Absence of the affine lines on the homology planes of general type

By

M. MIYANISHI AND S. TSUNODA

Introduction

Let X be a nonsingular algebraic surface defined over the complex field C. We call X a homology plane (resp. Q-homology plane) if the homology groups $H_i(X; \mathbb{Z})$ (resp. $H_i(X; \mathbb{Q})$) vanish for all i > 0. A purpose of the present article is to show the following result.

Main Theorem. Let X be a Q-homology plane of Kodaira dimension 2. Then there lies no curve C on X which is topologically isomorphic to the affine line A^1 .

The core of a proof is to show that X and X - C are respectively embedded as Zariski open sets into almost minimal pairs (cf. [9]; see below) and that the inequality of Miyaoka-Yau type (cf. [5], [10]), after a relevant modification, can be applied to derive a contradiction if one assumes the existence of a curve topologically isomorphic to A^{1} .

M. Zaidenberg [11] informed us of the following theorem which overlaps our main theorem and whose proof is to be published in Math. USSR, Izvestija.

Theorem of Zaidenberg. Let X be a homology plane which is not isomorphic to A^2 . Then the following conditions are equivalent to each other:

(1) There exists a curve Γ_0 in X which is isomorphic to A^1 ;

(2) There exists a simply connected curve Γ_0 in X which is a posteriori isomorphic to A^1 ;

(3) There exists an isotrivial family of curves $X \rightarrow C$, which is not a singular C^{**} -family;

(4) There exists a regular map $X \to \mathbf{P}^1$ with \mathbf{C}^* as a general fiber;

(5) X has Kodaira dimension 1.

1. Almost minimal surfaces and inequalities of Miyaoka-Yau type

Let (V, D) be a pair consisting of a nonsingular projective surface V and a reduced effective divisor D with simple normal crossings. Denote by K_V the

Communicated by Prof. K. Ueno, October 5, 1989

canonical divisor of V. By the theory of peeling [9], we can decompose the divisor D uniquely into a sum of effective Q-divisors $D = D^* + Bk(D)$ so that

(i) Bk(D) has the negative definite intersection form;

(ii) $(D^* + K_V \cdot Z) = 0$ for every irreducible component Z of all maximal twigs, rods and forks which are admissible and rational;

(iii) $(D^* + K_V \cdot Y) \ge 0$ for every irreducible component Y of D except the irrelevant components of twigs, rods and forks which are all non-admissible and rational.

The divisors D^* and Bk(D) are called respectively the stripped form and the bark of the divisor D.

We call the pair (V, D) almost minimal if, for every irreducible curve C on V, either $(D^* + K_V \cdot C) \ge 0$ or $(D^* + K_V \cdot C) < 0$ and the intersection matrix of C + Bk(D) is not negative definite.

We recall the following two results.

Lemma 1.1 [9, Th. 1.11]. Let (V, D) be as above. Then there exists a birational morphism $\mu: V \to \tilde{V}$ onto a nonsingular projective surface \tilde{V} such that, with $\tilde{D} = \mu_*(D)$, the following conditions are satisfied:

(1) dim $H^0(V, n(D + K_V)) = \dim H^0(\tilde{V}, n(\tilde{D} + K_{\tilde{V}}))$ for every integer $n \ge 0$;

(2) $\mu_*Bk(D) \leq Bk(\tilde{D})$ and $\mu_*(D^* + K_V) \geq \tilde{D}^* + K_{\tilde{V}}$;

(3) the pair (\tilde{V}, \tilde{D}) is almost minimal.

The birational morphism μ is obtained as a composite of the following operations:

(1) Find an exceptional curve E of the first kind, i.e., a (-1) curve, which is an irreducible component of D and can be contracted so that the image of D under the contraction is still a divisor with simple normal crossings. E is called a *superfluous component* of D. If there is such a component E, contract E.

(2) If there is no superfluous component in D then consider $D^* + K_V$ and Bk(D).

(3) Find a (-1) curve E such that $E \notin \text{Supp}(D)$, $(D^* + K_V \cdot E) < 0$ and the intersection matrix of E + Bk(D) is negative definite. If there is none, then we are done. If there is one, E meets D (Supp (Bk(D)), indeed) transversally in at most two smooth points. Contract E and all components of D which become subsequently (-1) curves. Repeat this operation as long as there exist (-1) curves like E above.

(4) Repeat these operations (1), (2) and (3) all over again.

The pair (\tilde{V}, \tilde{D}) is called an almost minimal model of (V, D). For the next result, we refer to [9, Th. 1.12 and Remark at p. 227].

Lemma 1.2. Let (V, D) be as above. Then $\kappa(V - D) \ge 0$ if and only if $D^* + K_V$ is nef, i.e., $(D^* + K_V \cdot C) \ge 0$ for every irreducible curve C on V. Moreover, $D^* + K_V$ is big and nef if and only if $\kappa(V - D) = 2$.

We shall next consider a slight modification of the inequality of Miyaoka-Yau

type (cf. [5], [10]). The authors were informed after the completion of this article that Kobayashi [6, Th. 1 in Sect. 3] generalized the inequality to the case of a surface with log-canonical singularities; indeed, if one sets $b_i = \infty$ for every *i* in the situation treated by Kobayashi, we obtain the inequality of Miyaoka-Yau type that we need in this article.

Let V be a nonsingular projective surface and let D be a reduced effective divisor with simple normal crossings. Let Γ be a set of nonsingular curves and let $\Gamma_1, \ldots, \Gamma_r$ be the connected components of Γ . We assume that the following conditions are satisfied:

- (1) $D^* + K_V$ is a nef and big **Q**-divisor;
- (2) $(D^* + K_V \cdot C) = 0$ for every irreducible component of Γ ;
- (3) Every irreducible component C of Γ has self-intersection $(C^2) \le -2$;
- (4) Supp $(Bk(D)) \subset \Gamma$;
- (5) There is no (-1) curve E such that $E \notin \text{Supp}(\Gamma \cup D)$ and E meets Supp (D) transversally in one smooth point.

By the condition (1), $(D^* + K_V)^2 > 0$. Hence we know that, by the pluriquasicanonical morphism $\Phi_{|N(D^*+K_V)|}$ (cf. [3], [7]) every connected component Γ_i is contracted algebraically to a singular point. So, let $f: V \to W$ be the contraction of Γ and let $P_i := f(\Gamma_i)$. Let $\Delta := f_*(D)$ as a divisor. Then we have the following:

Lemma 1.3. With the above notations and assumptions, the connected components Γ_i are classified into the following types:

(1) If $P_i \notin \text{Supp}(\Delta)$ and $\text{Supp}(\Gamma_i) \notin \text{Supp}(D)$, then P_i is a rational double point.

(2) If $P_i \notin \text{Supp}(\Delta)$ and $\text{Supp}(\Gamma_i) \subset \text{Supp}(D)$, one of the following cases takes place:

(2-1) Γ_i consists of a nonsingular elliptic curve and P_i is an elliptic singular point;

(2-2) P_i is a quasi-elliptic singular point, i.e., it is a quotient of an elliptic singular point under a finite group action fixing the elliptic singular point; the resolution graph is given in [7, Chap. III, Lemma 2.4];

(2-3) Γ_i consists of a cycle of nonsingular rational curves, one of which has self-intersection ≤ -3 , and P_i is a cuspidal singular point;

(2-4) P_i is a quasi-cuspidal singular point, i.e., it is a quotient of a cuspidal singular point under a finite group action fixing the cuspidal singular point.

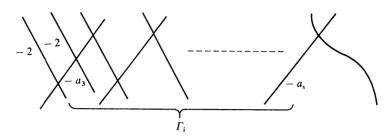
(2-5) P_i is a quotient singular point and Γ_i is either an admissible rational rod or an admissible rational fork.

(3) If $P_i \in \text{Supp}(\Delta)$ and $\text{Supp}(\Gamma_i) \subset \text{Supp}(D)$, then one of the following cases takes place:

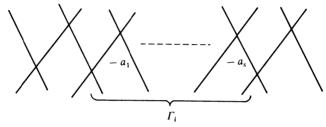
(3-1) P_i has a cyclic quotient singularity and Γ_i is an admissible rational maximal twig;

(3-2) P_i is a quotient singular point and Γ_i has the configuration as given

in Figure 1:



(3-3) P_i has a cyclic quotient singularity and Γ_i has the configuration given in Figure 2:



Proof. (1) See [7, Chap. III, Lemma 2.1].

(2) Suppose Supp $(\Gamma_i) \subset$ Supp (Bk(D)). Then, since $P_i \notin$ Supp (\varDelta) , Γ_i is a connected component of D, and Γ_i is either an admissible rational rod or an admissible rational fork. So, suppose Supp $(\Gamma_i) \notin$ Supp (Bk(D)). If Γ_i contains an irrational component, we fall into the case (2-1) (cf. [7, Chap. III, Lemma 2.1]. Assume that all irreducible components are nonsingular rational curves. If Γ_i contains a cycle, then we get to the case (2-3) (cf. [7, Chap. III, Lemma 2.3]). The remaining case is reduced to the cases (2-3) and (2-4) (cf. [7, Chap. III, Lemma 2.4]). More precisely, among 13 cases classified there, all the cases except for the case (i) are quasi-elliptic and the case (i) is quasi-cuspidal.

(3) If Γ_i contains an irrational component, we get to the case (2-1). So, every irreducible component of Γ_i is rational. If $\text{Supp}(\Gamma_i) \subset \text{Supp}(Bk(D))$, then Γ_i is an admissible rational maximal twig. If $\text{Supp}(\Gamma_i) \notin \text{Supp}(Bk(D))$ and $\text{Supp}(\Gamma_i) \cap \text{Supp}(Bk(D)) \neq \emptyset$, then we get to the case (3-2). If $\text{Supp}(\Gamma_i) \cap$ $\text{Supp}(Bk(D)) = \emptyset$, Γ_i must be a rational linear chain as in the case (3-3).

Now, we shall revise (weaken, in a sense) the inequality of Miyaoka-Yau type proved by Kobayashi [5] to the effect that it can be applied to a proof of our main theorem. Conforming to the classification in Lemma 1.3 of the connected components of Γ , we denote by $\Gamma(1)$ ($\Gamma(2)$ or $\Gamma(3)$, resp.) the union of all connected components of type (1) ((2) or (3), resp.).

Theorem 1.4 [5]. Let V be a nonsingular projective surface and let D be a reduced effective divisor with simple normal crossings. Let Γ be a set of nonsingular

446

curves. We assume that the five conditions listed before Lemma 1.3 are satisfied and that $\Gamma(1) = \Gamma(2) = \emptyset$. Then the following assertions hold true:

(1) There exists a complete Ricci-negative Einstein-Kähler metric on V - D with finite volume, which is unique up to multiplication by positive numbers.

(2) $(D^* + K_V)^2 \leq 3(e(V) - e(D))$, where e(V) and e(D) are the Euler numbers of V and D, respectively.

Employing the notations of Lemma 1.3, we let $\varphi: V \to \overline{V}$ be the contraction of all connected components of Γ of type (3-1) and (-2) curves of all connected components of type (3-2). Namely, φ is the contraction of all connected components of Supp (Bk(D)). Let $\overline{D} = \varphi_*(D)$. Then \overline{V} acquires only cyclic quotient singularities lying on the component of \overline{D} .

Lemma 1.5. Let P be a cyclic quotient singular point lying on an irreducible component Z of \overline{D} . Then there exists a neighbourhood of P satisfying the following conditions:

(i) $(U, P) \simeq (\hat{U}/G, G \cdot 0)$, where \hat{U} is a neighbourhood of the origin of \mathbb{C}^2 isomorphic to $\Delta \times \Delta$ with the unit disk Δ and G is a finite cyclic subgroup of $GL(2, \mathbb{C})$ acting diagonally on \mathbb{C}^2 ;

(ii) $\pi^{-1}(Z \cap U)$ is irreducible and $\hat{U} - \pi^{-1}(Z \cap U) \simeq \Delta^* \times \Delta$, where $\pi: \hat{U} \to U$ is the quotient morphism and Δ^* is the punctured unit disk;

(iii) (U, P) admits a V-metric in the sense of [5].

Proof. Let D_1, \ldots, D_r be irreducible components of $\varphi^{-1}(P)$, which constitute a maximal twig of D and let C be the proper transform of Z. Let $(D_i^2) = -a_i$ $(1 \le i \le r)$ and let n be the determinant of the $(r \times r)$ -matrix $(-(D_i \cdot D_j))$. In the present proof, let D^* denote the Q-divisor D - Bk(T), where $Bk(T) = \sum_{i=1}^r \alpha_i D_i$ is the bark of a twig $T := D_1 + \cdots + D_r$. By [9], we know that n is the smallest positive integer such that nD^* is an integral divisor. Note that $(D^* + K_V \cdot D_i) = 0$ and $0 < \alpha_i < 1$ for $1 \le i \le r$, and that Supp(Bk(T)) = Supp(T). Hence $n(D^* + K_V)$ is linearly equivalent to a Cartier divisor disjoint from T. In view of a relation

$$n(D + K_V) = n(D^* + K_V) + nBk(T)$$

which is, locally near T + C, equivalent to nBk(T). So, we can consider an *n*-ple cyclic covering $\rho: \tilde{V} \to V$ ramifying totally over Supp (nBk(T)). As a normal surface, \tilde{V} may still have cyclic quotient singularities. So, let $\sigma: \hat{V} \to \tilde{V}$ be the minimal resolution of singularities of \tilde{V} , and let $q = \rho \cdot \sigma$. In the sequel, we argue locally near $q^{-1}(T+C)$ or its images. We know that $q^{-1}(T)$ is a linear chain of nonsingular rational curves. Let B be a reduced, effective divisor supported by Supp $(q^{-1}(T))$. Note that $q^{-1}(C)$ is irreducible. Indeed, if $(C \cdot D_r) = 1$, then $n = (q^*(C) \cdot q^*(D_r)) = n(q^*(C) \cdot \hat{D}_r)$, where $q(\hat{D}_r) = D_r$ and $q^*(D_r) = n\hat{D}_r +$ other components. Since $(q^*(C) \cdot \hat{D}_r) = 1$, $q^*(C)$ consists of a single irreducible component \hat{C} which is—smooth at the unique point $q^{-1}(C \cap D_r)$. By the loga-

rithmic ramification formula written locally near $\hat{C} + B$

$$\begin{split} (\hat{C} + B + K_{\hat{V}}) &= q^*(D + K_V) + R_q \\ &\equiv q^*(D^* + K_V) + q^*(Bk(T)) + R_q \,, \end{split}$$

where R_q is an effective divisor and the last equality is considered up to numerical equivalence of Q-divisors. It is known that $q^*(Bk(T))$ is an integral divisor (cf. Hirzebruch [2]). Hence $q^*(D^* + K_V)$ is numerically equivalent to an integral divisor. On the other hand, since the intersection matrix of $q^*(Bk(T)) + R_q$ is negative definite and $(q^*(D^* + K_V) \cdot A) = 0$ for every component A of B, we know that

$$\hat{C} + B^* + K_{\hat{V}} = q^*(D^* + K_V)$$

near $\hat{C} + B$. This implies that B is contractible to a smooth point.

Let $\tau: \hat{V} \to V_1$ be the contraction of *B*, let $Q = \tau(B)$ and let $Z_1 = \tau(\hat{C})$. Then $\varphi \cdot q: \hat{V} \to \overline{V}$ decomposes to $\psi \cdot \tau: \hat{V} \to V_1 \stackrel{\psi}{\to} \overline{V}$, where ψ is a finite morphism such that $\psi^{-1}(P) = Q$. The Galois group $G (\simeq \mathbb{Z}/n\mathbb{Z})$ action on \hat{V} descends down to a *G*-action on V_1 in such a way that ψ ramifies only over the point *P* and the curve Z_1 is *G*-stable. Since the point *Q* is smooth, we can choose local coordinates (z_1, z_2) at the point *Q* so that the curve Z_1 is given by $z_1 = 0$ and the group *G* acts on (z_1, z_2) by $(z_1, z_2) \mapsto (\zeta Z_1, \zeta^a z_2)$, where ζ is a primitive *n*-th root of the unity. Now, the function $F(z_1, z_2) = (\log |z_1|^2)^{-1}(1 - |z_2|^2)^{-1}$ should give a desired *V*-metric on \overline{V} near *P*.

Proof of Theorem 1.4. One can follow *verbatim* the proof of Theorems 1 and 2 in [5] only by showing additionally that the local contribution of the point *P* (with the above notations) in the computation of $\int_{V-D} \tilde{c}_2$ is zero. With the same notations *g* and g_0 as in [5] and with the notations of Lemma 1.5, it suffices to note that

$$0 = \frac{e(\hat{U}_{-})}{|G|} = \int_{U_{-}} e(g) = \int_{V-C \cup T} e(g_{0}) = \int_{V-C} e(g_{0})$$

where $\hat{U}_{-} = \hat{U} - Z_{1}$ and $U_{-} = U - Z_{1}$.

2. Proof of Main Theorem

Let X be a Q-homology plane of Kodaira dimension 2. Let (V, D) be a pair of a nonsingular projective surface and a reduced effective divisor with simple normal crossings such that X is isomorphic to a Zariski open set V - D. We may assume without loss of generality that the image of D is not a divisor with simple normal crossings under the contraction of any (-1) curve component of D. We refer to [1] and [8] for the following result.

Lemma 2.1. (1) X is an affine surface.

(2) Every component of D is a nonsingular rational curve and the dual graph of D is a tree.

- (3) $p_a(V) = q(V) = 0$, where q(V) is the irregularity of V.
- $(4) \quad |D + K_V| = \emptyset.$
- (5) If X is a homology plane then V is a rational surface.

Proof. For the assertion (4), we refer to [7, Lemma 2.1.1].

If the pair (V, D) is not almost minimal, there is a (-1) curve E such that $E \notin \text{Supp}(D)$ and E meets D transversally in at most two smooth points of D. If E meets D in two points, the dual graph of E + D contains a loop. Hence, by the construction of an almost minimal model (\tilde{V}, \tilde{D}) of (V, D), the dual graph of \tilde{D} would contain a loop. Thus, $|\tilde{D} + K_{\tilde{V}}| \neq \emptyset$ by [7, Lemma 2.1.1]. This is a contradiction to Lemma 1.1. Therefore, if a (-1) curve E as above exists at all, E meets D transversally only in one smooth point.

Lemma 2.2. Let X and (V, D) be the same as above. Let (\tilde{V}, \tilde{D}) be an almost minimal model of (V, D) and let $\tilde{X} = \tilde{V} - \tilde{D}$. Then the following assertions hold true:

(1) \tilde{X} is a Zariski open set of X, and $X - \tilde{X}$ is a disjoint union of curves isomorphic to the affine line.

(2) \tilde{X} has Kodaira dimension 2, and the Euler number ≤ 0 provided $\tilde{X} \subsetneq X$.

Proof. The assertion (1) follows from the construction of (\tilde{V}, \tilde{D}) . Since \tilde{X} is a Zariski open set, the Kodaira dimension $\kappa(\tilde{X})$ is not less than that of X. Note that e(X) = 1 and $e(\tilde{X}) = e(X) - N$, where N is the number of irreducible components of $\tilde{X} - X$. Thence follows the second assertion.

Let (\tilde{V}, \tilde{D}) be as above. If there is a (-1) curve E on \tilde{V} such that $E \notin$ Supp (\tilde{D}) and E meets \tilde{D} transversally in one smooth point, then consider a pair $(\tilde{V}, \tilde{D} + E)$ instead of (\tilde{V}, \tilde{D}) and pass to an almost minimal model of $(\tilde{V}, \tilde{D} + E)$. We will be thus endowed with an almost minimal pair (\tilde{V}, \tilde{D}) such that

(i) $\tilde{X} := \tilde{V} - \tilde{D}$ has Kodaira dimension 2;

(ii) $e(\tilde{X}) \leq 1$, and $e(\tilde{X}) = 1$ if and only if \tilde{X} coincides with the given Q-homology plane X;

(iii) There is no (-1) curve E on \tilde{V} such that $E \notin \text{Supp}(\tilde{D})$ and E meets \tilde{D} transversally in one smooth point.

Then (\tilde{V}, \tilde{D}) satisfies all conditions $(1) \sim (5)$ for (V, D) listed before Lemma 1.3 as well as the condition $\Gamma(1) = \Gamma(2) = \emptyset$, where Γ consists of all admissible rational maximal twigs of \tilde{D} . Then Theorem 1.4 asserts that

$$(\tilde{D}^* + K_{\tilde{V}})^2 \le 3(e(\tilde{V}) - e(\tilde{D})) = 3e(\tilde{X}).$$

Since \tilde{X} has Kodaira dimension 2, we have $(\tilde{D}^* + K_{\tilde{V}})^2 > 0$, whence $e(\tilde{X}) > 0$. This implies that \tilde{X} coincides with the given **Q**-homology plane X. Summarizing the above arguments, we have the following: **Theorem 2.3.** Let X be a Q-homology plane. Then there exists an almost minimal pair (V, D) such that X = V - D and there is no (-1) curve $E \notin \text{Supp}(D)$ meeting D transversally in one smooth point.

Now, suppose there exists a curve C on X which is topologically isomorphic to the affine line. The divisor $D + \overline{C}$ on V may not be a divisor with simple normal crossings. Then there exists a birational morphism $\mu: V_1 \to V$ from a nonsingular projective surface V_1 onto V such that $D_1 := \mu^*(D + \overline{C})_{red}$ is an effective reduced divisor with simple normal crossings and $V_1 - D_1 \simeq X - C$. Clearly, $X_1 := X - C$ has Kodaira dimension 2 and $e(X_1) = 0$. We apply to the pair (V_1, D_1) the same arguments as made use of to prove Theorem 2.3, and we can conclude that there exists an almost minimal pair (V_2, D_2) such that $X_1 = V_2 - D_2$ and there is no (-1) curve $E \notin \text{Supp}(D_2)$ meeting D_2 transversally in one smooth point. Theorem 1.4 then implies that

$$0 < (D_2^* + K_{V_2})^2 \le 3e(X_1) = 0.$$

which is a contradiction. This completes a proof of Main Theorem.

DEPARTMENT OF MATHEMATICS FACULTY OF SCIENCE OSAKA UNIVERSITY

References

- [1] R. V. Gurjar and A. R. Shastri, On the rationality of homology 2-cells, J. Math. Soc. Japan. I: 41 (1989), 33-56; II: 41 (1989), 175-212.
- [2] F. Hirzebruch, Über vierdimensionale Riemannsche Flächen, Math. Ann., 126 (1953), 1-22.
- [3] Y. Kawamata, On the classification of non-complete algebraic surfaces, in "Proc. Copenhagen summer meeting in algebraic geometry," Lecture Notes in Mathematics, Springer, Berlin-Heidelberg-New York, 1979, pp. 215-232.
- [4] R. Kobayashi, Einstein-Kähler metrics on open algebraic surfaces of general type, Tohoku Math. J., 37 (1985), 43-77.
- [5] R. Kobayashi, Einstein-Kähler V metrics on open Satake V surfaces with isolated quotient singularities, Math. Ann., 272 (1985), 385-398.
- [6] R. Kobayashi, Uniformization of complex surfaces, Advanced studies in pure mathematics, 18 (1990).
- [7] M. Miyanishi, Non-complete algebraic surfaces, Lecture Notes in Mathematics, Springer, Berlin-Heidelberg-New York, 1981.
- [8] M. Miyanishi and T. Sugie, Homology planes with quotient singularities, J. Math. Kyoto Univ.
- [9] M. Miyanishi and S. Tsunoda, Non-complete algebraic surfaces with logarithmic Kodaira dimension -∞ and with non-connected boundaries at infinity, Japanese J. Math (NS), 10 (1984), 195-242.
- [10] Y. Miyaoka, The maximal number of quotient singularities on surfaces with given numerical invariants, Math. Ann., 268 (1984), 159-171.
- [11] M. Zaidenberg, A letter to M. Miyanishi dated March 22, 1990.