J. Math. Kyoto Univ. (JMKYAZ)
32-4 (1992) 957-966

Boundary variation and quasiconformal maps
of Riemann surfaces

Dedicated to Professor Nobuyuki Suita on his sixtieth birthday
By

Masahiko TANIGUCHI

Introduction and main results

Recently, the author has developed in [6] a method to obtain second variational
formulas for fundamental quantities on Riemann surfaces under quasiconformal de-
formation. For instance, in the case of values of Green’s functions, we have obtained
Theorem 1 below. (See [6] for more details. Also see [4], [5] and [7].)

Let R, be an arbitrary Riemann surface, and B(R,) be the complex Banach space
consisting of all Beltrami differentials on R, with the norm | pll.=ess.supyer|u!(p)-
We consider a real l-parameter family {u(?): tI} in B(R,) such that

20)=0 and |p®.<1 for every t,
and
p()  is smooth on .

(For the sake of simplicity, we consider in this paper smooth functions, which means
ones of C~-class, only.) Let f, be a quasiconformal mapping of R, to another R,
with the complex dilatation u(t) for every t.

Fix a point p on R,, and suppose that R, admits the Green’s functions. Fix a
simply connected neighborhood U, of p in R, and a conformal mapping Z, of U, onto
the unit disk B={|z| <1} such that Z,(p)=0. Further assume that p(#)=0 on U, for
every 1.

Let g(-, p)=g(-, p.; R.) be a Green’s function on R, with the pole p,=f,(p) for
every t. Then we can define Robin’s constant 7(¢) at p, on R, by setting

r®)=lim,., g.(fe=(Zp) '(2), p)+logl|z|
for every ¢, and can show the following

Theorem 1 ([6, Theorem 1']). Set ¢, ,=—*dg.-, p)+i-dg.(-, p) and P ,(H)=
O p°f1—Po. p, where and in the sequel, ¢-f is the pull-back of ¢ by f. Then

_ T - =L rell (4. 205 gy pr A2

Also note that, the same argument as in [6] gives the polarized version of The-
orem 1 as follows.
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Fix another ¢ on R,—{p}. Also fix a simply connected neighborhood U, of ¢ in
R, and a conformal mapping Z, of U, onto the unit disk B={|z| <1} such that Z,(q)
=0. As before, we also assume that p(1)=0 on U, for every ¢.

Let g.(-, g) be a Green’s function on R, with the pole ¢,=f,(g) for every ¢. Then
we can show, by the same argument as in [6], the following

Theorem 2. Set ¢, ,=—*dg.(-, ¢)+i-dg-, q) and P()=¢.,¢°f . —Po.q. Then

. d 6 qu; Ry —1 d
(0-2) ap, (= 2E L D) = —LRe([ 42 0).6, A%,
and
0-3) #p, (= L8O R )

— 2 *
:2_7: -Re(%t—él—(O)'%,p/\*sﬁo.q-l- d:ft" OA ‘fi(f“-(O)).

Now the purpose of this paper is to show that variational formulas under quasi-
conformal deformation imply some general ones under boundary variation. As a con-
sequence, formulas such as above contain, in particular, the classical Garabedian-
Schiffer’s formula under Hadamard variation (cf. [1] and [2]), as a special case, and
some of Yamaguchi’s formulas (cf. [8] and [9]) as well.

We start with definition of boundary variation of a Riemann surface. Let R be
an arbitrary Riemann surface contained in another Riemann surface, say S. We as-
sume that the relative boundary dR of R in S consists of a finite number of smooth
simple closed curves, which we will denote by {7';}%.,.

For every [';, fix a tubelar neighborhood U; of I'; in S and a locally conformal
mapping (or equivalently, a holomorphic immersion) ¢; of U; into C. Here we assume
that UU; are mutually disjoint. Further, we consider a family {7, ¢): {1} -1<ecrs
of smooth immersions of I'; into C such that 7; is also smooth as a map of I';X
(=1, 1), and that 7,&, 0)=¢,() for every ;.

Then for every e[—7, n] with a suficiently small positive %, ['; .=@;7'e7,(-, €)
is well-defined and is a simple closed curve in S freely homotopic to I'; (in RU(NJLUS))
for every j. Denote by R. the subsurface of S which is surrounded by {7 .} and
corresponds to R=R,.

Thus we have a family {R.} -,<.<, of Riemann surfaces, which we call a generalized
boundary variation of R (with respect to {I'; .} or to {r,(-, &)}).

Here note that we can reconstruct the above variation in a more traditional manner.
Since 0R is compact, we can find a (sufficiently small) positive constant » such that
I'; . can be parametrized in the following form;

@O+ o)-n@ (el

for every e=(—y, 3), where ¢({, ¢) is a real smooth function such that ¢(-, 0)=0 and
n(0) is the outer unit normal vector of ¢;(I";) at ¢x{) in C. '

Thus in the above definition, we may prescribe a smooth function ¢({, ¢) on aR X
(=9, p) such that ¢(-, 0)=0, instead of {I';.}.
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Remark. When R is a bounded domain in C with compact smooth boundary oR
and ¢(¢, ¢)=¢-p({) with a smooth function p on R, the corresponding boundary varia-
tion is nothing but the classical Hadamard variation of R.

In this paper, we consider only the case of values of Green’s functions, for other
cases can be discussed by using exactly the same argument (cf. [4] and [6]).

As in Theorem 2, fix two distinct points p and ¢ on K. We may assume that p
and ¢ are contained in all R.. Let g.(-, p) and g.(-, ¢) are Green’s functions on R.
with the poles p and ¢, respectively. Also we denote g, simply by g in the sequel.

Then we recognize that Theorem 2 implies the following formulas, whose proofs will
be given in §1.

Theorem 3.

) . _dgdp, @) _ L dgC, p) 0g(, q)
(0-4) a(p, G)(—*”CiT' s:[.)_z;rg,m on  on ds.
and
05 a0 (=502 )

I N oo Lo, 08(, p) 08(-, 9)

- ﬁSSRdg( s PINAGC, o+ 2n Sazz(c Ke?) on  on ds,

where £(0) and s=s({) are the curvature of ¢ I';) at ¢C) and an arc length parameter
on @AI;), respectively, provided that (&I';, and we write 0c(C, €)/0e|s=0 and
0%c({, €)/0e?| .=y simply as ¢() and £(§), respectively.

Remark. (i) By setting p=q in the right hand sides of the above formulas, we
have the formulas for Robin’s constants. Furthermore, we can derive similar formulas
for other quantities such as the energy functions of period reproducers. See [4] and
[67.

(ii) When ¢(, ¢)=¢-p({), then &) vanishes identically, and hence the formulas
in Theorem 3 reduces to the classical Garabedian-Schiffer’s ones. (Cf. [2] and [1,
p 5607.)

Finally, we note that the data family {[7; .}, or equivalently, {c({, ¢)} in the de-
finition of boundary variation can be represented also by using an implicit function.
We will discuss such a formulation and state formulas of Yamaguchi’'s type (cf. for
instance, [8]), whose proofs will be given in §2.

Let 9 be an unbranched domain spread over C X B, where B={eeC||e|<1}. (In
particular, ¢ is a complex parameter.) Assume that there are another domain & spread
over C X B and a real smooth function ¢(z, ¢) which satisfies the followings:

(i) For every e€B, 9.={(z. )9} is a relatively compact subsurface of 9.=
{(z, &) D} (, and hence DC D).

(ii) D={(z, e)=D|¢(z, £)<0}, and 09={(z, &)= D |J(z, &)=0}.

(ili) For every e€ B, (0¢/0z)#0 on 09..

‘Then we may rewrite the formula (0.5) in Theorem 3 as follows.
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Theorem 4. Fix p and q in D,. Then

)/\*d( Bgs( 9)

)

0.6) %ge(p, | = %ReSS% (% ag’ée 2

_Lg (080 ) 38(,9)
dr Yoo, ¢ on on

where

Kp=(Qe:|¢:|*—Re (| . 1)st+ | e | *han)- | . 72

We further rewrite the above formula to a complex version such as considered by
H. Yamaguchi. Here we state a formula only for the case of Robin’s constant. The
general case can be treated by the same argument and by polarization.

Corollary (cf. [8]). Under the same circumstance as in Theorem 4, assume that
p=q. Let 7(e) be Robin’s constant at p on D. for every ¢. Then

a 35 0= __”igareTaz_dZ‘ 2, 4]7:8390 ot )(ag( , /’)>

0.7

where K. is the Levi’s curvature of the boundary, namely,

Ke=(¢ez|¢:|*—2 Re pethsp.e+ | e | *uz)- 1 .| 2.

The author would like to give hearty thanks to Professors F. Maitani and H.
Yamaguchi for helpful conversations and comments.

§1. Proof of Theorem 3

The main trick in our proof of Theorem 3 is to interpret boundary variation as
variation under quasiconformal deformation. (Compare with [3].)
Fix a suffliciently small positive constant » so that

Fi: € ) — @i(Q)+7-n()

gives a smooth immersion of W;=I";X(—n, ) into ¢,U;) for every j. Also we may
assume that ¢;=¢; 'oF; is well-defined and gives a smooth homeomorphism of W; into
S such that ¢4, 0)={. Further, fix a smooth non-decreasing function X(z) on R such
that 0<X<1, X=0 in a neighborhood of (—co, —y] and %=1 in a neighborhood of
[0, + o).

Now define a map f. of R into S by setting

(@)t feedi€, D)=(C, X(r)- (e, &)+1)+(1—X(r))-7)
= t+X(1)e(, ©))

on Wy =1I;%X(—9,0 (C¢g;(RNUjy) for every j, and by setting f.=id on R—
Ui¢;W;). Then we have the following

Lemma 1. For every ¢ with sufficiently small |e|, the above map f. is a quasicon-
formal map of R onto R..
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Proof. If (max_,<.<|X'(z)]) (maxsr|c(C, €)1)<1, which holds for every ¢ with suf-
ficiently small |e], it is clear from the definition that f. is a homeomorphism of R
onto R..

In the sequel of this proof, fix j and we will drop all subscript ;. And we will
show that f, is quasiconformal on ¢(W)NR for every e with sufficiently small |¢],
which is enough to show the assertion.

Parametrize I” by a smooth function {={(x); 0<u <1, and in the sequel, we denote
o(Cw)), c(Cw), 7), x(C(w)) and n(l(w)) simply by ¢(u), c(u, t), £(u) and n(u), respectively.
Then F considered as a map of (u, 7)[0, 1]X(—%, 5) has the form;

z=F(u, ©)=@(u)+7-n(u) O=ugl, —p<r<y).
Also it is clear that

N A )
nu)=—1 Lo’ (u)|

Hence, regarding z as a local parameter, and u and 7 also as functions of z, arround
any point of ¢(W)N\R, we can represent ﬂzgoofsogo" locally as

1-1 Fl@=z—i-X(1) c(u, &)-¢' W)/ ¢’ w)].
Recall that the curvature « of I is defined by the following equation.

(@' (w)/ @' W)Y =i-k(u) @’ (u).
Since

0
= ai7>=(l+rx)so’,

z,
and
zf(= %)= AL

a simple computation shows that

l

o 2 =0 2
upe F= 2(1+nc)/"" 5 uel= 2(1+m)/'§" "
and
¢ i ¢
zoF"“— 7 , oF::‘———— 7 .
‘ 2007 2 1¢]
Hence we have
7z — l ’ 1 g ’
(1-2) (fo)ee F=1+ 5 X C+——2(1+M) (KXc—iXeu/ 1@ 1),
and
L.,
(1-3) (ForP=(— 3V e+ 5 GO ﬂcu/lgol))(1m)

Since ¢ and ¢, tend to 0 uniformly on /" as |e| tends to 0, we conclude that f, is a
quasiconformal map with the complex dilatation p(e)=p(z)dz/dz which satisfies that
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e —X'c(l+Te)+rXc—iXe,/ | ¢’ | ( o’ >2
e C+Y )1 +Te)+rAc—ide /19| \ @]
on W/=[0, 11X(—mn, 0) for every ¢ with sufficiently small |¢]. q.e.d.

(i) Now we will derive (0-4) from (0-2). Since

e _ 2
7{ —fie/fz_fifzs/(fz)

with f=7., (1-2) and (1-3) gives that

LB = (= g+ gy Wit/ | |>)(|(P'1)2-%.

And since ¢=i(dg+i*dg)=2ig.dz for g(-)=g,(:, p) or g(-)=g«-, q), where z is a
generic local parameter on R, the formula (0-2) can be rewritten as

N SR
80, 0= BRe[[ |, (— et g weica o)
X (so// (s 2ig,) )28 N2d xdy

Here and in the sequel, we set gp(*)=go(:, p), 8(*)=gu(-, ¢) and z2=x+iy. Recall
that (g,). and (g,). can be considered as smooth functions on ¢4U ;).
Again fix j and drop all subscript ;. Also we set

Il:z_—nElRequ,(W,) lxlc( |¢I| )( 8)(gp)z(gq) dxdy ,

and

_—1 (we—ic/1@'1) (@ \2
f= 2r ReSS‘p(lV'>x 2(14-7x) ( l¢’| )( 8)(gr)-(ga).dxdy,

where W’'=[0, 11X(—2, 0) as before. Next, we let X(z) tend to
Lo(7)=0 for —oo<r<0
=1 for 0<r<+4o0

0
monotonically. Then /, clearly converges to 0. Moreover, since S X’dr=1 and since

Y
the Jacobian d(x, y)/d(r, u) of F is equal to Imz.z,=(14+7x)|¢’|, we can see that

1

- 1 ;. Sl‘l 2 ’
h=gaRell, 57 e(75) a0~ +en ¢! | dedu

converges to

e Rel - ye(iEr ,|)<g,,)z<gq>< 8ds.

as X tends to X,. Since, for g=g, or g=g, we have

(1-4) =geT,+Qull, =g T, = (; H(izl)gr
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on I, and since 8/dr=0d/dn, we obtain the formula (0-4).

(ii) Next we will derive (0-5) from (0-3). First note that

d*p _ 2 dz
dez - (fiss/fz_z.fisle/(fz) -I-O(E)) dz

with f=7.. Hence

d”# (F. 0} ﬂ
d&z (0)_(f2 2fzfz> dZ .
Next, for g=g.(-, p) or g=g.(+, ¢), we have
. V)] . . T
‘/’=’z_e’e.__o:z’.(gz+gzzf+ngz)dz+22ngidz’
which we write as ¢*°+¢** (cf. [6]). Then since
[, 95 nrde={| Gorongt —ids A,
the formula (0-3) implies that
. 1 .
8. py=Re{{[ fr-(—8engudrdy
+2i| (2iey). j:d2) A\(2i80: S d2)

+SSR—i(2i(gq)z Frd2)AQi(E )4 (80)e: fH(8p): f2)d2)

{2800, a2 A @)+ (80 S+ (80 )2}

S
= 7Re“sz~<—s>(g,)>,(gq>zdxd.v
-1 - ) . ,
+ﬁReSgR—8<<gp>z+<gp>nf><gq>z,/zdxdy

—1 . :
+ ﬁReS S - (CORCORI N CONL TSR

where we write g(-, p) and g(-, ¢) simply as g, and g,, respectively.
Now we write the right hand side of the above equation as I,+1,+I;. As before,
we let X tend to %,. Then, since (1-3) implies that
o 1.,. X o , o\
fi_(~ 5 Xé+ 20t 7r) (kc—ic /| @ I))( rd )
as a function of (u, 7), we can conclude by the same argument as in (i) that I,
tends to
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1¢ .
(1-5) ﬂgrc(ag,,/an)(agq/an)ds ,

and that /, tends to

Jim g Re ]~ (e (—ite 2 o (1)

gDl
|

¥ )22dxd y)

_n :l_ . o A 2\/ 12 ‘P, :
=i 7 Rell a0 2@ e—apzaeyer(( LY dxdy

_ 1 L 1 .
_%S[‘(gq)r(gp)erS'l' Egr(gq),(gp)ﬁc ds .
(Here note that, since (g,).;=0 on R—{p}, (gp)..2:=(gp).-=(/2)(¢"/ | ¢’ |)X(gp)e- On I" by
(1-4).) We write the right hand side of this equation as J¢-+1,.

Recall that the formula (0-4) implies that g(-, ¢) is the harmonic function on R
which is the solution of the Dirichlet problem for the boundary value

—¢(-)0g(-, ¢)/d7)
on I'. Since *dg,=—(g,)sdv+(gp)-ds=(g,).ds on I', we conclude that

1 L 1 , ,
(1-6) le=— 5| @@ds=— | (@)@,
|
=5 \| et onrdac, p).
Again, since (gp),;=0 on R—{p}, a simple computation shows that
1 1 7 ! ’
(E)ect Ts (@) )uts= 1 (@)t (@) (50 5/ 91
1 1
:Z(gp)rr"“ zx(gp)rzo
on I'. Hence we conclude that
17 L="1{ se*gdgn-d
( ) 7_ﬁgr“ (gq I gp)r S.
Similarly, we can show that

1 : ; 1 2
(1-8 Ii=—5\| et onras, m— | reaodey ds.

Thus we conclude the formula (0-5) by (1-5), (1-6), (1-7) and (1-8).

§2. Proofs of Theorem 4 and Corollary

Proof of Theorem 4. It is easily seen that there is a (sufficiently small) positive
n such that every 09, can be parametrized in the form as
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z+c(z, &) n(z) (z€09,)

with a suitable smooth function c(z, &) for every ¢ with |e| <%. Hence, to prove
Theorem 4 from the formula (0.5), it suffices to show that

@ el —cu= 5 Kn

on 09, (, which also implies that K is independent of the choice of ¢.).
First, let ¢(u) be a smooth parametrization of 09, as before. Then ¢(p(u), 0)=0.
In particular,

Pu=0.¢"+d:¢"=0.
Since ¢(=0¢/0n)=¢.z.+¢:z2:=—2id.¢’/|1¢’| >0 by the assumption (ii), we conclude that

2.2) ©'/1¢" | =ids/ | .| .

Furthemore, a simple computation shows that

£=(¢.:1 Q.1 *—Re{d.(P)*})/ 1. 1°.
Next

lp(u)—ic(u, &)o' (w)/ ¢’ (w)l, €)=0
for every sufficiently small e. Hence, differentiating with respect to ¢ and using
(2-2), we have
ce:_¢e/(2|¢z|)y
and hence

'cceCE:(¢'e¢§¢zi—¢s¢E Re {¢'zz(¢’i)2} / | ¢'zl 2)/(4 | (/’z l 3) .

Finally, another simple computation shows that

cee=(—2¢ez| ). 1*— Pepeh.s— Pehe Re{(.(2)°} /1o | *+2 Re {(1 . [Depe} )/ (412 1%) -

Thus we obtain (2-1), which proves Theorem 4. q.e.d.

Proof of Corollary. The proof relies on the fact that the curvatures K and K¢
are independent of the choice of ¢ (cf. [9]).

By noting this fact, we take as another ¢ such a function which is coincident
with —g.(z, p) in a neighborhood of 69,. In the sequel, We write g.(z, p) simply as
g(z, ¢). Then Theorem 4 gives that

d*
dedsg

@3 O=——lldglb,

L 2__ 2 2 _s3, a_g 2
A I CHPALS X PAL P SRVARR (TP

Here it is clear that
(2.4) ldgil%,=ge.dzlls,+ ge:d2ls, .

Moreover, since g: is harmonic on 9, (cf. (0.4)), Green’s formula gives that
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€D

Hgssdé”?.l):Regg adZNg.*dz
0

— _ N 43 * ( o iAds
Re( ngogs(gs)ndz/\ d2+3 20,585 de)
=Reswogegﬁ-idé-

Here dz=¢'(u)du=(¢’/|¢’|)ds=—i(g:/|g.|)ds. Hence we conclude by (1.4) that
(2.5) ngdéllzg)o:—ReS g:8::8.18.17"ds
aa,

__r (98

— 4 SagoRegegEEgzlgzl (%) dS .
Similarly, we can show that

; 1 0g\?

2.6 : 2= O k] _g
2.6) Igndzl,=—7 |, Regugsl gl (55 ) ds.
Thus, (2.3), (2.4), (2.5) and (2.6) gives that

oy 2 .
E(O)——; llge.dzll%,

l 2__¢ 2 -3 ag 2
+4”Sag‘o(gsslgzl —2Reg.g:g.: +18e1°8:3)" 1 8. (%) ds.

Recalling that K is independent of the choice of ¢y, we conclude the assertion.

q.e.d.
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