Certain invariant sets of stochastic flows generated by stochastic differential equations

By

Takao Masuda

Introduction

First we consider the diffusion process $\{x_t\}_{t\geq 0}$ determined by the following stochastic differential equation;

(1)
$$dx_{t} = \sum_{k=1}^{r} V_{k}(x_{t}) \circ dw^{k}(t) + V_{0}(x_{t})dt , \qquad x_{0} = x$$

where V_0, V_1, \ldots, V_r are smooth vector fields on \mathbb{R}^d and $w = (w^1, \ldots, w^r)$ is an *r*-dimensional Wiener process. It seems to be a very natural and primitive problem to search for a subset E of \mathbb{R}^d as small as possible satisfying that $x_t \in E$ for all t almost surely. In this paper, we will give an answer to it.

Let $\theta_{0,t}, \ldots, \theta_{r,t}$ be the flows generated respectively by V_0, \ldots, V_r . Let E_x be the set of the points $\theta_{k_n,t_n} \circ \cdots \circ \theta_{k_1,t_1}(x)$ where *n* is a positive integer, $k_1, \ldots, k_n \in \{0, \ldots, r\}$ and $t_1, \ldots, t_n \in (-\infty, +\infty)$. Since Sussmann showed in [3] that E_x becomes a C^{∞} -submanifold of \mathbb{R}^d , we know at least that x_t stays in E_x for a while. On the other hand, x_t does not exit from \overline{E}_x , the closure of E_x in \mathbb{R}^d , as a trivial consequence of Stroock and Varadhan's result [2] considering the support of the probability law of $\{x_t\}_{t\geq 0}$ in the path space. In this paper, we will show that x_t does not exit from E_x itself up to the explosion time. Indeed, we will show under Lipschitz condition that the stochastic flow generated by the equation (1) preserves all submanifolds of the type E_x .

1. Statement of the result

Let $V_0, V_1, ..., V_r$ be fixed smooth vector fields on \mathbb{R}^d and we assume that $V_0, ..., V_r$ and $V_0 + \sum_{k=1}^r \partial V_k \cdot V_k$ satisfy the global Lipschitz condition where ∂V_k denotes the matrix $\left(\frac{\partial V_k^i}{\partial x^j}\right)$. For any absolutely continuous function $h = (h_0, h_1, ..., h_r)$ on $(-\infty, +\infty)$, we consider the ordinary differential equation (2) $\dot{\varphi}_t = \sum_{k=0}^r V_k(\varphi_t) \dot{h}^k(t), \quad -\infty < t < +\infty$

and put $\varphi_t \equiv \varphi_{s,t}(x, h)$ where φ_t is the solution of (2) satisfying $\varphi_s = x$. Then, for any fixed s, t and h, $\varphi_{s,t}(h) \equiv \varphi_{s,t}(\cdot, h)$ is a diffeomorphism on \mathbf{R}^d .

Communicated by Prof. S. Watanabe, October 17, 1990

Takao Masuda

Let S be the set of all polygonal functions $h = (h^0, ..., h^r)$ which move parallel to one of the coordinate axes everytime. Then

(3)
$$\mathbf{E}_{x} = \{\varphi_{0,1}(x,h): h \in \mathbf{S}\} = \{\varphi_{s,t}(x,h): h \in \mathbf{S}, -\infty < s, t < +\infty\}$$

where E_x is defined in Introduction. E_x is the smallest set which contains x and is invariant with respect to each of the flows generated respectively by V_0 , ..., V_r . Especially, we note that $y \in E_x$ implies $E_x = E_y$.

Let $w(t) = (w^1(t), \ldots, w^r(t)), -\infty < t < +\infty$ be an *r*-dimensional Wiener process such that w(0) = 0. Let $\varphi_{s,t}(x), -\infty < s, t < +\infty, x \in \mathbb{R}^d$ be a stochastic flow of diffeomorphisms generated by the stochastic differential equation (1), i.e. it is an \mathbb{R}^d -valued ramdom field satisfying with probability 1 that

(4)
$$\varphi_{s,t}(x)$$
 is continuous with respect to (s, t, x) .

(5) $\varphi_{s,t}$ is a diffeomorphism on \mathbb{R}^d for any $s, t \in (-\infty, +\infty)$,

(6)
$$\varphi_{t,u} \circ \varphi_{s,t} = \varphi_{s,u}$$
 for any s, t, u

and moreover, for any fixed s and x, $\varphi_t \equiv \varphi_{s,t}(x)$ satisfies that

(7)
$$\varphi_t = x + \sum_{k=1}^r \int_s^t V_k(\varphi_u) \circ dw^k(u) + \int_s^t V_0(\varphi_u) du \quad \text{a.s}$$

where, when s > t, we interpret the above stochastic integrals as backward integrals. See [1] for the existence of the stochastic flow.

Our main result is as follows:

Theorem. It holds with probability 1 that, for any s, t and x, E_x is an invariant set of $\varphi_{s,t}$.

The following corollary is an immediate consequence of it.

Corollary. Let $\{x_t\}_{t\geq 0}$ be the solution of (1). Then $x_t \in E_x$ for all $t \in [0, +\infty)$ almost surely.

Remark. We can easily extend above corollary to the case where the Lipschitz condition is not satisfied. In this case, the solutions of the equations (1) and (2) may explose. But we shall define E_x analogously considering only no-explosing solutions $\varphi_{s,t}(x, h)$ in (3). Then we can deduce from the above corollary by truncation argument that the diffusion process x_t stays in E_x up to the explosion time.

2. Proof of Theorem

This section is devoted to prove Theorem. First we study the form of the set E_x .

Lemma 1. For any $x \in \mathbb{R}^d$, there exist a local coordinate $f = (f^1, \dots, f^d)$ on some neighborhood U of x and some integer e, $0 \le e \le d$ such that

- (i) $f^{1}(x) = \cdots = f^{d}(x) = 0$,
- (ii) $M \equiv \{\xi \in U: f^{e+1}(\xi) = \cdots = f^d(\xi) = 0\}$ is contained in E_x ,
- (iii) V_0, \ldots, V_r are tangential to M at any point on M.

Proof. Fix any $x \in \mathbb{R}^d$. Let $(\tilde{f}^1, \dots, \tilde{f}^d)$ be a local coordinate on a neighborhood \tilde{U} of some point \tilde{x} of E_x such that $\tilde{f}^1(\tilde{x}) = \dots = \tilde{f}^d(\tilde{x}) = 0$ and $\tilde{M} \equiv \{\xi \in \tilde{U}: \tilde{f}^{e+1}(\xi) = \dots = \tilde{f}^d(\xi) = 0\}$ is contained in E_x for some $e, 0 \le e \le d$. It is clear that there exists at least one such local coordinate because we permit e to be 0. We can choose \tilde{x} and $(\tilde{U}; \tilde{f}^1, \dots, \tilde{f}^d)$ so that e, which is the dimension of \tilde{M} , becomes maximum. Since $\tilde{x} \in E_x$, there exists some $h \in S$ such that $\varphi_{0,1}(x, h) = \tilde{x}$ by (3). We put $f^i = \tilde{f}^i \circ \varphi_{0,1}(h)$ and $U = \varphi_{0,1}(h)^{-1}(\tilde{U})$. Then they satisfy (i) and (ii) since $M \equiv \{\xi \in U: f^{e+1}(\xi) = \dots = f^d(\xi) = 0\} = \varphi_{0,1}(h)^{-1}(\tilde{M}) = \varphi_{1,0}(h)(\tilde{M}) \subset E_x$.

Next, we shall show (iii). Suppose that there exists a point $p \in M$ such that $V_k(p)$ is not tangential to M for some k. Then we define a map g from a sufficiently small neighborhood of 0 in \mathbb{R}^{e+1} into \mathbb{R}^d by

$$g(y^1, \ldots, y^e, t) = \theta_t(f^{-1}(f^1(p) + y^1, \ldots, f^e(p) + y^e, 0, \ldots, 0))$$

where $\{\theta_t: -\infty < t < +\infty\}$ denotes the flow generated by V_k . It is easy to see g(0) = p. Noting that $f^{-1}(y^1 + f^1(p), \ldots, y^e + f^e(p), 0, \ldots, 0)$ lies in M, we see that the image of g is contained in E_x . Let $T_p(M)$ denote the tangent space to M at p. Since $\left(\frac{\partial g}{\partial y^1}(0), \ldots, \frac{\partial g}{\partial y^e}(0)\right)$ is a basis of $T_p(M)$ and $\frac{\partial g}{\partial t}(0) = V_k(p)$ does not lie in $T_p(M)$, we can see that $\frac{\partial g}{\partial y^1}(0), \ldots, \frac{\partial g}{\partial y^e}(0)$ and $\frac{\partial g}{\partial t}(0)$ are linearly independent so that g is nondegenerate at 0. So we can find some local coordinate $f_1 = (f_1^1, \ldots, f_1^d)$ on some neighborhood U_1 of p such that

$$f_1(g(y^1, \ldots, y^e, t)) = (y^1, \ldots, y^e, t, 0, \ldots, 0)$$

by the rank theorem. It is clear that $f_1(p) = 0$. Since $M_1 \equiv \{\xi \in U_1: f_1^{e+2}(\xi) = \cdots = f_1^d(\xi) = 0\}$ is contained in the image of g, it is contained in E_x . But this contradicts with the maximality of e. So V_0, \ldots, V_r are tangential to M and this completes the proof. \Box

Remark. Lemma 1 is also covered by a result of Sussmann [3] that E_x becomes a C^{∞} -submanifold of \mathbf{R}^d by a suitable differentiable structure.

We know from Lemma 1 that, for any fixed x and s, it holds almost surely that $\varphi_{s,t}(x)$ stays in E_x if t is close enough to s. Indeed, $\varphi_{s,t}(x)$ stays in M until it exit from U by (iii) in Lemma 1. The next lemma states that the exceptional set does not depend on x and s.

Lemma 2. It holds almost surely that, for any x and s, there exists some positive number ε such that $|t - s| < \varepsilon$ implies $\varphi_{s,t}(x) \in E_x$.

Takao Masuda

Proof. Let $h_n = h_n(w)$, n = 1, 2, ... be an polygonal approximation of the process $(t, w^1, ..., w^r)$. Then $\varphi_{s,t}(x, h_n)$ converges to $\varphi_{s,t}(x)$ in probability in the topology of local uniform convergence with respect to (s, t, x) (see [1]). By choosing a good subsequence, we may suppose that the above local uniform convergence holds almost surely. Particularly, it holds almost surely that, for arbitrary x and s, $\varphi_{s,t}(x, h_n)$ converges to $\varphi_{s,t}(x)$ uniformly with respect to t on any finite intervals. That implies the assertion of Lemma 2. Indeed, suppose that $\varphi_{s,t}(x, h_n)$ converges to $\varphi_{s,t}(x)$ uniformly with respect to t on any finite intervals. Let U be the coordinate neighborhood of x introduced in Lemma 1 and K be a compact neighborhood of x contained in U. Then, since the sequence $\{\varphi_{s,t}(x, h_n)\}_{n=1,2,...}$ is equicontinuous with respect to t, there exists an $\varepsilon > 0$ such that $|t - s| < \varepsilon$ implies that $\varphi_{s,t}(x, h_n) \in K$ for all n. Therefore, if $|t - s| < \varepsilon$, then $\varphi_{s,t}(x, h_n) \in M \cap K$ for all n where M is defined in Lemma 1. Since $M \cap K$ is compact and $\varphi_{s,t}(x, h_n)$ converges to $\varphi_{s,t}(x)$, we see $\varphi_{s,t}(x) \in M \cap K \subset E_x$ if $|t - s| < \varepsilon$. It completes the proof. \Box

Before deducing the assertion of Theorem, we shall prepare the following set-theoretical fact.

Lemma 3. Let the map $\psi: (-\infty, +\infty) \times (-\infty, +\infty) \times \mathbb{R}^d \to \mathbb{R}^d$ satisfy the following conditions (i) and (ii);

(i) $\psi_{s,s}(x) = x$ and $\psi_{t,u}(\psi_{s,t}(x)) = \psi_{s,u}(x)$ for any s, t, u and x.

(ii) For any s and x, there exists an $\varepsilon > 0$ such that $|t - s| < \varepsilon$ implies $\psi_{s,t}(x) \in E_x$.

Then $\psi_{s,t}(x) \in E_x$ for any s, t and x.

Proof. Let us fix any s and x. Put $A \equiv \{t \in (-\infty, +\infty): \psi_{s,t}(x) \in E_x\}$. It suffices to show $A = (-\infty, +\infty)$.

First we shall show that A is an open set in $(-\infty, +\infty)$. Suppose $t \in A$. By the assumption (ii), we can choose $\varepsilon > 0$ such that $|u - t| < \varepsilon$ implies $\psi_{t,u}(\psi_{s,t}(x)) \in$ $E_{\psi_{s,t}(x)}$. By the assumption (i), the left-hand side is equal to $\psi_{s,u}(x)$. Moreover $t \in A$ means that $\psi_{s,t}(x) \in E_x$ or equivalently $E_{\psi_{s,t}(x)} = E_x$. Therefore $|u - t| < \varepsilon$ implies $\psi_{s,u}(x) \in E_x$ which means that $u \in A$. That shows that A is an open set.

Next we shall show that A^c is an open set. Suppose $t \in A^c$. By the same argument as above, there exists an $\varepsilon > 0$ such that $|u - t| < \varepsilon$ implies $\psi_{s,u}(x) \in E_{\psi_{s,t}(x)}$. Since $E_x \cap E_{\psi_{s,t}(x)} = \phi$, $|u - t| < \varepsilon$ implies $u \in A^c$. That shows that A^c is an open set.

Since $\psi_{s,s}(x) = x$, s belongs to A so that A is non-empty. Therefore A = $(-\infty, +\infty)$. The proof is completed. \Box

Proof of Theorem. The assertion of Theorem is clear noting that $\varphi_{s,t}(x)$ satisfies the assumption of Lemma 3 almost surely by (6) and Lemma 2.

KOBE UNIVERSITY OF COMMERCE

530

References

- [1] H. Kunita, Stochastic flows and stochastic differential equations, Cambridge Univ. Press (1990).
- [2] D. W. Stroock and S. R. S. Varadhan, On the support of diffusion process with applications to the strong maximum principle, Proc. Sixth Berkeley Symp. Math. Statist. Prob. III (1972), 333-359.
- [3] H. Sussmann, Orbits of families of vector fields and integrabilities of systems with singularities, Bull. Amer. Math. Soc., 180 (1973), 197-199.