Absence of the affine lines on the homology planes of general type

By
M. Miyanishi and S. Tsunoda

Introduction

Let X be a nonsingular algebraic surface defined over the complex field C. We call X a homology plane (resp. Q-homology plane) if the homology groups $H_{i}(X ; \mathbf{Z})$ (resp. $\left.H_{i}(X ; \mathbf{Q})\right)$ vanish for all $i>0$. A purpose of the present article is to show the following result.

Main Theorem. Let X be a Q-homology plane of Kodaira dimension 2. Then there lies no curve C on X which is topologically isomorphic to the affine line \mathbf{A}^{1}.

The core of a proof is to show that X and $X-C$ are respectively embedded as Zariski open sets into almost minimal pairs (cf. [9]; see below) and that the inequality of Miyaoka-Yau type (cf. [5], [10]), after a relevant modification, can be applied to derive a contradiction if one assumes the existence of a curve topologically isomorphic to \mathbf{A}^{1}.
M. Zaidenberg [11] informed us of the following theorem which overlaps our main theorem and whose proof is to be published in Math. USSR, Izvestija.

Theorem of Zaidenberg. Let X be a homology plane which is not isomorphic to $\mathbf{A}^{\mathbf{2}}$. Then the following conditions are equivalent to each other:
(1) There exists a curve Γ_{0} in X which is isomorphic to \mathbf{A}^{1};
(2) There exists a simply connected curve Γ_{0} in X which is a posteriori isomorphic to \mathbf{A}^{1};
(3) There exists an isotrivial family of curves $X \rightarrow C$, which is not a singular C**-family;
(4) There exists a regular map $X \rightarrow \mathbf{P}^{1}$ with \mathbf{C}^{*} as a general fiber;
(5) X has Kodaira dimension 1.

1. Almost minimal surfaces and inequalities of Miyaoka-Yau type

Let (V, D) be a pair consisting of a nonsingular projective surface V and a reduced effective divisor D with simple normal crossings. Denote by K_{V} the
canonical divisor of V. By the theory of peeling [9], we can decompose the divisor D uniquely into a sum of effective \mathbf{Q}-divisors $D=D^{*}+B k(D)$ so that
(i) $B k(D)$ has the negative definite intersection form;
(ii) $\left(D^{*}+K_{V} \cdot Z\right)=0$ for every irreducible component Z of all maximal twigs, rods and forks which are admissible and rational;
(iii) $\left(D^{*}+\mathrm{K}_{V} \cdot \mathrm{Y}\right) \geq 0$ for every irreducible component Y of D except the irrelevant components of twigs, rods and forks which are all non-admissible and rational.

The divisors D^{*} and $B k(D)$ are called respectively the stripped form and the bark of the divisor D.

We call the pair (V, D) almost minimal if, for every irreducible curve C on V, either $\left(D^{*}+K_{V} \cdot C\right) \geq 0$ or $\left(D^{*}+K_{V} \cdot C\right)<0$ and the intersection matrix of $C+B k(D)$ is not negative definite.

We recall the following two results.
Lemma 1.1 [9, Th. 1.11]. Let (V, D) be as above. Then there exists a birational morphism $\mu: V \rightarrow \tilde{V}$ onto a nonsingular projective surface \tilde{V} such that, with $\tilde{D}=\mu_{*}(D)$, the following conditions are satisfied:
(1) $\operatorname{dim} H^{0}\left(V, n\left(D+K_{V}\right)\right)=\operatorname{dim} H^{0}\left(\tilde{V}, n\left(\tilde{D}+K_{\tilde{V}}\right)\right)$ for every integer $n \geq 0$;
(2) $\mu_{*} B k(D) \leq B k(\tilde{D})$ and $\mu_{*}\left(D^{*}+K_{V}\right) \geq \tilde{D}^{*}+K_{\tilde{V}}$;
(3) the pair (\tilde{V}, \tilde{D}) is almost minimal.

The birational morphism μ is obtained as a composite of the following operations:
(1) Find an exceptional curve E of the first kind, i.e., a (-1) curve, which is an irreducible component of D and can be contracted so that the image of D under the contraction is still a divisor with simple normal crossings. E is called a superfluous component of D. If there is such a component E, contract E.
(2) If there is no superfluous component in D then consider $D^{*}+K_{V}$ and $B k(D)$.
(3) Find a (-1) curve E such that $E \notin \operatorname{Supp}(D),\left(D^{*}+K_{V} \cdot E\right)<0$ and the intersection matrix of $E+B k(D)$ is negative definite. If there is none, then we are done. If there is one, E meets $D(\operatorname{Supp}(B k(D))$, indeed) transversally in at most two smooth points. Contract E and all components of D which become subsequently (-1) curves. Repeat this operation as long as there exist (-1) curves like E above.
(4) Repeat these operations (1), (2) and (3) all over again.

The pair (\tilde{V}, \tilde{D}) is called an almost minimal model of (V, D). For the next result, we refer to [9, Th. 1.12 and Remark at p. 227].

Lemma 1.2. Let (V, D) be as above. Then $\kappa(V-D) \geq 0$ if and only if $D^{*}+\mathrm{K}_{V}$ is nef, i.e., $\left(D^{*}+K_{V} \cdot C\right) \geq 0$ for every irreducible curve C on V. Moreover, $D^{*}+K_{V}$ is big and nef if and only if $\kappa(V-D)=2$.

We shall next consider a slight modification of the inequality of Miyaoka-Yau
type (cf. [5], [10]). The authors were informed after the completion of this article that Kobayashi [6, Th. 1 in Sect. 3] generalized the inequality to the case of a surface with log-canonical singularities; indeed, if one sets $b_{i}=\infty$ for every i in the situation treated by Kobayashi, we obtain the inequality of Miyaoka-Yau type that we need in this article.

Let V be a nonsingular projective surface and let D be a reduced effective divisor with simple normal crossings. Let Γ be a set of nonsingular curves and let $\Gamma_{1}, \ldots, \Gamma_{r}$ be the connected components of Γ. We assume that the following conditions are satisfied:
(1) $D^{*}+K_{V}$ is a nef and big Q-divisor;
(2) $\left(D^{*}+K_{V} \cdot C\right)=0$ for every irreducible component of Γ;
(3) Every irreducible component C of Γ has self-intersection $\left(C^{2}\right) \leq$ -2 ;
(4) $\operatorname{Supp}(B k(D)) \subset \Gamma$;
(5) There is no (-1) curve E such that $E \nsubseteq \operatorname{Supp}(\Gamma \cup D)$ and E meets Supp (D) transversally in one smooth point.
By the condition (1), $\left(D^{*}+K_{V}\right)^{2}>0$. Hence we know that, by the pluriquasicanonical morphism $\Phi_{\left|N\left(D^{*}+K_{\nu}\right)\right|}$ (cf. [3], [7]) every connected component Γ_{i} is contracted algebraically to a singular point. So, let $f: V \rightarrow W$ be the contraction of Γ and let $P_{i}:=f\left(\Gamma_{i}\right)$. Let $\Delta:=f_{*}(D)$ as a divisor. Then we have the following:

Lemma 1.3. With the above notations and assumptions, the connected components Γ_{i} are classified into the following types:
(1) If $P_{i} \notin \operatorname{Supp}(4)$ and $\operatorname{Supp}\left(\Gamma_{i}\right) \notin \operatorname{Supp}(D)$, then P_{i} is a rational double point.
(2) If $P_{i} \notin \operatorname{Supp}(4)$ and $\operatorname{Supp}\left(\Gamma_{i}\right) \subset \operatorname{Supp}(D)$, one of the following cases takes place:
(2-1) Γ_{i} consists of a nonsingular elliptic curve and P_{i} is an elliptic singular point;
(2-2) $\quad P_{i}$ is a quasi-elliptic singular point, i.e., it is a quotient of an elliptic singular point under a finite group action fixing the elliptic singular point; the resolution graph is given in [7, Chap. III, Lemma 2.4];
(2-3) Γ_{i} consists of a cycle of nonsingular rational curves, one of which has self-intersection ≤-3, and P_{i} is a cuspidal singular point;
(2-4) $\quad P_{i}$ is a quasi-cuspidal singular point, i.e., it is a quotient of a cuspidal singular point under a finite group action fixing the cuspidal singular point.
(2-5) $\quad P_{i}$ is a quotient singular point and Γ_{i} is either an admissible rational rod or an admissible rational fork.
(3) If $P_{i} \in \operatorname{Supp}(\Delta)$ and $\operatorname{Supp}\left(\Gamma_{i}\right) \subset \operatorname{Supp}(D)$, then one of the following cases takes place:
(3-1) P_{i} has a cyclic quotient singularity and Γ_{i} is an admissible rational maximal twig;
(3-2) $\quad P_{i}$ is a quotient singular point and Γ_{i} has the configuration as given
in Figure 1:

(3-3) P_{i} has a cyclic quotient singularity and Γ_{i} has the configuration given in Figure 2:

Proof. (1) See [7, Chap. III, Lemma 2.1].
(2) Suppose $\operatorname{Supp}\left(\Gamma_{i}\right) \subset \operatorname{Supp}(B k(D))$. Then, since $P_{i} \notin \operatorname{Supp}(\Delta), \Gamma_{i}$ is a connected component of D, and Γ_{i} is either an admissible rational rod or an admissible rational fork. So, suppose $\operatorname{Supp}\left(\Gamma_{i}\right) \notin \operatorname{Supp}(B k(D))$. If Γ_{i} contains an irrational component, we fall into the case (2-1) (cf. [7, Chap. III, Lemma 2.1]. Assume that all irreducible components are nonsingular rational curves. If Γ_{i} contains a cycle, then we get to the case (2-3) (cf. [7, Chap. III, Lemma 2.3]). The remaining case is reduced to the cases (2-3) and (2-4) (cf. [7, Chap. III, Lemma 2.4]). More precisely, among 13 cases classified there, all the cases except for the case (i) are quasi-elliptic and the case (i) is quasi-cuspidal.
(3) If Γ_{i} contains an irrational component, we get to the case (2-1). So, every irreducible component of Γ_{i} is rational. If $\operatorname{Supp}\left(\Gamma_{i}\right) \subset \operatorname{Supp}(B k(D))$, then Γ_{i} is an admissible rational maximal twig. If $\operatorname{Supp}\left(\Gamma_{i}\right) \notin \operatorname{Supp}(B k(D))$ and $\operatorname{Supp}\left(\Gamma_{i}\right) \cap \operatorname{Supp}(B k(D)) \neq \varnothing$, then we get to the case (3-2). If $\operatorname{Supp}\left(\Gamma_{i}\right) \cap$ $\operatorname{Supp}(B k(D))=\varnothing, \Gamma_{i}$ must be a rational linear chain as in the case (3-3).

Now, we shall revise (weaken, in a sense) the inequality of Miyaoka-Yau type proved by Kobayashi [5] to the effect that it can be applied to a proof of our main theorem. Conforming to the classification in Lemma 1.3 of the connected components of Γ, we denote by $\Gamma(1)(\Gamma(2)$ or $\Gamma(3)$, resp.) the union of all connected components of type (1) ((2) or (3), resp.).

Theorem 1.4 [5]. Let V be a nonsingular projective surface and let D be a reduced effective divisor with simple normal crossings. Let Γ be a set of nonsingular
curves. We assume that the five conditions listed before Lemma 1.3 are satisfied and that $\Gamma(1)=\Gamma(2)=\varnothing$. Then the following assertions hold true:
(1) There exists a complete Ricci-negative Einstein-Kähler metric on $V-D$ with finite volume, which is unique up to multiplication by positive numbers.
(2) $\left(D^{*}+K_{V}\right)^{2} \leq 3(e(V)-e(D))$, where $e(V)$ and $e(D)$ are the Euler numbers of V and D, respectively.

Employing the notations of Lemma 1.3 , we let $\varphi: V \rightarrow \bar{V}$ be the contraction of all connected components of Γ of type (3-1) and (-2) curves of all connected components of type (3-2). Namely, φ is the contraction of all connected components of $\operatorname{Supp}(B k(D))$. Let $\bar{D}=\varphi_{*}(D)$. Then \bar{V} acquires only cyclic quotient singularities lying on the component of \bar{D}.

Lemma 1.5. Let P be a cyclic quotient singular point lying on an irreducible component Z of \bar{D}. Then there exists a neighbourhood of P satisfying the following conditions:
(i) $(U, P) \simeq(\hat{U} / G, G \cdot 0)$, where \hat{U} is a neighbourhood of the origin of \mathbf{C}^{2} isomorphic to $\Delta \times \Delta$ with the unit disk Δ and G is a finite cyclic subgroup of $G L(2, \mathbf{C})$ acting diagonally on \mathbf{C}^{2};
(ii) $\pi^{-1}(Z \cap U)$ is irreducible and $\hat{U}-\pi^{-1}(Z \cap U) \simeq \Delta^{*} \times \Delta$, where $\pi: \hat{U} \rightarrow U$ is the quotient morphism and Δ^{*} is the punctured unit disk;
(iii) (U, P) admits a V-metric in the sense of [5].

Proof. Let D_{1}, \ldots, D_{r} be irreducible components of $\varphi^{-1}(P)$, which constitute a maximal twig of D and let C be the proper transform of Z. Let $\left(D_{i}^{2}\right)=-a_{i}$ $(1 \leq i \leq r)$ and let n be the determinant of the $(r \times r)$-matrix $\left(-\left(D_{i} \cdot D_{j}\right)\right.$). In the present proof, let D^{*} denote the \mathbf{Q}-divisor $D-B k(T)$, where $B k(T)=\sum_{i=1}^{r} \alpha_{i} D_{i}$ is the bark of a twig $T:=D_{1}+\cdots+D_{r}$. By [9], we know that n is the smallest positive integer such that $n D^{*}$ is an integral divisor. Note that $\left(D^{*}+K_{V} \cdot D_{i}\right)=0$ and $0<\alpha_{i}<1$ for $1 \leq i \leq r$, and that $\operatorname{Supp}(B k(T))=\operatorname{Supp}(T)$. Hence $n\left(D^{*}+K_{V}\right)$ is linearly equivalent to a Cartier divisor disjoint from T. In view of a relation

$$
n\left(D+K_{V}\right)=n\left(D^{*}+K_{V}\right)+n B k(T)
$$

which is, locally near $T+C$, equivalent to $n B k(T)$. So, we can consider an n-ple cyclic covering $\rho: \tilde{V} \rightarrow V$ ramifying totally over $\operatorname{Supp}(n B k(T)$). As a normal surface, \tilde{V} may still have cyclic quotient singularities. So, let $\sigma: \hat{V} \rightarrow \tilde{V}$ be the minimal resolution of singularities of \tilde{V}, and let $q=\rho \cdot \sigma$. In the sequel, we argue locally near $q^{-1}(T+C)$ or its images. We know that $q^{-1}(T)$ is a linear chain of nonsingular rational curves. Let B be a reduced, effective divisor supported by $\operatorname{Supp}\left(q^{-1}(T)\right)$. Note that $q^{-1}(C)$ is irreducible. Indeed, if $\left(C \cdot D_{r}\right)=$ 1 , then $n=\left(q^{*}(C) \cdot q^{*}\left(D_{r}\right)\right)=n\left(q^{*}(C) \cdot \hat{D}_{r}\right)$, where $q\left(\hat{D}_{r}\right)=D_{r}$ and $q^{*}\left(D_{r}\right)=n \hat{D}_{r}+$ other components. Since $\left(q^{*}(C) \cdot \hat{D}_{r}\right)=1, q^{*}(C)$ consists of a single irreducible component \hat{C} which is-smooth at the unique point $q^{-1}\left(C \cap D_{r}\right)$. By the loga-
rithmic ramification formula written locally near $\hat{C}+B$

$$
\begin{aligned}
\left(\hat{C}+B+K_{\hat{V}}\right) & =q^{*}\left(D+K_{V}\right)+R_{q} \\
& \equiv q^{*}\left(D^{*}+K_{V}\right)+q^{*}(B k(T))+R_{q}
\end{aligned}
$$

where R_{q} is an effective divisor and the last equality is considered up to numerical equivalence of \mathbf{Q}-divisors. It is known that $q^{*}(B k(T))$ is an integral divisor (cf. Hirzebruch [2]). Hence $q^{*}\left(D^{*}+K_{V}\right)$ is numerically equivalent to an integral divisor. On the other hand, since the intersection matrix of $q^{*}(B k(T))+R_{q}$ is negative definite and $\left(q^{*}\left(D^{*}+K_{V}\right) \cdot A\right)=0$ for every component A of B, we know that

$$
\hat{C}+B^{*}+K_{\hat{V}}=q^{*}\left(D^{*}+K_{V}\right)
$$

near $\hat{C}+B$. This implies that B is contractible to a smooth point.
Let $\tau: \hat{V} \rightarrow V_{1}$ be the contraction of B, let $Q=\tau(B)$ and let $Z_{1}=\tau(\hat{C})$. Then $\varphi \cdot q: \hat{V} \rightarrow \bar{V}$ decomposes to $\psi \cdot \tau: \hat{V} \rightarrow V_{1} \xrightarrow{*} \bar{V}$, where ψ is a finite morphism such that $\psi^{-1}(P)=Q$. The Galois group $G(\simeq \mathbf{Z} / n \mathbf{Z})$ action on \hat{V} descends down to a G-action on V_{1} in such a way that ψ ramifies only over the point P and the curve Z_{1} is G-stable. Since the point Q is smooth, we can choose local coordinates $\left(z_{1}, z_{2}\right)$ at the point Q so that the curve Z_{1} is given by $z_{1}=0$ and the group G acts on $\left(z_{1}, z_{2}\right)$ by $\left(z_{1}, z_{2}\right) \mapsto\left(\zeta Z_{1}, \zeta^{a} z_{2}\right)$, where ζ is a primitive n-th root of the unity. Now, the function $F\left(z_{1}, z_{2}\right)=\left(\log \left|z_{1}\right|^{2}\right)^{-1}\left(1-\left|z_{2}\right|^{2}\right)^{-1}$ should give a desired V-metric on \bar{V} near P.

Proof of Theorem 1.4. One can follow verbatim the proof of Theorems 1 and 2 in [5] only by showing additionally that the local contribution of the point P (with the above notations) in the computation of $\int_{V-D} \tilde{c}_{2}$ is zero. With the same notations g and g_{0} as in [5] and with the notations of Lemma 1.5, it suffices to note that

$$
0=\frac{e\left(\hat{U}_{-}\right)}{|G|}=\int_{U_{-}} e(g)=\int_{V-c \cup T} e\left(g_{0}\right)=\int_{V-c} e\left(g_{0}\right)
$$

where $\hat{U}_{-}=\hat{U}-Z_{1}$ and $U_{-}=U-Z$.

2. Proof of Main Theorem

Let X be a \mathbf{Q}-homology plane of Kodaira dimension 2. Let (V, D) be a pair of a nonsingular projective surface and a reduced effective divisor with simple normal crossings such that X is isomorphic to a Zariski open set $V-D$. We may assume without loss of generality that the image of D is not a divisor with simple normal crossings under the contraction of any (-1) curve component of D. We refer to [1] and [8] for the following result.

Lemma 2.1. (1) X is an affine surface.
(2) Every component of D is a nonsingular rational curve and the dual graph of D is a tree.
(3) $p_{g}(V)=q(V)=0$, where $q(V)$ is the irregularity of V.
(4) $\left|D+K_{V}\right|=\varnothing$.
(5) If X is a homology plane then V is a rational surface.

Proof. For the assertion (4), we refer to [7, Lemma 2.1.1].
If the pair (V, D) is not almost minimal, there is a (-1) curve E such that $E \notin \operatorname{Supp}(D)$ and E meets D transversally in at most two smooth points of D. If E meets D in two points, the dual graph of $E+D$ contains a loop. Hence, by the construction of an almost minimal model (\tilde{V}, \tilde{D}) of (V, D), the dual graph of \tilde{D} would contain a loop. Thus, $\left|\tilde{D}+K_{\tilde{v}}\right| \neq \varnothing$ by [7, Lemma 2.1.1]. This is a contradiction to Lemma 1.1. Therefore, if a (-1) curve E as above exists at all, E meets D transversally only in one smooth point.

Lemma 2.2. Let X and (V, D) be the same as above. Let (\tilde{V}, \tilde{D}) be an almost minimal model of (V, D) and let $\tilde{X}=\tilde{V}-\tilde{D}$. Then the following assertions hold true:
(1) \tilde{X} is a Zariski open set of X, and $X-\tilde{X}$ is a disjoint union of curves isomorphic to the affine line.
(2) \tilde{X} has Kodaira dimension 2, and the Euler number ≤ 0 provided $\tilde{X} \varsubsetneqq X$.

Proof. The assertion (1) follows from the construction of ($\tilde{V}, \tilde{D})$. Since \tilde{X} is a Zariski open set, the Kodaira dimension $\kappa(\tilde{X})$ is not less than that of X. Note that $e(X)=1$ and $e(\tilde{X})=e(X)-N$, where N is the number of irreducible components of $\tilde{X}-X$. Thence follows the second assertion.

Let (\tilde{V}, \tilde{D}) be as above. If there is a (-1) curve E on \tilde{V} such that $E \notin$ $\operatorname{Supp}(\tilde{D})$ and E meets \tilde{D} transversally in one smooth point, then consider a pair $(\tilde{V}, \tilde{D}+E)$ instead of ($\tilde{V}, \tilde{D})$ and pass to an almost minimal model of $(\tilde{V}, \tilde{D}+E)$. We will be thus endowed with an almost minimal pair ($\tilde{V}, \tilde{D})$ such that
(i) $\tilde{X}:=\tilde{V}-\tilde{D}$ has Kodaira dimension 2 ;
(ii) $e(\tilde{X}) \leq 1$, and $e(\tilde{X})=1$ if and only if \tilde{X} coincides with the given \mathbf{Q} homology plane X;
(iii) There is no (-1) curve E on \tilde{V} such that $E \notin \operatorname{Supp}(\tilde{D})$ and E meets \tilde{D} transversally in one smooth point.

Then (\tilde{V}, \tilde{D}) satisfies all conditions $(1) \sim(5)$ for (V, D) listed before Lemma 1.3 as well as the condition $\Gamma(1)=\Gamma(2)=\varnothing$, where Γ consists of all admissible rational maximal twigs of \tilde{D}. Then Theorem 1.4 asserts that

$$
\left(\tilde{D}^{*}+K_{\tilde{V}}\right)^{2} \leq 3(e(\tilde{V})-e(\tilde{D}))=3 e(\tilde{X}) .
$$

Since \tilde{X} has Kodaira dimension 2, we have $\left(\tilde{D}^{*}+K_{\tilde{V}}\right)^{2}>0$, whence $e(\tilde{X})>0$. This implies that \tilde{X} coincides with the given \mathbf{Q}-homology plane X. Summarizing the above arguments, we have the following:

Theorem 2.3. Let X be a \mathbf{Q}-homology plane. Then there exists an almost minimal pair (V, D) such that $X=V-D$ and there is no (-1) curve $E \notin \operatorname{Supp}(D)$ meeting D transversally in one smooth point.

Now, suppose there exists a curve C on X which is topologically isomorphic to the affine line. The divisor $D+\bar{C}$ on V may not be a divisor with simple normal crossings. Then there exists a birational morphism $\mu: V_{1} \rightarrow V$ from a nonsingular projective surface V_{1} onto V such that $D_{1}:=\mu^{*}(D+\bar{C})_{\text {red }}$ is an effective reduced divisor with simple normal crossings and $V_{1}-D_{1} \simeq X-C$. Clearly, $X_{1}:=X-C$ has Kodaira dimension 2 and $e\left(X_{1}\right)=0$. We apply to the pair $\left(V_{1}, D_{1}\right)$ the same arguments as made use of to prove Theorem 2.3, and we can conclude that there exists an almost minimal pair (V_{2}, D_{2}) such that $X_{1}=V_{2}-D_{2}$ and there is no (-1) curve $E \notin \operatorname{Supp}\left(D_{2}\right)$ meeting D_{2} transversally in one smooth point. Theorem 1.4 then implies that

$$
0<\left(D_{2}^{*}+K_{V_{2}}\right)^{2} \leq 3 e\left(X_{1}\right)=0
$$

which is a contradiction. This completes a proof of Main Theorem.

Department of Mathematics
 Faculty of Science
 Osaka University

References

[1] R. V. Gurjar and A. R. Shastri, On the rationality of homology 2-cells, J. Math. Soc. Japan. I: 41 (1989), 33-56; II: 41 (1989), 175-212.
[2] F. Hirzebruch, Über vierdimensionale Riemannsche Flächen, Math. Ann., 126 (1953), 1-22.
[3] Y. Kawamata, On the classification of non-complete algebraic surfaces, in "Proc. Copenhagen summer meeting in algebraic geometry," Lecture Notes in Mathematics, Springer, Berlin-Heidelberg-New York, 1979, pp. 215-232.
[4] R. Kobayashi, Einstein-Kähler metrics on open algebraic surfaces of general type, Tohoku Math. J., 37 (1985), 43-77.
[5] R. Kobayashi, Einstein-Kähler V metrics on open Satake V surfaces with isolated quotient singularities, Math. Ann., 272 (1985), 385-398.
[6] R. Kobayashi, Uniformization of complex surfaces, Advanced studies in pure mathematics, 18 (1990).
[7] M. Miyanishi, Non-complete algebraic surfaces, Lecture Notes in Mathematics, Springer, Berlin-Heidelberg-New York, 1981.
[8] M. Miyanishi and T. Sugie, Homology planes with quotient singularities, J. Math. Kyoto Univ.
[9] M. Miyanishi and S. Tsunoda, Non-complete algebraic surfaces with logarithmic Kodaira dimension $-\infty$ and with non-connected boundaries at infinity, Japanese J. Math (NS), 10 (1984), 195-242.
[10] Y. Miyaoka, The maximal number of quotient singularities on surfaces with given numerical invariants, Math. Ann., 268 (1984), 159-171.
[11] M. Zaidenberg, A letter to M. Miyanishi dated March 22, 1990.

