D" and we put K=K ,\UK,, then, for
every ucs A(K; HY, there exist uye A(K,; H)Y and u,= A(K,; H) so that u=u,+u,
holds, where u, and u, are considered as elements of A(K; H) by virtue of (1).

4) For every at most countable family {K.}ie; of compact subsets of D",
;de(]{"; H)’:J(ife\ll(i; H)" holds.

Proof. (1) The natural restriction mapping iy, x,” of A(K.: H) into A(K,; H)
is continuous and has a dense range. Hence its dual ik x, is a continuous injection
AK,: HY > A(Kz; H)'.

(2) It is evident from the identity theorem that iy ,: A(K,; H)— A(Ky; H)
has a dense image.

(3) See Theorem 2.1.5.

(4) See Theorem 2.1.3. (Q.E.D.)

Theorem 2.2.2. There exists one and only one flabby sheaf "R over D" so that,
for every compact subset K of D", I'x(D", "®R)=A(K; H)" holds. The section module
R(Q2; H) of the sheaf "R on an open set £ in D™ is defined to be the space

R(Q: Hy=A(2%; H)/ A0RQ; HY'.
Proof. It follows from Theorem 2.2.1 and Ito [7], Theorem 1.2.1. (Q.E.D.)

Here, for completeness, we mention the Schapira-junker Theorem (Ito [7],
Theorem 1.2.1).

Theorem 2.2.3 (Schapira-Junker). Let X be a a-compact locally compact topological
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space satisfying the second axiom of countability. We assume that, for every compact
subset K of X, there exists a Fréchet space Fx such that the following conditions are
fulfilled;

(1) For two compact subsets K, ana K, of X with K\ CK,, there exists a continuous
injection ix, g, Fr,—Fk,

(2) If K, ana K, are two compact subsets of X with K, CK, and each connected
component of K, meets K, then ix  x, has a dense image.

3) If K, ana K, are two compact subsets of X and K=K, UK, holds, then, for
every ucFyg, there exist u€Fg, and u,=Fg, so that u=u,~+u, holds, where u, and u,
are considered as elements of Fi by virtue of (1).

(4) For every at most countable family {K;; i€l} of compact subsets of X,
N Fx,=Fg holds, where K= N K.
iel iel

(5) Fp=0 holds.
Then there exists one and only one flabby sheaf F over X so that, for every compact
subset K of X, I'x(X, F)=Fx holds.

Definition 2.2.4. The sheaf 7R is said to be the sheaf of H-valued Fourier hyper-
functions over D™ and a section f of “® on an open set £ in D" is said to be an
H-valued Fourier hyperfunction on £.

At last we note that H-valued Fourier analytic functionals with carrier in a
compact set K in C* can be considered as Fourier analytic linear mappings on K. As
to the notion of Fourier analytic linear mappings, we refer Ito [7].

Theorem 2.2.5. Let K be a compact set in C*. Then we have the isomorphism
OK; HY=L(O(K); H).

Proof. 1t goes in a similar way to Ito-Nagamachi [9], section 6, p. 21. (Q.E.D.)

Chapter 3. The realization as boundary values of slowly increasing H-valued
holomorphic functions

3.1. The Malgrange Theorem. In this section we prove the Malgrange Theorem.

Theorem 3.1.1. Let @ be an open set in C* for which H™(Q. "@)=0 holas and Q
an arbitrary open set contained in @. Then we have H™(R, 3)=0.

Proof. By virtue of Corollary 1.1.11, we have only to prove the exactness of the
sequence

Fonu@; H) e INQ: H) >0

in the notations of Theorem 1.1.10. This is equivalent to proving the exactness of
the sequence

~ J ~
LO'""(Q; H)—PLO‘"(.Q; H)—>O
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By virtue of the Serrer-Komatsu duality theorem (Theorem 19 in Komatsu [15], p.
381) for FS*-spaces, it suffices to show the injectiveness and the closedness of the range
of —9=(3)’ in the dual sequence

=
-0

(3.1.1) LOY(Q: H)

LY(R: H)y<—0.

Here L2%{2; H) denotes the space of sections with compact support of L?? on Q.
Since —¢ is elliptic, its injectivity is an immediate consequence of the unique con-
tinuation property. Now we will prove the closedness of its range. This is surely
true if £ is replaced by the open set £ in the assumption of this theorem because
then H*(2, ##)=0 holds. Thus the problem reduces to the estimation of support of
the solution us L2 ; H) of the system —du=f for an f<[Im(—3%)]%. Then there
exists a sequence {Us}acsCLY%(R2; H) and —Gu.—f in L2Y(R: H). Then the con-
vergence takes place in L%'(@; H). Hence by the closed range property of

(3.1.2) LE@s H)— L¥(@; H)<—0,

we can find ueL?%(Q; ) such that —du=f. We note that u is holomorphic on
(2\supp(f))NC™ and that supp(f)cCR. Hence if we show that u=0 on (I\Q)NC*,
we find that supp(u)CC 2 from the uniqueness of analytic continuation. By the clo-
sedness of the range of —d in (3.1.2), we can apply the homomorphism theorem and
find some sequence v, v L2 ; H) such that —dv,=—du., —v=—=au and v.—v in
Lo(@: H) (cf. Kothe [18], §33, 4(2), p. 18). Since —o is an injective operator of
L>(@; H) into L>Y(@; H), we must have va=u,, v=u. Hence u,—u in L%%D: H).
Since supp(uq.)C 2, we find supp(u)Cf°. (Q.E.D.)

Note. The author owe the above proof of this theorem to Kaneko's kind advices.
Corollary. Flabby dim 70 < n.

3.2. The Serre Duality Theorem. In this section we prove a Serre Duality
Theorem.

Theorem 3.2.1. Let Q be an open set in C" such that dim HP(Q, "@)<oo(p=1)
holds. Then we have the isomorphism [H?(Q, "0))=H! (2, 79), 0£p<n).

Proof. By virtue of Corollaries 1.1.11 and 1.1.17, cohomology groups H?(2, #0)
and H?-?(2, "@) are cohomology groups respectively of the complexes

3 J
00— TR ; H) 9, TONQ: H) —> > T4"(2; H) — 0

(3.2.1) 1 s L s !
0«—— LE™MR; H) «— L2 (Q5 H) «— - e— LOY2; H) «—— 0.

Here the upper complex is composed of FS*-spaces and the lower complex is composed
of DFS*-spaces. The ranges of operators ¢ in the upper complex are all closed by
virtue of Schwartz’ Lemma (Theorem 20 in Komatsu [15]). Hence the ranges of
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operators —d=(d)’ in the lower complex are also all closed and we have the isomor-
phism
[H?(Q, "0))'=H (2, #0)

by virtue of the Serre-Komatsu duality theorem (cf. Komatsu [15]). (Q.E.D.)

Remark. The conclusion of the theorem works for any open set £ for which
every o operator in the diagram (3.2.1) is of closed range.

3.3. The Martineau-Harvey Theorem. In this section we prove the Martineau-
Harvey Theorem.

Theorem 3.3.1 (the Martineau-Harvey Theorem). Let K be a compact set in C"
and assume the following :

(i) HMK, "0)=0, (p=1).

(ii) @ is an open neighborhood of K such that H?(Q, "0)=0, (p=1) holds.
Then

() HR®R, "0)=0, (p+n).

2) If n=2, we have algebraic isomorphisms

H2Q, "O)=H""(Q\K, "O)=0(K; HY,
) If n=1, we have topological isomorphisms
HERQ, "O0)=0(Q\K; H)/0(Q; HY=o(K; HY .

Remark. If a compact set K has a fundamental system of J-pseudoconvex open
neighborhoods, it satisfies the assumptions in T’heorem 3.3.1.

Proof. 1t goes in a similar way to Kawai [14]. From a general theory of relative
cohomology groups (cf. Komatsu [16], Theorem II. 3.2), we have

0— HXQ, "0) — H(R, "0) — H'(Q\K, "0)
—> HMXR, 18) —> HY(Q, "0) —> H'(Q\K, "0) —> ---
—> HER, 10) —> H" (R, "0) —> H"(Q\K, "O) —> .- .

Then we have H?(2, #3)=0, (p=1) by the assumption and H2(2, ?&)=0 by the unique
continuation theorem. Hence we have an exact sequence and algebraic isomorphisms

0— 8(Q; H)—> 0(Q\K; H)—> HXQ, #8) — 0,
HR(Q, "O)=H"""(Q\K, "0),  (p=22).

We also have the long exact sequence of cohomology groups with compact support
(cf. Komatsu [16], Theorem I1.3.15):

0 —> HYOQ\K, "0) —> HYR, "0) — H(K, "0)
—> HIOQ\K, "0) — HYQ, "0) — H'(K, "Q) —> -
—> HY(O\K, "0) —> HYQ, "0) —> H (K, "0) —> .
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Here H?(K. 70)=0, (p=1) by the assumption on K. From Theorem 3.2.1 and the fact
H?(Q, 13)=0, (p=1), we also have HZ(Q, "0)=0, (p#n). Therefore we obtain an
exact sequence and topological isomorphisms:

When n=1,

0— K; H)y—> ITYO\K, "9) — HY(L2, "9) —> 0,

when n=2,
H{Q\K, "9)=0(K; H),

HE\K. "o)y=H%¥Q, "0)=0,  (p#1, n),
HE\K, "0)=HX®, "0).

Now we consider the following dual complexes:

0 —— IOUNQNK; H) — s TOUQNKs H e (*)

} J I

—d- ~0n-
0 «——— LOMONK; H) LU NONK; H) e ()
57;-2 ~ an—l ~
(x) —— I '(ONK; H) —— IT""(Q\K; H) —— 0

—al I —30
(#%) «—— L¢'(ONK; H)

LENRNK; H) 0.

Then, since H2(O\I, "0)=0, (p#1, n), the range of —3,=(5,-,-,)" is closed for j=+0,
n—1. However d,., is of closed range by the Malgrange Theorem. Hence, by the
Serre-Komatsu duality theorem, —a is of closed range.

In order to prove the closedness of the range of —a,_;, we consider the following
diagram :
g
0 LEMNK; H) ~———— L0V (OQ\K; H)

z'l 0 li

0 ———— L0%Q; H) —"— 0740 H),

where the map / is the natural injection.

We conclude that 52 is of closed range because /YR, "@)=0. Thus —o%9., is of
closed range by the Serre-Komatsu duality theorem. Therefore Im (—a9\%)=;"!
(Im(—24.))) is closed by the continuity of the map 7. Therefore all —éP\¥ are of
closed range. Hence, by the Serre-Komatsu duality theorem, we have the isomorphisms

[HP(O\K, "O) ) =HP(\K, "0),  (0=p=n).

If n=1, by the Serre duality theorem, we have the dual complexes:
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0—0(2; H)— O(\K; H)— HL(2, 70) — 0
0«— HéEQ, "o) «— HAEQ\K, "0) «— O(K; H) <—0.
Therefore we have topological isomorphisms
[H (2, 78)]) =[Coker(0(2: H) —> S(2\K; H))]'
=Ker(H:(\K, 70) — HY®, "0))
=Qo(K; H).
Thus we have topological isomorphisms
HEQ, #O)=0(8\K; H)/3(2; Hy=0(K; H).

This proves (3).
If n=2, since FS*- or DFS*-spaces are reflexive and we have

OUNK; HY=H!(Q\K, "O)=HXR, "o)=0(R; HY,
we have the isomorphism

6(Q: HY=0(2\K; H).
Thus we have

HERQ, 1O =0(Q\K; H)/6(2; H)=0.
Further, for p=2, p+#n, we have
0=[H!-P*(2, ")) =[H? "*(Q\K, #0))

=~ H?-Y(Q\K, "0)=HE(Q, 78).
Thus we have
HE(R, #0)=0, (p#n).
This proves (1).
In the case p=n, we have algebraic isomorphisms

HXQ, "O)=H"'(Q\K, "O)=[HI\K, "0)]
~(K; H).
This proves (2). (Q.E.D.)
Now we realize H-valued Fourier analytic functionals with certain compact carrier
as relative cohomology classes with coefficients in #§.
Let K,, K,, ---. K, be subsets of C such that K%, K¢, ---, K% are compact sets in
C. Then K=(K,XK,X --- XK,)® is a compact set in C".

Let K be a compact set in C* of the form K=(K,X---XK,)* as above. Then K
has a fundamental system of J-pseudoconvex open neighborhoods. Then we have

H?(K, "9)=0, (p>0).

By virtue of the Martineau-Harvey Theorem, there exists the algebraic isomorphism
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O(K; HY =HZC", "8).

Let £ be an J-pseudoconvex open neighborhood of K. Then
Q,=02N{zelC"; z;¢ K¢}

is also an @-pseudoconvex open set for j=1, 2, ---, n. Then, putting 2,=0, U=
{2,170 and U'={2;}7_, form #J-acyclic coverings of £ and £2\K. Namely,

Hq(.Q,-O/'\.lef\ /\ij, ]16):'0'
(>0, {70, j1, 5 7p1CH0, 1, 2, -, n}, p=0,1,2, -, n)

hold. Thus, by Leray’s Theorem (Theorem I1.3.29 in Komatsu [16]), we obtain the
algebraic isomorphisms

HXC™, T0)=H2(R, "&)=H™(U, U, 1d).

Since the covering €U is composed of only n+1 open sets 2;(j=0, 1, ---, n), we easily
obtain the isomorphisms

7V, V', 1O)y=CMU, U, "0)=0(Q4K; H),
Ccri(v, U, 10)= ]G:Bl@(.()#,-l{; H)y,
where we put
Q8K = ﬂ 2 QmK= 0.

Now 33;0(2#;,K; H) denotes the image in O(R4$K: H) of Pr..0(24,K; H) by the
coboundary operator

81 ([ B (=D'fS,
f} being the restriction of f; to 2#K. Hence we have
SCTHU, V', MO)= 3} O(@4;K 5 H)l e
Thus we have the algebraic isomorphisms
O(K; HY=HX®Q, 1®)=H™(U, V', ")
=Z™U, U, "d)/oC* (U, V', ")
=0(04K; H)/EJJ@(Q#J-K: H).
Thus we have the following.
Theorem 3.3.2. We use notations as above. Then we have the algebraic isomorphisms
O(K; HY=HXR, "&)=H"(VU, V', "8)

~O(Q8K H)/é O(R4,K; H).
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For g(z2)e@(K; H), we define its complex conjugate g(z)=g(z) so that the follow-
ing conditions are satisfied :

() If geo(K; H), g=g.

@ 1If f, geoK; H), (f+g)=f+z,

() If geoK; H) and acC, (ag)=ag.
We define the complex conjugate of any H-valued function similarly. Then we have
the following.

Theorem 3.3.3. We use the same notations as in Theorem 3.3.2. If we define the
canonical mapping
b: O(RQ4K; H)— O(K; HY

as follows. Let fcB(Q8K;: H) and g€ (K ; H). Let o=int{(w,X -+ Xw,)*)C be an
open neighborhood of K with K;Cw;CC(j=1, 2, -+, n) and g=@(@; H) where & is an
open neighborhood of w® with &C&Q. Let L;(j=1,2, -, n) be open sets in C with
regular boundary such that K;C L;Cw; and let I'; be the boundary of L; and oriented
in the positive sense. Then we define b(f)e@Q(K; H) by the formula

Then b is the surjective homomorphism of G(Q$K; H) onto O(K; H) whose kernel is
30(Q4,K 5 H).

Remark 1. The canonical mapping b defines the isomorphism

HREQ, "&)=0(K; HY.

Thereby we can realize H-valued Fourier analytic functionals as boundary values of
slowly increasing H-valued holomorphic functions.

Remark 2. If we define the FS*.space topology of the space O(Q#K; H)/3;0
(2%,K; H) by the canonical way, then we have the topological isomorphism

O(Q8K; H)/%‘,@(.Qﬂ:jk'; H)y=9(K; HY.
Proof. (i) At first we note that the integral

<—1)ngrl...gpn(f(z), 2@z dz,

does not depend on the chosen curves I}, ---, I, and defines a continuous linear
mapping b from G(Q#K:; H) into O(K; H)'.
(ii) Now we prove the surjectivity of the mapping b. Let u=@(K; H) and put
#(2)=Q2nri) "Cug, (6—2)"'e(—(E—2)%>,
(ze(Q¢K)NC™),

where we put

=2 e(—(E—2)= 1T (¢—2) " e(—(E—2,)").
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Then
<b(i), g>

=(=2mi) | | (s =2 e(— €2, g@Ndz

=Cug, @iy | || g@e—) re(——&d2

=<u, &.
Thus we have b(#)=u. Hence b is a surjection.
(i) At last we prove Ker(h)=3;0(24;K: H). For the sake of simplicity, we
prove this fact in the case n=1.

If f€6(Q; H), b(f)=0 is evident. Conversely assume that f=8(2\K; H) satisfies
b(f)=0. Let {L;} be an increasing exhausting sequence of compact sets in £ includ-
ing K whose boundaries dL;\C=1I"; are regular curves oriented in the positive sense.
Then, if we put

Fi@)= . 1O@riC—2)"e(~E=2)dE,

Fy(2z) belongs to O(int(L;); H) and FjHIi,,t(Lj):F,(z) holds (=1, 2, ---). Hence we can
define F(2)€0(R; H) so that F(2)|incwp=Fj2) holds (j=1, 2, ---). Then F(2)|ox=
f(z) holds. In fact, if we let ze 2\K, there exists some L; so that z is in the interior
of L;, Then we can choose the open set L in this Theorem so that LCint(L;) and
z is in the outside of L*. Then, since f(z) is holomorphic in the region enclosed by
I',—I with '=dLNC, we have

@@=, SO@RC—2) e(~C—2dC.
Hence we have
F@=F@)= @)+, f©eric—2) e~ C-2mdC.
Then, since z is in the outside of L?, 27i({—2))'e(—({—2)*) belongs to O(K; H) as
a function of £. Thus, we have, by the assumption,

| r@ic—2)re——2mdg

=<b(f), @ri(€—2))"'e(—(—2)")>=0.
Hence, F(2)|owx=f(2) holds. (Q.E.D.)

3.4. The Sato Theorem. In this section we prove the pure-codimensionality of
D™ with respect to 7d. ‘Then we realize H-valued Fourier hyperfunctions as “boundary
values” of slowly increasing H-valued holomorphic functions or as relative cohomology
classes of slowly increasing H-valued holomorphic functions.

Theorem 3.4.1 (The Sato Theorem). Let 2 be an open set in D* ana V an open
set in C* which contains 2. Then we have the following :
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(1) The relative cohomology groups H%(V, 0) are zero for p+n.

(2) The presheaf over D", Q—H}V, "0) is a flabby sheaf.

(3) This sheaf defined in (2) is isomorphic to the sheaf "R of H-valued Fourier
hyper functions in Theorem 2.2.2.

Remark. The sheaf defined in (2) is denoted by 4 2.(¥OQ)=Dist®(D*, #J), where
the notation in the right hand side is due to Sato [23], p. 465.

Proof. (1) It goes in a similar way to Kawai [14], (p. 482).
(2) It follows from (1), flabby dim#@<n and Theorem II.3.24 in Komatsu [16].
(3) Consider the following exact sequence of relative cohomology groups

0 —> H(V, "0) —> Hpu(V. "0) —> HYXV, "0)
—> Hip(V, 10) —> - —> Hy™\(V, 10)
——> Hio(V, 10) —> Hga(V, "0) —> Hg(V, "0) —> 0.

Here £2¢ denotes the closure of £ and an open set V is taken so that V2Q". Then,
by (1) and the Martineau-Harvey Theorem, we have H g '(V, 7@)=0. Thus we have
the exact sequence

0 — Hip(V, "0) —> Hpa(V, "0) — HHV, 7)) — 0.
Since, by the Martineau-Harvey Theorem, we have isomorphisms
Hio(V, 10)= 4082 ; H)', Hga(V, H0)= A(R2"; HY,
we obtain the isomorphism
Hy(V, "0)= AR5 11)/ 4082 ; H)Y=R(2; H).

Thus the sheaf Q—-Hj(V, #8) is isomorphic to the sheaf #® of H-valued Fourier
hyperfunctions over D". (Q.E.D.)

Corollary 3.4.2. Let 2 be an arbitrary open set in D" and V an O-pseudoconvex
open neighborhood of 2 such that Q is a closed subset of V. Then
(1) If n=2, we have the algebraic isomorphism

HyV, "o)y=H"(V\Q, “0).
(2) If n=1, we have the algebraic isomorphism
HyV, 19)=0(V\Q; H)/&(V; H).
Proof. It follows from the long exact sequence of relative cohomology groups
0—> Hy(V, "0) — H(V, "0) — H"(V\Q2, "0)
— H)V, 18) — - —> H""(V\Q, 70)
— HH(V, "10) — H™(V, #0) — H"(V\LQ, ") —> ---. (Q.E.D.)

Now assume n=2. Let £ be an open set in D*. Then there exists an O-pseudo-
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convex open neighborhood V of £ such that VND*=Q (cf. Kawai [14], Theorem
2.1.6). We put V=V and V,;=V\{zeV; Imz;=0}, (=1, 2, ---, n). Then U={V,}?

Jj=0
and U'={V;}%., cover V and V\{ respectively. Since V; and their intersections are
also O-pseudoconvex open sets, the covering (U, U’) satisfies the conditions of Leray’s
Theorem (cf. Komatsu [16], p. 98).

Thus, by a similar way to Theorem 3.3.2, we have the following.

Theorem 3.4.3. We use notations as above. Then we have the isomorphisms

H}V, 10y=H™ (U, U, ")
=0(V4Q; H) 50(V42; H),

where we put

V#Q—_—F\VJ, V#jQ:mVi.
j=1 i#j

Chapter 4. Fourier transformation of H-valued Fourier hyperfunctions

4.1. Definition. In this section we introduce the notion of the Fourier transforma-
tion of H-valued Fourier hyperfunctions on D*.

Proposition 4.1.1. [f we define F¢ by the formula
(F)O={, e(v=T(x-Op(x)dx

for o A(D™; H), where x-§=x.61+ --- +x,&,, then F gives a topological isomorphism
of A(D™; H) onto itself.

Proof. 1t is evident that & is an algebraic isomorphism. We have only to prove
the continuity of & because the situation for ¥-' is similar.

Now we prove the continuity of &. Put U,=D"X~v—1{yeR"; |y|<l/m}, (m=
1, 2, 3, ---). Then we have the isomorphism

AD™; H)=limindoy"""(U ,.; H).

By this definition of the topology of A(D"; H), we have only to show that, for every
m(m=1), there exists some m'(m<<m') such that F: O;'/™(U n; H)—O0;" "™ (Un ; H) is
continuous.

For an arbitrary m(m=1) and an arbitrary ¢=0;"/"(Un; H), we have

Fo@)=|, o(v=1(x-Ep(x)dx.
For m’>m, we can easily see that
Fo(©={, evV=Ttx-O)p(dx, C=¢+v=Tn)
can be defined and (Fe)Q)=OWU »NC™; H). By the Cauchy integral theorem, we have

(Fe)O=| v =T(z-Op(@dx,
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C=E+v—17, z=x++v—1y, I|9I<l/m', |y|<1/m).

Then if, for every {=£&++/—117, we put y=¢&/|£], (e=(m+m’')/(2mm’)), we have the
estimate

e(1€1/m)H" [ F @)l
ZCm, wsup{?llo@le(lzl/m); zE€Un}, C€Uw),
where C,, n is some constant depending on m and m’. This completes the proof.
Q.E.D.)
Definition 4.1.2. Let T be an element in ¥ R(D")= A(D"; H)’. Then we define
F*T by the formula
KF*T, o>=<T, F¢>, for o= AD"; H).
We also define $*T by the formula
KG*T, >=<T, F¢), for e 4(D*; H),
where

(F)O=n) | o= v=Tx-E)p(x)dx.

g and & are topological isomorphisms of A(D"; H) onto itself.

4.2. The Paley-Wiener Theorem. If we define V,=C" and V,;=D"X~/—1{yeR";
y;#0}, =1, 2, -, n), and if we put U={V;}1 and U'={V;}}-,, then (U, V') is
an relative covering of (C*, C*\D"). Then we can define the n-th cohomology group
H™(U, v, #0) of the relative covering (U, U’) as usual.

Then we have the isomorphisms

H“(CU, CU,, H@)EZ"(CU, CU,, II@)/&CN—I(Q]’ q]l’ H@)
=0(VanNVa; )/ BN Vis H).
J=1 i)

We denote H"(, «U’, &) by H" for simplicity.

For an n-tuple ¢=(g,, -+, 6,) of +1 or —1, we denote by /', the quadrant in R*
such as {x&R"; g;x;>0, (j=1,2, .-+, n)}. Then an element pcdV N--NV,; H) is
a 2"-tuple of slowly increasing H-valued functions p=(¢,)sce(p. €EO(D" X~ —11",; H)),
where @ denotes the set of all n-tuples ¢=(ay, -+, d,) of +1 or —1. We denote by
[¢] the cohomology class ¢+>3;0(Ny;Vi; H)€H". Then, for an element [¢] in H",
we define an element b[ple A(D"; H) by

4.2.1) <bLel, fo
= 5 (-1 sign(@)|, (@olr+v=Ten), Flr+v/=Te,)dx
for fe A(D"; H),

where we put sign(e)=TIl,0;, ¢, iS in ', and |e,| is sufficiently small. We note that
the above integral does not depend on a choice of ¢,&1", as far as |¢,| is sufficiently
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small by Cauchy’s integral theorem. It follows also from Cauchy’s integral theorem
that (4.2.1) does not depend on a choice of a representative ¢ of a cohomology class
[pleH". Hence b[¢] is well defined. We call b the boundary value operator of /H"
into A(D™; H). Note that b is continuous and linear. Further we have the isomor-
phism
b: H'=4(D*; HY=®k(D"; H).

For a cone I' in R"* with vertex at the origin, we put ["'={x&R"; x-£=0 for

every é1'}. Then we have the following.

Theorem 4.2.1 (the Paley-Wiener Theorem). Let [” be a closed strictly convex cone
in R® and K its closure in D",

For the sake of simplicity we assume that the vertex of the cone I’ be at the origin
and KCC[{x,=—c¢e}]" holas for every >0 in the topology of D". Let T R(D"; H).
Then Te AK; HY if and only if (T, e(~—1(z-ODed(D*X~ =1 int(I’"); H) holds.
Here we put

Z'C:ZICX"I' +anny e(\/jI(ZC)):eXP(\/—l(Z‘C))-
This is an H-valued version of Kawai [14], Theorems 3.3.1 and 3.3.2 (p. 485).

Theorem 4.2.2. Let K be the closure of I’y in D" for a=(0., 02, -+, 0,) with o=
+1 or —1, ¢=1,2, .-, n). Then the following sequence is exact :

a B
Do - AKNK; HY — D, 4K, H) —> AWD"; HY — 0,
where we put

Do, AKNK; HY ={(pe,2); pt,-€AKNK; HY,  pro+p.,=0},
and

(499 (/qu)l]‘f —_—> (Zr,ua .')u »
,B: (,Ua)el I 20/10 .

Proof. 1t follows from the flabbiness of the sheaf “® and Theorem 8.4.3 in
Morimoto [19], (p. 210) and Martineau-Harvey Theorem. (Q.E.D.)

Definition 4.2.3. For Te ®(D"; H), we decompose T as in Theorem 4.2.2:

T=XveeTs, T,cA(Ks; H).
Putting

F,(Q=(—1)"sign(a)XT,.., e(~=1(z-Q)>,
for LeR"X~/—1int(I"Y),

we define F,T by the formula F,T=[(F,),ce]EH".
Then ,T is well-defined. In fact, by the Paley-Wiener Theorem, we have F,({)&

O(D"x~/—1int(I"%: H). Here we note that int(I'D)=1I",, (s=) holds. The class
[(F,)sce]EH™" is independent of the decomposition of 7 in Definition 4.2.3. Indeed,
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the ambiguity of the decomposition in Definition 4.2.3 comes from the element (S,.)<
®s - A(K,NK.; HY with S,.4+S.,=0 by Theorem 4.2.2. Then we have <{(S,:..,
e(V=1(z- Q) = 0(D" X~ —1(I"'yNI")"), (6#7). Hence [(—1)"sign(e)<{S:Ss:.., e(v/—1
(z:0))],ee belongs to X,0(M,;V,; H). Hence the ambiguity of the decomposition of
T does not affect F,7. Thus %,T is well-defined.

We call this F, the Fourier-Carleman-Leray-Sato transformation.

Let Te(D"; H). We put F*T=S=3,e¢S,, S, A(K,; H)Y. Then, for f&
A(D"; H), we have

GFLFT), =\, CSu eV =10, FE)E

seP 1
=( 3 S0 |, V=1 D) QD
JeP R
=<S, F>=XG*T, g [>=<T, f>.
Thus we have the following.
Theorem 4.2.4. We have bF;=F*.

We have the following commutative diagram:

Fs
ADr s HY — H"
1 /b
J(D": H)'
Since b is an isomorphism by Theorem 3.4.3 and the Martineau-Harvey Theorem, &,
is also an isomorphism. Thus we have the following.

Theorem 4.2.5. In the above notations, Fs is an isomorphism of R(D"; H) onto ™.

Thus we have defined the Fourier transform of an element of ®R(D"; H) via
“boundary values” of slowly increasing H-valued holomorphic functions in tublar domains.
We put bF,=F*=F and call it the Fourier transformation.

Definition 4.2.6. Let T'=_A(R"; H)=UA(R"; H)', whose support is a compact set
K in R*. Then we define the Fourier-Borel transform 7'(&) of T by the formula
T(E)=(T:. e(v'—1(x-£).
Then we have the following.
Proposition 4.2.7. Let T=A(R"; H) whose support is a compact set K in R".
Then T(&)= AD": H) and T(&) can be extended to T(Q)=<T ., e(~/—1(x-))>=O(C"; H)

so that, for any £>0, there exists a constant C.>0 such that ”HT(C)||§C3e(1K(7;)+e]CI)
holas.

Proof. This can be proved directly. (Q.E.D.)
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Corollary. Let T be as in Proposition 4.2.8. Then we have $T=bT.
Proof. We have, for any o= 4(D"; H),

CFT, gy=CTa, |, v/ =1(x-)p)d)

=, (Te, eV =108, pl@dg

=T, ¢>.
This completes the proof. (Q.E.D.)

Theorem 4.2.8 (the Paley-Wiener Theorem). For a T A(R"; H)', the following
are equivalent :
(1) The support of T is contained in a convex compact set K in R".
(2) The Fourier-Borel transform T()eo(C"; H) of T satisfies the following
estimate :
for any ¢>0 there exists a constant C.>0 such that

MTQI<CUx(p)+elCl),
where we put

Ig(n)=sup{—=x-9; x=K}.

Proof. The fact that (1) implies (2) is evident.
Now we prove that (2) implies (1). Let K° be the polar set of K:

K'={peR"; |x-p|<1l(xeK)}.

Then K° is a convex balanced subset of R*. Then, by the assumptions, 7({)e&(D" X
v/ =1int(K°; H) holds. Since K is a convex compact set, we can represent K as
K=n,K,, where K, is the image of K,, (¢=(1, 1, -+, 1)), by some regular inhomoge-
neous linear transformatin g. Since K is a compact set K in R*, K=nN,I",, where
I',=K,NR". Since K'=(N,I",)DU,I"} holds, we have

TQeO(Dx v —1int(K%; H)

CNOD* X~ —=1(Y); H).
Hence, we have T(Q)ed(D*x~/—1int(I"); H) for every g. Hence we have Te
A(K,; H) by the general version of Theorem 4.2.2. Since this holds for every g,

we have
Ten, A, ; HY=A(NK,; HY

=A(K; HY=A(K; H) .
This completes the proof. (Q.E.D.)
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