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Introduction and main results

Recently, the author has developed in [6] a m eth o d  to  o b ta in  second variational
form ulas fo r fundam ental quantities on Riemann surfaces under quasiconformal de-
fo rm a tio n . For instance, in the case of values of Green's functions, we have obtained
Theorem  1 b e lo w . (S e e  [6] for more d e ta ils . A lso  se e  [4], [5] and [7].)

Let R o b e  an arb itra ry  Riemann surface, and B(R 0)  b e  the complex Banach space
-= ess suppER 1 p l(P )•consisting of a ll Beltrami differentia ls on R o w i t h  the norm  11P II

W e consider a real 1-parameter family {p(t): tE /1 i n  B(R 0 )  such that

p(0)=-0 and II p(011.<1 for every t,
and

p(t) is sm ooth on I .

(For the sake of sim plicity, we consider in this paper smooth functions, which means
ones of C- -class, o n ly .)  Let f ,  b e  a quasiconformal m apping o f  R o t o  a n o t h e r  R,
w ith  the complex dilatation p(t) for every t.

F ix  a point p  on R o ,  and suppose th a t  R o ad m its  the G reen 's  func tions. F ix  a
simply connected neighborhood U , of p  in R o and a conformal mapping Z , of U , onto
the unit d isk  B={1z1 <1}  su ch  th a t Z p (p )=0 . Further assume th a t  p(t)=0 on U ,  for
every t.

Let g 0(• , p )=g (•, p i  ;  R 0)  be  a Green's function on R , w ith  the pole p ,= f t (p ) for
every t. Then w e can define Robin's constant r(t) a t  Pt o n  R , by setting

T(0= gt(f  t°(Z n) i (z ), P) -1- log I z 1

fo r every  t ,  and can show the following

Theorem 1 ([6,
t, p° f 00, p ,  where

r(0 (P -1) (0)=

T h eo rem  1 1 ). S et 00, 7, = — *dg,(., p ) + i• d g t ( • ,  p )  and 0 ,( t )=
and in the sequel, 0 . f  is the pull-back  o f  0  by  f . T hen

1 R e  .ç.ç
R o  dt2( d 2 P (0 )•00.pA * 00 P+ d°P

d t
 (0 )A * d ° P  (0)

)

.
dt 

A lso note th a t , the sam e argument as in [6] g iv es the polarized version of The-
orem  1 as follows.
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Fix another q on R 0 — {p} . Also fix a  simply connected neighborhood U , o f  q  in
R o a n d  a  conformal mapping Z, o f  U , onto the  un it d isk  B =  < 1 }  su ch  th a t Z,(q)
= 0 .  A s before, w e also assume th a t p(t)=0  on U , fo r every  t.

L et gt(•, q) be  a  Green's function o n  R 0 w i th  the pole gt=f t(9) for every t. Then
w e can  show , by  the  sam e argum ent as in  [6], th e  following

Theorem 2. S et g5t,,=—*dgt(•, dg1(, q) and  0,(0=q5t,,. f t — Oo, q •

dePt, q 0 ;  R 1 ) ) , 1 Re d P  (0)•Op A*0,2 ,(0-2) ;V(P, q) = dt t=0 R  dt

Then

and

q)(= 9 0 ;  R 1 )  (0-3) g(p, (i) = dt2 t=01

dO= 1 R e (   d 2 P  (0)•00,,,A*950.q
dld t

P (0)A 
* d 0

q (0)).dt2 

Now th e  purpose o f  th is  p ap e r is  to  show  tha t va ria tiona l form ulas under quasi-
conformal deformation imply some general ones under boundary v a r ia t io n . A s  a  con-
sequence, form ulas su c h  a s  above  c o n ta in , in  p a r tic u la r , th e  classical Garabedian-
Schiffer's formula under H adam ard variation (cf. [1] a n d  [2 ]), a s  a  special case, and
some o f  Yamaguchi's form ulas (cf. [8] a n d  [9]) as well.

W e sta rt w ith  definition o f  boundary varia tion  of a  Riemann s u r f a c e . L e t  R  be
a n  a rb itra ry  R iem ann surface contained in  another Riemann surface, say  S .  We as-
sum e that the relative boundary aR  o f R  in  S consists o f  a  fin ite  num ber o f  smooth
simple closed curves, w hich w e w ill denote by IF,}

F o r every  1- '1 ,  fix  a  tubelar neighborhood U , of T '. S  a n d  a  locally conformal
mapping (or equivalently, a  holomorphic immersion) ço., o f U , into C .  Here we assume
th a t  U ,  a r e  m utually  d is jo in t . Further, w e consider a  fam ily  Ir,(C, 6); CET ) } -1<0<1,
o f  smooth immersions of F ,  into C  su c h  th a t r ,  is  a lso  sm o o th  a s  a  m a p  of T x
( - 1 ,  1), and  th a t r ( , 0)=yo,() fo r every j .

T hen  fo r every  sE_[—n, ni  w ith  a  suficiently sm all positive  7), e)
is well-defined and is a simple closed curve in S  freely homotopic to  T . R U (U 7--IU ,))
f o r  e v e ry  j . D e n o te  b y  R s t h e  subsurface o f  S  which is surrounded by { r i ,,} and
corresponds to  R = R o .

T h u s w e  have a fam ily {R, } _ i i < s ‹ , of Riemann surfaces, which we call a generalized
boundary v ariation of  R  (w ith  respect t o  tri, e 1 o r  t o  fr,(•, 6)1).

Here note that we can reconstruct the above variation in a m ore traditional manner.
Since aR is  compact, w e can find a  (sufficiently small) positive  constan t 27 such that
1"1, ,  can be param etrized in  th e  following form ;

Ws(C) --Fe(C, 6)•ii(C) (CGT.,)

fo r every ,E(— n,  n) , w here  c( , s) is  a  real sm ooth function such that c(., 0)=0 and
/ (C) is  the  outer unit norm al vector o f  Tj ( r , )  a t  N C )  in C.

T h u s in  the  above definition, we may prescribe a  smooth function c(C, a) on  aR x
( -7), 72) such  tha t c(., 0)=0, instead of { r,,,}
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R em ark . W hen R is  a  bounded domain in  C w ith  compact sm ooth boundary aR
and  c(C, s)=s- p(C) w ith a smooth function p on aR, th e  corresponding boundary varia-
tion is nothing bu t the  classical Hadamard variation of R.

In  th is paper, w e consider only the case of values of Green's functions, fo r  other
cases can be discussed by using exactly th e  same argum ent (cf. [4] a n d  [6]).

A s in  Theorem  2, fix  tw o distinct points p  and  q o n  R .  W e m ay  assume th a t  p
a n d  q  a r e  contained in  a ll R , .  L et g,(•, p )  and  g,(., q) a re  Green's functions o n  R,
w ith  th e  poles p  and  q, respectively . A lso  w e denote  g, sim ply  by  g  in  th e  sequel.
Then w e recognize that Theorem  2 implies th e  following form ulas, whose proofs will
be given in  § 1.

Theorem 3.

(0-4)

and

dg(P, q)
(1), q) -= de

1 . a ,  ag(• , q) d s ,=  c
e=o) G 7C oR on an

cl2 g.(p, q) (0-5) jj"(p, 9) = -ds2

1
=— P ) A * d k ( . ,  g)+ 2

1
2r S'

a n (C Ke2) a g  a( ; ;  p )  . aga
( d s  ,

where tc(C) and s=s(C) are the curvature o f  çoi (T i ) at goi (C) and an arc length parameter
o n  çoj (r.,), respectively, P ro v id e d  t h a t  CET J , a n d  w e  w rite  ac ( ,  s)lael,=, and
32 c(C, e)/as2 1,_, sim ply  as C(C) and .C(C), respectively.

R em ark . (  i )  B y  s e t t in g  ,b=q  in  the  right hand sides of the above formulas, we
have the form ulas for Robin's constants. Furtherm ore, w e can derive sim ilar formulas
for other quantities such a s  th e  energy functions of period reproducers. See [4 ] and
[6].

( i i )  W hen c(C, e)= • p(C), t h e n  (C) vanishes identically, an d  hence the formulas
i n  Theorem  3  re d u c e s  to  t h e  classical Garabedian-Schiffer's o n e s . (C f . [2] a n d  [1,
p 5601)

Finally , w e note t h a t  th e  d a ta  fa m ily  {P i ,,} , o r  equivalently, {c(C, s)} in  the  de-
finition o f  boundary varia tion  can  be  represen ted  a lso  by  using  a n  implicit function.
W e will discuss such a form ulation and s ta te  fo rm u la s  o f  Y am aguchi's type (cf. for
instance, [8]), w hose proofs w ill be given in  § 2.

L et g  be  an  unbranched domain spread over C X B, w here  B= {s EC l lel <1} . (In
particular, s is  a  com plex param eter.) Assume that there are another domain Tr) spread
over C x B a n d  a  real sm ooth function 0(z, s) which satisfies th e  followings :

( i ) F o r every  sEB, g= {(z, 6 )E .0 }  is  a  re la tive ly  com pact subsurface of
{(z, s) .4".51 ( , and hence 2 C ) .

(ii) 2= {(z, e )E  10(z, e)<01 , and ag= {(z, g 0(2, E)=0} .

(iii) F o r every s B, (a0/3z)*() on agL.
T hen  w e m ay  rew rite  the form ula (0.5) in  Theorem  3 a s  follows.

=())
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Theorem 4 .  Fix  p  and q in  OÙ. Then

(0.6)
,92

a e  " P ' = - -1-ReÇÇ.çd ( ag €
 n
( ' ' P) 

0 = 0 71. J A * d ( d
a
ge

(
i

ag(-, p) ag(., q)
47r 3 a o„I \ • ) an an ds

where
KR= (Oa çbz } 2 — Re çb,( çbz 3 )E- 1-  çbz 2 0z2)• Oz I - 3  •

W e further rewrite the above formula to a  complex version such as considered by
H . Y am aguchi. H ere  w e sta te  a formula only for the case of Robin's constant. The
general case can  be  trea ted  by  the same argument and by polarization.

Corollary (cf. [8]). Under the sam e circum stance a s  i n  Theorem 4 ,  assum e that
p = q .  L et r(s) be Robin's constant at p on 2, f or ev ery  s .  Then

(0.7)
32.).

(0)= 2asat- 7 r  I
a2 g,(., p) 

aEaz dz
2J r

a 0 42r a gol(c()(ag(a•;11)))2ds

where K c  i s  the L ev i's curv ature of  the boundary, namely,

K G.= (0 e 6 10,1 2 - 2 Re 04z-0a+ I çbz I 2 0zr)• I Oz I - 3  •

T he a u th o r  w o u ld  lik e  to  g iv e  h e a r ty  th a n k s  to  P ro fe sso rs  F . M aitani and H.
Yamaguchi for helpful conversations and comments.

§ 1 .  Proof o f Theorem 3

The m ain trick in our proof of T heorem  3  is  to  in terp re t boundary  variation as
variation under quasiconformal deformation. (Compare with [3].)

F ix  a  sufficiently small positive constant 72 so that

F1 (C, çl(C)-FT•il(C)

gives a  smooth immersion of W5
= r

1
x(-72, 72) into wi (U j )  for ev e ry  j. A lso  w e  m ay

assume th a t 01 =q71
- '0F, is well-defined and gives a  smooth homeomorphism of W1 in to

S such  tha t N C , 0 )= C . F urther, f ix  a  smooth non-decreasing function X(r) on R  such
that 0 X-. 1, X=0 in  a  neighborhood o f  (— oo, —72] a n d  X = 1  i n  a  neighborhood of
[0, +co).

Now define a  map f ,  of R  into S by setting

4.0 - 1 ° f 00.g, r)=(, X(r) . (c(C, s)+T)+(1—x(r)).7)

=(c, TH-X(T)e(, s))

o n  WY  = x (-77, 0) (coi - i(R nu j ) )  fo r  e v e ry  j ,  a n d  b y  s e t t in g  f ,= id  o n  R -
U7=i 01(W1). T h en  w e  have the following

Lemma 1. For ev ery  e with sufficiently small the abov e m ap f ,  is a quasicon-
f orm al m ap of  R  onto R,.
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P ro o f . If  (max_,7<,-<0 I X' (r)I)(maxaRlc(C, 6)1)<1, w hich holds fo r  every  s with suf-
ficiently small IsI, it is  c lea r from  the  definition that f e i s  a  homeomorphism o f  R
onto R .

In  the  sequel o f  this proof, fix  j  and w e  w ill drop a ll subscrip t j. A nd we will
sh o w  th a t  f e i s  quasiconformal on sb(w)nR fo r  every s  with sufficiently small I s I,
w hich is enough to show the assertion.

Parametrize by  a  smooth function ; O u  1 ,  and in the sequel, we denote
ço(C(u)), c(C(u), r), K(C(u)) and  n(C(u)) simply by q)(u), c(u, r), K(u) and n (u ), respectively.
T hen  F considered a s  a  m ap o f  (u, oz-)E[0, 1] X ( -77, 72) has th e  form ;

z= F(u, r)=y0(14-Er • n(u) (0 —77<r<72).

A lso it is clear that

• yo'(u) 
n (u )— I  w'(u) I '

Hence, regarding z  as a  loca l parameter, an d  u  and  r  also a s  functions of z , arround
any point of o(w)nR, w e can represent l e=soof soyo' locally as

(1-1) .7,(z)=z—i • X(1-)• c(u, s).q)/(u)/Iya/(u)1.

Recall that th e  curvature if of is defined by th e  following equation.

(yo'(u)/Iço'(u)1)/ = i K(u)•q)'(u).
Since

z ( =
 az

-) =(1-HrK)95,' ,au
and

z,(=  ar )=—isovkp'l

a sim ple computation shows that

2 (1
çc:

r/c) / 
I çc'1

2
, 11 2. ° F = . -  

2 (1çf/F r x )
W'1.

and
ir z . F =  2 ço '

i ço'r zoF--= 2 yo' •

Hence we have

(1-2) (L)z-F-=1+
1—

1

X'c+ 
2 (1 -1 -rK ) 

(ac — d e ./  q/ I ) ,2
and

1 1(1-3) e),. F =- (— c+ 2 (1  + z w )   (ac iXc„/Iço ' ) ) (
2

1(; ', .

Since c an d  c  tend  to  0  uniformly on  F  a s  I s tends to  0 , w e conclude that f e i s  a
quasiconformal m ap w ith  th e  complex dilatation p(s)=p,(z)d2/dz which satisfies that
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F — Xi c(id - ric) - 1- tac — aX e./I40'1  (  S o '  )2

— (2+X'c)(1-Fric)-FicXe—iXcu/iYo'l

on W'=[0, 1]x(-7), 0) for every s  with sufficiently small Isl. q. e. d.

( i ) Now we will derive (0-4) from (0-2). Since

=  f . / f z d ( fde

w ith f =1 , ,  (1-2) and (1-3) gives that

\

da ( 0 ) = ( 1  
x' +

X . , ) (   çC /  

d e 2 2 (1 - E r t c )
(Kc—ict,/ I So ,yo I dz •

A nd since 0=i(dg+i*dg)=2z g z d z  f o r  g(•)=g o(•, p )  o r  g(•)=g 0(•, q ), w here z  is  a
generic local parameter on R , the formula (0-2) can be rewritten as

n 1
k(p,

—1
 E  Re — rd -e27r J=1 sbcivi,)( 2 2(1-krr)(" 1))

7X (y0, I w i I )2 (2i(gp)z)(2i(g,),)2d x dy .

H ere a n d  in  th e  sequel, w e  s e t  g p (• )= g 0 (• , p), g,(•)=g 0(•, q) and z = x + i y .  Recall
that (g p ), and (a z can be considered as smooth functions on

Again fix j  and drop all subscript j. Also we set

r D —1, 1= 27r i.e 3 )9 , (w , )
1

2 X '6(

and

I2 -= 

)2 ( 8)(g,),(g,),dxdy , ,

— 1 Re ;6(Ke —  ie 2/ I ço' I) 
2r voy,)2 ( 1 + v . )

where

I (- 8 ) ( g " " x d Y

where W'=[0, 1 ] x(-77, 0) as before. N ext, w e let X(r) tend to

X0(r)=0 f o r  — co < < 0

=1 f o r  O r<d-c>0

monotonically. Then 1 2 c learly  converges to O. Moreover, since X'dr=1 and since
the Jacobian a(x , y)/(v, u) of F is equal to 1m  z =(1+ T/ I, we can see that

11=  2
-

7
1  Re 2

converges to

1 x ' e(  ( g ,) , ( g ,) , ( - 8)(1. +z - K)1ÇP' I drclu

— 1
27r R e f r , 2

1 e ( 1 ) 2 (gp)z(gq) - 8)ds ,

as X tends to  Xo . Since, for g = g ,  or g =g ,,  w e have

(1-4) gz=g-prz+guuz=g,r2-=(i
2  I ço'l
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on and since a/az, -alan, we obtain the formula (0-4).

( i i )  Next we will derive (0-5) from (0 -3 ). First note that

c12 d2
= ( fde' -“/ f z 2f  EJ z .1(f  z) 2+ OW) 

d z

w ith f  =  s . Hence
d2  

.
2 (0 )=-.(Y - 2 L.12) —d2 •de dz

Next, for g= g . (• , p )  or g= g'(• , q), w e have

‘1,d ( J )
gzz l+ gz i Odz +2igz 12612 ,d e  ,-0=---2 i( z+

which we write as 9.51' 0d - S '  (cf. [ 6 ] ) .  Then since

r?$PA*Ç1V=.'55R( i S 4 . ° A 4 1 - - q .br A S k ' ' ' ) ,

the formula (0-3) implies that

p, q )= 27r
1f  , . ( - 8 ) ( g , ) , ( g O z dx dy

J R

(2 i(g ,), d2) A (2i(g,), f, dz)

+ 55 n -  i(2i(g,) z fc12 2)A (2i((k ,),+(gp) z , +(g ,) ,1 ,)d z )

d-
R

— i(2 i(g p )z h a)A ( 2 i((•q)., - F(g,), j+(gq), i;)dz)}

= 2 7
1 Re51 i s 2. (- 8 )(gr)z(gq),dxdy

2
1 Re7rR - 8 ( ( k p ) ,+( g p ) z z . i ) ( g g L iid x d y

—1 
Re51

R

- 8((kOz+(gOzzi)(gn)z J2 dx d27r

where we write k (•, p ) and k(•, q) simply as k , and g q ,  respectively.
Now we write the right hand side of the above equation as 13+14+15.

w e let X tend to  Xo . Then, since (1-3) implies that
As before,

( 1 , X (

2 2(1+z-K) \ K - i - é id içDi DX  Irp ',1
as a function of (u , r), w e can  conc lude  by  th e sam e argum ent as in  ( i) tha t 13

tends to
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(1-5) 1-7r.ç2 r 'é(agp/an)(agyan)ds,

and that 14 te n d s  to

M ia 
 -

2
-
77

1  Re 4((k„,),+(gp)„(—iX6 )(g ,),(  2
1 r e)(  i ça;, 1Y 2dxdy)

= urn 
4-71-
R e  n -4 (g ,,),(-2 (ko zre— (go„z r(x2ye 2)( 1) 2 dxdy

1 1= 2 7 r  
.

r
s-E -

4 7
.f

r
(g,),(g p )„c 2ds.

(Here note th a t, s in ce  (g ),= 0  o n  R—Ipl , (g ,), ,z,=-(g,),=(i/2)(V071S0'1)(gp), on by
(1 -4 ).) W e write the  right hand side o f this equation a s  I 6 -14 7 .

Recall that the form ula (0-4) implies that g (•, g ) i s  t h e  harmonic function o n  R
which is the solution of the D irichlet problem fo r the  boundary value

— e (• ) ( a g ( •  ,  war)
on P .  Since * d g,= — Up)sdr-F(kOrds= W rd s  o n  T ,  we conclude that

1(1-6) 1 6 =  27.)r ( i 4 ) ( P ) r d s =  21J r (k g ) * d
(

g n )

1
q)A*Cg(•,u7r JJR

Again, since (g,) 67 = 0 o n  R— {p}, a sim ple computation show s that

1 I / r
( g O r Z r Z r i± ( g P )A

(
rZ)UUE

\  ( yiNo /  [çO 2
4

1
= 71 (gp ), - F -4-K(gp)„.=0

on  T .  Hence we conclude that

(1-7) 17=
4 2 rK e 2(gq)r(gp),ds.

Sim ilarly, we can show  that

fc 1 (1-8) 1 5 =  
2 

1

 7
.))

R  
d ( , q)A * d k ( ' p )— .1-Ke2(gg)r(gP)rds.

Thus we conclude the form ula (0-5) by (1-5), (1-6), (1-7) and  (1-8).

§ 2. Proofs o f  Theorem 4 an d  Corollary

Proof  o f Theorem 4. It is  easily  seen  that th ere  is  a  (sufficiently small) positive
77 such that every ag 4 can be parametrized in  the  form as
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z+ c(z, s).n(z) (zeago)

w ith  a  suitable sm ooth function c(z, 6) fo r every  e w ith  1E1 <n. Hence, to prove
Theorem 4 from the formula (0.5), it suffices to show that

(2.1) ICI C ,1 2 — C c =  —1 KR
' 2

on ao0 (, which also implies that KR is independent of the choice of 0.).
First, let yo(u) be a  smooth parametrization of .30 0 a s  before . T hen  0(yo(u), 0) - -0.

In particular,

Ou'ON/H-02-e=° •

Since 0,(=•30/an)=0,z r +0 22r ,  —2i0W/Iço'l >0 by the assumption (ii), we conclude that

(2.2) 4'// I go' I =i0g/ I Oz. I •

Furthemore, a simple computation shows that

K= (Ozi102 . 1 3 — Re {0.(çb1)1)/ I Oz I ' •
Next

Sb@P(u)—ic(u, 6)0u)/ I YD'(u)I, 6)=0

for every sufficiently small 6. Hence, differentiating with respect t o  6 and using
(2-2), w e have

c ,--0E/(210,1),
and hence

KC,CE=(0,0g0,2 - 0,05 Re IçbzX02)21/ I Oz I WO I sbl 3 ) •

Finally, another simple computation shows that

c„=-(-20dioz1 2 - 044 .E - 0.03 Re ((MOW} /101 2 +2 Re 10 sbz12)4.1)/(4 10z13 ) •

Thus we obtain (2-1), which proves Theorem 4. q. e.d.

Proof  of C o ro llary . The proof relies on the fact that the curvatures KR and K c

are independent of the choice of sb (cf. [9]).
By noting this fact, w e take as another 0  such  a  function which is coincident

w ith —g(z, p) in  a neighborhood of a2Ø.  In the sequel, W e write g c (z, p) simply as
g(z, s ). Then Theorem 4 gives that

er1
(2.3)

d a d s
 (0) .-= — —7 11dgglroo

ag \2
+  1( g "  '1g 12 R e g e (I g,12),±1g E 12g„

/
).1g,I-3- a n )  ds.

4 r  aoo 

Here it is clear that

(2.4) II dg2ll 2o0 =1IghdzIrg 0
- HIgggarg 0 •

Moreover, since g E is harm onic on 0 0 (c f . (0.4)), Green's formula gives that
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lIgz ,d21}10 = Re g E,d2A g„*dz
=Do

=--Re(1  ,g(gz )zdA *dz-F .g , g n  • id -0go asp°

=Re g. g ?2 .id2 .a :Do

H ere dz=ço/(u)du=_-(go'/Iyo' 1)ds= - 1.( g i / I g I ) d s .  Hence we conclude by (1.4) that

(2.5) gE2d211220= —Re s p o g,g8.,1 g,1 -  cis

1— —
4 a ID,

Re g,g2ig I I  -2 ( a
a i

g
t y d s  .

Sim ilarly, we can show that

(2.6) 1,g,,,c/z1122 o= — 7-4 1 9 o o Re gEg z g z-1 g,I - 3 (
au

4) 2

 ds .

T hus, (2.3), (2.4), (2.5) and (2.6) gives that

a2r 2
(0)— — IlgizdZ11 0aSaE

±  1( g  g  12 - 2  Re g„g-,g zE +1 g,1 2 g, i ). I g,1 ( a
a ,

g
l ) z ds4r ag o 8 c

Recalling that K c  is independent of the choice of 0 , we conclude the assertion.
q. e. d.
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