On mod p cohomology of the space X_{Γ} and mod p trace formula for Hecke operators

By

Goro NISHIDA

1. Introduction

Let $M_2 \mathbb{Z}$ denote the set of 2×2 matricies over \mathbb{Z} . The semigroup $M_2 \mathbb{Z}$ acts on the 2-torus T^2 as endomorphisms in the standard way. For any subgroup Γ of $M_2 \mathbb{Z}$, we can define the semi-direct product $\Gamma \ltimes T^2$. We denote the classifying space $B(\Gamma \ltimes T^2)$ by X_{Γ} . Our main interest is in the case of $\Gamma = SL_2 \mathbb{Z}$ or congruent modular groups. In this case it is known [3] that there is an isomorphism

$$H^{2n+1}(X_{\Gamma}; \mathbf{R}) \cong H^1(\Gamma; H^{2n}(BT^2; \mathbf{R})),$$

where the right hand side is the cohomology of the group Γ with the coefficient module $H^{2n}(BT^2; \mathbf{R})$. Then the Eichler-Shimura homomorphism turns out to be a homomorphism

$$\phi: M_k \to H^{2k-3}(X_{\Gamma}; \mathbf{R}),$$

where M_k is the space of modular forms of weight k for Γ . Moreover it is known [6] that we can define a Hecke operator T(n) on $H^*(X_{\Gamma}; M)$ for any module M induced from a stable self map of X_{Γ} , and ϕ commutes with Hecke operators. Now the theorem of Eichler and Shimura [7] asserts that $\phi: S_k \cong H_P^1(\Gamma; H^{2k-4}(BT^2; \mathbb{R}))$, where S_k is the space of cusp forms of weight k and H_P^1 means the parabolic cohomology of Γ . Then it is also known [3] that

$$\dim_{\mathbf{R}} H^{2k-3}(X_{\Gamma}; \mathbf{R}) = \dim_{\mathbf{R}} H^{1}_{P}(\Gamma; H^{2k-4}(BT^{2}; \mathbf{R})) + \nu,$$

where v is the number of equivalent classes of cusps.

In this note we study $H^*(X_{\Gamma}; \mathbf{F}_p)$, which has richer structure; the action of Steenrod algebra and the module structure over $H^{ev}(X_{\Gamma}; \mathbf{F}_p)$. We shall show that $H^{ev}(X_{\Gamma}; \mathbf{F}_p) \cong \mathbf{F}_p[x, y]^{\Gamma}$, the ring of Γ -invariants. In the case of $\Gamma = SL_2 \mathbb{Z}$, $\mathbf{F}_p[x, y]^{\Gamma} \cong \mathbf{F}_p[q, q_1]$, deg q = p + 1 and deg $q_1 = p(p - 1)$. It is shown (Corollary 3.3) that $H^*(X_{\Gamma}; \mathbf{F}_p)/qH^*(X_{\Gamma}; \mathbf{F}_p)$ satisfies certain periodicity. Using this the $\mathbf{F}_p[q, q_1]$ -module structure of $H^*(X_{\Gamma}; \mathbf{F}_p)$ is determined (Theorem 5.3). As a corollary of those results, we give a formula on mod p value of the trace of Hecke operators acting on cusp forms.

Received October 8, 1990

2. Additive structure of $H^*(X_{\Gamma}; \mathbf{F}_p)$

Let Γ denote $SL_2\mathbb{Z}$ or a congruent subgroup of $SL_2\mathbb{Z}$. Let d be a positive integer such that for any Γ -module over $\mathbb{Z}[1/d]$, $H^i(\Gamma; M) = 0$ for all $i \ge 2$. It is well known that there exists such an integer d and one can take d = 6 for $\Gamma = SL_2\mathbb{Z}$ (see [6]). For a $\mathbb{Z}[1/d]$ -module M, the Serre spectral sequence for the fibration

$$BT^2 \to X_{\Gamma} = B(\Gamma \ltimes T^2) \to B\Gamma$$

collapses and we have a short exact sequence

 $0 \to H^1(\Gamma; H^n(BT^2; M)) \to H^{n+1}(X_{\Gamma}; M) \to H^0(\Gamma; H^{n+1}(BT^2; M)) \to 0.$

Let x and y be the standard basis of $H^2(BT^2; \mathbb{Z})$. Then we have $H^*(BT^2; M) \cong \mathbb{Z}[x, y] \otimes M$, and the above argument shows the following.

Lemma 2.1. There are isomorphisms

$$H^{2n}(X_{\Gamma}; M) \cong H^{0}(\Gamma; \mathbb{Z}[x, y]_{n} \otimes M)$$

and

$$H^{2n+1}(X_{\Gamma}; M) \cong H^1(\Gamma; \mathbb{Z}[x, y]_n \otimes M),$$

where $\mathbb{Z}[x, y]_n$ denotes the module of homogeneous polynomials in x and y of degree n.

Now let p be a prime such that (p, d) = 1. Then $\bigoplus H^{2n}(X_{\Gamma}; \mathbf{F}_p) \cong H^0(\Gamma; \mathbf{F}_p[x, y]) \cong \mathbf{F}_p[x, y]^{\Gamma}$ is the ring of Dickson invariants. The additive structure of $H^{odd}(X_{\Gamma}; \mathbf{F}_p)$ is given as follows.

Theorem 2.2. ([3]) Let p be a prime such that (d, p) = 1. Let v be the number of equivalence classes of cusps of Γ . Then

$$\dim_{\mathbf{F}_n} H^{2n+1}(X_{\Gamma}; \mathbf{F}_p) = \dim_{\mathbf{F}_p} \mathbf{F}_p[x, y]_n^{\Gamma} + \dim_{\mathbf{R}} S_{n+2} + v,$$

where S_{n+2} is the space of cusp forms of weight n+2.

Proof. Consider the short exact sequence

$$0 \to \mathbf{Z}_{(p)}[x, y] \xrightarrow{p} \mathbf{Z}_{(p)}[x, y] \xrightarrow{\rho} \mathbf{F}_{p}[x, y] \to 0$$

of $\mathbf{Z}_{(p)}[\Gamma]$ -modules, where ρ is the reduction mod p. Then we have an exact sequence

$$\begin{split} 0 &\to H^0(\Gamma; \, \mathbb{Z}_{(p)}[x, \, y]) \xrightarrow{p} H^0(\Gamma; \, \mathbb{Z}_{(p)}[x, \, y]) \xrightarrow{\rho_*} H^0(\Gamma; \, \mathbb{F}_p[x, \, y]) \\ &\stackrel{\delta}{\to} H^1(\Gamma; \, \mathbb{Z}_{(p)}[x, \, y]) \xrightarrow{p} H^1(\Gamma; \, \mathbb{Z}_{(p)}[x, \, y]) \xrightarrow{\rho_*} H^1(\Gamma; \, \mathbb{F}_p[x, \, y]) \to 0 \,. \end{split}$$

First we show that $H^0(\Gamma; \mathbb{Z}_{(p)}[x, y]) = 0$. Since Γ is a congruent modular group, $\Gamma \supset \Gamma(N)$, the principal congruent modular group for some N. Hence $\Gamma \ni \alpha = \begin{pmatrix} 1 & N \\ 0 & 1 \end{pmatrix}$ and $\Gamma \ni \beta = \begin{pmatrix} 1 & 0 \\ N & 1 \end{pmatrix}$. One can easily check that for any homogeneous

516

polynomial $f(x, y) \in \mathbf{Q}[x, y]$, $\alpha f = f$ only if $f = ax^n$ for some $a \in \mathbf{Q}$ and $\beta f = f$ only if $f = by^n$ for some $b \in \mathbf{Q}$. Therefore $H^0(\Gamma; \mathbf{Q}[x, y]) = 0$ and so is for $H^0(\Gamma; \mathbf{Z}_{(p)}[x, y])$. Now note that

rank
$$(H^1(\Gamma; \mathbf{Z}_{(p)}[x, y]_n)/\text{Tor}) = \dim_{\mathbf{R}} H^1(\Gamma; \mathbf{R}[x, y]_n)$$
.

By the Eichler-Shimura isomorphism we have

$$\dim_{\mathbf{R}} H^1(\Gamma; \mathbf{R}[x, y]_n) = \dim_{\mathbf{R}} S_{n+2} + v.$$

Then the theorem follows from the above exact sequence and Lemma 2.1.

3. A periodicity

In this section we suppose that $\Gamma = SL_2\mathbb{Z}$ and $p \ge 5$. Since $SL_2\mathbb{Z} \ni \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, we see that $H^1(SL_2\mathbb{Z}; \mathbb{Z}[x, y]_n \otimes A) = 0$ for odd *n* and a $\mathbb{Z}_{(p)}$ -module A as shown in [7]. Let $q = xy^p - x^py \in \mathbb{F}_p[x, y]_{p+1}$ and $q_1 = x^{p(p-1)} + x^{(p-1)^2}y^{p-1} + \cdots + x^{p-1}y^{(p-1)^2} + y^{p(p-1)} \in \mathbb{F}_p[x, y]_{p(p-1)}$. For a matrix $\alpha \in M_2\mathbb{Z}$ we have $\alpha(q) = (\det \alpha)q$ and for $\alpha \in M_2\mathbb{Z}$ such that $\det \alpha \neq 0 \mod p$, we have $\alpha(q_1) = q_1$. It is well known that the ring of Dickson invariants is given by

$$\mathbf{F}_p[x, y]^{SL_2 \mathbf{Z}} = \mathbf{F}_p[q, q_1] .$$

Let (q) be the ideal of $\mathbf{F}_p[x, y]$ generated by q and let $Q_* = \mathbf{F}[x, y]/(q)$. Then Q_* is a graded $\mathbf{F}_p[M_2\mathbf{Z}]$ -module. If $n \le p$, then $Q_n \cong \mathbf{F}_p[x, y]_n$. If $n \ge p + 1$, then Q_n has a basis $[x^n]$, $[x^{n-1}y]$, ..., $[x^{n-p+1}y^{p-1}]$ and $[y^n]$, where [f] means the class of $f \in \mathbf{F}_p[x, y]$ in Q_* , and we have dim $Q_n = p + 1$.

Now let \wp^s denote the reduced power operation. Note that \wp^s : $\mathbf{F}_p[x, y]_n = H^{2n}(BT^2; \mathbf{F}_p) \to \mathbf{F}_p[x, y]_{n+s(p-1)} = H^{2n+2s(p-1)}(BT^2; \mathbf{F}_p)$ commutes with the action of $M_2\mathbf{Z}$. The following lemma is obvious.

Lemma 3.1. $\wp^{p}q = qq_{1}$, $\wp^{p+1}q = q^{p}$ and $\wp^{s}q = 0$ if $s \neq p, p+1$.

By the lemma, one can define an induced $F_p[M_2Z]$ -homomorphism

$$\wp^s: Q_n \to Q_{n+s(p-1)}.$$

If $n \ge p+1$, taking the basis $[x^n], \ldots, [x^{n-p+1}y^{p-1}]$ and $[y^n]$ in this order we can identify Q_n with \mathbf{F}_p^{p+1} . Then we have

Lemma 3.2. Suppose that $n \ge p + 1$. Then

$$\wp^s = \binom{n}{s} \times : Q_n \to Q_{n+s(p-1)}.$$

The proof is easy from the Cartan formula. Then we have the following key observation.

Corollary 3.3. Suppose that $n, m \ge p+1$ and $n \equiv m \mod (p-1)$. Then $Q_n \cong Q_m$ as $\mathbf{F}_p[M_2\mathbf{Z}]$ -modules.

Proof. By the above lemma, we see that the action of reduced powers on Q_* is similar to the case of $H^*(\mathbb{C}P; \mathbb{F}_p)$. Then as shown in [1], we see that there are integers k_i and s_i and chains of isomorphisms

$$Q_n \xrightarrow{u_1} Q_{k_1} \xrightarrow{u_2} Q_{k_2} \longrightarrow \cdots \longrightarrow Q_m$$
,

where $u_i = \wp^{p^{s_i}}$ or $(\wp^{p^{s_i}})^{-1}$.

Next let r be a positive integer. We denote the graded algebra $\mathbf{F}_p[x, y]/(q^r)$ by $Q_*^{(r)}$. As for $Q_* = Q_*^{(1)}$, $Q_*^{(r)}$ is a graded $\mathbf{F}_p[M_2\mathbf{Z}]$ -module, and by Lemma 3.1 we can define the reduced power

$$\wp^s \colon Q_n^{(r)} \to Q_{n+s(p-1)}^{(r)}$$

Lemma 3.4. Let n and m be integers such that $n \ge 2(p + 1)$ and $m \ge 2(p + 1)$. Then there is an isomorphism $Q_n^{(2)} \cong Q_m^{(2)}$ as $\mathbf{F}_p[SL_2\mathbf{Z}]$ -modules if i) $n \equiv m \mod p(p-1)$ or ii) $n \equiv m \mod p - 1$ and $nm \neq 0 \mod p$.

Proof. Note that dim $Q_n^{(2)} = 2p + 2$ if $n \ge 2(p + 1)$. It is clear that

$$q_1: Q_n^{(2)} \to Q_{n+p(p-1)}^{(2)}$$

is a monomorphism of $\mathbf{F}_p[SL_2\mathbf{Z}]$ -modules and hence an isomorphism if $n \ge 2(p+1)$. This shows the case i). Since $\wp^1 q = 0$, we have a following commutative exact diagram of $\mathbf{F}[M_2\mathbf{Z}]$ -modules

where ρ is the reduction homomorphism. Then by Lemma 3.2 and by the five lemma we see that

$$\wp^1\colon Q_n^{(2)}\to Q_{n+p-1}^{(2)}$$

is an isomorphism if $n \ge 2(p+1)$ and $n \ne 0, 1 \mod p$. Suppose that $n \ne 0 \mod p$, then combining the q_1 -periodicity we see that $Q_n^{(2)}, Q_{n+p-1}^{(2)}, \ldots, Q_{n+p(p-1)}^{(2)}$ are isomorphic to each other except $Q_{n+k(p-1)}^{(2)}$ such that $n + k(p-1) \equiv 0 \mod p$. This completes the proof.

Remark. The isomorphism in the lemma is not an isomorphism of $F_p[M_2Z]$ -modules in general.

4. Computation of $H^0(SL_2\mathbb{Z}; Q_*)$

We regard $\mathbf{F}_p[x, y]_n$ as a representation of $SL_2\mathbf{F}_p$ over \mathbf{F}_p . We write this $\mathbf{F}_p[SL_2\mathbf{F}_p]$ -module $\mathbf{F}_p[x, y]_n$ simply by V_n . Glover [4] has shown the following.

Theorem 4.1. i) $V_0, V_1, \ldots, V_{p-1}$ is the set of all irreducible representation of SL_2F_p over F_p .

ii) V_{p-1} is projective.

iii) There are exact sequences of SL_2F_p -modules

$$0 \to V_1 \to V_p \to V_{p-2} \to 0$$

and

$$0 \to V_i \oplus V_{i+2} \to V_{p+i+1} \to V_{p-i-3} \to 0$$

for $0 \le i \le p - 3$.

Corollary 4.2. Let $0 \le k \le 2p - 2$. Then V_k contains the trivial representation as a composition factor if and only if k = 0, p + 1 or 2p - 2. For k = 0, p + 1 or 2p - 2, the multiplicity of the trivial factor is 1.

Now note that $V_k = Q_k$ for $k \le p$ and there is a short exact sequence

$$0 \to V_{k-p-1} \xrightarrow{q} V_k \to Q_k \to 0$$

of $\mathbf{F}_p[SL_2\mathbf{F}_p]$ -modules for $k \ge p + 1$. Let α_2 be the class of $x^{2p-2} - x^{p-1}y^{p-1} + y^{2p-2}$ in Q_{2p-2} . One can easily check that α_2 is $SL_2\mathbf{F}_p$ (and hence $SL_2\mathbf{Z}$)-invariant. Then by Corollary 3.3, we have $SL_2\mathbf{Z}$ -invariant elements $\alpha_k \in Q_{k(p-1)}$ for $k \ge 2$.

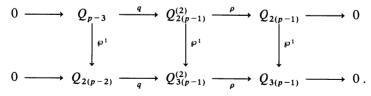
Theorem 4.3. There is an isomorphism

$$H^{0}(SL_{2}\mathbb{Z}; Q_{*}) \cong \mathbb{F}_{p}\{1, \alpha_{2}, \alpha_{3}, \ldots\}$$

Proof. Note that there is no $SL_2\mathbb{Z}$ -invariant in Q_k for 0 < k < 2p - 2 and $H^0(SL_2\mathbb{Z}; Q_{2p-2}) \cong \mathbb{F}_p\{\alpha_2\}$ by Corollary 4.2. Then the theorem follows from Corollary 3.3.

Lemma 4.4. $H^0(SL_2\mathbb{Z}; Q^{(2)}_{3(p-1)}) = 0.$

Proof. Consider the following commutative exact diagram



By Corollary 4.2, Q_{p-3} and $Q_{2(p-2)}$ do not have the trivial factor. In particular we have $H^0(SL_2\mathbb{Z}; Q_{p-3}) \cong H^0(SL_2\mathbb{Z}; Q_{2(p-2)}) \cong H^0(SL_2\mathbb{Z}; Q_{2(p-2)}/\text{Im } \wp^1) \cong 0$. From the exact sequence of the group cohomology associated with the short exact sequence $0 \to Q_{p-3} \xrightarrow{\wp^1} Q_{2(p-2)} \to \text{Cok } \wp^1 \to 0$, we see that

$$\mathscr{D}^1_*: H^1(SL_2\mathbb{Z}; Q_{p-3}) \to H^1(SL_2\mathbb{Z}; Q_{2(p-2)})$$

is a monomorphism. Then we have the following commutative exact diagram

Now the middle vertical arrow is an isomorphism by Corollary 3.3. Then the left \wp_*^1 is an isomorphism by the five lemma. Now $Q_{2(p-1)}^{(2)} = V_{2(p-1)}$ has no $SL_2 \mathbb{Z}$ -invariant and hence $H^0(SL_2 \mathbb{Z}; Q_{3(p-1)}^{(2)}) \cong 0$.

Corollary 4.5. There are isomorphisms

$$\operatorname{Im} \left[\rho_* \colon H^0(SL_2\mathbb{Z}; Q_*^{(2)}) \to H^0(SL_2\mathbb{Z}; Q_*) \right]$$
$$\cong \operatorname{Im} \left[\rho_* \colon H^0(SL_2\mathbb{Z}; \mathbf{F}_p[x, y]) \to H^0(SL_2\mathbb{Z}; Q_*) \right]$$
$$\cong \mathbf{F}_p\{1, \alpha_p, \alpha_{2p}, \dots\}.$$

Proof. Since $p \ge 5$, we have $3(p-1) \ge 2(p+1)$. Then by Lemma 3.4, $H^0(SL_2\mathbb{Z}; Q_{s(p-1)}^{(2)}) \cong H^0(SL_2\mathbb{Z}; Q_{3(p-1)}^{(2)}) \cong 0$ if $s \ge 3$ and $s \ne 0 \mod p$. Now note that $\alpha_{pk} = [q_1^k]$, the class of q_1^k in Q_* and hence $\alpha_{pk} \in \text{Im } \rho_*$. This completes the proof.

Corollary 4.6. There is an isomorphism

$$H^0(SL_2\mathbb{Z}; Q_*^{(2)}) \cong qH^0(SL_2\mathbb{Z}; Q_*) \oplus \mathbb{F}_p[q_1].$$

Proof. Consider the exact sequence

$$0 \to H^0(SL_2\mathbb{Z}; Q_*) \xrightarrow{q} H^0(SL_2\mathbb{Z}; Q_*^{(2)}) \xrightarrow{p_*} H^0(SL_2\mathbb{Z}; Q_*).$$

Then the corollary follows immediately from Corollary 4.5.

5. $\mathbf{F}_p[q, q_1]$ -module structure of $H^1(SL_2\mathbf{Z}; \mathbf{F}_p[x, y])$

Let $u \in \mathbf{F}_p[q, q_1]$ be a Dickson invariant. Then $u :: \mathbf{F}_p[x, y] \to \mathbf{F}_p[x, y]$ induces a homomorphism $H^1(SL_2\mathbf{Z}; \mathbf{F}_p[x, y]) \to H^1(SL_2\mathbf{Z}; \mathbf{F}_p[x, y])$ and we see that $H^1(SL_2\mathbf{Z}; \mathbf{F}_p[x, y])$ is an $\mathbf{F}_p[q, q_1]$ -module. If we identify $\mathbf{F}_p[q, q_1] =$ $H^0(SL_2\mathbf{Z}; \mathbf{F}_p[x, y])$ with $H^{ev}(X_{SL_2\mathbf{Z}}; \mathbf{F}_p)$ and $H^1(SL_2\mathbf{Z}; \mathbf{F}_p[x, y])$ with $H^{odd}(X_{SL_2\mathbf{Z}}; \mathbf{F}_p)$ (Lemma 2.1), then it is easy to see that this module structure is the same as one induced from the cup product.

Now let M_* denote the graded $\mathbf{F}_p[SL_2\mathbf{Z}]$ -module $\mathbf{F}_p[x, y]/(q, q_1) = \mathbf{F}_p[x, y] \otimes_{\mathbf{F}_p[q, q_1]} \mathbf{F}_p$. By Corollary 3.3, we easily see that $M_k = 0$ for $k \ge p^2$. Moreover it is known [5] that M_* is a Poincaré duality module.

Lemma 5.1. $H^1(SL_2\mathbb{Z}; Q_*)$ is $F_p[q_1]$ -free.

Proof. By Corollary 3.3 and Corollary 4.2, we see that the trivial factor in Q_* appears as a submodule. Consider the short exact sequence

$$0 \to Q_* \xrightarrow{q_1} Q_* \xrightarrow{\rho} M_* \to 0 ,$$

where ρ is the reduction. Then the above argument shows that ρ_* : $H^0(SL_2\mathbb{Z}; Q_*) \to H^0(SL_2\mathbb{Z}; M_*)$ is an epimorphism and hence we have an exact sequence

$$0 \to H^0(SL_2\mathbb{Z}; Q_*) \xrightarrow{q_1} H^1(SL_2\mathbb{Z}; M_*) \xrightarrow{\rho} M_* \to 0.$$

This shows $H^1(SL_2\mathbb{Z}; Q_*)$ is $\mathbf{F}_p[q_1]$ -free.

Let T_*^q denote the subspace of $H^1(SL_2\mathbb{Z}; \mathbf{F}_p[x, y])$ consisting of q-torsion elements.

Lemma 5.2. i) Every q-torsion element is single torsion, i.e., if $q^2 u = 0$ then qu = 0 for $u \in H^1(SL_2\mathbb{Z}; \mathbf{F}_p[x, y])$.

ii) $T_k^q \cong \mathbf{F}_p$ if k = s(p-1) - 2, $s \neq 0 \mod p$, and $T_k^q \cong 0$ otherwise.

Proof. Consider the exact sequence

$$0 \to \mathbf{F}_p[x, y] \xrightarrow{q} \mathbf{F}_p[x, y] \xrightarrow{\rho} Q_* \to 0$$

and the associated exact sequence

$$0 \to H^{0}(SL_{2}\mathbb{Z}; \mathbf{F}_{p}[x, y]) \xrightarrow{q} H^{0}(SL_{2}\mathbb{Z}; \mathbf{F}_{p}[x, y]) \xrightarrow{\rho_{*}} H^{0}(SL_{2}\mathbb{Z}; Q_{*})$$

$$\xrightarrow{\delta} H^{1}(SL_{2}\mathbb{Z}; \mathbf{F}_{p}[x, y]) \xrightarrow{q} H^{1}(SL_{2}\mathbb{Z}; \mathbf{F}_{p}[x, y]) \xrightarrow{\rho_{*}} H^{1}(SL_{2}\mathbb{Z}; Q_{*}) \to 0.$$

Then by Theorem 4.3 and Corollary 4.5, $T_q^q = \text{Im } \delta$ is spanned by $\delta(\alpha_k)$, $k \neq 0 \mod p$. This shows ii). Let $u \in H^1(SL_2 \mathbb{Z}; \mathbf{F}_p[x, y])$ be such that $q^2 u = 0$. Then $u = \delta^{(2)}(v)$ for some $v \in H^0(SL_2 \mathbb{Z}; Q_*^{(2)})$, where $\delta^{(2)}: H^0(SL_2 \mathbb{Z}; Q_*^{(2)}) \rightarrow H^1(SL_2 \mathbb{Z}; \mathbf{F}_p[x, y])$ is the coboundary associated with the exact sequence $0 \rightarrow \mathbf{F}_p[x, y] \xrightarrow{q^2} \mathbf{F}_p[x, y] \rightarrow Q_*^{(2)} \rightarrow 0$. By Corollary 4.6, $H^0(SL_2 \mathbb{Z}; Q_*^{(2)}) \cong qH^0(SL_2 \mathbb{Z}; Q_*) \oplus \mathbf{F}_p[q_1]$. If $v \in qH^0(SL_2 \mathbb{Z}; Q_*)$, say, v = qw, then $\delta^{(2)}(v) = \delta(w)$ where δ is the coboundary associated with $0 \rightarrow \mathbf{F}_p[x, y] \xrightarrow{q} \mathbf{F}_p[x, y] \xrightarrow{\rho} Q_* \rightarrow 0$. Hence qu = 0. This completes the proof.

Let now $B_* = \rho_*(T_*^q)$, where $\rho_*: H^1(SL_2\mathbb{Z}; \mathbf{F}_p[x, y]) \to H^1(SL_2\mathbb{Z}; M_*)$ is the reduction homomorphism. Then we have

Theorem 5.3. There is an isomorphism of $\mathbf{F}_{p}[q, q_{1}]$ -modules

 $H^1(SL_2\mathbb{Z}; \mathbf{F}_p[x, y]) \cong \mathbf{F}_p[q, q_1] \otimes (H^1(SL_2\mathbb{Z}; M_*)/B_*) \oplus \mathbf{F}_p[q, q_1]/(q) \otimes B_* .$

Proof. We take $\mathbf{F}_p[q, q_1]$ -indecomposable elements u_1, \ldots, u_r in T^q_* . Adding other $\mathbf{F}_p[q, q_1]$ -indecomposables v_1, \ldots, v_s in $H^1(SL_2\mathbf{Z}; \mathbf{F}_p[x, y])$, we can take a set $S = \{u_1, \ldots, u_r, v_1, \ldots, v_s\}$ such that $\rho_*: \mathbf{F}_p\{S\} \to H^1(SL_2\mathbf{Z}; M_*)$ is isomorphism. We are sufficient to show that if there is a relation $R = \sum f_i u_i + \sum g_j v_j = 0$, $f_i, g_j \in \mathbf{F}_p[q, q_1]$, then $f_i \in q\mathbf{F}_p[q, q_1]$ and $g_j = 0$ for all i, j. We prove this by induction on the degree of R. We suppose that there is no non-trivial

relation R in $H^1(SL_2\mathbb{Z}; \mathbf{F}_p[x, y]_k)$ for k < n. This is obviously true for n = p. Now let $R = \sum f_i u_i + \sum g_j v_j$ be a relation in degree n. Let $\overline{u_i}$ and $\overline{v_j}$ be the classes of u_i and v_j in $H^1(SL_2\mathbb{Z}; Q_*)$, respectively. By Lemma 5.1, $\{\overline{u_1}, \ldots, \overline{u_r}, \overline{v_1}, \ldots, \overline{v_s}\}$ is a basis of the free $\mathbf{F}_p[q_1]$ -module $H^1(SL_2\mathbb{Z}; Q_*)$. Then $\overline{R} = \sum f_i \overline{u_i} + \sum g_j \overline{v_j} = 0$ implies that $f_i, g_j \in q \mathbf{F}_p[q, q_1]$ for all i, j. Let $g_j = qh_j$, then we have $\sum qh_j v_j = q \sum h_j v_j = 0$, i.e., $\sum h_j v_j$ is a q-torsion. Then we have a relation $\sum h_j v_j = \sum k_i u_i$ for some k_j . But by the assumption of the induction we have $h_j = 0$ and hence $g_j = 0$ for all j. This completes the proof.

For p = 5, deg q = 6, deg $q_1 = 20$, p - 1 = 4 and $p^2 - 1 = 24$. We list the dimension of $H^1(SL_2\mathbb{Z}; M_*)$.

k	0	2	4	6	8	10	12	14	16	18	20	22	24
$\dim H^1(SL_2\mathbb{Z}; M_k)$	0	1	1	2	1	2	1	2	1	2	1	1	0
dim B_k	0	1	0	1	0	1	0	0	0	1	0	0	0

6. Mod p trace formula of Hecke operators

In this section we study the Hecke operators acting on $H^1(SL_2\mathbb{Z}; \mathbf{F}_p[x, y])$. Let A be a commutative algebra over $\mathbb{Z}[1/6]$. Let V be an $A[M_2\mathbb{Z}]$ -module and let $\alpha \in M_2\mathbb{Z}$ such that det $\alpha > 0$. Then one can define a Hecke operator

$$T(\alpha): H^{i}(SL_{2}\mathbb{Z}; V) \rightarrow H^{i}(SL_{2}\mathbb{Z}; V)$$

for i = 0 and 1, as follows (see [7]). Let $SL_2Z\alpha SL_2Z$ be the double coset, then there is a splitting

$$SL_2Z\alpha SL_2Z = \begin{bmatrix} SL_2Z\alpha_i \end{bmatrix}$$

into finite disjoint sum of left cosets for some $\alpha_i \in M_2 \mathbb{Z}$. For $u \in H^0(SL_2\mathbb{Z}; V)$, we define

$$T(\alpha) = \sum \alpha_i u$$

It is easy to see that this gives a well defined class in $H^0(SL_2\mathbb{Z}; V)$.

Next let $\gamma \in SL_2 \mathbb{Z}$, then by the above splitting we have $\alpha_i \gamma = \gamma_i \alpha_j$ for some $\gamma_i \in SL_2 \mathbb{Z}$ and some j. Let $u \in H^1(SL_2 \mathbb{Z}; V)$ and let $c: SL_2 \mathbb{Z} \to V$ be a 1-cocycle representing u. Then the function $\tilde{c}: SL_2 \mathbb{Z} \to V$ defined by

$$\tilde{c}(\gamma) = \sum \overline{\alpha_i} c(\gamma_i)$$
, $\overline{\alpha_i} = (\det \alpha_i) \alpha^{-1}$

is a 1-cocycle and $T(\alpha)(u)$ is defined to be the cohomology class $[\tilde{c}]$.

It is clear that a Hecke operator is natural with respect to $A[M_2\mathbf{Z}]$ -homomorphisms. Let $0 \to V \to W \to U \to 0$ be a exact sequence of $A[M_2\mathbf{Z}]$ -modules, then one can easily check that the connecting homomorphism

$$\delta: H^0(SL_2\mathbb{Z}; U) \to H^1(SL_2\mathbb{Z}; V)$$

commutes with Hecke operators.

For the matrix $\alpha = \begin{pmatrix} 1 & 0 \\ 0 & n \end{pmatrix}$, $T(\alpha)$ is denoted by T(n). When we need to specify the module M on which T(n) acts, we write as T(n)|M. In the following we fix a prime $p \ge 5$ and l denotes a prime different from p.

Lemma 6.1. For $q_1 \in H^0(SL_2\mathbb{Z}; \mathbb{F}_p[x, y])$ we have i) $T(p)q_1^n \in q\mathbb{F}_p[x, y]$ ii) $T(l)q_1^n = (l+1)q_1^n$.

Proof. Let $\alpha = \begin{pmatrix} 1 & 0 \\ 0 & l \end{pmatrix}$. Then in the splitting $SL_2 \mathbb{Z} \alpha SL_2 \mathbb{Z} = \prod_{i=0}^{l} SL_2 \mathbb{Z} \alpha_i$, we can take $\alpha_0 = \begin{pmatrix} l & 0 \\ 0 & 1 \end{pmatrix}$ and $\alpha_i = \begin{pmatrix} 1 & i \\ 0 & l \end{pmatrix}$ for $1 \le i \le l$. (Here *l* may be *p*). If $l \ne p$, then det $\alpha_i = l \ne 0 \mod p$ and hence $\alpha_i q_1^n = q_1^n$. Then by definition, $T(l)q_1^n = (l+1)q_1^n$. This shows ii). For l = p, $\alpha_0 x = 0$, $\alpha_0 y = y$, $\alpha_i x = x + iy$ and $\alpha_i y = 0$ in $\mathbb{F}_n[x, y]$. Then

$$T(p)q_1^n = y^{pn(p-1)} + (x+y)^{pn(p-1)} + \dots + (x+(p-1)y)^{pn(p-1)} + x^{pn(p-1)}$$

We write this polynomial by f(x, y). Then f(x, ix) = 0 for any $i \in \mathbf{F}_p$ and hence

$$T(p)q_1^n = x(x + y)...(x + (p - 1)y)yg(x, y)$$

for some g(x, y). Since x(x + y)...(x + (p - 1)y)y = q, the lemma is proved.

Lemma 6.2. For $\alpha_k \in H^0(SL_2\mathbb{Z}; Q_{k(p-1)})$, we have i) $T(p)\alpha_k = 0$ ii) $T(l)\alpha_k = (l+1)\alpha_k$.

Proof. By Corollary 3.3, we are sufficient to show the lemma for k = 2. But the computation for α_2 is similar to q_1^n .

Now let $V_* = \bigoplus_{i \ge 0} V_i$ be a graded $K[M_2 \mathbb{Z}]$ -module over a field K. We define a power series in K[[t]]

$$H_t(V_*; n) = \sum_{k \ge 0} (\text{Trace} [T(n)|H^1(SL_2\mathbf{Z}; V_k)] - \text{Trace} [T(n)|H^0(SL_2\mathbf{Z}; V_k)])t^{k+2}.$$

Here +2 in the exponent is added to adjust the degree with the weight of modular forms.

Recall that q is not $M_2\mathbb{Z}$ -invariant, in fact $\alpha q = (\det \alpha)q$. Let D be the 1-dim representation of $M_2\mathbb{Z}$ over \mathbf{F}_p defined by $\alpha(v) = (\det \alpha)v$ for $\alpha \in M_2\mathbb{Z}$ and $v \in D$. Then we have an exact sequence

$$0 \to \mathbf{F}_p[x, y] \otimes D \xrightarrow{q} \mathbf{F}_p[x, y] \xrightarrow{\rho} Q_* \to 0$$

of $\mathbf{F}_{n}[M_{2}\mathbf{Z}]$ -modules. The associated exact sequence

$$\begin{split} 0 &\to H^{0}(SL_{2}\mathbb{Z}; \mathbb{F}_{p}[x, y] \otimes D) \xrightarrow{q} H^{0}(SL_{2}\mathbb{Z}; \mathbb{F}_{p}[x, y]) \xrightarrow{\rho_{*}} H^{0}(SL_{2}\mathbb{Z}; Q_{*}) \\ &\stackrel{\delta}{\to} H^{1}(SL_{2}\mathbb{Z}; \mathbb{F}_{p}[x, y] \otimes D) \xrightarrow{q} H^{1}(SL_{2}\mathbb{Z}; \mathbb{F}_{p}[x, y]) \xrightarrow{\rho_{*}} H^{1}(SL_{2}\mathbb{Z}; Q_{*}) \to 0 \end{split}$$

is compatible with Hecke operators. Hence we have

 $H_t(\mathbf{F}_p[x, y] \otimes D; n)t^{p+1} - H_t(\mathbf{F}_p[x, y]; n) + H_t(Q_*; n) = 0.$

As $\mathbf{F}_p[SL_2\mathbf{Z}]$ -module, $\mathbf{F}_p[x, y] \otimes D = \mathbf{F}_p[x, y]$. Therefore we can identify $H^i(SL_2\mathbf{Z}; \mathbf{F}_p[x, y])$ with $H^i(SL_2\mathbf{Z}; \mathbf{F}_p[x, y] \otimes D)$ as modules. Let $T(l)_1$ and $T(l)_2$ be Hecke operators acting on $H^i(SL_2\mathbf{Z}; \mathbf{F}_p[x, y])$ and $H^i(SL_2\mathbf{Z}; \mathbf{F}_p[x, y] \otimes D)$, respectively. Then from the definition we easily have

Lemma 6.3. $T(l)_2 = lT(l)_1$ for any prime l.

Now the above argument shows the following

Theorem 6.4. For any prime l, we have

$$H_t(\mathbf{F}_p[x, y]; l) = \frac{1}{1 - lt^{p+1}} H_t(Q_*; l) \, .$$

Next we consider $H_t(\mathbb{R}[x, y]; l)$. Note that $H^1(SL_2\mathbb{Z}; \mathbb{R}[x, y]) \cong H^1(SL_2\mathbb{Z}; \mathbb{Z}[x, y]) \otimes \mathbb{R}$ and $H^0(SL_2\mathbb{Z}; \mathbb{R}[x, y]) \cong 0$. Hence we have

 $H_t(\mathbf{R}[x, y]; l) \in \mathbf{Z}[[t]]$.

Lemma 6.5. $H_t(\mathbf{R}[x, y]; l) \equiv H_t(\mathbf{F}_p[x, y]; l) \mod p.$

Proof. Let T_* be the subgroup of *p*-torsion elements in $H^1(SL_2\mathbb{Z}; \mathbb{Z}_{(p)}[x, y])$. Then

Trace $[T(l)|H^1(SL_2\mathbf{Z}; \mathbf{R}[x, y])] = \text{Trace} [T(l)|H^1(SL_2\mathbf{Z}; \mathbf{Z}_{(p)}[x, y])/T_*]$

as above. By Theorem 2.2, we have an exact sequence

$$0 \to H^{0}(SL_{2}\mathbb{Z}; \mathbb{F}_{p}[x, y]) \xrightarrow{\rho} H^{1}(SL_{2}\mathbb{Z}; \mathbb{Z}_{(p)}[x, y])$$
$$\xrightarrow{p} H^{1}(SL_{2}\mathbb{Z}; \mathbb{Z}_{(p)}[x, y]) \xrightarrow{\rho_{*}} H^{1}(SL_{2}\mathbb{Z}; \mathbb{F}_{p}[x, y]) \to 0$$

commuting with Hecke operators. Then we have an exact sequence

$$0 \to H^0(SL_2\mathbb{Z}; \mathbb{F}_p[x, y]) \to T_* \xrightarrow{p} T_* \to T_* \otimes \mathbb{F}_p \to 0.$$

Taking generators of T_* if necessary, we easily see that

Trace
$$[T(l)|H^0(SL_2\mathbb{Z}; \mathbf{F}_p[x, y]_k)] = \text{Trace} [T(l)|T_k \otimes \mathbf{F}_p].$$

Since $H^1(SL_2\mathbb{Z}; \mathbb{Z}_{(p)}[x, y]) \otimes \mathbb{F}_p \cong H^1(SL_2\mathbb{Z}; \mathbb{F}_p[x, y])$ we have

Trace $[T(l)|H^1(SL_2Z; Z_{(p)}[x, y]_k)/T_*]$

$$\equiv \operatorname{Trace} \left[T(l) | H^1(SL_2 \mathbb{Z}; \mathbb{F}_p[x, y]_k) / T_* \right] - \operatorname{Trace} \left[T(l) | H^0(SL_2 \mathbb{Z}; \mathbb{F}_p[x, y]_k) / T_* \right].$$

This completes the proof.

Now let S_k be the space of cusp forms of weight k. Hecke operator T(l) acts on S_k as a complex linear map and one can define Trace $[T(l)|S_k]$ as a

complex linear map. It is known [7] that using a suitable base of S_k , T(l) is represented by an integral matrix. Hence we can define

$$H_t(l) = \sum \operatorname{Trace} \left[T(l) | S_k \right] t^k \in \mathbb{Z}[[t]].$$

Theorem 6.6. For any prime l we have

$$2H_t(l) \equiv \frac{1}{1 - lt^{p+1}} H_t(Q_*; l) - \sum_{k \ge 2} (1 + l^{2k-1}) t^{2k} \mod p.$$

Proof. Recall that the Eichler-Shimura theorem [7] asserts that there is an isomorphism for even integer k

$$S_k \oplus \mathbf{R}{E_k} \rightarrow H^1(SL_2\mathbf{Z}; \mathbf{R}[x, y]_{k-2})$$

of real vector spaces commuting with Hecke operators, where $\mathbf{R}\{E_k\}$ is the **R**-vector space spanned by the Eisenstein series E_k . It is known [7] that $T(l)E_k = (1 + l^{k-1})E_k$. Note that the trace of T(l) on S_k as a real linear map is the twice of that as a complex linear map. Then the theorem follows from Theorem 6.4 and Lemma 6.5.

Remark. Since $H^i(SL_2\mathbb{Z}; Q_k)$ is periodic for $k \ge p+1$ with period p-1, $H_t(Q_*; l)$ is determined from the coefficient of t^k for $k \le 2p$. If one knows Trace $[T(l)|S_k]$ for $k \le 2p+2$, then using Theorem 6.6 one can compute the mod p value of Trace $[T(l)|S_k]$ for all k. For example let p = 5. We can compute $H_t(Q_*; p)$ as follows. In this case we have

$$2H_t(p) \equiv H_t(Q_*; p) + \sum_{k\geq 2} t^{2k}.$$

Up to weight 14 there is only one cusp form Δ of weight 12. It is known that $T(5)\Delta \equiv 0 \mod 5$ and hence $H_t(5) \equiv 0 \mod 5$ up to degree 14. Then by the periodicity we have

$$H_t(Q_*; 5) \equiv -\sum_{k\geq 2} t^{2k} \mod 5.$$

and hence we have $H_t(5) \equiv 0 \mod 5$.

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY

References

- [1] J. F. Adams, The Kahn-Priddy theorem, Proc. Camb. Phil. Soc., 73 (1973), 45-55.
- [2] D. Carlisle, P. Eccles, S. Hilditch, N. Ray, L. Schwartz, G. Walker and R. Wood, Modular representations of GL(n, p), splitting $\sum (\mathbb{C}P^{\infty} \times \cdots \times \mathbb{C}P^{\infty})$, and the β -family as framed hypersurfaces, Math. Z., 189 (1985), 239-261.
- [3] M. Furusawa, M. Tezuka and N. Yagita, On the cohomology of classifying spaces of torus bandle and automorphic forms, J. London Math. Soc., 37 (2) (1988), 520-534.

- [4] D. J. Glover, A study of certain modular representations, J. Algebra, 51 (1978), 425-475.
- [5] S. A. Mitchell, Finite complexs with A(n)-free cohomology, Topology, 24 (1985), 227-248.
- [6] G. Nishida, Modular forms and the double transfer for BT^2 .
- [7] G. Shimura, Introduction to the arithmetic theory of automorphic functions, Iwanami Shoten; Tokyo, University Press; Princeton, 1971.