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Introduction

In  his paper [2 ], Garland studied a certain group of loops in  a  connected,
simply connected complex sim ple L ie g roup  G , a n d  i t s  1-dimensional central
extensions, together with their Lie a lgebras. The class to which the loops belong,
corresponds t o  the  algebra L  o f formal Laurent series. For instance, the Lie
algebra o f  th e  loop  group is ob ta ined  as the coefficient extension of the Lie
algebra g  o f  G  by L.

T o construct a n d  analyze th e  groups, he utilized th e  well-known results
about the structure of the original group G (see, for example, [8 ]), by regarding
the loop groups as the group of L  rational points of the Chevalley group scheme
over Z  corresponding to G.

In  the  present paper, we shall consider the group 6, of C'-loops in  G  and
its  ac tion  on  the  corresponding completed affine Lie algebra— a 1-dimensional
central extension of the Lie algebra §k  o f  6 k —and we follow Garland's method
for our problems. W e first prepare some basic results about general loop spaces,
and  then g o  tow ards our m ain  purpose. Thus, th is paper is d iv ided in to  the
respective tw o parts.

I n  th e  first p a r t  (§1  a n d  § 2), w e analyze th e  s tru c tu re  o f  th e  space of
Ck -loops in  a  finite-dimensional manifold M  (k = 0, 1, 2, ... , oo).

Assume that M  is a  vector space. Then the loop space, denoted by M(L k ),
is obtained by a coefficient extension, th a t is, M(L k )  is regarded a s  th e  tensor
product M OR Lk , R , where Lk :=  Ck (S i ) and Lk , R  is the real form of Lk consisting
of a ll the real valued functions. So it is identified with the  Banach (or Fréchet
if k = co) space (L„, R r 'n " .  Thus, M(L,) is a  Banach (or Fréchet) manifold with
the tangent space (Lk , R )d i m m .

It is natural to expect that this fact is generalized to the case of a manifold
in  genera l. And, if M  is  a  L ie group, w e get an affirmative result a s  the  first
m ain result in  th is paper, th a t is, w e can provide M(L k )  w ith a  canonical Lie
group structure such that its tangent space is (L k ,  R  r i m M .

T o  show  this, w e first introduce certain classes of functions on  an  open

Communicated by Prof. Hirai, October 22, 1990



558 Kiyokazu Suto

subset of loop spaces (Lk )tm w ith values in other loop spaces (L k
)m', in  analogy

w ith the  usual differentiable functions o n  finite-dimensional spaces.
Locally, they a re  defined a s  lim its o f polynomials (and so differentiable in

the sense of Fréchet) similarly as in the case of differentiable functions on  finite-
dimensional spaces, but the coefficients of the polynomials are taken from L k . In
other w ords, w e extend the coefficients of the differentiable functions, from C
to

W e can  p rove  tha t fo r  a n y  open  subset V  in  Cm, V(Lk )  i s  open in  the
topological vector space (L k )7", and that every smooth function f  on  V is extended
to  a  function !F(f )  o n  V(L k )  of the above class.

A nd then, w e give a  canonical topology to th e  loop space M(L k )  for an
arbitrary manifold M , with respect to which the connected components are given
exactly by homotopy classes of the  m anifold . Further, i f  M  i s  a L ie group,
M(L k )  becomes a  topological group by pointwise products, with this topology.

Let M  be any L ie  g roup . Take any sufficiently small coordinate neighbour-
hood (V, 0) o f 1 in  M . T h e n , thanks to the above topology and the coefficient
extension of functions, we get the pair (V(Lk ), V1 (0)) of the neighbourhood V(L k )
o f  1 in  M(L k )  and  the  homeomorphism W(0) o f  V (4) onto  an  open  subset in
(Lk )d i `n ". This system satisfies the axioms for a  coordinate neighbourhood o f  1
in  a  (probably infinite-dimensional) L ie  g ro u p . Thus, w e arrive a t  the goal of
the first part.

In  the  second  part (§§3-5), we concentrate o n  th e  group 6 ,  and the L ie
algebra gk . Thanks to results in  the  first part, 6 ,  is  a  L ie  group with the Lie
algebra §„.

As is well-known, the L ie algebra of algebraic loops in  g  has a  universal
central extension A called an affine Lie algebra, and the corresponding 2-cocycle
Z ( ,  •) was explicitly given in  [ 2 ] .  We extend the 2-cocycle to  §k a fter [3 ], and
get a  central extension A, o f Ak .

A i s  o n e  o f  th e  simplest infinite-dimensional Kac-Moody algebras (more
precisely, the derived subalgebra of a Kac-Moody algebra, see [2 ] and [4]). And
the corresponding Kac-Moody group Ô  is a  1-dimensional central extension of
the group 6 of algebraic loops in  G  (cf. [2 ], [9 ], [5 ], a n d  [6]).

Since the kernel of the adjoint action Ad of 6 o n  g, is precisely the center
C  o f d, 6 6/c acts o n  g  through A d, and the set of invariants in  A under
this action is just the center of A. Hence, the action on A induces an action of

o n  g. The last action of Ô coincides with the adjoint action.
The m ain purpose of the second part is to  extend th is fact to  the pair of

the  infinite-dimensional Lie group Ô„ and the  L ie  algebra Ak , and  describe the
extended action explicitly. T h a t  is , we give explicitly a n  a c tio n  o f  6„ o n  A,
which induces the adjoint action A d , o f 6„ o n  g. N ote th a t 6 is a  subgroup
of d„ and  tha t A is  a  subalgebra of Ak .

Moreover, we extend the action on Ak to  th a t  on  a  "L ie  algebra" c a l l e d
the extended affine Lie algebra after the terminology in  [2]. AT, is  a semi-direct
sum  of Ak a n d  th e  "degree derivation" 0  o n  gk . I rem ark  tha t Afc is not really
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a  L ie  a lg eb ra . T he  bracket product o n  Az i s  a  bilinear m ap o f  AT, x Al into
,  not in to  AZ. Further, the "action" of Ù. - k on "A,e, is also not really a  group

a c tio n . Actually, we associate with each element i n  -6k a  linear m ap from  4z
into '41_, . B ut we call g the extended affine Lie algebra, and  say "'6, acts on

" for simplicity, because the bracket product o n  A,e, and the above maps asso-
ciated with each element in  6k, have the similar properties as the bracket product
on the usual Lie algebra and the usual group action respectively, as shown in §4.

A s an application of the above results, we can calculate explicit forms of
the normalizers and centralizers, in the loop group 6 ,, of the Cartan subalgebras
of the affine Lie algebras Ak a n d  g .  W e see that, in  bo th  cases, the quotient
groups of the  normalizers b y  the  centralizers are  canonically isomorphic to the
usual affine Weyl group.

This paper is organized a s  follows.
The contents of the first part, §§1-2, are  general theories for the structure

of spaces of loops in a manifold.
In  §1, we give the coefficient extension from C  to L k ,  for the  differentiable

functions.
In  § 2, we define a  topology for each space of loops in a m anifold so that

the connected components are given exactly by homotopy classes of the manifolds,
and further, give a  L ie  group structure to  the  group of loops in a Lie group.

The second part, §§ 3-5, is devoted to study the actions of the loop group
6, on  the  corresponding affine Lie algebras Ak  a n d  41.

§ 3  i s  th e  preliminary section t o  § § 4 -5 . W e first p repare  notations and
well-known results about a connected, simply connected complex simple Lie group
and its  Lie algebra after [ 8 ] .  A nd we define a  completed version of the affine
Lie algebra after the formulation of [3].

§4  is  the main section of this article. We extend the adjoint action of the
loop group Ô, from  its L ie  algebra § , to  the  completed affine Lie algebra Ak ,
a n d  fu rth e r  ex ten d  it to  th e  "L ie  algebra" k, called a n  extended affine Lie
algebra after [2 ], which is defined a s  a  semidirect sum  o f  4 , a n d  th e  "degree
derivation".

In  §5, we describe the  explicit forms of the  normalizers and  centralizers of
Cartan subalgebras of affine Lie algebras Ak a n d  Az with respect to  the actions
defined in § 4 .  And as the quotient groups of them, we get the affine Weyl group
in  both  cases.

The author expresses his hearty thanks to Prof. T . H irai of many valuable
discussions and constant encouragement.

§ 1. The coefficient extension from C  to Lk  = C k (S 1 ), for the differentiable
functions

In  this section, we introduce certain classes of functions on  loop spaces with
values in other loop spaces, in  analogy with th e  usual differentiable functions
on  finite-dimensional spaces.
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Locally, they a re  defined a s  lim its o f polynomials, similarly as in the case
of differentiable functions on  finite-dimensional spaces, but the coefficients of the
polynomials are taken from the algebras of Ck -loops (k  = 1, 2, ..., co) in C, which
will be denoted by L k  (for detail, see below).

1.1. The algebra o f differentiable functions on the product space (L k )  with
values in L k . Let Lk := C k (S1 ), the algebra of C'-functions o n  S1 . We define a
norm  1.1k o n  L,, as

lalk := sup for a e L k ,
re R

j=0 ....... k

where 0 is  a  differential operator o n  S1 , defined by

1
( a a ) ( e 2n r) : =   l i M  —

1  

la(e 2 IT (r+ t) ) — a ( e ' t )} .
27r,/-1 t—o t

The space (L k , 1.1k )  is  a  Banach algebra.
We consider the polynomial ring Pk :-  ; n  =  Lk [X i , , X n ]  w ith coefficients in

a
Define derivations D. =  o n  P k o  (J =  1 , 2, ..., n) by

0X ;

Di X , = b i i for i = 1, 2, ..., n

Di a = 0 fo r v a e L k .

In  this subsection, we investigate the properties of such L k -valued functions
on an open set in (Lk )" that can be uniformly approximated, together with their
derivatives, o n  every bounded subset by polynomials in  Pkw

F o r  a  bounded closed subset B  in (L k ) ,  a n d  j  = 0, 1, 2, ..., put

Iflk,B, i  := sup I(Dmf)(01k for f  E Pk ;n

where sup is taken over all m = (m 1 , mn ) E (Z > 0 )  satisfying

1m1:= mi + • • • + mn

and all b = (b,, b)E  B , and Dr" is a short form of DT'DT 2 D  7 . .  Let Ck 'i(B)
be  the completion of the  normed space (P 1 1 1k;n

, ■• ,k;B,j,•

By definition, fo r any  m E (z > o )  su c h  th a t  1m 1 j ,  and  any  b e B , th e  L k -

linear map P k ; n
 3 f  (D m f )(b) e  L „ is continuously extended to Ck 'i(B). It is easy

to prove the  following lemma.

Lemma 1.1. L et f  e C k 'i(B). We assume that f (b) = 0 f o r any b e B . T hen,
f o r any b, E Int (B ), the  interior o f  B , an d  any m e (Z > 0 )" such that Iml j ,  it
holds that

(Dmf )(boo ) = 0 .

Let U be an open subset of (L k ) ,  and Ck ;i( U) the space of Lk -valued functions
f  o n  U  which satisfies
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(*) for any u E U, there exists a  bounded closed neighbourhood B of u in
(Lk )  a n d  g e Ck Li(B) such that

f(b) = g(b) fo r vb e B .

Thanks to Lemma 1.1, we can define Dmf(u) as Dog(u) for m e (Z> o )", Im I  j.
We consider C ( U )  as the inductive lim it o f  th e  spaces C"-'(B), w h e re  B  are
bounded subsets o f  U  closed in  (Lk )".

The following lemmas are  clear from definition.

Lemma 1.2. f  D m f  is a continuous linear map from C"-'(U) into Ck -1 "11(U).

Lemma 1.3. Di ( fg) = (Di f)g + f(D i g).

Lemma 1.4. DI"Dm'f = Dm'nf.

T he functions in C i ( U )  are j-times differentiable in  th e  sense o f Fréchet,
tha t is, we have the following lemma.

Lemma 1.5. i) Every f  E C 0 (U) is continuous, and further uniformly continu-
ous on any  bounded subset o f  U.

ii) Every f  E 0 " (U )  is  C 1 -map, that is, it holds that
(1) f o r Vti E U, there ex ists an  operator d f  E L ( (L ) ,  L k ) such that

( f(u  +  v) - f(u ) - d fu (v)) = O,
v-0

(2) the m ap df: U n u ->dfu E L((L k )", L k ) is continuous.

Here, we consider (L k )" a s  a  Banach space with the  norm

lulk := max luilk for u = (u 1 , un ) E (L k )
15i 5n

and denote by L((L k )", Lk )  the Banach space of all continuous linear maps from
( L ) n  in to  L .

Pro o f . i) By definition of C ( U ) ,  it is  enough  to  p rove  the assertion for
f  E Pa ,„, and  this is clear because L k  is  a  Banach algebra.

ii) W e can define dfu b y

dfu (v):= E7=, D i f(u)v, for y = (y 1 , yn ) E (L k )  .

Indeed, firstly, by Lemma 1.2 and the  above i), u d f u  is continuous.
Secondly, for any u E U, there exists y > 0 such that

u + C U ,

where Ce i s  a  closed ball in  (L k )  w ith diam eter e and  center O . Since u +
is a  bounded closed neighbourhood of u, by definition o f Ck Li(U), there exists a
sequence of polynomials in  13 , ; ,1 such that

h ill  f  - P ilk ,u +c„1
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F or each pi ,  by a n  easy calculation, we see that

+  =  pi(u) +
fo

 (Dipi)(u + tov i dt ,

A s l --+ co, we have

+ = f ( u ) +E 7 =1  Jo  (I) if )(u + tv)v i dt ,

Therefore, it holds that

1

I vlk

(f (u + v) — f(u) — dfu(v))

= (v , v,,) e Ce .

vv = (v i , v„) e .

= E7,, (D f(u + tv) — Di f(u)) 1v
1
 ik vi dt ,V  e C,\{0} .

Since each D i f  is continuous by i), we obtain the  equality in  (1). Q.E.D.

1.2. An extension of usual differentiable functions on C" to those on (I, On.
F o r  a  subset S of C" a n d  a  closed subset P  of S I ,  put

S(P) := {(a 1 , ..., an ) e (L 0 )"; (a,(t), . , a„(t)) e S, vt e PI

S (P)k := S(P) n (L k )n , S (L k ) := S(S 1 )k .

Then, S (P) inherits topological properties of S  a s  follows.

Lemma 1.6. If  S is closed or open in C", then so is S (P) in (L 0 )".

P ro o f. When S is closed, the assertion is clear because (L n (a1 , , a„)
(a,(t), , a„(t)) e C" is continuous for any t e S i .

Let S be  open, and a = (a ,  , a„) be  a n  arbitrary element in  S (P ). Since
a is continuous a s  a  m ap from  S ' in to  C", a(P) (c  S ) is  compact.

Hence, the distance, say d, between a(P) and Cn\S is  positive, and the open
ball with diameter d  and  center a  in  (Lo )" is contained in  S(P). Q.E.D.

L e t V  b e  an  open  subset o f C " . W e m ay regard V  = V (L k ) rIC " . So, for
any f  e C k 'i(V(L k )), we can define a n  Lk-valued function 0 ( f )  o n  V  by

45 ( f ) := f lv

By Lemma 1.5 ii), if f ( V )  C ( c L k ), then •15(f) e C(V).
Conversely, for any g e Ci( V), define an Lk-valued function W(g) on V(Lk ) by

W(g)(a,, , a)(t):= g(a,(t), . , a(t)) for (a , , an ) e V(Lk ), t E Si  .

Clearly, ( )( f ) = f ,  if f  (V) c  C .  Moreover, we have

Lemma 1.7. maps C i ( V )  in to  Ck L i(V(Lk )), and it holds that

o 0 = Idckti(v) •
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Pro o f . Take a sequence IC i l i ,„ of bounded closed subsets of C" such that

CL c  Int c i =  v.i=1

For each i, put

B i :=  {a e Ci(Lk); I alk

By Lemma 1.6, the  subsets

V, := la e (Int(C i ))(4);Ia l k <

of Bi are open, and so they are contained in  Int (Bi ). O n the  other hand, since
a(S 1 )  is  a com pact subset o f  V  for each a E V(L k ), a(S 1 )  is contained in  some
Int (C i ) ,  and  so  th e  Vi 's  cover V (4 ) .  Thus, we get the equality

V (4 ) = Int (B i ) .

Let g  be a n  arbitrary element of C ( V ) ,  and let be  a  sequence of
polynomials with coefficients in C  which satisfies

lim sup ID'n(g — gi )(x)I = O,
I—x m,x

where sup is taken over m e (z,o ) , k, and  x e C i .
F o r /, / ' 1, and m e  (z,o ) , we have

sup I Dm(gi — gr )(a)I, s u p  s u p  10PD"'(g i — g1
, )(a)(01

aeB, a E B , te S i
0 5 p k

=  sup sup 10PD'n(g 1 — gi ,)(a(t))I
O E  fi, t , p

i k  (sup I — gi ,)(x)1)—* 0 (1, l' oo) .

Here, we identify C[X,, Xn ]  with the subalgebra of elements in L k [X i , X n ]
with coefficients in C Lk ).

Hence, {g,},, i  i s  convergent in Ck 'i(B ,), a n d  its lim it g  = lim g, e C k 'i(B i )

satisfies

gço(b) = Vi(g)(b), vb E Bi .

This im plies that V/(g) e Ck -i(V(L k ) ) , because interiors o f Bi 's  cover V(L k ). The
equality of the  lemma is clear from definition. Q.E.D.
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Corollary 1.7.1 (of the p ro o f) . F or any j 1, g e Ck + i(V ), and i =1, n,
there holds that

DiV (g)= W (D 1(8)).

For an open subset U  of (Lk )", and m e Z, 0 ,  put

C k u(U ; (La") := C ( U )  x • • • x C k 'i( U) (m times direct product) .

W e regard each element of C (U ; (L k )m ) as a m ap from  U  in to  (L k )'". F o r  a
subset S of (L k )'", w e define a subspace C k 'i( U ; S) by

C k 'l( U ; S ):=  {f E Ck L i (U; (Lk)"); f(U) S}.

The following lemma is clear from Lemma 1.5.

Lem m a 1.8. Every element in  Ck ' 1 (U;(L k )m) is  0 -map from U  into (L k )'".

For every element g  = (g 1 , ,  g „ )  in Ck  + -i(V; Cm) ( = the space of C " '-m aps
from an open set V in C" into Cm), we put

W(g):= 

And we also define 0 ( f )  for f  E Ck ; i (V(Lk); (Lk) n ), similarly. Clearly, the same
fact as Lemma 1.7 holds for this new qf as follows.

Lemma 1.9. F or any g e Cl + k ( V; Cm), Vi(g) belongs to Ck 'i(V (L k );(L k )m), and
we have

0  0 =  Id c j+ k (l ; en) •

Let Lk , R  b e  the rea l form  o f L k  consisting of the real valued functions.
Obviously, all the above results are true for L k , , ,  replacing C with R.

§ 2. Structure of the space o f loops in a manifold

In  th is  section, w e provide the space of C"-loops in  a n  arbitrary finite-
dimensional C"-manifold with a canonical topology, and, in case where the mani-
fold is a Lie group, w e give to the loop group a Banach Lie group structure.

In subsection 2.1, we shall give a canonical topology to spaces of loops in
manifolds, w ith respect to  w hich the connected components of the loop spaces
are given exactly by homotopy classes of the manifolds.

In  subsection 2.2, making use of the classes of functions in § 1  and the
topology in 2.1, we give Lie group structure to  an arbitrary loop group canoni-
cally in such a m anner that their tangent spaces are isomorphic to a product
of some copies of L k .

2.1. Topology of loop spaces. Let k  = 0, 1 , 2 , ... , and M  be an n-dimen-
sional C"-manifold (n  < co). We denote by M (L ,) the space of C'-loops in M:

M(L k ) = { f : —■ M ;  f  is  of class C} .
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For another finite-dimensional manifold M ', and a C '-m ap  F  from  M  into M ',
we define a m a p  W(F) from M (L k )  into M'(L k ) by

iri(F)(f )(s) := F ( f(s)) for f  e M(L,), s e .

Of course, this definition is an extension of th a t o f VI in 1.1.
j
( , ,Let Irk = 17k(M ) be  the totality of the double sequence ( V i)1 1 isio<p<k (/ is

a positive integer) with V e an open subset of M  and VP, . . . ,  Vk
( i )  open subsets

of C" for each i. And let g  be the totality of the sequence (P 1 , ..., 13
1) of closed

subsets of S '  such that the union U  Pi is  e q u a l to  the whole set S'.

For A (P 1 ,..., P I)  e g  and V = e Irk, put

U(d; V) :=

where crf(x )=  f(x ), and clif(x) = d(du - nf )„ for j >  O.
For the family of these subsets U(A; V), we have

Lemma 2.1. i) There exists a topology of  M(L k ) f or which an open basis is
given by the family {U(4; 1 )1 4  cr k .

ii) If  F :  M  M ' is a map of  class 0, then W(F): M(L k ) —> M'(Lk ) is continu-
ous with respect to the topology in i).

P roo f. i) is clear from definition of the family.
Let n and n ' be dimensions of M  and M ' respectively. For each j =  1 , ...,

k, w e m ay  regard d iF  as a C '- m a p  f r o m  M  in to  the space L i (R", R"') of
W .-valued j-linear forms on the product space of »copies of W . A n d  fo r  any
s e S' and f  e  M (L ), derivatives o f V (F )(f )=  F  o  f are given by

O F  f ) ,  =  Ei,, E diFf ( s ) (dP'fs ,..., dPifs ),

where the second sum is taken over the positive integers p,,..., p i such that p ,+
• • • + p if  Since the both maps L i (R" ; R"') x (R")' D  (b, a,, ..., —›
b(a i , , e  R " ', and  S I- D  S — 0 (d i F f ( S ) ,  d"J , dPI fs ) e L ,(11"; x  (R")' are
continuous, the assertion ii) holds. Q.E.D.

In the following, we always consider the topology of this lemma on M(L k ).
If M  is sm ooth  manifold, then each M(L k + ,) is continuously and densely

im bedded  in to  M (L ). S o  let M ( L )  be  the inverse lim it of {M(L k )I k >0 .

Remark 2.2. i) Of course, M (L .) coincides with the totality of smooth loops
in M  as sets.

ii) If w e take  It"  as M , then M(L k ) = (L k , R )", and the above topology is
the same as that given by the norm I • lk•

iii) For k = 0, the above topology is nothing but the compact-open topol-
ogy.

fl ff e M(L k ); dif(P i ) c

With respect to this topology, the homotopy classes of M  give the decomposi-
tion of M(L k )  into connected components as follows.
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F or each f o  e M (L k ), we define a  subset M (f0 )  of M(L k )  by

M (f0 ) :=  I f  E M(L k ); f  f o ,  tha t is, f  is  homotopic to  fo l.
Lemma 2.3. M (fo ) is closed in  M(L k ).

Pro o f . Let f 1  b e  an  element of the closure of M (f0 ). Since f 1 ( S )  is com-
pact, there exist a  positive  real num ber e < 1, a positive integer p , and pairs
{ Vi , ..... p o f  coordinates neighbourhoods and local coordinates for M  such
that

(1) = {x E Rn ; xi < 1},
(2) f 1 m a p s  {exp (N/— 1r); r G I = [27C(i 1 )/1), 2i-ci/p]}  in to  Vi,
(3) i(f1(exp ('J—  12ni/p)) = o,
(4) the open subset Wi = 11x1 < e l of M  is contained in  V, n where

1/,,+ 1  —
Define an  open  subset U  of M (L k )  by

U := fg E M(L k ); g(e ")

By assumption on f 1 ,  the intersection m(fo)n U  is  n o t e m p ty . F o r an  element
f2  of this intersection, put

g1(s) ((1 _ s g i ( f 2 ( e zni .„/ ./p) ) ( e z n i  1=-4/ P ))) for O s 1, i = 1 , . . . ,  p.

Since each is  homeomorphic to {Ix' < 11, there exists a  continuous map hi :
[0,1] x Vi such that

*) = f2 *) = f , o n  exp (.\/—  1 I) ,

hi (*, e2 1 - " ,/ - 1 /P) = g i,

hi (*, e2 n 1 1 : - i i P ) = gi .

Putting h(s, t):= h i (s, t) for s e [0, 1], t E  I L ,  we see that f 1 i s  homotopic with f 2 ,
and  so f 1 G  M (f2) =  M(f0). Q.E.D.

Lemma 2 .4 .  I f  f 1 G M(Lk) is homotopic with fo , then there exists a continuous
m ap F: [0, 1] — > M(L k ) such that

F(0) = fo and F(1) = f1 •

P ro o f . By assum ption, we can take a  continuous map f : [0, 1] x S 1 M
such that f(0, *) = f o , f(1, *) = A. . We may assume this f  is of class C k . Then
the function

F (s)(t) := f(s, t) for s E [0, 1], t E S ',

gives a  path connecting f o a n d  f ,  in  M(L k ). Q.E.D.

By these two lemmas, we see that M(L k )  is decomposed into disjoint union
o f  arcwise connected, closed subsets o f  th e  form  M (f ) ,  f  e  M (L ) . Thus, we
have the following theorem.

g(e ., ) e  w i l
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Theorem 2.5. L et k  = 0, 1, 2, ..., co, and let M  be a connected 0-manifold.
i) F o r any  f  e M ( L ,) ,  M ( f )  is th e  connected component containing f .

Further, M (f )  is arcwise connected.
ii) There ex ists a bijectiv e correspondence between the  fundamental group

ii i (M ) an d  th e  se t o f  connected components of  M (L k ). In  particular, M (L k )  is
connected if  and  only i f  M  is connected and simply connected.

2.2. Lie group structure on a loop group. I n  this subsection, we take an
n-dimensional Lie group G  as the m anifold M  in the preceding subsections, and
give a Banach Lie group structure to  G(L k ), making use of the above results.

L e t g  be  the L ie algebra o f G.
Taking, as F  in Lemma 2.1 ii), the  product m ap G x  G  G  and inversion

m a p  G  G , a n d  bracket product o n  g  respectively, w e see that G(L k )  i s  a
topological group, and that g(L k )  is  a Banach Lie algebra in  a  natural way.

Let exp: g G be the exponential m a p .  Since exp is a local diffeomorphism,
W(exp): g(Lk ) G(L k )  is a local homeomorphism (see Lemma 2.1). Moreover, if
f ,  f ' e  g(Lk ) commute with each other, we have from definition

W(exp)(f + f ')  = W(exp)(f )• W(exp)(f ')

In particular, W (exp)(tf) (t e R) is  a  1-parameter group in  G(L k ). In  this sense,
we can say that W(exp) satisfies the property for the  exponential on g(L k ), and
so we write exp for W(exp).

Let a: G x  gD (g, x) –■ Ad (g)x e g be  the adjoint action of G  o n  g .  By the
same reason for exp, we use the same symbol Ad (g)x for Vi(a)(g, x) also in case
g e G(L k ), and x e g(L k ). T h i s  new Ad defines a  continuous homomorphism from
G(L k )  in to  GL(n, L k ) L(g(L k ), g(L k ))' ) and  further it satisfies

Lemma 2.6. g(exp x ) g ' =  exp (Ad (g)x) fo r Vg e G(Lk), V  e  g (L k ).

We define )6: g x g g  b y

fi(x, y) := Ad (exp x)y for x, y E g .

B y  L e m m a  1 .7 , W O  is  a  C " -m a p  from  g(L k ) x g(L k )  in to  g(L k ). Applying
Corollary 1.7.1 to the formula

c--I--13(tx, y ) = (ad x)(Ntx, y)) fo r Vx , y e g ,
dt

we have

—
d  

W(13)(tx, y ) = (ad x)( n6)(tx , y ))
dt

Since W(/3)(x, y) = Ad (exp x )y , w e see that the
parameter group Ad (exp tx) is equal to ad x.

is true fo r the  1-parameter group exp (t(ad x))

for 'x, y e g(L k ) .

infinitesimal generator o f  th e  1-

O n th e  o ther hand , the  same

= y,T=0 -

1  

tP(ad x)P. Therefore, it
P!

holds that
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Lemma 2 .7 . Ad (exp x) = exp (ad x) f o r v x e g(L k ).

Now, we can prove the m ain result of th is section as follows.

Theorem 2.8. L et G  be a finite-dimensional L ie group, g  the L ie algebra of
G, and k  = 0, 1, 2, ... . For a sufficiently small neighbourhood V  of  1 in G , there
ex ist a unique L ie group structure on G(L k )  such that its local coordinates at 1
is given by  (V(Lk ), log), where log = W(exp - 1 )  on V (L k ).

Moreover, f o r another finite-dimensional L ie group G', open subset U  of  G,
an d  C l'-m ap  f  f ro m  U  in to  G ', the  map W (f): U(L k )--* G'(L k )  i s  o f  class Ci,
and further if  U  = G  an d  f  is  a L ie  group homomorphism, so is V (f).

Pro o f . Thanks to Lemma 1.8, the second assertion follows from the first one.
Let W be a  neighbourhood of l  in  G  such that log = W  e x p - 1 (W)

is a  diffeomorphism, and let V be an open neighbourhood of 1 in G such that

= V, a n d  V V  W.

It is enough to  prove the  following properties (1) ( 4 ) :
(1) there exists an open neighbourhood Ul  o f  1 in G(L,), such that U, U,

V (L,), and

log (U 1 ) x log (1.11 ) D (X 1 , .X2) —■ log (ex.ex2) e log (V(L k ))

is  a  C°-map,
(2) the map

log (V(L k ))D x  —■ log (e - x) e log (V(Lk ))

is  a  C"-map,
(3) for any g E  V (Lk ), there exists an open neighbourhood U 2 of 1 in  G(Lk)

such that U2 U gU 2  V ( L k )  and

log ( U2) n X log (gex) e log ( V(Lk))

is  a  C'-map,
(4) for any g e G(L), there exists an open neighbourhood U 3 of 1 in  G(L k )

such that U3 UgU3g - 1  V ( L k )  and

log ( U3) D —> log (gexg - l )e  log (V(L k ))

is  a  C'-map.
For an  open  neighbourhood W, o f 1 in  G  such that W, W, c V, p u t  U , =

W,(Lk ), then (1) holds.
The m ap in  (2) is  multiplication b y  — 1, whence (2) is  true.
For g e V(L k ), g(S 1 )  is compact subset o f V, and hence there exists an open

neighbourhood W2 o f  1  in  G  su c h  th a t W2  U g(S 1 )W2  c  V. P u t  U2 = W2(Lk).

The m ap in  (3) is  the restriction of

log (V(Lk )) x log (V(L k ))D (X , y) log (exeY) e log (W(Lk ))

which is of class C  by Lem m a 1.7.
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Let g  be an  arbitrary element of G(L k ). Since G(L k ) is a  topological group,
there exists an open neighbourhood U 3  o f  1 in  G(L k )  such  that U3 U gU 3 g-

i  c
V(Lk ). T he m ap  in  (4) is  the restriction of the continuous linear map Ad (g)
by Lemma 2.6, and  so  it  is  of c la ss  C . Q . E . D .

Thanks to the second assertion of this theorem, we can replace log with an
arbitrary local coordinates 0  as follows.

Corollary 2.8.1. L et G , g, and G ' be the same as  in  Theorem 2.8. For any
coordinate neighbourhood (V, 0) o f  1 in G, there exists a unique L ie group structure
on G (L k )  whose coordinate neighbourhood o f  1  is giv en by  (V(L,), W(0)). This
structure is independent o f  the  choice of (V , 0).

By definition, V(4) = V(L 0 ) (1 G(Lk )  a n d  W(q5)  o n  V(L k )  is the restriction of
V(0) o n  V(L 0 ). In  th is  sense, w e  m ay  say  tha t th e  differentiable structure of
G(L k )  is uniform with respect to  k, and we have

Corollary 2.8.2. L et G , g, and G ' be the same as  in  Theorem 2.8. For any
coordinate neighbourhood (V , 0 ) o f  1 in  G , there ex ists a unique Fréchet L ie
group struc ture  on  G (L . )  w hose coordinate neighbourhood o f  1  is given by
(V(L.), W (0)). This structure is independent o f  the  choice of (V , 0).

Moreover, f o r any  open subset U of  G , and any  C'-map f f rom  U into G',
rf): U (L „ ) ) —> G'(1,03 )  is  o f  c lass  C .

§ 3 .  A  complete affine Lie algebra

I n  th is  section, w e introduce the  completed version  o f a  usual affine Lie
algebra.

First, we prepare notations and basic results for a finite-dimensional complex
simple Lie group G  w ith Lie algebra g  after [8].

Then, we give a  continuous 2-cocycle on the  Banach Lie algebra g(Lk ), and
construct th e  corresponding 1-dimensional central extension of g(Lk ), which is
again a  Banach Lie algebra, and  is  the m ain object in  th is article.

N ote th a t  g(Lk )  is given by replacing the Laurent polynom ial ring in the
case of usual affine Lie algebra with the  Banach algebra L k .

3.1. Preliminaries fo r  a  finite-dimensional complex simple Lie group. We
fix the notations for the rest o f this paper.

Let G be a finite-dimensional connected and simply connected complex simple
Lie group, H  a  C artan  subgroup o f G, B  a B orel subgroup containing H , and
g, 1), b their Lie algebras respectively. L et n  b e  the nil-radical of b  a n d  U =
exp (n) the  corresponding unipotent radical of B.

D enote by A  th e  root system  o f  (g, 1)), a n d  zl., the  se t o f positive  roots
corresponding to b, 17 = foc,,..., a,}  the  set of sim ple roo ts in 4 , .  F o r  each
a E b* (= Hom c  (1), C)), we define subspace gŒ by

gŒ := Ix e g; [h, x] = a(h)x fo r vh e bl .
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For a Chevalley basis x Œ e g" (a e A), h 1 , h, E 1.), put

Uoe := {exp (sx 2 ); s e CI

e, := xŒ . : = for i = 1 , ..., 1.

Under these notations, we have the following well-known results.

Proposition 3.1 [ 8 ] .  i )  T he  norm aliz er N  o f  H  in  G  is generated by the
elements

wa(s) := exp (sx a ) exp ( — s'x_ a ) exp (sx a )

with a e  4 , and s e Cx
ii) For any a e A, s e Cx , the element

ha (s):= w c,(1) - 1 wa,(s)

belongs to H , and the map

(s 1 , , s1)

defines a L ie  group isomorphism of (Cx) 1 onto H.

W e can define an involutive antilinear antiautomorphism on g by

:= fi , := hif o r  i = 1, ..., 1 .

F o r  th is  invo lu tion  and  the  K illing form  B ( • ,  • )  o n  g , u n iq u e  up  to  sca la r
multiples as a non-degenerate, invariant, and symmetric bilinear form on g, put

B o (x, y):= B(x, y*) fo r x , y e g

This sesquilinear form o n  g  is Hermitian and positive definite.

3.2. Construction of a complete affine L ie algebra. Let §k = g(Lk). The
bracket product [• , • ] 0  in  § k is given by

[f , g] o (s) = [ f(s), a(s)] for f , g  e §k .

We extend the bilinear form B ( • ,  • ) ,  the involution x x * , a n d  th e  Hermitian
form B 0 (, • ), from g  to  k ,  by

t i

B ( f ,

& )

f r e z i r 06,27t .\ - l r ) ) d r

 0

f * (s) := f(s)*

B o ( f ,  g) := B(f, g*) for f ,  g  e „ , s  e  S ' .

Then, B ( • ,  • )  is  a  non-degenerate invariant symmetric bilinear form, f  f *  is
an involutive antilinear antiautomorphism, and B 0 ( • ,  • )  is an inner product on §k •
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We may assume the norm I lkon ( L k ) d i m  ( 9 )  is given by

If lk = sup B o (a if (s), af f (s)) 112

ses ,

0 5 j5k

for f  e §k ,

where 0 is defined in  the same way as in 1.1.
From now on, we always assume k 1 .
Let us define a  bilinear form Z (•, •)  on § k by

Z (f , g) := B(Of, g) for f ,  g  E 9k .

We have the following

Lemma 3.2. Z ( ,  • )  is a  continuous 2-cocycle.

Proo f . Continuity of Z ( ,  • )  follows from those o f the  m aps 0 : k  §k-1
and B e  •): k-1 X C.

Let f i e k  (i = 1, 2, 3) and TO := exp 1r). By definition, it holds that

B ( f ,,  f 2 )  =
1 f l

—  B (f i.(t(r + 6 )) — L(T(r)), f2(t(r)))dr
27k/— 1 s-o 6

1

, lim  I f  13(f i(c(r)) , f2(t(r —  6 )) —  fz(r(r)))dr}
27k/ — 1 6-0 o

=  — B (f )(t(r)), af2(r(r)))dr = af2) •
Jo

Hence, Z (•, •)  is antisymmetric because B (•, •) is symmetric.
By a  similar calculation, we have

B( LA, f21o, f3) + B (aE /2 , 10, + B(ôU3, f2)

= B(Eafi, f2J0, f3) + B ( [f i ,  af2h, f3) +  B( U2, f310, f1) +  M a[f3, f1]0, f2).

Since B (, • )  is invariant, this is equal to

B (f 1 ,[f 2 , f 3 ]0 )  + B (af 2 ,[f 3 , + B (a[f 2 , f 3 ]0 , f i)  + B (a[f3, f2)

Thanks to the  above result i) and symmetricity of B (•, •), this sum equals O.
Q.E.D.

Let Ak  b e  the 1-dimensional central extension of k corresponding to the
2-cocycle Z(•, • ). As a vector space, A k  is equal to the direct sum Ak + cc, where
c  represents 1 e C . A n d  th e  bracket product [•, •  on  4„  is given by

[ f i  +  r i c, f2  + r2 c] = f 210  + Z (f i , f2 )c for f E k , r i e  C  ( i = 1, 2) .

By definition, Z(g, = 0, whence g can be regarded as a subalgebra of g k •
We define a  norm 1.1 k  o n  A, by

+ rci k := max (1f1 k ,Ir1) for f  E  k , r e C .
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Thanks to the continuity of Z(•, •), (Ak, lk) is a  Banach Lie algebra, and 4", and
C c are closed subspaces of Ak.

W e extend th e  bilinear form B ( ,  • )  t o  Ak  triv ia lly  o n  th e  center Cc, and
*-operation by

(f +  rc )*  :=  f*  +  Pc for f e k ,  r e C

The following lemma is easily verified from definition.

Lemma 3 .3 . i) lo Ak10 = Ak•
ii) [ § k , §k ] =  §k , and hence [ k , Ak ] =  § k .

Remark 3.4. The 2-cocycle Z(•, •) coincides with the usual one (cf., [4], 7.1
and [3], 1.1) on the dense subalgebra"g" := g CV, §„, w h e r e  ,S1S '
C  is  th e  identity m a p .  Hence, th e  Banach L ie  algebra 4k  con ta ins th e  usual
affine Lie algebra as a  dense  subalgebra.

§ 4 .  An action of a loop group on the corresponding completed affine Lie
algebra

As in the preceding section, the completed affine Lie algebra A i, is a non-trivial
1-dimensional central extension of the L ie algebra 4", of C"-loops i n  a  finite-
dimensional complex simple Lie algebra g.

In  th e  present section, we define—and describe explicitly—an extension of
the adjoint action on k  o f  th e  corresponding loop group 'd k  to  th a t o n  Ak .

We further extend the action on 4k to  th a t  on  a  L ie  algebra Afc, called the
extended affine Lie algebra, after the terminology in  [ 2 ] .  k is a semi-direct sum
of 4k a n d  th e  "derivation" 0  o n  Ak, and  is  the  simplest Kac-Moody algebra of
infinite-dimension.

4.1. A 1-cocycle for the adjoint action of loop group Ô .  L e t  k be a positive
in tege r. Let Ôk =  G(L k )  be the group of Ck -loops in  the  finite-dimensional con-
nected and  simply connected complex sim ple Lie group G, and  le t A d , b e  the
adjoint action of G-

k  o n  th e  loop algebra ,,, which is denoted in  §2 simply by
A d .  Put

Aut (§k ) := { T e LO k , k r ;  T [x, y] = [Tx, Ty] fo r Vx , y e §k } .

W e define A ut (k) in  th e  sam e w a y . T h e  group Ad o (G-
k )  i s  a  subgroup of

Aut (k).
A t first, we calculate how deforms the  2-cocycle Z (•, • ) b y  the  Ad o -action

o f  'Gk .
Lemma 4.1. F or each g  in  6„, there ex ists a unique element zg  in  §k  _1 such

that

Z(Ado (9)x, Ado (9)Y) = Z(x, y) + B(z g , A O f o r vx , Y a A lt  •
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Pro o f . The uniqueness o f z ,  is  c lea r i f  it exists, because B (,  • )  is non-
degenerae.

Since the set of g satisfying the lemma forms a subgroup of dk , it is enough
to  p rove  the assertion for members o f a  generating set of ô ,.  W e  c a n  ta k e
exp (fz), z e g, f  e L k ,  as generators o f .6 k ,  because G  is assumed to be simply
connected (cf., Theorem 2.5 ii)).

F o r  a n  elem ent g = exp ( f z ) ,  expanding Ad o (exp ( f z ) )  i n t o  the series

—

1

!

n a d o  z r  and using the invariance of B ( ,  • ), we have the equality
m

B(O(Ado  (exp (fz))x), Ad o (exP (fz)).1?) =  B([(af)z, X ] )  ax,
Again by invariance of B ( , •), the right hand side of this equality equals Z(x, y) +
B((af)z, [x, y] o ). And s o  the assertion of the lem m a is valid  w ith  zg  =  (f )z .

Q.E.D.

Corollary 4.1.1 (of Proof).
zexp (f z ) = )z  f o r vf E L k ,  VZ e g.

ii) T he m apping 'dk  n  g z g  E - 1  is  a  normalized 1-cocycle f o r th e  Ad o -
action o f  Ù- k ,  that is, it holds that

Z1 =  0 , = —Ad o  (g)z g f o r  vg E ,

z919 2 =  z 9 2  +  Ad o  (g 2
- 1 )z9 1f o r  vg „ g 2  E  6„ .

Corollary 4.1.2. T he mapping

Pro o f . Thanks to Corollary 4.1.1 ii), it is enough to prove the assertion in
a neighbourhood of 1 in 6,.

Let x 1 , , x„  b e  a basis o f g . For a  sufficiently small s > 0, the pair of
the set

U := ...e "; f  = ( f 1 , f .)e (Lkr, If  lk  <} ,

and the mapping

U n e f i x i  . e- ' (.ft, • • • fn) E (Lk )

is a local coordinate o f 1 in e ,, .
For g = efixt...ef-x-, by Corollary 4.1.1, it holds the equality

zg =  (af„)x, + Ad o (e- f ^x^)((afn _i )x„_, ) + • • • + Ado (e - f 2 x 2 ) ( ( a f i ) x , )  .

Since the m apping a: L, L „ _ ,  is continuous and l in e a r , i t  is  o f class
Moreover, Ad o i s  a  C '-m apping  from  6k in to  G L ( , , , ) .  Hence, the above
equality implies the assertion. Q.E.D.

4.2. An extension of Ad o- action  of dk  t o  & .  N ow , w e can  ex tend  the
adjoint action of dk on  g", to  the central extension g„.

6 k  g z g  e &_1 . i s  o f  c lass  C .
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F or each g E 5„, define the  linear operator Ad (g ) o n  A, by

Ad (g)(x + rc):= Ad, (g)x + (B(z g , x) + r)c for x e §k, r e C ,

This definition gives actually an  ac tion  o f "d„ on § k a s  follows.

Theorem  4.2. Ad: g Ad (g ) i s  a group-homomorphism o f  6„ in t o  Aut (Ak )
o f class C c°.

P r o o f .  Let g be an  arbitrary element in  ô „. By Lemma 4.1, it holds that,
for any x , y e

[Ad (g)x, Ad (g)y ] = [Ad, (g)x, Ad, (g)y], + Z(Ad, (g)x, Ad, (g)y)c

= Ado (g)[x, y] o  + Z(x , y)c + B(z g , [x, y])c

=  Ad (g) [x, y] o + Z(x, y)c}  = Ad (g)[x, y] .

Hence, Ad, (g ) is  a n  element of Aut (A k ).
L e t g ' be another element of Ô,,. B y  defin ition , w e have

Ad (g) Ad (g')x = Ad (g){Ad o  (g')x  + x)c}

= Ado (g) Ado (g')x  + B (z 9 , Ad, (g')x)c + B(z g , x)c .

By invariance of B ( ,  • )  and  Corollary 4.1.1 ii), for any x e § k , this equals

Ad, (gg')x  + B(z y g ,, x)c = Ad (gg')x ,

and  so  A d is  a  group homomorphism.
The smoothness of A d follows from Corollary 4.1.2. Q.E.D.

For each x E  k , we obtain a  1-parameter group Ad (e"), t e R, of operators
on § k • T h i s  1-parameter group is equal to the usual one defined by the adjoint
action of the L ie algebra A„, that is, there holds that

Lemma 4.3. Ad (ex) = ead x  En,„ —
1

(ad x)tm for X  e
m!

P r o o f .  I t  is  e n o u g h  to  p ro v e  th a t  th e  infinitesimal generator o f the  1 -
parameter group Ad (e ') , t E R, is equal to a d  x . F o r  any y, z e §k, by definition
of z e ,x, we have

B (

I d
—

d t

( z e t x )
d

, Cy, z10) = C.11, zip)
t= o

d

t = 0

=—
d t

Z(Ad o  (e ')y , Ad, (e')z )
t =o

= Z([x , A o,z) + Z(Y , PC, 40)

= Z(X, [y , 40) = Max, LY, 40) •
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Since B (,  • )  is non-degenerate and  §k is generated by the elements of the form
[y, z ], y, z e "§K , it holds that

d—
d t

(z

e

. , ) =  3x.
t=0

  

Hence, for any y e §k , w e have by definition of Ad (etx) o n  Ak

—
d  

Ad (e ')y
dt t =0

= [x, y] o  + B (0x , y )c = PC> A • Q.E.D.

    

Corollary 4.3.1 (of Proof).

d
= Ado (e - ix)ax f o r vx  e Ak •

P roo f. By Corollary 4.1.1 ii), we have

d

—
d

t

z
e

,, =  Ado (e"){ (—d z  ,x )
dt e t = 0 1

And, as we showed in  th e  proof of Lemma 4.3
' d t e t=0

equals ax. Q.E.D.

   

4.3. Extended affine L ie  algebras Al. S in c e  t h e  2-cocycle Z ( • , - )  is
a-invariant:

Z(ax, y) + Z(x, ay) = 0 for Vx, y e §k ,

a defines, by ac =  0, a  continuous linear map from Ak in to  Ak - 1 , denoted by the
same symbol 0, and  satisfies the  derivation property, that is, it holds that

[ax, y] + [x, ay] = 0 fo r vx, y E Ak .

W e p u t 41:= ca + Ak , and  extend the  bracket product o n  Ak  t o  a  bilinear
m ap g  x  Ale, D (X, y) —) [x, y] e _1 b y

[r 1 0 + x 1 , r2 0 + x 2 ] := r 1 0x 2  — r2 0x 1 + [x 1 , x 2 ] for r 1 , r 2  e  C, x i , x2 e

In  the same way, we also extend the bracket product [•, •], on -4, to  a  bilinear
m ap g x §i, —' §1-1, where §: := CO + §k•

Though k  is  no t rea lly  a  L ie  algebra, we call 4ek t h e  extended affine Lie
algebra after th e  terminology i n  [2 ] fo r  simplicity, because th e  bilinear map
[•, •]: Az x 41—> Az_i ,  satisfies t h e  properties o f  t h e  u su a l b ra c k e t product,
antisymmetricity and  Jacobi identity . F rom  th e  sam e reason, we call "action"
the linear m ap Ad (g): A,e, —)  defined below for each g e '6k.

W e obtain the relation between the  ac tion  of a a n d  those o f elements in
Gk under Ad o a s  follows.

Lemma 4 .4 . Fo r each element g  in  d k ,  there holds that

Ado (g) 0 a 0 Ad o  (g -1 ) = 0 + ad o (zr i) .
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P roo f. Because of the invariance of B (,  •) , for any x, y E § k ,  we have the
equalities

B((0 + ad o (z, - ,))x, y) = Z (x , y) + B(z g - i,[x ,

= Z(A d o  (g 1 )x, Ado (g - 1 )y)

= B(8 Ad o  (g 1 )x, Ado (g - 1 )y)

= B((Ad o  (g) 0 0 0 Ado (g - 1 ))x, y) ,

and  this implies the  lemma, because B (,  • )  is non-degenerate. Q.E.D.

For each g e 'd„, we extend the operator Ad (g ) on „ to  the linear map from
AT, into by

Ad (g)0 := 0 + zg ,  — 1B(z g , z g )c

Lemma 4 .5 . Let k 2.
i) For any g e  ' -Gk, it holds that

[Ad (g)x, Ad(g)y] = Ad (g)[x, y] fo r  vx , y e

Moreover, letting g ' be another element o f  'Gk, there holds the equality

Ad (g) Ad (g')x = Ad (gg')x fo r  v x e .

Proof. It is enough to  prove the  two equalities
(1) [Ad (g)0, Ad (g)x ] = Ad (g)Ox for Vx E §k ,

(2) Ad (g) Ad (g')0 = Ad (gg')0.
The left hand side of (1) equals

+ z g - i ,  Ado (9)x] = ô Ad o (9)x + [z g -i, Ado (9)x]0 + Z(z g _„ Ado (g)x)c .

This is equal, by Corollary 4.1.1 ii) and  Lemma 4.4, to

0(Ad0 (9)x) + Ado (g)[—z 8 , x ] 3 Z(Z9-1, Ad 0  (g)x)c

= Ado  ( 9 ) ( e x  + [z g , x] o ) + Ado (g)[—z 9 , x]cp Ado(g)x)c

= Ado (g)ax + B(Oz g - i, Ad o (g)x)c .

By invariance of B (,  •) , Corollary 4.1.1 ii), and  Lemma 4.4,

-= Ado M ax  + B(Ad o (Max +  [z g , x] ) ), Ado z g )c

= Ado ( g ) a x  +  B(Ox, z g )c + B([z g , x] o , z g )c = Ad (g)ax ,

and  thus (1) holds.
The left hand side of (2) is equal, by Corollary 4.1.1 ii), to

Ad (g){0 + z g ,  —1B(z g ,, z g ,)c}  = Ad (g)0 + Ad (g)zg , —  1B(z g , z g ,)c .
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By definition of Ad (g)

= a + — 1B(z9 , zg )c + Ad, (g)(z o — i) + B(zg , z 9 —i)c — 1B(z9 ,, zg ,)c

= a + + B(z 9 , z 9 —i)c — 1{B(z9 , zg ) + B(z g , z g ,)}c .

O n  th e  o ther h a n d , th e  r ig h t h an d  s id e  o f  (2) is  e q u a l, b y  invariance and
symmetricity of B ( ,  • )  and  again by Corollary 4.1.1 ii), to

0 + Z 9 9 —  1B (z 9 9 ,, z g g ,)c

= 0 + z ( w r i — ilB(z g , zg ) + B(z g ,, zg ,) + 2B(Ad 0  (g -
1 )z 9 , z g ,)}c

= a + Z g g y i — 1{13(z9 , z g ) + B(z g ,, zg ,)} c + B(zg , ,

and so  (2) holds. Q.E.D.

Since this new Ad-action stabilizes all the  central elements in  41, it defines
an action of 6, on g = 41/Cc. Obviously, this new action on is an extension
of A d, on k . So, we denote it by the same symbol Ad,. By definition, we have

Lem m a 4.6. Ad o  (g)0 = a + z g _i f o r Vg  e 6 k .

§ 5 .  Weyl group of the completed affine Lie algebra

In  this section, as an application of the results in  §4, we calculate explicit
forms of the  normalizers and  centralizers, in  th e  loop group dk , of the Cartan
subalgebras o f th e  affine L ie  algebras Ak  a n d  Az. W e see  that, in  bo th  cases,
th e  q u o tien t g roups o f  t h e  normalizers b y  th e  centralizers a r e  canonically
isomorphic to the  usual affine Weyl group.

5.1. Cartan subalgebras of k  and Al. The dense subalgebra : =  + CO
of g c , is  one of Kac-Moody algebras of affine type with tier num ber 1 (see [4],
7.1), and its Cartan subalgebra ff is given by

:=  +  Cc + CO.

W e denote by fi the intersection of fie with = [Ae, Al. Clearly, it holds that

6 = b + Cc.

Moreover, we see that 6 and  fie  are m axim al abelian subalgebras o f Ak  a n d  Az
respectively.

We define one more commutative Lie algebra he by

:=  +  CO.

Then he is a n  abelian subalgebra of K.
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5.2. Centralizers in dk of Cartan subalgebras. Define subgroups 2, 2, 2e,
and 2e o f  k by

2 := {g E G k ;  Ado (g)h = h for v h E I)} ,

2 := {g e G-
k ; Ad (g)h = h for v h E fil ,

2 e := {g e G k ; Ado (g)h = h fo r v h E b e l ,

2. := {g e  k ;  Ad (g)h = h for vh e f)e} .

Let H := exp I) be the Cartan subgroup of G corresponding to I), and
H(L k ) OE 'd k .  W e can easily show

Lemma 5.1. 2 =  f i k .

Next, to determine other centralizers, we calculate zg  f o r  g E II, a s  follows.
By Proposition 3.1 and  Theorem 2.8, we see that

(L k )x  X • • • X (Lk) x  9  ( f l , • • ., fi) —> k i (f1)...h«,(f i) e ilk

is  a  L ie  group isomomorphism. Here, for ci e z1 and f  e (L k )>< ,

k (f ):= w .( 1 )- i wa(f) ,

wOE( f ) := exp (fx a ) exp ( —f - 1 x_ a ) exp (fx a ) ,

and h 1 , . . . ,  h1 E  b, x OE G gŒ (cc e A), are the Chevalley basis of g as in § 3 .  We have

Lemma 5.2. zh. ( f )  =  —f(3f)hŒ for va e A , vf  E (L k )x , where hOE := ['Ca, X -a] e

h.
Pro o f . Because hOE, x Œ, and x_„ form an s12 -triplet, there hold the equalities

Ad, (exp (fx„))x_„ = x_ OE + f h OE —  f

Ad, (exp (fx„))ha  = h„ — 2fx„ ,

Ad, (exp ( — f  'x OE))11„ ---- hOE —  2f  'x , ,

Ad, (exp ( —f - 1  x„))x„ = x OE + f 1 172  — f - 2 x_ OE .

Further, by Corollary 4.1.1 i) and Lemma 4.4, w e have

Ad, (exp (fx„))0 = 0 — (0f)x„ ,

Ad, (exp (—f - l x_ OE))0 = 0 + 0(f  - 1 )x _„ = 0 — f - 2  (Of )x _OE .

Hence, it holds that

Ad, (wa (f ))0  = Ad, (exp (fx a )) Ad, (exp (— f x_Œ))(8  — (Of)x,)

= Ad, (exp (fxa ))(a — (0f)x, — f - 1 (af)h OE)

=a — f—i(af)h«,



Loop groups and  completed affine L ie algebras 579

and so,

Ado  (12(f ))a = Ad o  (e - x.ex—e- x .)(a —  f  (af )h a,)

= Ad o  (e - x.ex - .)(0  —  f  (Of )h 2 f  - 1  (af )x OE)

= Ado  (e - x .) (a  + f  (af )ha  — 2f - 1  (Of )x a )

= a + f  (antic, .
O n the  other hand, by Lemma 4.4, Ad o (he t ( f ) )a is  e q u a l to  a + Z h a r l  —

a + z„.( f ._, ) . So, w e have

Z h „ ( f )  =  (f - 1 )- '(a(f - 1 ))11. = —f - 1 (af)h. • Q.E.D.

From this lemma, and Corollary 4.1.1 ii), it follows immediately that

Proposition 5.3. F o r  'A , • , f  e (Lw ,

Z h ( f 1 ) . . . h . ( f 1 )  = —  •  •  •  —  fi - 1 (0A)hi •

Now, we can describe the centralizers explicitly as follows.

Theorem 5.4.
0 2 =  {h.,(fi) • • • h.,(A); • • • exP (1,k)}.
i i)  2e _ 2e _ H .

Proo f . i )  Let g  e 2 .  By definition, Ad (g)h = A d, (g)h + B(z 9 , h)c for any
h e 1), and so  g  e H(L k )  by Lem m a 5.1. H ence, g  is written as

(.) g  = hc, i (fi) • • • k i (h) for 3f1 , . • • , J  e  (L k ) x  •

27r.,/ —  1 fo f(e2
i(8f)(e ")d0

is equal to  0  if and only if the winding number of f  around the origin of C  is
equa l to  O . And this is equivalent, by Theorem 2.5, to the condition that f  is
in the connected component of 1 in  (Lk )'< = C (Lk).

O n the other hand, exp (Lk)  is  an  connected open subgroup of (L k )x , and
so coincides with the connected component of 1.

Therefore, i) follows from the definition of B ( ,  • )  on  §k ,  and the two facts
that {h 1 , h1 } i s  a  basis of 1) and th a t B (,  • )  is non-degenerate on b x b.

ii) Let g  be an element in 2 e .  By the same reason for 2 , g  is of the form
(*). S in c e  g  centralizes a, zg  is equal to 0 by definition. H ence, by Proposition
5.3, i t  h o ld s  th a t  —f, - 1 (efi ) =  0  fo r v i = 1, I, and  s o  af, =  0  fo r i. This
m e a n s  th a t  a l l  the J ' s  a r e  c o n s ta n t  functions, a n d  h en ce  g  belongs to

Therefore, by Proposition 5.3, we have

2 = { hg ,(f i ) • • .11,(A); E, h) = 0  for 'It E bl •
For any f  G  (L k ) < , the integral

1
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H .  Therefore, 2e is contained in  H . The inclusion 2 e  H  is proved in the
same manner, and the converse inclusions are obvious. Q.E.D.

5.3. Normalizers of Cartan subalgebras. We denote by A7 (resp. f ,  R e ,  and
R e) the  normalizers in  d„ of h (resp. h, he, and  he):

:= tg e dk ; Ad, (g)h c b}
N := 1g e '6,‘ ; Ad (g)6 h l  ,
jÇre {g E dk ; Ado (g)be be} ,
Re := 1g  e dk ; Ad (g)be c 6e .

Theorem 5.5. Let N  be the normalizer o f  I) in G as in 3.1. Then,
i) 1\7 = = N  . k  ,
ii) AT' = Re = N . Ih„,(C C11 ) n1 . .... n1 e Z, C 1 ,..., C , e c.}.
Pro o f . i) Obviously, N. Ti,, no rm alizes b  a n d  6. A nd, since Ad (g)x —

A d, (g)x E CC Œ h  for any g  and x, it is  c lear tha t R  =
L et g e  -R .  Then, for any  h e Ad„ (g)h belongs to  h  and, in particular,

Ad, (g)h is  a  co n stan t m ap . Hence, it holds that

Ad (g(s))h = Ad (g(1))h fo r vs e

in  g, and  so  Ad, (g(1) - 1 g) centralizes h. Therefore, g, := g(1) - 1 g belongs to rik

by Lemma 5.1, whence g = g(l)g, is  a n  element o f N Il k . So, R  OE N.F-1 ,,.
ii) By the  same reason as for i), w e see that ge = Re.
Let g e  g e .  By definition of Ad0 (g) on , Ad 0 (g) normalizes h. Hence, by

i), g  is written as

g = g' 12„,(f0

with g' e N, , f  e (Lk)" . And so, by Corollary 4.1.1 and Proposition 5.3,
there holds that

Since this
v•

Ad, (g)0 = 0 + f ,-  (0f1 )h„, + • • • + .

belongs to  be, there exist n1 , , n, e C  such  tha t f ,'(0 f ,) = n , for
1. These differential equations are easily solved as

f i ( e 2n _) C i exp (27k/ — 1 ni 0)

with some constants C  E  C " (i = 1, ,  1 ) .  Hence, n, e Z, because fi are functions
o n  V .  Therefore, g  belongs to the rightest side of ii).

Conversely, every element of the rightest side of ii) obviously normalizes he
and he. Q.E.D.

Now, we consider the quotient groups R/2 and Re/2e.
By the above theorems, Re n 2  equals to H = 2 e .  Moreover, every element

in /-V is congruent with an element in Re modulo 2 .  Hence, ge/2e is isomorphic
to  R/2 canonically.
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Put := Re/2e and

T := hai(C,Cni); n 1 , , n, E Z, C1, , C, E Cx } .

Since N fl T  = H = 2e and N  normalizes T, we h a v e  -1,i( = (N/H) y (T /H ). From
the proof of Theorem 5.5 ii), we see that the mapping T n g A d o (g)a —  a gives
a n  isomorphism o f  T /H  o n to  th e  coroot la ttice o f  (g, 1)). T hus, w e  ge t the
following theorem.

Theorem 5.6. The quotient groups lç.r/2 and Re/2e are both isomorphic to
the aff ine Weyl group g  W  x canonically, where W  and 0‘ are the Weyl
group and the coroot lattice o f (g, h) respectively.

Remark 5.7. In  the  case  k o o ,  in  [7], the  L ie  algebra t) ® € L  and the
group 2 = exp (h (pc  Lco )  play essential roles to realize the basic  representation
of the  affine Lie a lg eb ra . I n  [1], the dense subalgebra Q c  C [ , ( - 1 ]  appears
in  the  same con tex t. T he  fact that 2  appears as the  centralizer of the Cartan
subalgebra, seems to have a close relation with their works.
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