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Absence of the affine lines on the homology planes of
general type

By

M. MIYANISHI AND S. TSUNODA

Introduction

Let X be a nonsingular algebraic surface defined over the complex field
C. We call X a homology plane (resp. Q-homology plane) if the homology groups
H(X;Z) (resp. H(X; Q)) vanish for all i >0. A purpose of the present article
is to show the following result.

Main Theorem. Let X be a Q-homology plane of Kodaira dimension 2.
Then there lies no curve C on X which is topologically isomorphic to the affine
line A'.

The core of a proof is to show that X and X — C are respectively embedded
as Zariski open sets into almost minimal pairs (cf. [9]; see below) and that the
inequality of Miyaoka-Yau type (cf. [5], [10]), after a relevant modification, can
be applied to derive a contradiction if one assumes the existence of a curve
topologically isomorphic to Al.

M. Zaidenberg [11] informed us of the following theorem which overlaps
our main theorem and whose proof is to be published in Math. USSR, Izvestija.

Theorem of Zaidenberg. Let X be a homology plane which is not isomorphic
to A% Then the following conditions are equivalent to each other:

(1) There exists a curve Iy in X which is isomorphic to A';

(2) There exists a simply connected curve I'y in X which is a posteriori
isomorphic to Al;

(3) There exists an isotrivial family of curves X — C, which is not a singular
C**-family;

(4) There exists a regular map X — P! with C* as a general fiber;

(5) X has Kodaira dimension 1.

1. Almost minimal surfaces and inequalities of Miyaoka-Yau type

Let (V, D) be a pair consisting of a nonsingular projective surface V and a
reduced effective divisor D with simple normal crossings. Denote by K, the
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canonical divisor of V. By the theory of peeling [9], we can decompose the
divisor D uniquely into a sum of effective Q-divisors D = D* + Bk(D) so that

(i) Bk(D) has the negative definite intersection form;

(i) (D* + K,-Z)=0 for every irreducible component Z of all maximal
twigs, rods and forks which are admissible and rational;

(iii) (D* + K, -Y) >0 for every irreducible component Y of D except the
irrelevant components of twigs, rods and forks which are all non-admissible and
rational.

The divisors D* and Bk(D) are called respectively the stripped form and the
bark of the divisor D.

We call the pair (V, D) almost minimal if, for every irreducible curve C on
V, either (D* + K,,-C)>0 or (D* + K,,-C) <0 and the intersection matrix of
C + Bk(D) is not negative definite.

We recall the following two results.

Lemma 1.1 [9, Th. 1.11]. Let (V,D) be as above. Then there exists a
birational morphism p:V — V onto a nonsingular projective surface V such that,
with D = U, (D), the following conditions are satisfied:

(1) dim H°(V, n(D + K,)) = dim H°(V, n(D + Ky)) for every integer n > 0;

() u,Bk(D) < Bk(D) and p (D* + K,) > D* + Ky;

(3) the pair (V, D) is almost minimal.

The birational morphism u is obtained as a composite of the following
operations:

(1) Find an exceptional curve E of the first kind, i.e., a (—1) curve, which
is an irreducible component of D and can be contracted so that the image of
D under the contraction is still a divisor with simple normal crossings. E is
called a superfluous component of D. If there is such a component E, contract E.

(2) If there is no superfluous component in D then consider D* + K, and
Bk(D).

(3) Find a (—1) curve E such that E ¢ Supp (D), (D* + K,,-E) <0 and the
intersection matrix of E + Bk(D) is negative definite. If there is none, then we
are done. If there is one, E meets D (Supp (Bk(D)), indeed) transversally in at
most two smooth points. Contract E and all components of D which become
subsequently (—1) curves. Repeat this operation as long as there exist (—1)
curves like E above.

(4) Repeat these operations (1), (2) and (3) all over again.

The pair (¥, D) is called an almost minimal model of (V,D). For the next
result, we refer to [9, Th. 1.12 and Remark at p. 227].

Lemma 1.2. Let (V,D) be as above. Then k(V — D)>0 if and only if
D* + K, is nef, ie, (D*+ K, C)>0 for every irreducible curve C on
V. Moreover, D* + K, is big and nef if and only if x(V — D)= 2.

We shall next consider a slight modification of the inequality of Miyaoka-Yau
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type (cf. [5], [10]). The authors were informed after the completion of this
article that Kobayashi [6, Th. 1 in Sect. 3] generalized the inequality to the
case of a surface with log-canonical singularities; indeed, if one sets b; = oo for
every i in the situation treated by Kobayashi, we obtain the inequality of
Miyaoka-Yau type that we need in this article.
Let V be a nonsingular projective surface and let D be a reduced effective
divisor with simple normal crossings. Let I" be a set of nonsingular curves and
let Iy, ..., I, be the connected components of I. We assume that the following
conditions are satisfied:
(1) D* + K, is a nef and big Q-divisor;
(2) (D* + K, -C) =0 for every irreducible component of I;
(3) Every irreducible component C of I' has self-intersection (C?) <
-2

(4) Supp (Bk(D)) = I';

(5) There is no (—1) curve E such that E ¢ Supp (I"'UD) and E meets
Supp (D) transversally in one smooth point.

By the condition (1), (D* + K,)*> > 0. Hence we know that, by the pluri-
quasicanonical morphism @y ..,y (cf. [3], [7]) every connected component [}
is contracted algebraically to a singular point. So, let f: V - W be the contrac-
tion of I" and let P,:= f(I;). Let 4:= f (D) as a divisor. Then we have the
following:

Lemma 1.3. With the above notations and assumptions, the connected compo-
nents I'; are classified into the following types:

(1) If P, ¢ Supp(4) and Supp (I;) ¢ Supp (D), then P; is a rational double
point.

(2) If P; ¢ Supp (4) and Supp (I';) = Supp (D), one of the following cases takes
place:

(2-1) TI; consists of a nonsingular elliptic curve and P; is an elliptic singular
point;

(2-2) P; is a quasi-elliptic singular point, ie., it is a quotient of an elliptic
singular point under a finite group action fixing the elliptic singular point; the
resolution graph is given in [7, Chap. III, Lemma 24];

(2-3) T consists of a cycle of nonsingular rational curves, one of which has
self-intersection < —3, and P, is a cuspidal singular point;

(2-4) P, is a quasi-cuspidal singular point, i.e., it is a quotient of a cuspidal
singular point under a finite group action fixing the cuspidal singular point.

(2-5) P; is a quotient singular point and T is either an admissible rational
rod or an admissible rational fork.

(3) If P, e Supp (4) and Supp (I;) = Supp (D), then one of the following cases
takes place:

(3-1) P; has a cyclic quotient singularity and I is an admissible rational
maximal twig;

(3-2) P; is a quotient singular point and I; has the configuration as given
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in Figure 1:

Y
I

(3-3) P; has a cyclic quotient singularity and I; has the configuration given
in Figure 2:

Proof. (1) See [7, Chap. III, Lemma 2.1].

(2) Suppose Supp (I;) = Supp (Bk(D)). Then, since P;¢ Supp(d), I; is a
connected component of D, and [I; is either an admissible rational rod or an
admissible rational fork. So, suppose Supp (I;) & Supp (Bk(D)). If I contains
an irrational component, we fall into the case (2-1) (cf. [7, Chap. III, Lemma
2.1]. Assume that all irreducible components are nonsingular rational curves. If
I'; contains a cycle, then we get to the case (2-3) (cf. [7, Chap. III, Lemma
2.3]). The remaining case is reduced to the cases (2-3) and (2-4) (cf. [7, Chap.
III, Lemma 24]). More precisely, among 13 cases classified there, all the cases
except for the case (i) are quasi-elliptic and the case (i) is quasi-cuspidal.

(3) If I; contains an irrational component, we get to the case (2-1). So,
every irreducible component of I is rational. If Supp (I;) = Supp (Bk(D)), then
I'; is an admissible rational maximal twig. If Supp (I;) ¢ Supp (Bk(D)) and
Supp (I;) N Supp (Bk(D)) # &, then we get to the case (3-2). If Supp (/)N
Supp (Bk(D)) = &, I'; must be a rational linear chain as in the case (3-3).

Now, we shall revise (weaken, in a sense) the inequality of Miyaoka-Yau
type proved by Kobayashi [5] to the effect that it can be applied to a proof
of our main theorem. Conforming to the classification in Lemma 1.3 of the
connected components of I, we denote by I'(1) (I (2) or I'(3), resp.) the union
of all connected components of type (1) ((2) or (3), resp.).

Theorem 1.4 [5]. Let V be a nonsingular projective surface and let D be a
reduced effective divisor with simple normal crossings. Let I be a set of nonsingular
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curves. We assume that the five conditions listed before Lemma 1.3 are satisfied
and that I'(1) = I'Q) = &. Then the following assertions hold true:

(1) There exists a complete Ricci-negative Einstein-Kdhler metric on V — D
with finite volume, which is unique up to multiplication by positive numbers.

(2) (D* + K)? < 3(e(V) — e(D)), where e(V) and e(D) are the Euler numbers
of V and D, respectively.

Employing the notations of Lemma 1.3, we let ¢: V — V be the contraction
of all connected components of I of type (3-1) and (—2) curves of all connected
components of type (3-2). Namely, ¢ is the contraction of all connected compo-
nents of Supp (Bk(D)). Let D = ¢,(D). Then V acquires only cyclic quotient
singularities lying on the component of D.

Lemma 1.5. Let P be a cyclic quotient singular point lying on an irreducible
component Z of D. Then there exists a neighbourhood of P satisfying the following
conditions:

(i) (U, P)~(U/G, G-0), where U is a neighbourhood of the origin of C?
isomorphic to A x A with the unit disk 4 and G is a finite cyclic subgroup of
GL(2, C) acting diagonally on CZ;

(i) 7 N(ZNU) is irreducible and U — n™(ZNU) ~ 4* x 4, where n: U - U
is the quotient morphism and A4* is the punctured unit disk;

(iii) (U, P) admits a V-metric in the sense of [5].

Proof. Let Dy, ..., D, be irreducible components of ¢~'(P), which constitute
a maximal twig of D and let C be the proper transform of Z. Let (D})= —q;
(1 <i<r)and let n be the determinant of the (r x r)-matrix (—(D;-D;)). In the
present proof, let D* denote the Q-divisor D — Bk(T), where Bk(T)=Y}., o;D;
is the bark of a twig T:= D, + --- + D,. By [9], we know that n is the smallest
positive integer such that nD* is an integral divisor. Note that (D* + K,,-D;) =0
and O<o;<1 for 1<i<r, and that Supp (Bk(T)) = Supp(T). Hence
n(D* + K,) is linearly equivalent to a Cartier divisor disjoint from T. In view
of a relation

n(D + K,) = n(D* + K,) + nBk(T)

which is, locally near T + C, equivalent to nBk(T). So, we can consider an
n-ple cyclic covering p: V - V ramifying totally over Supp (nBk(T)). As a normal
surface, ¥ may still have cyclic quotient singularities. So, let 6: V — V be the
minimal resolution of singularities of V, and let ¢ = p-o. In the sequel, we
argue locally near g *(T + C) or its images. We know that ¢ !(T) is a linear
chain of nonsingular rational curves. Let B be a reduced, effective divisor
supported by Supp (¢”'(T)). Note that g *(C) is irreducible. Indeed, if (C-D,) =
1, then n = (q*(C)-q*(D,)) = n(g*(C)-D,), where q(D,) =D, and q*(D,) = nD, +
other components. Since (g*(C)-D,) =1, ¢*(C) consists of a single irreducible
component C which is—smooth at the unique point g~*(CND,). By the loga-
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rithmic ramification formula written locally near C + B
(C+B+Ky)=4q*D+Ky)+R,
= q*(D* + Ky) + q*(Bk(T)) + R, ,

where R, is an effective divisor and the last equality is considered up to numerical
equivalence of Q-divisors. It is known that g*(Bk(T)) is an integral divisor (cf.
Hirzebruch [2]). Hence g¢*(D* + K,) is numerically equivalent to an integral
divisor. On the other hand, since the intersection matrix of g*(Bk(T)) + R, is
negative definite and (¢*(D* + K, )- A) = 0 for every component A of B, we know
that

C + B* + Ky = ¢*(D* + K,)

near C + B. This implies that B is contractible to a smooth point.

Let 7: V — V, be the contraction of B, let Q = t(B) and let Z, = 7(€). Then
¢-q: V-V decomposes to y-1: V-V, %V, where Y is a finite morphism such
that Y !(P) = Q. The Galois group G (~ Z/nZ) action on V descends down to
a G-action on V; in such a way that { ramifies only over the point P and the
curve Z, is G-stable. Since the point Q is smooth, we can choose local coordi-
nates (z,, z,) at the point Q so that the curve Z, is given by z, =0 and the
group G acts on (z,, z,) by (z,, z,)—(Z,, {°z,), where { is a primitive n-th root
of the unity. Now, the function F(z,, z;) = (log |z,1?)"*(1 — |z,]?)™* should give
a desired V-metric on V near P.

Proof of Theorem 1.4. One can follow verbatim the proof of Theorems 1
and 2 in [5] only by showing additionally that the local contribution of the

point P (with the above notations) in the computation of J ¢, is zero. With
V-D

the same notations g and g, as in [5] and with the notations of Lemma 1.5,

it suffices to note that

0=e(U‘)=f e(g)=J e(go)=f e(go)
|G| U_ vV -CcuT V-C

where U_. =U —Z, and U_ = U — Z.

2. Proof of Main Theorem

Let X be a Q-homology plane of Kodaira dimension 2. Let (V,D) be a
pair of a nonsingular projective surface and a reduced effective divisor with
simple normal crossings such that X is isomorphic to a Zariski open set V — D.
We may assume without loss of generality that the image of D is not a divisor
with simple normal crossings under the contraction of any (—1) curve component
of D. We refer to [1] and [8] for the following result.

Lemma 2.1. (1) X is an affine surface.
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(2) Every component of D is a nonsingular rational curve and the dual graph
of D is a tree.

(3) p,(V)=q(V)=0, where q(V) is the irregularity of V.

@ ID+Kyl=g.

(5) If X is a homology plane then V is a rational surface.

Proof. For the assertion (4), we refer to [7, Lemma 2.1.1].

If the pair (V, D) is not almost minimal, there is a (—1) curve E such that
E ¢ Supp (D) and E meets D transversally in at most two smooth points of D. If
E meets D in two points, the dual graph of E + D contains a loop. Hence, by
the construction of an almost minimal model (V, D) of (V, D), the dual graph of
D would contain a loop. Thus, |D + Ky| # & by [7, Lemma 2.1.1]. This is a
contradiction to Lemma 1.1. Therefore, if a (—1) curve E as above exists at
all, E meets D transversally only in one smooth point.

Lemma 2.2. Let X and (V, D) be the same as above. Let (V, D) be an almost
minimal model of (V, D) and let X =V —D. Then the following assertions hold
true:

(1) X is a Zariski open set of X, and X — X is a disjoint union of curves
isomorphic to the affine line.

(2) X has Kodaira dimension 2, and the Euler number < 0 provided X zX.

Proof. The assertion (1) follows from the construction of (V, D). Since X
is a Zariski open set, the Kodaira dimension k(X) is not less than that of
X. Note that e(X) =1 and e(X) = e(X) — N, where N is the number of irreduc-
ible components of X — X. Thence follows the second assertion.

Let (V, D) be as above. If there is a (—1) curve E on V such that E ¢
Supp (D) and E meets D transversally in one smooth point, then consider a pair
(V. D + E) instead of (V, D) and pass to an almost minimal model of v, D + E).
We will be thus endowed with an almost minimal pair (V, D) such that

(1) X := V — D has Kodaira dimension 2;

(i) e(X)<1, and e(X) =1 if and only if X coincides with the given Q-
homology plane X;

(iii) There is no (—1) curve E on V such that E ¢ Supp (D) and E meets D
transversally in one smooth point.

Then (V, D) satisfies all conditions (1) ~ (5) for (V, D) listed before Lemma
1.3 as well as the condition I'(1) = I'(2) = &, where I" consists of all admissible
rational maximal twigs of D. Then Theorem 1.4 asserts that

(D* + K;)? < 3(e(V) — e(D)) = 3e(X).

Since X has Kodaira dimension 2, we have (D* + Ky)? > 0, whence e(X) > 0.
This implies that X coincides with the given Q-homology plane X. Summarizing
the above arguments, we have the following:
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Theorem 2.3. Let X be a Q-homology plane. Then there exists an almost
minimal pair (V, D) such that X =V — D and there is no (—1) curve E ¢ Supp (D)
meeting D transversally in one smooth point.

Now, suppose there exists a curve C on X which is topologically isomorphic
to the affine line. The divisor D + C on V may not be a divisor with simple
normal crossings. Then there exists a birational morphism u:V, -V from a
nonsingular projective surface V; onto V such that D, := u*(D + C),., is an
effective reduced divisor with simple normal crossings and V, — D; ~ X — C.
Clearly, X,:= X — C has Kodaira dimension 2 and e(X,;)=0. We apply to
the pair (¥, D,) the same arguments as made use of to prove Theorem 2.3, and
we can conclude that there exists an almost minimal pair (V,, D,) such that
X, =V, — D, and there is no (—1) curve E ¢ Supp (D,) meeting D, transversally
in one smooth point. Theorem 1.4 then implies that

0 < (D% + K,,)* < 3e(X,) = 0.

which is a contradiction. This completes a proof of Main Theorem.
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