The approximation of the Schrödinger operators with penetrable wall potentials in terms of short range Hamiltonians

Dedicated to Professor Teruo Ikebe on his sixtieth birthday
By
Shin-ichi Shimada

§ 1. Introduction, Results

In our previous paper (Ikebe-Shimada [2]), we considered the Schrödinger operator with a penetrable wall potential in \mathbf{R}^{3} formally given by

$$
H_{\mathrm{formal}}=-\Delta+q(x) \delta(|x|-a),
$$

where $q(x)$ is real and continuous on $S_{a}=\left\{x \in \mathbf{R}^{3} ;|x|=a\right\}(a>0)$ and δ denotes the one-dimensional delta function. As a rigorous selfadjoint realization of the formal expression $H_{\text {formal }}$, we adopted the selfadjoint operator H which is uniquely determined by the quadratic form h (which is to be associated with $H_{\text {formal }}$)

$$
\begin{gathered}
h[u, v]=(\nabla u, \nabla v)+\left(q \gamma_{a} u, \gamma_{a} v\right)_{L_{2}\left(S_{a}\right)} \quad\left(=\left(H_{\text {formal }} u, v\right)\right), \\
\operatorname{Dom}[h]=H^{1}\left(\mathbf{R}^{3}\right)
\end{gathered}
$$

(I-S[2, Theorem 1.4]). Here γ_{a} is the trace operator from $H^{1}\left(\mathbf{R}^{3}\right)$ to $L_{2}\left(S_{a}\right)$, Dom [h] denotes the form domain of h, (,) means the $L_{2}\left(\mathbf{R}^{3}\right)$ inner product, $(,)_{L_{2}\left(S_{a}\right)}$ the $L_{2}\left(S_{a}\right)$ inner product, and $H^{m}(G)$ the Sobolev space of order m over G. If $G=\mathbf{R}^{3}$, we regard $H^{m}\left(\mathbf{R}^{3}\right)$ as the Hilbert space with the inner product $(,)_{H^{m}}$ defined by

$$
(u, v)_{\boldsymbol{H}^{m}}=\int_{\mathbf{R}^{3}}\left(1+|\xi|^{2}\right)^{m}(\mathscr{F} u)(\xi) \overline{(\mathscr{F} v)(\xi)} d \xi,
$$

where \mathscr{F} is the ordinary Fourier transform defined by

$$
(\mathscr{F} u)(\xi)=(2 \pi)^{-3 / 2} \int_{\mathbf{R}^{3}} e^{-i \xi \cdot x} u(x) d x
$$

More precisely, it is seen that

$$
\begin{gathered}
H u=-\Delta u \quad \text { for any } u \in \operatorname{Dom}(H), \\
\operatorname{Dom}(H)=\left\{u ; u \in H^{1}\left(\mathbf{R}^{3}\right), u \in H^{2}(\{x ;|x|<a\}), u \in H^{2}(\{x ;|x|>a\}),\right. \\
\left.q(x)\left(\gamma_{a} u\right)(x)-\left.\left\{\frac{\partial u}{\partial n_{+}}(x)+\frac{\partial u}{\partial n_{-}}(x)\right\}\right|_{s_{a}}=0\right\},
\end{gathered}
$$

where $n_{+}\left(n_{-}\right)$denotes the outward (inward) normal to S_{a}.
In this paper, we shall show how to approximate H by short range Hamiltonians $H_{\varepsilon}=-\Delta+Q_{\varepsilon}$ in the norm resolvent sense (convergence of the resolvent with the uniform operator topology), where the potential $Q_{\varepsilon}(x)$ converges to $q(x) \delta(|x|-a)$ as $\varepsilon \downarrow 0$ in the distribution sense (see Theorem 1). Let us take $\rho(r)$ satisfying the following properties:

$$
\left\{\begin{array}{l}
\rho(r) \geq 0 \quad \text { for all } r \in \mathbf{R}, \quad \rho(r) \in C_{0}^{\infty}(\mathbf{R}), \quad \text { supp } \rho \subset[-1,1] \tag{1.1}\\
\int_{-\infty}^{+\infty} \rho(r) d r=1
\end{array}\right.
$$

where $C_{0}^{\infty}(G)$ is the set of all infinitely continuously differentiable functions with compact support in G and supp means support. Define $Q_{\varepsilon}(x)$ by

$$
Q_{\varepsilon}(x)=\frac{1}{\varepsilon} \rho\left(\frac{|x|-a}{\varepsilon}\right) q\left(a \omega_{x}\right) \quad\left(\omega_{x}=\frac{\mathbf{x}}{|\mathbf{x}|}\right) .
$$

Then we have the next theorem easily.
Theorem 1. Let $q(x) \delta(|x|-a)$ be the distribution belonging to $\mathscr{E}^{\prime}\left(\mathbf{R}^{3}\right)$ defined by

$$
\langle q \delta(|\cdot|-a), \varphi\rangle=\int_{S_{a}} q(x) \varphi(x) d S_{x} \quad \text { for any } \varphi \in \mathscr{E}\left(\mathbf{R}^{3}\right)
$$

Then $Q_{\varepsilon}(x) \rightarrow q(x) \delta(|x|-a)$ as $\varepsilon \downarrow 0$ in $\mathscr{E}^{\prime}\left(\mathbf{R}^{3}\right)$, where $d S_{x}$ denotes the measure induced on S_{a} by the Lebesgue measure dx, $\mathscr{E}\left(\mathbf{R}^{3}\right)$ the Fréchet space of C^{∞}-functions, and $\mathscr{E}^{\prime}\left(\mathbf{R}^{3}\right)$ the dual space of $\mathscr{E}\left(\mathbf{R}^{3}\right)$ (cf. Schwartz [6, Chap. III]).

Let H_{0} be the selfadjoint operator defined by $H_{0}=-\Delta, \operatorname{Dom}\left(H_{0}\right)=H^{2}\left(\mathbf{R}^{3}\right)$. Then $H_{\varepsilon}=H_{0}+Q_{\varepsilon}$ also becomes a selfadjoint operator with $\operatorname{Dom}\left(H_{\varepsilon}\right)=H^{2}\left(\mathbf{R}^{3}\right)$ by Kato [3, Chap. V, Theorem 5.4]. Let $R(z)=(H-z)^{-1}$ and $R_{\varepsilon}(z)=\left(H_{\varepsilon}-z\right)^{-1}$ be the resolvents of H and H_{ε}, respectively. Then we shall prove the following

Theorem 2. For sufficiently large z such that $\operatorname{Im} z \neq 0, R_{\varepsilon}(z)$ converges to $R(z)$ as $\varepsilon \downarrow 0$ in $\mathbf{B}\left(L_{2}\left(\mathbf{R}^{3}\right), H^{1}\left(\mathbf{R}^{3}\right)\right)$ with the uniform operator topology, where $\mathbf{B}(X, Y)$ denotes the Banach space of bounded linear operators on X to $Y(\mathbf{B}(X)=\mathbf{B}(X, X))$.
By this theorem and Kato [3, Chap. VIII, Cor. 1.4], we have
Theorem 3. H_{ε} converges to H as $\varepsilon \downarrow 0$ in the norm resolvent sense.
Another way of selfadjoint realization of $H_{\text {formal }}$ and the related approximation problem will be found in Antoine-Gesztesy-Shabani [1].

§ 2. Preliminary Lemmas

Lemma 1. Let r be positive and $u \in \mathscr{S}\left(\mathbf{R}^{3}\right)$. Then

$$
\begin{equation*}
\|u(r)\|_{L_{2}\left(S_{1}\right)} \leq \frac{1}{\sqrt{r}}\|\nabla u\| \leq \frac{1}{\sqrt{r}}\|u\|_{H^{1}} \tag{2.1}
\end{equation*}
$$

where $\|u\|=\sqrt{(u, u)},\|u\|_{L_{2}\left(S_{a}\right)}=\sqrt{(u, u)_{L_{2}\left(S_{a}\right.}}$, and $\|u\|_{H^{m}}=\sqrt{(u, u)_{H^{m}}}$. $\mathscr{S}\left(\mathbf{R}^{3}\right)$ denotes the set of functions which together with all their derivatives fall off faster than the inverse of any polynomial.

For the proof, see I-S[2, Lemma 1.3].
Lemma 2. Let $u \in \mathscr{S}\left(\mathbf{R}^{3}\right)$. Then

$$
\begin{equation*}
\left\|u(r \cdot)-u\left(r^{\prime}\right)\right\|_{L_{2}\left(s_{1}\right)} \leq \frac{\left|r-r^{\prime}\right|^{1 / 2}}{\min \left(r, r^{\prime}\right)}\|\nabla u\| . \tag{2.2}
\end{equation*}
$$

Proof. We have only to show the lemma in the case $0<r^{\prime}<r$. By Schwarz' inequality we have for any $\omega \in S_{1}$

$$
\begin{align*}
\left|u(r \omega)-u\left(r^{\prime} \omega\right)\right|^{2} & =\left|\int_{r^{\prime}}^{r} \frac{\partial u}{\partial \rho}(\rho \omega) d \rho\right|^{2} \tag{2.3}\\
& \leq\left(r-r^{\prime}\right) \int_{r^{\prime}}^{r}\left|\frac{\partial u}{\partial \rho}(\rho \omega)\right|^{2} d \rho \\
& \leq \frac{\left(r-r^{\prime}\right)}{r^{\prime 2}} \int_{r^{\prime}}^{r} \rho^{2}\left|\frac{\partial u}{\partial \rho}(\rho \omega)\right|^{2} d \rho .
\end{align*}
$$

Integrating the both sides of (2.3) with respect to ω over S_{1} yields

$$
\begin{align*}
\left\|u(r \cdot)-u\left(r^{\prime}\right)\right\|_{L_{2}\left(S_{1}\right)}^{2} & \leq \frac{\left(r-r^{\prime}\right)}{r^{\prime 2}} \int_{r^{\prime} \leq|x| \leq r}\left|\frac{\partial u}{\partial \rho}(x)\right|^{2} d x \tag{2.4}\\
& \leq \frac{\left(r-r^{\prime}\right)}{r^{\prime 2}}\left\|\frac{\partial u}{\partial \rho}\right\|^{2} .
\end{align*}
$$

(2.2) follows from (2.4) and $\left|\frac{\partial u}{\partial \rho}(x)\right| \leq|\nabla u(x)|$.
Q.E.D.

Let us define the Fourier transform $\mathscr{F}_{s_{a}}$ on $L_{2}\left(S_{a}\right)$ by

$$
\begin{equation*}
\left(\mathscr{F}_{S_{a}} u\right)(\xi)=(2 \pi)^{-3 / 2} \int_{S_{a}} e^{-i \xi \cdot x} u(x) d S_{x} \quad\left(\xi \in \mathbf{R}^{3}\right) . \tag{2.5}
\end{equation*}
$$

Let us introduce the weighted L_{2} space $L_{2}^{s}\left(\mathbf{R}^{3}\right)$ defined by

$$
L_{2}^{s}\left(\mathbf{R}^{3}\right)=\left\{u(x) ;\left(1+|x|^{2}\right)^{s / 2} u(x) \in L_{2}\left(\mathbf{R}^{3}\right)\right\}
$$

with the norm $\|u\|_{L_{2}^{\prime}\left(\mathbf{R}^{3}\right)}=\left\|\left(1+|\cdot|^{2}\right)^{s / 2} u\right\|$. Then we have the next

Lemma 3. Let $s>1 / 2$. Then there exists a constant $C=C(a, s)$ such that

$$
\begin{equation*}
\left\|\mathscr{F}_{S_{a}} u\right\|_{L_{2}^{-s}\left(\mathbf{R}^{3}\right)} \leq C\|u\|_{L_{2}\left(S_{a}\right)} \quad \text { for any } u \in L_{2}\left(S_{a}\right) . \tag{2.6}
\end{equation*}
$$

For the proof, see e.g. Mochizuki [5, p. 16]. We also need the following continuity lemma with respect to the radial direction.

Lemma 4. Let r and r^{\prime} be positive. Then we have for any $u \in L_{2}\left(S_{a}\right)$

$$
\begin{equation*}
\left\|\left(\mathscr{F}_{s_{1}} u\right)(r \cdot)-\left(\mathscr{F}_{S_{1}} u\right)\left(r^{\prime}\right)\right\|_{L_{2}^{-1}\left(\mathbf{R}^{3}\right)} \leq \frac{\left|r-r^{\prime}\right|^{1 / 2}}{\min \left(r, r^{\prime}\right)}\|u\|_{L_{2}\left(S_{1}\right)} . \tag{2.7}
\end{equation*}
$$

Proof. (cf. Kuroda [4, §2.3, Theorem 3]) Consider the linear functional $V(f)$ on $L_{2}^{1}\left(\mathbf{R}^{3}\right)$ defined by

$$
V(f)=\int_{\mathbf{R}^{3}} d \xi f(\xi) \overline{\left\{\left(\mathscr{F}_{s_{1}} u\right)(r \xi)-\left(\mathscr{F}_{S_{1}} u\right)\left(r^{\prime} \xi\right)\right\}} \quad \text { for } f \in L_{2}^{1}\left(\mathbf{R}^{3}\right) .
$$

For any $f \in \mathscr{S}\left(\mathbf{R}^{3}\right)$, we have by (2.5) and Fubini's theorem

$$
V(f)=\int_{S_{1}} d \omega\left\{\left(\mathscr{F}^{*} f\right)(r \omega)-\left(\mathscr{F}^{*} f\right)\left(r^{\prime} \omega\right)\right\} \overline{u(\omega)}
$$

(\mathscr{F}^{*} : inverse Fourier transform). Thus, by Schwarz' inequality and Lemma 2 we obtain

$$
\begin{align*}
|V(f)| & \leq\left\|(\mathscr{F} * f)(r)-(\mathscr{F} * f)\left(r^{\prime}\right)\right\|_{L_{2}\left(S_{1}\right)}\|u\|_{L_{2}\left(S_{1}\right)} \tag{2.8}\\
& \leq \frac{\left|r-r^{\prime}\right|^{1 / 2}}{\min \left(r, r^{\prime}\right)}\|\nabla(\mathscr{F} * f)\|\|u\|_{L_{2}\left(S_{1}\right)} \\
& =\frac{\left|r-r^{\prime}\right|^{1 / 2}}{\min \left(r, r^{\prime}\right)}\|\cdot \mid f(\cdot)\|\|u\|_{L_{2}\left(S_{1}\right)} \\
& \leq \frac{\left|r-r^{\prime}\right|^{1 / 2}}{\min \left(r, r^{\prime}\right)}\|u\|_{L_{2}\left(S_{1}\right)}\|f\|_{L_{2}^{2}\left(\mathbf{R}^{3}\right)} .
\end{align*}
$$

Since $\mathscr{S}\left(\mathbf{R}^{3}\right)$ is dense in $L_{2}^{1}\left(\mathbf{R}^{3}\right)$, (2.7) follows from (2.8).
Q.E.D.

§ 3. Proof of Theorem 2

Let $R_{0}(z)=\left(H_{0}-z\right)^{-1}$ be the resolvent of H_{0}. Let us define the integral operator T_{κ} depending on a complex parameter κ by

$$
\left(T_{\kappa} u\right)(x)=\frac{-1}{4 \pi} \int_{S_{a}} \frac{e^{i \kappa|x-y|}}{|x-y|} q(y) u(y) d S_{y} \quad\left(x \in \mathbf{R}^{3}\right)
$$

It is seen that if $\operatorname{Im} \kappa>0, T_{\kappa}$ is a bounded operator from $L_{2}\left(S_{a}\right)$ to $H^{1}\left(\mathbf{R}^{3}\right)$ (I-S[2, Lemma 2.6]).

Lemma 5. Let ε, s, and z be such that $0<\varepsilon \leq a / 2,1 / 2<s<1$, and $z \in \mathbb{C} \backslash[0, \infty)$, respectively. Then there exists a constant $C_{1}=C_{1}(s)$ (independent of ε and z) such that

$$
\begin{equation*}
\left\|R_{0}(z) Q_{\varepsilon}\right\|_{\mathbf{B}\left(H^{1}\left(\mathbf{R}^{3}\right)\right)} \leq C_{1}\left[\sup _{\xi \in \mathbf{R}^{3}}\left\{\frac{\left(1+|\xi|^{2}\right)^{1+s}}{\|\left.\xi\right|^{2}-\left.z\right|^{2}}\right\}\right]^{1 / 2}, \tag{3.1}
\end{equation*}
$$

where $\|\cdot\|_{\mathbf{B}(X, Y)}$ denotes the norm of $\mathbf{B}(X, Y)$.
Proof. By (1.1) it holds that

$$
\left\{\begin{array}{l}
\frac{1}{\varepsilon} \rho\left(\frac{r-a}{\varepsilon}\right) \geq 0 \quad \text { for all } r \in \mathbf{R}, \quad \operatorname{supp} \frac{1}{\varepsilon} \rho\left(\frac{r-a}{\varepsilon}\right) \subset[a-\varepsilon, a+\varepsilon], \tag{3.2}\\
\int_{a-\varepsilon}^{a+\varepsilon} \frac{1}{\varepsilon} \rho\left(\frac{r-a}{\varepsilon}\right) d r=1 .
\end{array}\right.
$$

For any $u \in \mathscr{S}\left(\mathbf{R}^{3}\right)$ we have by Fubini's theorem and (2.5)

$$
\begin{align*}
\left(\mathscr{F} R_{0}(z) Q_{\varepsilon} u\right)(\xi)= & (2 \pi)^{-3 / 2} \int_{\mathbf{R}^{3}} d x e^{-i \xi \cdot x} \tag{3.3}\\
& \times \int_{\mathbf{R}^{3}} d y \frac{e^{i \sqrt{z}|x-y|}}{4 \pi|x-y|} \frac{1}{\varepsilon} \rho\left(\frac{|y|-a}{\varepsilon}\right) q\left(a \omega_{y}\right) u(y) \\
= & \int_{a-\varepsilon}^{a+\varepsilon} d r \frac{1}{\varepsilon} \rho\left(\frac{r-a}{\varepsilon}\right) r^{2} \int_{S_{1}} d \omega q(a \omega) u(r \omega) \\
& \times(2 \pi)^{-3 / 2} \int_{\mathbf{R}^{3}} d x e^{-i \xi \cdot x} \frac{e^{i \sqrt{z}|x-r \omega|}}{4 \pi|x-r \omega|} \\
= & \int_{a-\varepsilon}^{a+\varepsilon} d r \frac{1}{\varepsilon} \rho\left(\frac{r-a}{\varepsilon}\right) r^{2}(2 \pi)^{-3 / 2} \int_{S_{1}} d \omega \frac{e^{-i \xi \cdot r \omega}}{|\xi|^{2}-z} q(a \omega) u(r \omega) \\
= & \frac{1}{|\xi|^{2}-z} \int_{a-\varepsilon}^{a+\varepsilon} d r \frac{1}{\varepsilon} \rho\left(\frac{r-a}{\varepsilon}\right) r^{2}\left[\mathscr{F}_{s_{1}}(q(a \cdot) u(r))\right](r \xi),
\end{align*}
$$

where by \sqrt{z} is meant the branch of square root of z with $\operatorname{Im} \sqrt{z} \geq 0$ and we have used the fact that

$$
\mathscr{F}\left(\frac{e^{i \kappa|\cdot y|}}{4 \pi|\cdot-y|}\right)(\xi)=(2 \pi)^{-3 / 2} \frac{e^{-i \xi \cdot y}}{|\xi|^{2}-\kappa^{2}} .
$$

Thus, we have by Schwarz' inequality, Fubini's theorem and (3.2)

$$
\begin{align*}
\left\|R_{0}(z) Q_{\varepsilon} u\right\|_{H^{1}}^{2}= & \int_{\mathbf{R}^{3}} d \xi\left(1+|\xi|^{2}\right) \tag{3.4}\\
& \times\left|\frac{1}{|\xi|^{2}-z} \int_{a-\varepsilon}^{a+\varepsilon} d r \frac{1}{\varepsilon} \rho\left(\frac{r-a}{\varepsilon}\right) r^{2}\left[\mathscr{F}_{\mathbb{S}_{1}}(q(a \cdot) u(r))\right](r \xi)\right|^{2} \\
\leq & \int_{\mathbf{R}^{3}} d \xi \frac{\left(1+|\xi|^{2}\right)}{\left.| | \xi\right|^{2}-\left.z\right|^{2}}\left(\int_{a-\varepsilon}^{a+\varepsilon} d r \frac{1}{\varepsilon} \rho\left(\frac{r-a}{\varepsilon}\right) r^{4}\right)
\end{align*}
$$

$$
\begin{aligned}
& \times\left(\int_{a-\varepsilon}^{a+\varepsilon} d r \frac{1}{\varepsilon} \rho\left(\frac{r-a}{\varepsilon}\right)\left|\left[\mathscr{F}_{S_{1}}(q(a \cdot) u(r \cdot))\right](r \xi)\right|^{2}\right) \\
\leq & (a+\varepsilon)^{4} \sup _{\xi \in \mathbf{R}^{3}}\left\{\frac{\left(1+|\xi|^{2}\right)^{1+s}}{\|\left.\xi\right|^{2}-\left.z\right|^{2}}\right\} \int_{a-\varepsilon}^{a+\varepsilon} d r \frac{1}{\varepsilon} \rho\left(\frac{r-a}{\varepsilon}\right) \\
& \times \int_{\mathbf{R}^{3}} d \xi\left(1+|\xi|^{2}\right)^{-s}\left|\left[\mathscr{F}_{s_{1}}(q(a \cdot) u(r \cdot))\right](r \xi)\right|^{2} .
\end{aligned}
$$

By the change of variables $\zeta=r \xi$, we have

$$
\begin{align*}
& \int_{\mathbf{R}^{3}} d \xi\left(1+|\xi|^{2}\right)^{-s}\left|\left[\mathscr{F}_{S_{1}}(q(a \cdot) u(r))\right](r \xi)\right|^{2} \tag{3.5}\\
& \quad=\int_{\mathbf{R}^{3}} d \zeta r^{-3}\left(1+r^{-2}|\zeta|^{2}\right)^{-s}\left|\left[\mathscr{F}_{S_{1}}(q(a \cdot) u(r \cdot))\right](\zeta)\right|^{2} .
\end{align*}
$$

Thus, in view of the inequality

$$
\left(1+r^{-2}|\zeta|^{2}\right)^{-s} \leq \max \left(r^{2 s}, 1\right)\left(1+|\zeta|^{2}\right)^{-s} \quad \text { if } s>0 \quad \text { and } \quad r>0
$$

we have by Lemma 1 and Lemma 3

$$
\begin{align*}
& \int_{\mathbf{R}^{3}} d \xi\left(1+|\xi|^{2}\right)^{-s}\left|\left[\mathscr{F}_{S_{1}}(q(a \cdot) u(r))\right](r \xi)\right|^{2} \tag{3.6}\\
& \quad \leq r^{-3} \max \left(r^{2 s}, 1\right)\left\|\mathscr{F}_{S_{1}}(q(a \cdot) u(r))\right\|_{L_{2}^{-s}\left(\mathbf{R}^{3}\right)}^{2} \\
& \quad \leq r^{-3} \max \left(r^{2 s}, 1\right) C(1, s)^{2}\|q(a \cdot) u(r \cdot)\|_{L_{2}\left(S_{1}\right)}^{2} \\
& \quad \leq r^{-4} \max \left(r^{2 s}, 1\right) C(1, s)^{2}\left(\max _{x \in S_{a}}|q(x)|\right)^{2}\|u\|_{H^{1}}^{2},
\end{align*}
$$

where $C(1, s)$ is as given in Lemma 3. Therefore, since $0<\varepsilon \leq a / 2$, we obtain by (3.4), (3.6), and (3.2)

$$
\begin{align*}
\left\|R_{0}(z) Q_{\varepsilon} u\right\|_{H^{1}}^{2} \leq & (a+\varepsilon)^{4} \sup _{\xi \in \mathbf{R}^{3}}\left\{\frac{\left(1+|\xi|^{2}\right)^{1+s}}{\|\left.\xi\right|^{2}-\left.z\right|^{2}}\right\} C(1, s)^{2} \tag{3.7}\\
& \times\left(\max _{x \in S_{a}}|q(x)|\right)^{2}\|u\|_{H^{1}}^{2} \int_{a-\varepsilon}^{a+\varepsilon} d r \frac{1}{\varepsilon} \rho\left(\frac{r-a}{\varepsilon}\right) r^{-4} \max \left(r^{2 s}, 1\right) \\
\leq & C_{1}(s)^{2} \sup _{\xi \in \mathbf{R}^{3}}\left\{\frac{\left(1+|\xi|^{2}\right)^{1+s}}{\|\left.\xi\right|^{2}-\left.z\right|^{2}}\right\}\|u\|_{H^{1}}^{2},
\end{align*}
$$

where $C_{1}(s)$ is a constant which is independent of ε such that $0<\varepsilon \leq a / 2$. Since $R_{0}(z)$ is a bounded operator from $L_{2}\left(\mathbf{R}^{3}\right)$ to $H^{1}\left(\mathbf{R}^{3}\right)$ and $\mathscr{S}\left(\mathbf{R}^{3}\right)$ is dense in $H^{1}\left(\mathbf{R}^{3}\right)$, (3.1) follows from (3.7).
Q.E.D.

Lemma 6. Let ε, s, and z be such that $0<\varepsilon \leq a / 2,1 / 2<s<1$, and $z \in \mathbf{C} \backslash[0, \infty)$, respectively. Then there exists a constant $C_{2}=C_{2}(s, z)$ (independent
of ε) such that

$$
\begin{equation*}
\left\|R_{0}(z) Q_{\varepsilon}+T_{\sqrt{2}} \gamma_{a}\right\|_{\mathbf{B}\left(\boldsymbol{H}^{1}\left(\mathbf{R}^{3}\right)\right)} \leq \sqrt{\varepsilon} C_{2} . \tag{3.8}
\end{equation*}
$$

Proof. As we got (3.3), we have for any $u \in \mathscr{S}\left(\mathbf{R}^{3}\right)$

$$
\begin{equation*}
\left(\mathscr{F} T_{\sqrt{2}} \gamma_{a} u\right)(\xi)=\frac{-a^{2}}{|\xi|^{2}-z}\left[\mathscr{F}_{s_{1}}(q(a \cdot) u(a \cdot))\right](a \xi) . \tag{3.9}
\end{equation*}
$$

Thus, we have by (3.2), (3.3), and (3.9)

$$
\begin{align*}
& {\left[\mathscr{F}\left(R_{0}(z) Q_{\varepsilon}+T_{\sqrt{z}} \gamma_{a}\right) u\right](\xi)} \tag{3.10}\\
& \quad=\frac{1}{|\xi|^{2}-z} \int_{a-\varepsilon}^{a+\varepsilon} d r \frac{1}{\varepsilon} \rho\left(\frac{r-a}{\varepsilon}\right)\left(r^{2}-a^{2}\right)\left[\mathscr{F}_{S_{1}}(q(a \cdot) u(r \cdot))\right](r \xi) \\
& \quad+\frac{a^{2}}{|\xi|^{2}-z} \int_{a-\varepsilon}^{a+\varepsilon} d r \frac{1}{\varepsilon} \rho\left(\frac{r-a}{\varepsilon}\right)\left[\mathscr{F}_{s_{1}}(q(a \cdot)(u(r \cdot)-u(a \cdot)))\right](r \xi) \\
& \quad+\frac{a^{2}}{|\xi|^{2}-z} \int_{a-\varepsilon}^{a+\varepsilon} d r \frac{1}{\varepsilon} \rho\left(\frac{r-a}{\varepsilon}\right) \\
& \quad \times\left\{\left[\mathscr{F}_{S_{1}}(q(a \cdot) u(a \cdot))\right](r \xi)-\left[\mathscr{F}_{S_{1}}(q(a \cdot) u(a \cdot))\right](a \xi)\right\} \\
& = \\
& I_{1}(\xi)+I_{2}(\xi)+I_{3}(\xi) .
\end{align*}
$$

We shall estimate the $L_{2}^{1}\left(\mathbf{R}^{3}\right)$ norm of $I_{j}(\xi)(j=1,2,3)$. On replacing r^{2} by $r^{2}-a^{2}$ in (3.3), as we got (3.7), we have

$$
\begin{align*}
\int_{\mathbf{R}^{3}} d \xi\left(1+|\xi|^{2}\right)\left|I_{1}(\xi)\right|^{2} \leq & \frac{\varepsilon^{2}(2 a+\varepsilon)^{2}}{(a-\varepsilon)^{4}} \max \left\{(a+\varepsilon)^{2 s}, 1\right\} \tag{3.11}\\
& \times \sup _{\xi \in \mathbf{R}^{3}}\left\{\frac{\left(1+|\xi|^{2}\right)^{1+s}}{\|\left.\xi\right|^{2}-\left.z\right|^{2}}\right\} C(1, s)^{2}\left(\max _{x \in S_{a}}|q(x)|\right)^{2}\|u\|_{H^{1}}^{2} \\
\leq & \varepsilon^{2} \widetilde{C}_{1}\|u\|_{H^{1}}^{2},
\end{align*}
$$

where \tilde{C}_{1} is a constant which is independent of ε such that $0<\varepsilon \leq a / 2$. Similarly, as we got (3.4), we have

$$
\begin{align*}
& \int_{\mathbf{R}^{3}} d \xi\left(1+|\xi|^{2}\right)\left|I_{2}(\xi)\right|^{2} \leq a^{4} \sup _{\xi \in \mathbf{R}^{3}}\left\{\frac{\left(1+|\xi|^{2}\right)^{1+s}}{\left.| | \xi\right|^{2}-\left.z\right|^{2}}\right\} \tag{3.12}\\
& \quad \times \int_{a-\varepsilon}^{a+\varepsilon} d r \frac{1}{\varepsilon} \rho\left(\frac{r-a}{\varepsilon}\right) \int_{\mathbf{R}^{3}} d \xi\left(1+|\xi|^{2}\right)^{-s}\left|\left[\mathscr{F}_{s_{1}}(q(a \cdot)(u(r \cdot)-u(a \cdot)))\right](r \xi)\right|^{2} .
\end{align*}
$$

From (3.6) and Lemma 2, it follows that

$$
\begin{align*}
& \int_{\mathbf{R}^{3}} d \xi\left(1+|\xi|^{2}\right)^{-s}\left|\left[\mathscr{F}_{S_{1}}(q(a \cdot)(u(r \cdot)-u(a \cdot)))\right](r \xi)\right|^{2} \tag{3.13}\\
& \quad \leq r^{-3} \max \left(r^{2 s}, 1\right) C(1, s)^{2}\|q(a \cdot)(u(r \cdot)-u(a \cdot))\|_{L_{2}\left(S_{1}\right)}^{2} \\
& \quad \leq r^{-3} \max \left(r^{2 s}, 1\right) C(1, s)^{2}\left(\max _{x \in S_{a}}|q(x)|\right)^{2} \frac{|r-a|}{\{\min (r, a)\}^{2}}\|\nabla u\|^{2} \\
& \quad \leq \varepsilon \frac{\max \left\{(a+\varepsilon)^{2 s}, 1\right\}}{(a-\varepsilon)^{5}} C(1, s)^{2}\left(\max _{x \in S_{a}}|q(x)|\right)^{2}\|u\|_{H^{1}}^{2},
\end{align*}
$$

if $r \in[a-\varepsilon, a+\varepsilon]$. Therefore, by (3.12), (3.13), and (3.2) we obtain

$$
\begin{equation*}
\int_{\mathbf{R}^{3}} d \xi\left(1+|\xi|^{2}\right)\left|I_{2}(\xi)\right|^{2} \leq \varepsilon \tilde{C}_{2}\|u\|_{H^{1}}^{2} \tag{3.14}
\end{equation*}
$$

where \tilde{C}_{2} is a constant which is independent of ε such that $0<\varepsilon \leq a / 2$. We shall proceed to estimate the $L_{2}^{1}\left(\mathbf{R}^{3}\right)$ norm of $I_{3}(\xi)$. By Schwarz' inequality and (3.2) we have

$$
\begin{aligned}
\left|I_{3}(\xi)\right|^{2} \leq & \frac{a^{4}}{|\xi \xi|^{2}-\left.z\right|^{2}} \int_{a-\varepsilon}^{a+\varepsilon} d r \frac{1}{\varepsilon} \rho\left(\frac{r-a}{\varepsilon}\right) \\
& \times\left|\left[\mathscr{F}_{S_{1}}(q(a \cdot) u(a \cdot))\right](r \xi)-\left[\mathscr{F}_{S_{1}}(q(a \cdot) u(a \cdot))\right](a \xi)\right|^{2} .
\end{aligned}
$$

Thus, we have by Fubini's theorem

$$
\begin{align*}
& \int_{\mathbf{R}^{3}} d \xi\left(1+|\xi|^{2}\right)\left|I_{3}(\xi)\right|^{2} \leq a^{4} \sup _{\xi \in \mathbf{R}^{3}}\left\{\frac{\left(1+|\xi|^{2}\right)^{2}}{\left.| | \xi\right|^{2}-\left.z\right|^{2}}\right\} \int_{a-\varepsilon}^{a+\varepsilon} d r \frac{1}{\varepsilon} \rho\left(\frac{r-a}{\varepsilon}\right) \tag{3.15}\\
& \times \int_{\mathbf{R}^{3}} d \xi\left(1+|\xi|^{2}\right)^{-1}\left|\left[\mathscr{F}_{S_{1}}(q(a \cdot) u(a \cdot))\right](r \xi)-\left[\mathscr{F}_{S_{1}}(q(a \cdot) u(a \cdot))\right](a \xi)\right|^{2} \\
&= a^{4} \sup _{\xi \in \mathbf{R}^{3}}\left\{\left(1+|\xi|^{2}\right)^{2}\right. \\
& \quad \times\left\|\left[\mathscr{F}_{S_{1}}(q(a \cdot) u(a \cdot))\right](r \cdot)-\left[\mathscr{F}_{S_{1}}(q(a \cdot) u(a \cdot))\right](a \cdot)\right\|_{L_{2}^{1}\left(\mathbf{R}^{3}\right)}^{2+\varepsilon} d r \frac{1}{\varepsilon} \rho\left(\frac{r-a}{\varepsilon}\right)
\end{align*}
$$

From Lemma 4 and Lemma 1 it follows that

$$
\begin{align*}
& \left\|\left[\mathscr{F}_{S_{1}}(q(a \cdot) u(a \cdot))\right](r \cdot)-\left[\mathscr{F}_{S_{1}}(q(a \cdot) u(a \cdot))\right](a \cdot)\right\|_{L_{2}\left(\mathbf{R}^{3}\right)}^{2} \tag{3.16}\\
& \quad \leq \frac{|r-a|}{\{\min (r, a)\}^{2}}\|q(a \cdot) u(a \cdot)\|_{L_{2}\left(S_{1}\right)}^{2} \\
& \quad \leq \frac{|r-a|}{\{\min (r, a)\}^{2}}\left(\max _{x \in S_{a}}|q(x)|\right)^{2} \frac{1}{a}\|u\|_{H^{1}}^{2} \\
& \quad \leq \frac{\varepsilon}{a(a-\varepsilon)^{2}}\left(\max _{x \in S_{a}}|q(x)|\right)^{2}\|u\|_{H^{1}}^{2} \quad \text { if } r \in[a-\varepsilon, a+\varepsilon] .
\end{align*}
$$

Therefore, by (3.15), (3.16), and (3.2) we obtain

$$
\begin{equation*}
\int_{\mathbf{R}^{3}} d \xi\left(1+|\xi|^{2}\right)\left|I_{3}(\xi)\right|^{2} \leq \varepsilon \tilde{C}_{3}\|u\|_{H^{1}}^{2} \tag{3.17}
\end{equation*}
$$

where \tilde{C}_{3} is a constant which is independent of ε such that $0<\varepsilon \leq a / 2$. Since $T_{\sqrt{2}} \gamma_{a}$ is a bounded operator from $H^{1}\left(\mathbf{R}^{3}\right)$ to itself and $\mathscr{P}\left(\mathbf{R}^{3}\right)$ is dense in $H^{1}\left(\mathbf{R}^{3}\right)$, (3.8) follows from (3.10), (3.11), (3.14) and (3.17).
Q.E.D.

We are now in a position to prove Theorem 2.
Proof of Theorem 2. First we remark that by the closed graph theorem $R_{\varepsilon}(z)$ and $R(z)$ are bounded operators from $L_{2}\left(\mathbf{R}^{3}\right)$ to $H^{2}\left(\mathbf{R}^{3}\right)$ and $H^{1}\left(\mathbf{R}^{3}\right)$, respectively. Let us recall that resolvent equations for the pairs $\left(H_{\varepsilon}, H_{0}\right)$ and $\left(H, H_{0}\right)$:

$$
R_{\varepsilon}(z)-R_{0}(z)=-R_{0}(z) Q_{\varepsilon} R_{\varepsilon}(z) \quad \text { (the second resolvent equation) }
$$

and

$$
R(z)-R_{0}(z)=T_{\sqrt{z}} \gamma_{a} R(z) \quad(\mathrm{I}-\mathrm{S}[2, \text { Theorem 3.2] }) .
$$

Thus, we have

$$
\begin{align*}
R_{\varepsilon}(z)-R(z)= & -R_{0}(z) Q_{\varepsilon}\left(R_{\varepsilon}(z)-R(z)\right) \tag{3.18}\\
& -\left(R_{0}(z) Q_{\varepsilon}+T_{\sqrt{z}} \gamma_{a}\right) R(z) .
\end{align*}
$$

Take $z \in \mathbf{C} \backslash[0, \infty)$ sufficiently large such that $\operatorname{Im} z \neq 0$ and

$$
C_{1}(s)\left[\sup _{\xi \in \mathbf{R}^{3}}\left\{\frac{\left(1+|\xi|^{2}\right)^{1+s}}{\|\left.\xi\right|^{2}-\left.z\right|^{2}}\right\}\right]^{1 / 2}<1 / 2
$$

which is possible because of $1 / 2<s<1$. Then, for any $u \in L_{2}\left(\mathbf{R}^{3}\right)$ we have by (3.18), Lemma 5 and Lemma 6

$$
\begin{aligned}
\left\|R_{\varepsilon}(z) u-R(z) u\right\|_{H^{1}} \leq & \left\|R_{0}(z) Q_{\varepsilon}\left(R_{\varepsilon}(z) u-R(z) u\right)\right\|_{H^{1}} \\
& +\left\|\left(R_{0}(z) Q_{\varepsilon}+T_{\sqrt{2}} \gamma_{a}\right) R(z) u\right\|_{H^{1}} \\
\leq & \frac{1}{2}\left\|R_{\varepsilon}(z) u-R(z) u\right\|_{H^{1}}+\sqrt{\varepsilon} C_{2}\|R(z) u\|_{H^{1}}
\end{aligned}
$$

and hence

$$
\begin{align*}
\left\|R_{\varepsilon}(z) u-R(z) u\right\|_{H^{1}} & \leq 2 \sqrt{\varepsilon} C_{2}\|R(z) u\|_{H^{1}} \tag{3.19}\\
& \leq 2 \sqrt{\varepsilon} C_{2}\|R(z)\|_{\mathbf{B}\left(L_{2}\left(\mathbf{R}^{3}\right), H^{1}\left(\mathbf{R}^{3}\right)\right)}\|u\|
\end{align*}
$$

The required result follows from (3.19).
Q.E.D.

References
[1] J. P. Antoine, F. Gesztesy and J. Shabani, Exactly solvable models of sphere interactions in quantum mechanics, J. Phys. A: Math. Gen., 20 (1987), 3687-3712.
[2] T. Ikebe and S. Shimada, Spectral and scattering theory for the Schrödinger operators with penetrable wall potentials, J. Math. Kyoto Univ., 31-1 (1991), 219-258.
[3] T. Kato, Perturbation Theory for Linear Operators, Springer, 1966.
[4] S. T. Kuroda, An Introduction to Scattering Theory, Lecture Notes Series No. 51, Aarhus Univ., 1978.
[5] K. Mochizuki, Scattering Theory for the Wave Equations, Kinokuniya, Tokyo, 1984 (in Japanese).
[6] L. Schwartz, Théorie des Distributions, Hermann, Paris, 1966.

