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The main scalar o f two-dimensional Fins ler spaces
with special metric

By

Makoto MATSUMOTO

Some geometrical meanings o f th e  m a in  sc a la r  o f  two-dimensional Finsler space
have been given in  a  p re v io u s  p a p e r  [2 ]. T h e  purpose o f  th e  present paper is to con-
sider the m ain scalar o f  F insle r spaces w ith  som e spec ia l m etric  in  re la t io n  t o  the
indicatrix.

The m ain scalar vanishes identically if  and  only if  th e  space is Riemannian and, in
consequence, the  va lue  o f the  sc a la r  m a y  b e  re g a rd e d  a s  expressing  th e  degree o f

F in sler ian  slippage f rom  a  R iem annian space. It is  on ly  reasonab le  to  th ink  tha t a
Finsler space w ith non-zero constant main scalar m ay be o f som e na tu ra l shape  in  a
sense, because the  degree o f slippage is not equal to zero but stable all over the space.

A fter the classification theorem o f  tw o-dim ensional Berw ald spaces w ith 1-form
m etric  is  sh o w n  in  § 1 , w e shall be concerned w ith Finsler spaces w ith non-zero con-
stan t main scalar i n  § 2 .  I t  is , however, a  rea l surprise to  observe th a t  the indicatrix
o f such a  space  is a ll no t a n  usual oval but quite abnormal curve.

Conversely we deal w ith a  Finsler m etric defined by a  quite  no rm al ind ica trix  in
§ 4 .  T h e n  w e  m e e t w ith  a  little  strange circum stances that the  m ain  scalar has the
upper limit 3/ A,T2- . The final section is devoted to W rona's m etric, the  ind ica trix  o f
w h ic h  m a y  b e  re g a rd e d  a s  a  lim it o f  tha t trea ted  in  § 4 , an d  the  number 3/ A ,T2-  ap-
pears again.

T he  au tho r is  indeb ted  to  P ro fesso r D r. T su tom u O kada  f o r  h is  k ind  d raw ing
figures.

§1. Berwald spaces with one-form metric

W e shall be concerned w ith an n-dimensional F insle r space  Fn= (M n, L ) w ith  1 -
fo rm  m e tr ic  L= L(a") ([5 ], [6 ]), w here  a a = e1 (x )y i, a = 1 , • • , n , a r e  n  linearly inde-
pendent differential 1-forms o n  a  differentiable n-manifold M tm a n d  L (a tm ) i s  a  (1)p-
homogeneous function [3] o f n  variab les atm. W e  d e n o te  b y  C 1 =( r 0  C  k )  the
1-form Cartan connection [4] : The linear connection (r i ' h (x )) is  th e  1-form linear con-
nection [5] defined by F,i k =Coa k a .;  w here th e  m atrix  (at) is  the  inverse  of ( a l) , and
C j t k i s  th e  w e ll-k n o w n  C -ten so r. T h e  F in s le r  connection C l  h a s  the (h)h-torsion
T T h e  T  van ishes i f  a n d  only  if  a ll th e  a ' are  gradient vector
fields.
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Let cr=(F/k, F01 1 , c /k ) be the Cartan connection of the  F " .  Then the difference
tensor D j i  k = F /  k — r j i k o f  c r  from C l [5 ] is given by

(1.1) Difk=—A11k+CirjArk+C j r  k A r i — C i r  k A , J ,

where D ok = girD i r k, i j k =  g i r T i r  k  and

2A i i k  = T i j ki + T k I l  , A w— CiriA oro •

N ow  w e shall deal w ith th e  Berwald connection B P —(G/ k , G 1
1 , 0 ) o f  th e  F a  .

Since th e  nonlinear connection (G i j) =(Go i i )  coincides w ith (Fo
i  ;) of CV, w e  have

G' i = r oi i +D oi ;  and 2G 1 =G 1
0 = r 0

i
0 d-D 0

i
0 . From (1.1) we get D o ik -=—Ajk and D010-- =T100•

Therefore we have

(1.2) 2 c 1 , r 0 1 0 + p 0 0 (T ! J k = g i rT r i k ) ,

from which we have

(1.3) Gi1=r0i1—(T01141r:00)/2

G j
i  k = r  j i  k — ( T  k  A T ! '0 0 ) / 2

The equation (1.2) leads us to

Proposition 1. A  geodesic o f  a F in s le r  space w ith 1-form  m etric is giv en by  the
differential equations

d 2 / d s 2 + { r i ik (x )-k rik (x , dx / d s)} (dx .V ds)(dx k / d s)= 0 .

According to Berwald's original definition, a  Finsler space  is  ca lled  a  Berwald
space (affinely connected space), if the  Berwald connection B r is linear, that is , G  k

are functions of position x '  alone. T hen  (1.3) leads us to

Theorem 1. A  F in s le r  space with 1-form metric is a  B e rw a ld  space, if  and  only if
Ik T .!(,0 are functions o f  Position x '  alone, that is , T i. 0 0  are  quadratic forms o f  y i .

In  a  previous paper [5 ] we showed the condition for the F a  to be a Berwald space,
that is , C  k l h  = 0  in  C r .  Here we shall show another proof of the condition.

F irst w e have in CT

C k —a kC h ij — f j rC  h i j ( ro '  k +DO r  k) S ( h t f )  i C r i j ( T h r  k + D h ' k )}

where Schij, denotes the cyclic permutation of h, i ,  j  and summation. Since C h i f ;  k = 0

in  C l [5, Proposition 3], w e have

C h i ll k = r C  h i j D o r  k œ s ( h 0 ) { c r o p h r k }  •

According to the definition of the v-covariant derivative C h o i in  C T  [3 ], w e have

C h i ll k —  Ch2,71 r D 0 '  k S C h W { C  r i j ( D  k + C  h r  spO s  k)}  •

Therefore (1.1) and the identity Char=Cirrlh lead us to

(1.4) C  hijIk = C 'Jr  .111t A r  k + S ( h i P  IC t r  A l ih r k + C h S k A s r — C r 8 k A sh)}  •
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Transvecting (1.4) by y k  we get

(1.5) C h i j i0 = C ir i lh A r o + S (n iD I C ir iA h r o i  •

Consequently we have

Theorem 2 .  A  Finsler space with 1-form  metric is
(1) a B erw ald space if  and  only  i f  we have

C i V h A r k + S ( M D { C i r  f (A h r k + C  h 8 k A s r — C r l  k ASIY)} ,

(2) a Landsberg space if  an d  only i f  we have

C i r /f hA r o + e ( k i D {C i r lA h ro } .

In the remainder of this section we shall restrict our discussion t o  a  two-dimen-
sional Finsler space F 2 w ith  1-form  m etric . In the paper [5 ] we have already Theorem
4: I f  t h e  F 2 i s  a Landsberg space, then it is a  Berwald space. H e re  w e  s h a ll  in -
vestigate this fact in detail.

For this purpose we shall refer to the Berwald frame (I, m ) [3 ] o f  th e  F 2 . The
equation [3, (28.2)] gives

(1.6) m m 1 / L , L ,

L , ,

where the I  is  the main scalar. Then w e get

(1.7) .

W e first deal with the (h)h-torsion tensor T  k  o f  C l .  From  [3 , Proposition 28.2]
it follows that T / k can  be  w ritten  in the form

(1.8) T / k +  2 1n i )( 1 i k  — 1 k n i  y

with two scalars T , and T y .  It shou ld  be  rem arked  tha t th e  components T  k  are
functions of position  x i  alone. It then follows from  (1.6) and (1.7) tha t i h T l k =0 is
given in terms o f T , and Ty  by

(1.9) ft 7'1-1-(IT1— T2)m2/L , kT2-FT ,m h / L=0 .

Next, from (1.8) w e have

A ijk — ( I t in j - 1  f in t)(T  11 k  ± T 2M k )

A 1 1 =L T 1 m i l i +L (T 2 -1 T 1)m i m5 .

From L C iik= -/m i m im k  w e have

C j r  l r y y I n I g n k  IT 11 h ± ( T 2 —  1 7 . 1)Mh}

A h r  k + C h 8 k As y.* k A sh = (IhM r — l y n i h ) f T l i k + (T 2—  IT 1 )M k 1  •

Further [3, (28.19)] gives
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Ciril h = [(I ; 21n r  — I1 ')m im im h — Im'SchiD{Inm1ngs}1/ L 2

CirilhA rk=EI ; 2m hm im i— ISchiD linntim i}1 iT ilk+ (T 2 — IT I)mkU L  .

Consequently we obtain from (1.4) and (1.5)

(1.10) Chi» k = I ; 2 mh m1mi  T i l k + (T 2 -1T ,)ink f ,

(1.11) Chipo=I;2rimhmimi •

T hen  th e  equation (1.11) show s th a t th e  F 2 i s  a  L andsberg  sp ace  i f  a n d  o n ly  if
(1) T 1 = 0  o r  (2) 1 2 = 0 .  In  the form er case w e  have also T ,= 0  from (1.9), so that T  k

vanishes identically . In  the  la tte r case  w e  have /= /(x ) because o f  / ; i = 0  obviously.
Since the m ain scalar I  o f  th e  F '  is  a  function of variables a" from [5 , Proposition 5]
o r (2 .1 ), w e  g e t  .i /= 0= (a1/aaa)aa and a//aaa= 0 , so  th e  I  becomes c o n s ta n t. In  any
case w e  have C hoik= 0 from  (1.10), th a t is , th e  F '  is  a  B erw ald  space.

Summarizing the  above w e have

Theorem 3. A  two-dimensional F in s le r  space w ith 1-f orm  m etric is a  L a n d sb erg
space, if  a n d  only  i f  it is  a B erw a ld  space. T h e  B e rw a ld  spaces are divided into two
classes as follows:

(1) It is  a  T -M inkow sk i space, i.e., T  k =0.
(2) Its main scalar is constant.

§ 2. The indicatrix of Finsler spaces with constant main scalar

The m ain  scalar / o f  a  two-dimensional F in s le r  sp ace  w ith  1 -fo rm  m etric  w as
studied in  the  paper [ 5 ]  and  given by the  equations

(2.1) 1-2=4F4(Fa..)z/ { 2 FFaa — (Fa) 2 13 , a = 1  or 2 ,

where F = L '/ 2  and  the  subscript a  stands for partial derivative by a".
W e shall show  m ore direct proof o f (2 .1) than that in the paper [ 5 ] .  First w e have

g i , = F ,pa ‘T a l, C o k = F 4 ra 'a la l/ 2 ,

w here (F°19 )  is  the  inverse  m atrix of (F„A ). Then we have C ,= C i , k g i k =E„a7/2 where
E F 4 r F 137 . From  LC i = I m , w e  g e t I 2 =2FC i C ,g ')= F E ,E pF a i 9 /2. I f  w e  p u t  f =
F„F 2 , —(F12)', then  w e  have E ,= (F a l i F2 2- 2 F , i 2 F, 2 + Fa22F ii)/ f • From  the homogeneity
w e  have

F ia '± F „ p 2 a 2 = -0 , F „ ,a l+ F a 2 a 2 = F , ,  F i a l+ F 2 a 2 = 2F .

These identities lead u s  easily to E, , --2FF ili/f(a 2 )2 a n d  E ,=  {2FFIII/f(a 2 )2 }( — aV a 2 ).
T hen  w e  have

I 2 =Fi(E1) 2 F22-2E1E2F12+(E2) 2 F11112f

=  { 2 F 2 (
F111)2 f2 ,  2 , 0)T iFi1(a') 2 +2F,2a t a 2 d-F22( 0 2 1

= 4F 4 (Fiii) 2 / P (a 2 ) 6 .

F ina lly  th e  equations F „ ,a '+ F ,,a 2 = F „ , a = 1 , 2 ,  g iv e  a 2 =(F,F2—FI2F1)/ f, and the
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equations F21al -EF12a2 =F1 a n d  F1 a'H-F2 a2 = 2 F  g iv e  a 2 = {2 FF1 , — (Fi )2 } /(Fi F2— FI2F1)•
T h en  w e  g e t (a 2 )2 = {2FF„—(F1 )2 }/ f and (2.1) in  case of a = 1 .  S im ila rly  w e  ge t (2.1)
in  case of a=2.

Now Theorem  3 picks up our in terest in  two-dimensional Finsler spaces with con-
s ta n t  m a in  scalar. T h e  fundamental metric functions o f such spaces were found by
Berwald in 1927 [3, Theorem  28.4] by m aking use  o f the  L andsberg  ang le . His result
show s th a t th e  m etrics a re  a ll 1 -fo rm  m etrics. O n account o f  th is  recognition, in the
previous paper [5 ] , those m etrics w ere again  derived by stra ightforw ard in tegration
of the  differential equations (2.1) w ith  constant / and , in  consequence, we got

(2.2 1)1 2 < 4
: 2 F = (a 2 +132 ) exp {2J Arctan (P a )}  ,

(2.22 )
1 2 = 4

: 2F =  a 2 exp (IP/a) ,

(2.2 3 ) I 2 >4 : 2 F = a 1 - Ji3H-1 , J= I/A /I 2 -4

w here a and  ,3 a r e  arbitrary, linearly independent 1-forms.
From  the  definition LC o k

, /mi lni mk  o f  th e  m a in  sc a la r  /  o f  a  two-dimensional
Finsler space F 2 it  fo llo w s th a t th e  I  vanishes identically if and only if F 2 is a  Rieman-
nian space, and hence it m ay be regarded a s  th e  degree o f Finslerian slippage from a
Riemannian space. Certain geometrical meanings o f  th e  I  a re  show n in the paper [2].
For instance, if w e denote  by R(0) the radius vector o f  th e  osculating indicatrix t y  a s
a  function of the L andsberg angle 0, w e have lim (R —1)/0 3 =1 0 /3 where I o is  the value0,0
o f th e  I  a t  the  osculating point y (0 = 0 ) of l  w i t h  t h e  indicatrix. T h e n , can  w e
naturally imagine th a t  th e  indicatrix o f  F 2 w ith  constant m ain scalar has some normal
shape?

Then w e shall describe the indicatrices of spaces w ith th e  m e tr ic  g iv e n  b y  (2.2).
S ince  a  and A a re  arbitrary, linearly independent linear form s in  y ' and  y 2 ,  we may
describe them in (x, y)-plane a s  putting a = x  and  3 = y . It is  rem arked  tha t th e  I  may
be supposed to be positive.

W e first deal w ith th e  m etric (2.2,). T h e  indicatrix C, is  g iv e n  b y  th e  equation
(x 2 -1-3/2 )e2 Ju=1 w here  u= A rctan (y1x). Referring to the polar coordinates (p, 0) defined
by x=pcos0, y=p sin 0, the principal value u has the  value  u=0 (0S0<7/2), u=95-7r
(7/2<0<37r/2), u=0 — 2r (37/ 2< 0 .27 ). T h u s, in the polar coordinates is C, given by

p=e - Jo (05.0<7/2), p-=•- e- J(0 - ' )  (7r/2< <37/2),
C, :

p=e - 1 (0 - 2 "  (3r/2<0 22r).

T h e  indicatrix C, is described in  F ig . 1, where 0A=O C =1, O B ,= lim  p=e - .1 ' 1 2 ,
15-on/2-0

0132 =  l im  p = e " 1 2 , 0D 1 =0B 2 and  0D 2 =0B 2 T h e n  w e  observe  t h a t  OB,-0B 2 =1
0 , r/2+0

a n d  lim OB,=lim 0 B2 = 1 .  T h ere fo re  th is  C , m ay be regarded a s  th e  deformation of.[->0 1.0
the  un it circle O-ABCD (1=0) by separation o f  B  in to  B, a n d  B 2  a n d  o f  D  in to  D,
and  D 2  a s  th e  / increases from zero.

In  F ig . 1 the  m ain  scalar I  is  to  be  taken  as 1 =0.3, and F ig . 2 shows C, for 1 =1.
Consequently th e  indicatrix has tw o  escarpm ents a t t h e  y -a x is  a n d  th e ir  h e ig h t in -
creases w ith th e  I.
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. The indicatrix C 2 is  g iv e n  b y  the equa-

.  3  shows th is  C,, w here  GA=OC=1 and
It is  observed  tha t C 2  is just the limit of

B oth B, and D i converge t o  O  w h i le  B2

Secondly we deal with the metric (2.2 2 )
tion x 2 e2 Y /s=1, that is , y =— x  lo g  x i .  F ig
C , is  tangent to  the y -ax is  a t the origin O.
C, of Fig. 2  as the I  tends to 2 infinitly :
and D 2  diverge to  the points at infinity.

—1.5
Fig. 3

Finally we consider the indicatrix C 3 of the metric (2.2 3). The equation of C s i s
sim ply w ritten as the form  yP+2 = x "  ( p = j - 1 ) . W h e n  the I  increases from 2 to +00 ,

p  decreases from  +co  to  O . This C s is , h o w ev er, qu ite  com plica ted . For instance,
C s f o r  p = i  i s  in  th e  first and third quadrates alone, while C s fo r p= 2 consists of
tw o parabolas going through all the quadrates.

Consequently the indicatrix of space w ith constant main scalar is not an usual oval
in either case and it should  be  concluded  that spaces w ith  constan t main sc a la r  are
very strange spaces, contrary to our conjecture.
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§ 3 .  The main scalar of 2-dimensional Finsler space with (a, g)-metric

W e shall consider a  two-dimensional Finsler space F 2 w i t h  (a, g)-metric , a  i s  a
R iem annian m etric (a2 =a 1 5 (x )y 'y ') a n d  /3 i s  a  differential 1-form (g=b i (x )yz). The
fundamental function L  o f  th e  F ' is  a  positively hom ogeneous function in  (a, IS) of
degree one.

The m ain  scalar I  o f  th e  F 2 has been  stud ied  in  the  paper [1 ] , but we referred to
the  isothermal coordinates with respect to  th e  a  fo r convenience sake. H ere w e shall
g iv e  it in  arbitrary coordinate system.

L et g  and  a be  the  determ inants g= det(g i i )  a n d  a= det(a i , )  respectively. T h e n
w e  have equations in  §30 o f  [3 ]  a s  follows :

(3.1) g=aT , T=p(p+p0b2+p_1i3)+(P0P-2—P-2-0(a2b2---182),

p = F la  , po— F 2 2

(3.2)
p_2=-(F1,—Fla)/a2 , b2 = (21 '6,1), ,

w here the  subscripts 1 and 2  o f  F stand for 0/0a and a/ais  re sp e c tiv e ly . T h e  T  in
(3.1) m ay be w ritten  in  th e  form

(3.3) T =2FF,/ a' + {F11F22— (F12)2 } (1)2 13 2 / ce) .

It is  no ted  here  tha t by  v irtue  o f  F,,a+ Fr 2 g= F1 a n d  F21a+F2 2 19= F 2 t h e  term  F11F22—
(F 12 )2 i n  (3.3) m ay be w ritten  also  as

(3.4) F„ F 2 2  ( F 1 2 ) 2  - =  2 FP,1—(F1) 2 1 / g2 = {2FF22 — (F2)2 } /a2 .

Now we get g=a&T=a(T,)",/a+T 2 b1 )=aT 2 p1 ,  w h e re  T ,=aT /aa, T 2=a7v3 13
a n d  p7 =b,—(g/a2 )1'

1 ,  1",---- a „ y ) .  R e fe rr in g  to  t h e  B erw ald  f ra m e  (1, ni), w e  have
pi' = 0, so  th e re  is  a  scalar p  satisfying p 1 —pm. T h e  p  can be found on account of

m2 )= A /g (-1 2 , 1') [3 , §28]

bi ( p a w  _  py 2 / -27 1)2_0 / (ow 2 _

from  which we get p= L(37  ib2—Y 2 b,)/a2 A/g . Then the well-known equation [3, (24.1)] :
C 2 =Ag/2g leads u s  to  C=(T2P/2T)m1, th a t  is , I= LT,p12T . Consequently we have

(3.5) I= FT 2 (Y 1 1)2 —Y 2b1)/a2 -VT- 3  A/- d

Example. (1) T he m ain  scalar o f  th e  Randers metric L=a+ g is given by

(3.6) 1=3(17 i lh—Y 2b1)/2A aa(a+ g) .
(2 )  T h e  (a , 13)-metric L=a 2 / g is called the  Kropina metric and L=am+ 1 I 13' (m*O,

—1) is called the  generalized m-Kropina metric. F o r th e  generalized one w e  have the
main scalar as

(3.7) /= { —m(m+1)(2m+l)b 2 a 2 -1-2m(m2 — o is2} (YiN—Y2b1)/
{ ,n (m +  1 )b

2a 2_ w _ , ) ,(32} 3/2
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§ 4. The main scalar of the circular-Randers space

In reverse to  the discussion in §2 w e sha ll be  concerned  w ith  a  two-dimensional
Minkowski space w ith th e  metric defined by one of the most simple indicatrix and study
the  behavior o f  its  main scalar.

In  an  euclidean (x, y)-plane th e  indicatrix a t  th e  origin 0  is  taken  a s  a  c irc le  A
w ith  th e  r a d iu s  a ,  th e  cen ter A  o f w hich has th e  coordinates ( -6 , 0), (b < a ). This
circle A is g iven  by  th e  equation (x+b) 2 ±y 2 =a 2 (F ig . 4) a n d  [3 , Example 16.4] shows
th a t the  fundamental function L  is g iven by (x/L+b) 2 + (y/L ) 2 =a 2 , th a t is ,  L=bx/c 2

+A/(ax/c) 2 4-y 2 lc  where c = / a 2 —b2 . T h e r e f o r e , if  w e  put

(4.1) a2= {(ax/c) 2 ±y 2 }/c2 , 13=bx/c 2 ,

the  m etric  is a Randers m etric  L=a-1--13 [3 , Example 1 6 .1 ] . W e shall call this m etric
th e  circular-Randers metric.

Then w e can apply  th e  equation (3.6) to  th is m etric  and  obtain

(4.2) I=3by/2acN/a(a-F-IS)

w here the m inus sign is omitted.
N ow  w e p u t b=a cos s ,  c=a sin E ,  and , fo r convenience sake, w e refer to t h e  co-

ordinates (p , 0 ) defined by a x/c=p cosy5, y=p sin 0 .  T h en  w e  have

(4.3) /=(3/2) cos s • f (0) , f (0) ,  sin 0/ N/1 +cos s cos Ø .

T h e  graph o f  this function /(0) is show n in  F ig . 5.

W e shall consider the m axim um  /(s), o f  th e  I(0). T h e  v a lu e  0= 0 0 g iv in g  the
maximum is easily found as

(4.4) tan 0 0 = N/2 sin s/ (1— sin E ) .

W e now  refer to  th e  usual polar coordinates (r, 0) defined by x=rcosO, y= r sin O.
T hen  w e  have the relation tan 0 =(a /c) tan an d  th e  0 = d o corresponding to 0= 0 0 i s
given by

(4.5) tan (0 0 -7r/2)= ../sin s(1— sin s)/2 .
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W e get the m axim um  value 1(e) 0 a s  follows :

(4.6) /(s)0=(3/ A,/ 2 )-V 1 — sin e .

Consequently the m axim um  I o o f  th e  m a in  scalar of the circular-Randers metrics does
not reach 3/A/ 2 .

§ 5. The main scalar of the Finsler spaces with Wrona's metric

W e shall consider th e  lim  (o r lim) of the circular-Randers m e tr ic .  In  this case the
b • c t s , 0

indicatrix a t  a  po in t 0  (F ig . 4) becomes a  c irc le  through 0  a n d  th e  m etric  m ay  be
regarded  a s  th a t  of the tangent M inkow ski space o f  a  two-dimensional Finsler space
w ith  th e  m etric which was introduced by W rona [7] in  a n  euclidean plane.

Wrona's metric is defined a s  follows [3 , Example 16 .3 ] : L et 0  b e  a  fix e d  point
o f  th e  p la n e  (F ig . 6). T h e  indicatrix a t  a  po in t P consists o f  tw o circles w hich are
tangent a t  P  to  th e  stra igh t line  OP and have the d iam eter equal to  t h e  le n g th  OP.
T h e n  W rona's n o rm  of a  segm ent PQ is defined a s  PQ/OH, w here the  straight line
OH is perpendicular to P Q . From  PR=OH it  is  s e e n  th a t  W rona's n o rm  o f  P R  is
equal to the  un it, so  th a t R  is  o n  th e  indicatrix a t  P.

F ig . 6

W e refer to  th e  orthonormal coordinates (x, y) such  tha t P  is  th e  o r ig in  and  the
tw o  c irc le s  a re  g iven by (x±a ) 2 + y 2 =a 2 . T hen  th e  fundamental function L  is given
by  (x/ L -±a) 2 +(y/L) 2 =a 2 , th a t is,

(5.1) L,-(x2-Ey2)/2ax ,

w here  w e trea t th e  circle o f  th e  right side only.
Therefore Wrona's m etric  is a  kind o f  Kropina metric L = 2 / w h ere  cx2= x 2 +  y 2

and 13= 2 a x . T hen  (3.7) g ives its  main scalar I  as

(5.2) 1=331/1/2 (X2—H2)

In  the  usual polar coordinates (r, 0) w e have /=---(3/../ 2 ) sin 0 and, in  consequence, the
upper lim it o f th is  I  is again  equal to  3/A/ 2 .
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