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Characters of cuspidal unramified series for
central simple algebras of prime degree
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Introduction

Let A be a central simple algebra of dimension n® over a non-archimedean local
field F and L be a maximal unramified extension of ' in A. Recall that any compact
(mod center) Cartan subgroup of A* is isomorphic to £* for some extension E/F of
degree n. Gerardin [G2] constructed the ‘cuspidal unramified series’, which is the set
of irreducible supercuspidal representations of A* parametrized by regular quasi-
characters of L*.

The aim of this paper is to get the character formula for the unramified cuspidal
series on regular elements in a compact modulo center Cartan subgroup E* of A*
when [A: F]=[?, | a prime. Since the case (=2 is well-known, we assume [/ is an
odd prime. We note that, when [ is a prime, A is isomorphic to the division algebra
of dimension {* over F or the algebra of /X[ matrices over F. Our main results are
Corollary 1.2.2, Theorem 1.2.7 and Theorem 2.2.3.

Let D, be a division algebra of dimension n® over F. Deligne-Kazhdan-Vigneras
[BDKV] and Rogawski [R] proved the abstract matching theorem: there is a bijection
between irreducible representations of Dj and essentially square-integrable representa-
tions of GL,(F) which preserves the characters up to (—1)""'. (cf. Theorem 2.2.1 in
this paper). In the tame case n is prime to the residual characteristic of F, Moy [M]
proved that there is a bijection between the same sets as above using the concrete
construction of the representations given by Howe [H2]. In general, the relation of
these two bijections is unknown. (See [Sa], [M]). We show that, if n is an odd prime,
these two bijections coincide on the cuspidal unramified series. (See Theorem 2.2.3).

Howe and Corwin [CH], [Co] have considered characters of irreducible representa-
tions of D} in the tame case. Their result ([Co], Theorem 1) is very interesting, but
it is complicated and not practical in a sense. We treat only the special case, but our
result is very simple and gives a complete knowledge of the representation x,. (See
(1.1.2) and (1.1.6) for the definition of ).

In section 1, we treat the division algebra case. Subsection 1.1 is devoted to
review the construction of an irreducible representation m, of the multiplicative group
of a division algebra D of dimension (* over F from a regular quasi-character ¢ of L*
according to [G2]. We note that in this case m, is monomial i.e. induced from a one-
dimensional representation. Subsection 1.2 is the main part of this paper. We com-
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pute the character formula of z,. More precisely, we give the decomposition of 7z,
as E*-module, where E/F is a separable extension of degree / in D. Theorem 1.2.1
and Corollary 1.2.2 are the main results of this section. To prove Theorem 1.2.1, we
proceed as follows. Since my=indj} p, (cf. 1.1.5), we get:

(1.2.5) Tolx= ©) lndfi?{a-lnmpﬁ
aE€EL*\D*/H
by Mackey decomposition. We determine a complete system of representatives of the
double coset L*\D*/H and divide the representatives into the sets K, ; with the follow-
ing good property :
(1) aHa'NL* does not depend on the choice of a=K, ;,
(2) the number of elements in each fiber of the map:

K, ®a— pfps'e(L*Nala™")" is constant on K, ;.

(See Lemma 1.2.11-Lemma 1.2.16). Then we can easily prove Theorem 1.2.1.

Section 2 is devoted to the case A*=GL,(F). As in section 1, we first review the
construction of an irreducible supercuspidal representation /7, of GL,(F) from a regular
quasi-character § of L* according to [G2]. In subsection 2.2, we show the corres-
pondence my—1l, coincides with the Deligne-Kazhdan abstract matching. It amounts
to get the character formula of /1,. Theorem 2.2.3 is the main theorem of this sec-
tion. For the proof, we use the result of Kutzko [K], which reduce the computation
of the character of /I, to the computation of the character of the ‘very cuspidal’
representation of F*GL,/(©f) whose compact-induction to GL,(F) is Il, and compute
the character only on the set of ‘very cuspidal’ elements. Then by virtue of Theorem
1.2.1, we get Theorem 2.2.3.

The author would like to express his sincere gratitude to Professor H. Hijikata
and Professor H. Saito for their advice and encouragement.

Notation Let F be a non-archimedean local field. We denote by Op, Pr, Wr, kr
and vy the maximal order of F, the maximal ideal of ©p, a prime element of Py, the
residue field of F and the valuation of F normalized by vr(wr)=1. We set ¢ be the
number of elements in kp. Let A be a central simple algebra over F. Its reduced
norm is denoted by N,/» and its reduced trace by tr,,». Hereafter we fix an additive
character ¢ of F whose conductor is Pr i.e. ¢ is trivial on Pr and not trivial on Op.
For an irreducible admissible representation = of A*, the conductoral exponent of x is
defined to be the integer f(z) such that the local constant e(s, m, ¢) of Godement-
Jacquet [G]] is of the form ag™*¢>-™® where n*=[A: F]. We call = minimal if

f(?r)=1137inf(7r®(1i°NA/F))

where 7 runs through the quasi-characters of F*. For a quasi-character 5 of F*,
neN4 r is denoted simply by n when there is no risk of confusion. Let G be a totally
disconnected, locally compact group. We denote by G the set of (equivalence classes
of) irreducible admissible representations of G. For a closed subgroup H of G and a
representation p of H, we denote by Indfp (resp. indfp) the induced representation
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(resp. compactly induced representation) of p to G. For a representation = of G, we
denote by 7|y the restriction of = to H.

1. Non-split (division algebra) case

1.1 Construction of the representation. Let D be a division algebra of degree
! (dimension /?) over F with [ an odd prime. We denote by ©p, Pp, wp and vp the
maximal order of D, the maximal ideal of ©p, a prime element of P, and the valuation
of D normalized by vp(wp)=1.

Let L be an unramified extension of F of degree /. L can be embedded into D
and, up to conjugacy, the embedding is unique.

Definition 1.1.1. Let # be a quasi-character of L*.
(1) @ is called regular if all its conjugates by the action of Gal(L/F) are distinct.
We denote by Z;eg the set of regular quasi-characters of L*.
(2) Let f(@)=min{n|KerfD1+P2}. 8 is called generic if either
(a) f(@)=1 and € is not wiitten in the form #5-N,,r where % is a quasi-
character of F* or
(b) f(6)>1 and kp(w/P-'rg)=k, where 7,PL 7 —P3 /¥ guch that

O(1+x)=d(trr p(rex))  for xeP/fH-',

We note that any regular quasi-character of L* is written in the form (5. N, r)Q0
where 7 is a quasi-character of F* and @ is a generic quasi-character of L*.

We construct an irreducible representation 7, from #<L},, according to [G2].
At first we treat the case # is generic. If f(#)=1, then @ itself can be regarded as
a quasi-character of F*O©p since F*0p/1+Pp=L*/1+4+P;. Therefore we set

(112) 7r9=lnd§§a;70.

Then =, is an iireducible representation of D* with f(zy)=I. If f(@)=m+1>1, then
there exists an element yo=P™—(FNPL™)+ P}y ™ such that

(1.1.3) 01+ x)=d(trr r(rox))  for xePim+vm

where [ ] is the greatest integer function. (Recall that the conductor of ¢ is Pg.)
Let ¢ ,(14+x)=¢(trp,;pr(r9x)) for xeP{™+® /21 Then ¢r, is a quasi-character of 1+
Phmin - Set H=L*(14+PH™*» ) D* and define a quasi-chaiacter p, of H by

(1.1.4) ps(h-2)=0(h)d,,(g)  for hel*, gel4-Plmi+ne,
We set
(1.L.5) ro=Ind¥ 0, .

Then 74 is an irreducible minimal representation of D* with f(ms)=I(m+1). (cf.
[H1], V).

For a regular quasi-character # written in the form 6=(y-N.,»)®8’ where yisa
quasi-character of F* and 6’ is a non-trivial generic quasi-character of L*, we set
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(1.1.6) 7f0=7t0'®17.

Now we get a correspondence & Lz, —my eD*. The following result is known about
this correspondence. (cf. [G2], [H1]).

Proposition 1.1.7. With the above notations, for any regular quasi-character 0 of
L*, my is an irreducible representation of D> such that:

(a) the representations my and wy. associated lo two regular quasi-characters 6 and 6’
are equivalent if and only if 0 and 0’ are conjugate under Gal(L/F);

(b) the central quasi-character of m, is the resiriction of 6 to F*;

(¢) for any quasi-character 7 of F*, the twisted representation m,®7 is equivalent
10 TognoNps

(d) the contragredient represeniation of my is equivalent to my-1;

(e) the L-function of mg is 1;

(f) the e-factor of mg is e(mg, P)=e(8, ¢otry,p); in particular f(zqy)=I-f(0);

(®) {mol0cLic}=1{xeD|f(x)=0 (mod ))}.

1.2 Character formula. In this subsection we compute the character of =,. More
precisely, for a separable extension E/F of degree [ in D/F, we give the decomposi-
tion of my as E* module. First we treat the case £ is unramified. We can assume
E=L because FE is conjugate to L in D. We need some notations to state the main
theorem of this section. Let U,=L* U,=F*(1+P}) (G=1), U¥=U,—U,,, and X,=
ZE(LX/UDAX. We set I'=Gal(L/F) and denote by X, the character of .

Theorem 1.2.1. Let 0 be a generic quasi-character of L* with f(f)=m+1 and =,
as in (1.1.2) and (1.1.5).

(1) (Decomposition of my as L*-module)

ql(l—l)/z_l m

70l 1 =(D 0D (Xo+g—D) ga-va-va-nix,),
vcel’

(]l—] a

(2) (Character formula of my on L)

g R 0(en)) if xeUf 0sj<m)
agel’
Xoy(x)=
g D0n)  if xeUn,
el
Corollary 1.2.2. Let 8 be a regular quasi-character of L* with minf(6&(neNy,r))
n
=m-+1 and m,y as in (1.1.6).
(1) (Decomposition of =y as L*-module)
ql(l—-l)/z__l m

; - 2 (](l—l)(l—Z)(ﬂ—l)/ZXa).
q —1 a=1

79110 =( @ 0-0)R(Xo+(g—D)
oel’

(2) (Character formula of my on L*)
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qz(t—l)j/z( 5 0(xa)> if xeU% (0<j<m)
ol

Xzp(x)=
ql(l—l)m/Z( 5 0(xﬂ)) if xeUy,.

ael’

Proof of Corollary 1.2.2. This follows immediately from Proposition 1.1.7 (c) and
Theorem 1.2.1.

We need several steps to prove Theorem 1.2.1. Let us start with the structure
of D. By Skolem-Noether theorem, there exists a prime element £0@, such that

Elxb=x" for any xe<L,

where ¢ is a generator of Gal(L/F). We set w=¢&. Then it follows that o is a
prime element of O, and

D=L QL B BE-IL

0r =0, L0, - BE-'0;

(1.2.3) Py =P,DE0, D - BE-'0,
Py = P @EP, D - BE-0, .

Let 6 be a generic quasi-character of L* with f(8)=m+1. If f()=1, then ny=
IndPxoxf. Since {1, ¢, &, -+, £} is a complete system of representatives of D*/F*0p,
we get X.,=X,er(f-0). We assume f(§)=m+1>1. We recall that =y=Indj"p,,
where H=L*(14-Pi™*®/2)  (See (1.1.4) for the definition of p,). It follows from
(1.2.3) that

(1.24) ["I:FX(OE,‘FEPE,("H-“/Z]+"'+E(l_l)/2P5('n+l)/2]+E([H)12P5m/2]+"‘+€l_lPE,m/2])o

By Mackey decomposition [Se],

(1.2.5) molix= @ Indifa-1anxpd,
a€L>*\D* /11

where pg(x)=py(a~'xa) for x€aHa'NL*.
At first, we shall investigate L*\D*/H. We have only to consider L*\F*0)/H
because

L= .
(1.2.6) LX\D*/H= \_jo g(L*\F*03/H)  (disjoint union).
For convenience, we often use the following notation :

] sstg)

B (emo)

(1.2.7) n()=

Lemma 1.2.8. Let a=1+3zi1&; and h=1+!z1€'B; (ay, B:€0;). Then aH=bhH
if and only if a,—B.€P}" for 1<i<[—1.
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Proof. By (1.2.4), aH=bH implies that there exist 7,€0; and 7,, -, 7,-,EP}®
such that b=a(X3izi&%;). Since Op=0,.DEOLD --PE 'O, and &-'x6=x° for x=L, we
obtain :

-1 .
1=rn+mj2=l)‘,~a‘;’_,~
®) Br—ai=(r— D47+ 31502

-1
+ B rathes 1SiSi-).

Therefore we have 7,€1+P™2*! and B;—a, P} (1<i<i—1).
Conversely we assume §;,—a; =P} (1</</—1). By putting 7,—1=—w3}zir;a?,
into (), we get

i =1 . l-1 . .
Bi—a;=(1—wail)r+ j@l rzt(agij—m’aﬁj)+m’j=%lTj(aﬁi—j“‘a'f]—j) (Iigi—1).

Thus it follows that

. 1
UL(Ti)imm([ m;— ]. vi(r). o vn(Fi-n), v +1, e, UL(Tt—xH-l)

for 1gig%,

m

(Y= min([z ], ve(r), o ve(Fa-0)s ve(ie)+1, e vL(Tl—l)'i‘l)

for l“;l <i<i—1.

Hence our lemma follows from the simple fact that there is no solution to the system
of inequations:

x;Zzmin(x,, -+, X0, Xen+1, 0 x40 (ISi£0-1).

Lemma 1.2.9. We put
M={a’a™", a’*a™', -, a’ 'a ) ae L} COM X XOP =(OP)

where O =KerNy,p. Then the map (a;,)s(OL) "—1+Dii e, €0 induces a bijection
from M\(©p)'"1/(PLm+D /N d-D2 5 (pimelyi-DI2 g [\ F*©p/H.

Proof. For acL* and B,, -+, Bi-1€0,.,
l-1 " _ -1 i et
o1+ Zep)H=(1+ Zar'a”po)H.
Therefore our lemma is obtained from Lemma 1.2.8.

In order to prove Theorem 1.2.1, we need more information about L*\F*0p/H.
We prepare some notations.
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For 1<¢</—1 and 0 u<n(7), we set
MN\(©1) 7 XOEX(O) 7 /(PY™+D 2= r=tyizix (14 PRmHD /21 8)
X (Pym+D/21-p)cd=nm =iy (Pim/m=-md-n/2 for 1K<~
T M\©L) T XOEX(O1) T (P A m et Am DR (PR s yim /D

X(l+P5,"”2]_l‘)X(Pi""le]_”)l—l't for l—-lz_i_g_lél—l,

(OL/PE(mH)/ﬂ—/z—l)i-l X(OFX-/].-FPF"‘H)”]_'")X(OL/PE,("H'”Iz]'#)“l'l)/g)'i
X(OL/PEmIZJ—#)(l-—I)Iz fOl' ].ézg lgl ,
.],u.iz (OL/PE("H”/2]_‘"'1)(1_1)/2X(OL/PE"”Z]_/l_l)i_((lﬂ)/z)X(OE‘/I‘FPS?M/?]—#)

X (O P§mi21-ryt-1-1 for 142-1

=i=sl-1,

and
Kn={1+or( S oesi+ Se8)| B~ o)l

We define ¢;: (0,) ' XO;X(O1)' " —> (O01) "' X0} (@) '! as follows:
(1.2.10) pila,, -, a)=(B, -+ Bi-1), 131=aja‘t’-ia‘t’—2i"-a‘€-“,

where k is determined by (<k</ and —ki=j (mod!/). (In particular 8;=N,ra;).

Lemma 1.2.11. (1) A complete system of representatives of the double coset
L\F*03/H is given by \J K, \J{1}.
0SaSEh
(2) The map ¢, induces a bijection from I, ; to [, ;.

Proof. Part one follows immediately from Lemma 1.2.9. For part two, it suffices
to see that ¢, induces a bijection from [, , to Jo,. If B, 7,€0; and B,, -+, By, 72,
o, Tio €0y satisfy (1, L 7o) € M(By, -+, Bicy) (LAHPE™HD2) ¢ (PRmAn/2)d-872 ¢
(Pimenyc-1/2) then there exist a0} and y, P} (1=i</—1) such that

n=a’a'fi(l+y),
ri=a”a'(Bity) (SiSi-).
This implies:
Ny p(B)=Nr,r(r,) mod 14P™*V/21  (multiplicative equivalence),
rare eyt =B - B mod PR for 2<i<i—1.
Therefore ¢, induces a well-defined map from [, , to J O'KI'L /;Fhe induced map’s bijectivity
follows from the bijectivity of the map O\O;/1+P{ —> O5/1+P%.

Next we consider the term aHa'NL* in (1.2.5).

Lemma 1.2,12. [f a€K, ;. then aHa 'NL*=F*(1+4+P3®-#).
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Proof. Since F*CaHa'NL*, we have only to see aHa'NO;=03(1+PEH-#),
If acaHa'NO3, then there exist 7,€0f and y,€P}®¥-* (1</</—1) such that aa=
aDizi&r,. Put a=14352168;. Then we have

l-1 .
ro=a—urj2=lrjﬁi’_,-,
i N l-1 .
(@ —rB=rit+ X Bt w B frheys  ASiSi—).
By replacing 7, by a—wXizt7, ‘;'ij, we get

(@ —a)pePE  (A=isi—l).

Therefore a=OF(1+P3O-#) and aHa'NO;COF1+PE®-#). As for aHa 'NO;D
O3(14+P2®-#) we can prove it by the same argument in the proof of Lemma 1.2.8.

Our next task is to compute p§ for e L*\D*/H. The above lemma tells us that
pd(F*(1+PiH-t) if acK, ;. If a’=&a, then a’Ha'*'NL*=aHa'NL* and p§'=
pdea’. Therefore it suffices to consider pf for ac L*\F*05/H.

Lemma 1.2.13. Let ceF*, yePIV# and a=1+w*(wIiti&a;+2jiti8a)e K, ;.
Then

(o8N )= (eres 0 (o 5 1571y 7S 1))

+ 05 ik =1 f 1 @) )),
where fia)eL is defined by a'=4=48/ f (a).
Proof. Since (pgpz") is trivial on F*, we can assume ¢=1. Put g=Il+x, then
a'gag'=1+a—1)"'g(l+a—-1g™*
=(l4+a—1)(1+ga—Dg™)
=1+a"'(gla—1)g ' —(a—1))
=1+a"wi(w S eale s —D+ S dales D).
Since w* (wizt&la;+ it &la) e PE™+0 /1, o) (1+x)=¢(trp r1ox) (x EPH™ /1) and
trp rr 6§’ L=0 (1sj<I-1),
(0§ 07" )N&)=po(a"'gag™)

i-1 .
=¢(trmm a"'w! (cr Z&ag”g =)

+ S etae s D))
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-1 7+l o al o) -1
=¢(trueroa o (@ Z (/- a) axg” g™~ 1)

+ D1k afe’e~D)).

In the last term of the above equations, 7,€Pi™, fi_{a)EP%4 and g”’g'—1=y""—y
mod P2®-m_  Therefore

<pspr>(g>:¢(truma-'w“(wg(f,-j(a»“’af(g“g-l—l)

+ B (k@) axe”’g—D)).

(We note ¢ is trivial on P.). Hence our lemma follows from the following property :
try, puv”’=try, pu’ v for any u,vel.
We prepare the next lemma for the purpose of writing f.(a) by (@)isjsi-1.
Lemma 1.2.14. For a=XZ&a; (a;€ L), put

A@)=(wt =D, s moaiesi, jsi-1

1-1
ao 'm/a'{_] A ’L‘Ja‘l'
a,  ay :
=| . . . J-1|EM(L),
: - L Wai
l-2 -1
ai-y oAy ag
and
k-1 k+1 -1
a, - Wal ey, WAl - Was
— e . k-1 kel "ot
A@)=(—1D* a, : af walt!' 1 wallilel”
1 E+1 -1
e A R . 1

i.e. Ay(a) is the (1, k+1)-cofactor of Ala). Then

_|__l_l vl A](a)
=28 )

where | A(a)| is the determinant of A(a).

Proof. By the map A: D—M,(L), we can embed D into M,(L). Then our lemma
follows from the basic matrix theory.

We define L-valued functions R, ; on 0 '®0O;i X0 ! by:
-1 N
R, (B, -, /31—1)-_—177’”2jgl(ngfz-j(a)a‘f’j—To(ft—j(a))”]a’,f)

e jz; 91 af =7 o(f1-K@)" ).
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where ¢,(a;, -+, ai-)=(B, -+, Bi-y) and a=14+wH(wDizifa,+2izi&ar). (As for the
definition of ¢; and f;(a), see 1.2.10 and Lemma 1.2.12 respectively). It is easily seen
that R, ; is well-defined. In fact, we can show by virtue of Lemma 1.2.14 that
Ry «(Bi, -+, Bi-y) is a rational function of {B5*} .55 ksi-. We fix B; (1<j<i—1) for all
J but /[—7 and define a function K‘y,i on O by:

Ruix)=R, By, =\ Bioies, %, Brotsr, -+, Bioy).

The next lemma is the key point in this proof of Theorem 1.2.1.

Lemma 1.2.15. Let LW={xe&L|try,rx=0}. Then ﬁ,,,i has the following property :

(@) ﬁ,,_i induces a surjection from Op/Pim™/2-# to Pip+i-mM\ [/ Pati-lm+D/2IN [ O
and each fiber of the induced map has ¢"™/*1-# elements if 1<i<(—1)/2,

2) k,,,, induces a surjection from ©p/PLm+t10/21-p=1 g PRut2-m M\ [ O pa+i-lm/21~ [ O
and each fiber of the induced map has ¢t<™*+V/21-£=! gloments if (I+1)/2=i<1—1.

Proof. We assume 1=:<(/—1)/2. By virtue of Lemma 1.2.14 and Lemma 1.2.15,

we can show
i?p,t(x)zax—(ax)"'+b mod Pprm+ep+i-m

where a=tw?* (15 ' —y,)ePgr+t-m — Pir+2-m and b is a constant in PZ#*'-™, Therefore
we can get our lemma by induction on [m/2]—p since ﬁ,,_i(x) mod PAFI-Tm+D/2] jg g
polynomial of {x, x°, ---, x°*""} whose coefficients belong to P3**'-™, The case (/+1)/2
<i<[—1 is proved by the same way.

Summing up the above lemmas, we have the following result.

Lemma 1.2.16. (1) If 1=:=(—1)/2,
K, —> (F*(14 Pim+d/21-uy)~
a—> p§py'

is a surjection to (F*(1+Pi™m+v2-#)/F*(1+4+PP-%*)" and each fiber of the map has
(q_l)q((l—l)(l—Z)(m—2;4)/2)—1(1‘-1)-1 elements.
2) If (+1)/2<i<1—-1,
Ky ¢ — (F*(14-P™2-19)"
a+—> p§ps'

is a surjection to (F*(L+Py2-#)/F*(1+P7-*-))" and each fiber of the map has
(q._l)q«l—l)(l-2>(m—2p-|)/2)-—l(i—((l+1)/2))-1 elements.

Proof. Let 1<s<t<2t, bePINL®™, ccF* and yeP}-t. Then the map bob=
(c(14+y)=¢(t1,r by)) induces an isomotphism between PINL®/P{NL® and (F*(1+
P-%)/F*(14P}™*)" since the conductor of ¢ is P, and L/F is unramified. Hence our
lemma holds by virtue of Lemma 1.2.15 and Lemma 1.2.12.

Proof of Theorem 1.2.1. By Lemma 1.2.16,
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L-1)=-2)(m=-2)/2)~1(i-1)~-1
(q_l)q(( =23 #3/2) iy

m-2p
if 1gigl—;l,
ae%’tlndﬁ;a-lnwﬁ:}:a@’ (q___l)q((l-l)(l-z)(m,—zlz-l)/z)—l(i—((l+1)/2))-le_zﬁ_l
it g,

where X;=@rew/raspi»-X. Thus by Lemma 1.2.11 and (1.2.5), we have:

=172 __

1 »
7To|Lx=(a@r0°0)®(xo+(q—l)-q—7_——l—— zz} q(t—uu—ma-‘)/zXa).

a=1

The rest of Theorem 1.2.1 follows immediately from the above formula.

Next we consider the case £ L. Then E is a totally ramified extension of F of
degree [. This case is very easy.

Theorem 1.2.17. Let 0 be a regular quasi-character of L* with minf(6@(n°Ny/r))
7

=m+1 and =m,y as in (1.1.6).
(1) (Decomposition of my as E*-module)

— l-1n-2)my2
:tolE"—0®q( i« e

(2) (Character formula of =g on E*)
) {0 if xEF*(1+PE)
Xao(x)=
0 O(C)lql(ld)m/z l.f x:c(l+y)EFx(l+P£‘m+l)-

Proof. It suffices to say that X,,(x)=0 if [(Im42)/2]<ve(x —1)<Im. (We note that
F*(1+PFfY=F*(1+4PEt"+Y). Set r=vg(x—1). From the definition of =y,

xno(x)= 2 pﬁ(g_lxg)
gED*/H

— 1 ~1 -1
_ql(lm+l—r—[(lm+l-r)/2])geglﬂ kep%”m“—'zﬂzllpbmﬂ—rpg((l_l_k) g lxg(l+k)).
Set g7'xg=1+h. By virtue of (1+k)'A+h)1+k)=14+hk—kh mod PE™*', pa((1+
R)T'A4+h)A+R)=¢(trp p(Toh—hre)k). Since heP} and hePi+Ph*', the map k—
Q(trp r(roh—hre)k) is a non-trivial character of PS¢™+1-m/23/pim+i-r_ (cf 6.7 [Ca]l).
Therefore X.,(x)=0.

2. Split (matrix algebra) case

2.1 Construction of the representation. In this section, we treat the case A=
M(F) with [ an odd prime. We set G=GL(F), K=F*GL,(Or), K,=GL,(Or), A;=
PiM(©F) and K;=14A; (i=1). Let L be an unramified extension of F of degree [,
then L can be embedded into M;(F) and, up to conjugacy, the embedding is unique.
As in the division algebra case, we construct an irreducible representation I7, from
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6eL;., according to [G]. At first we treat the case ¢ is generic. (cf. Definition 1.1.1)
If f(#)=1, then there is an irreducible representation xj of K, which is trivial on K,
and such that its tensor product with the pull-back of the Steinberg representation of
Ko/ K,=GL,(kr) is the representaion induced by the one-dimensional representation
tx—0(t), te0i, xK,, of the subgroup O;K,. We denote by k, the representation
tx—0ke(x), teF*, xeK,, of K and set

[I,,:ind‘,’(rco .

Then II, is an irreducible supercuspidal representation with f(I[,)=[. We assume
f(@)=m+1>1. Let ¢y (1+x)=¢(tr(y4x)) for x € Arcmsayres- Then ¢y, is a quasi-character
Of Kicmesyrea. (See 1.1.3 for the definition of 75.) Set H=L*(1+ Acm+2/:0)CK and define
a quasi-character py of I by

@Ly 0ol ©)=0()pry(g)  for hel”, gEKimnim-

We consider two cases according to the parity of m+1.
Case m+1 even. Set

(2.12) /Co———II’ldgpo and flozind‘i{xo.

Then &, is an irreducible very cuspidal representation of X and /I, is an irreducible
supercuspidal representation of G with f(I1,)=I(m+1).

Case m+1 odd. Set H'=L*K,;,. Then there is an irreducible component p; of
the induced representation Indff' p, which is characterized by :

(2.1.3) Xpy(2)=6(x) for x&€H—F*(1+PL)Kmssrrz-
(See Lemma 3.5.36 in [M].) We set
(2.1.4) ko=Indf py and Il,=ind%«, .

Then &, is an irreducible very cuspidal representation of K and I7/, is an irreducible
supercuspidal representation of G with f(Il,)=[(m+1).

For a regular quasi-character § written in the form =(n-N.,r)QE’ where 3 is
a quasi-character of F* and 6’ is a non-trivial generic quasi-character of L*, we set

2.1.5) y=I,Q®7.

Now we get a correspondence <L, ,—I[,G. As in the division algebra case, the
following proposition is known about this correspondence. (cf. [G2], [H2], [Ca]. [M]).

Proposition 2.1.6. With the above notations, for any regular quasi-character 6 of
L~», IIy is an irreducible supercuspidal representation of GL,(F) such that:

(a) the representations Il, and II,. associated to two regular quasi-characters 8 and
8’ are equivalent if and only if 0 and 0’ are conjugate under Gal(L/F);

(b) the central quasi-character of Ilg is the restriction of 6 to F*;

(c) for amy quasi-character n of F*, the twisted representation Il,Qv is equivalent
to Hogyonyps '

(d) the contragredient representation of Il, is equivalent to Ilg-1;
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(e) the L-function of Il is 1;
(f) the e-factor of Iy is e(lly, P)=e(8, Potrr;p); in particular f(Ilg)=!-f(0);
(8) {(H,10€Li,y={1<G|II is supercuspidal and f(II)=0 (mod [)}.

We set Dy, ={msl0& L%} and G, ={ll4|0=L%.;}. Then by Proposition 1.1.7.
(g) and Proposition 2.1.6 (g),

Dinr={reD*| f(x)=0(mod L)}
GYnr={II=G|II is supercuspidal and f(J7)=0(mod {)}.

By Proposition 1.1.7 and Proposition 2.1.6, we get the correspondence between Dinr
and G-

Proposition 2.1.7. The correspondence D}n.2m9 < I1,€G,, is a bijection and
preserves e-factors, central quasi-characters and conductors.

Remark. Our correspondence is a special case of Howe bijection, which is a
bijective correspondence between the irreducible representations of the multiplicative
group of a division algebra of degree n over F and essentially square-integrable re-
presentations of GI,(F) (n is prime to the residual characteristic of F) via admissible
characters.

2.2 Character formula. We shall compute the character X;, on the set of elliptic
regular elements of G. At first we recall the following important result by Deligne-
Kazhdan-Vigneras [BDKV] and Rogawski [R].

Theorem 2.2.1. Let Dj be the multiplicative group of a division algebra of degree
n over F and E be a separable extension of degree n over F. (E* can be imbedded as
a compact (mod center) Cartan subgroup in both D; and GL,(F)). There is a bijection
n Il between irreducible representations of Dj and essentially square-integrable repre-
sentations of GL,(F) with the following properties:

(1) if x is a regular element in a compact (mod center) Cartan subgroup E*, then

L(x)=(=1)""Ap(x),
@) e(mo, P)=(—1)""'e(ll4, ¢).

By the above theorem, we get:

Corollary 2.2.2. There is a bijection between Djin, and G%,, which preserves
characters, e-factors, central quasi-characters and conductors.

We shall show two correspondences in Proposition 2.1.7 and Corollary 2.2.2 coincide.

Theorem 2.2.3. (Character formula of Ily) Let 6 be a regular quasi-character of
L with minf(0Q(neNr,p))=m~+1 and Ily as in (2.1.5). If x is a regular element in
7

a compact (mod center) Cartan subgroup E*, then
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xng(x)=xﬂ0(x) ’
i.e. if E=L, then

g B0(x0)  if xeUs 0sj<m)
ael
Xirg(x)=
l-1ymy2 a ; 7
gom( B 0x) it xeUn,

where U;=F*(1+Pf) and U%=U;—U;,, and if E#L, then

0 if x@EF (14 Py

Xﬂo(x)z{ )
O)gm=>  if x=c(l+y)EF*(1+PE"*Y).

Remark. (a) When /=3, this theorem follows from the matching of e-factors
between 7y®% and /1,Q% for = F* by virtue of the converse theorem [JPS].
(b) When xE=L and j<f(8)/3, Theorem 5 in [G1] tells us

xu,,(x)=xx,,(x)=q'<'—'>m(f}‘ro(x“)) for xeU*.

Proof of Theorem 2.2.3. By Proposition 2.1.6(c), we can assume 6 is a generic
character with f(@)=m+1. By Corollary 1.2.2 and Proposition 2.1.7, there exists a
generic character 6’ such that Xj,(x)=X.,(x) if x is a regular element in L*. We
shall show @ is conjugate to 8’ under Gal(L/F). Let L;., be the set of regular ele-
ments in L*. Then L;,,=L*—F~. It is rather difficult to calculate Z;,(x) for all
xeL%,,, but it is easy if x is a ‘very cuspidal’ element in L*. (For the definition of
the term ‘very cuspidal’, see [C]). Let L;. be the set of very cuspidal elements in
L. In our case, Ly=L*—F*(1+P,)=U%.

Proposition 2.2.4. Let I'=Gal(L/F). If x belongs to L3, then

Liy(x)= Z,00c")

Z.e.
Yag'(X)=Xrp(x)  for xeUF.

We piove this proposition afterward. By the above proposition, we get:
(2.2.5) 2 (@e0)=2(0'-0) on U¥.
sel’ ol
We prepare the following simple lemma.

Lemma 2.2.6. Let A,# {1}, A, be finite abelian groups and A=A, X A,. We assume
{9, -+, 9.} and {n1, -~ 72} CA satisfy the following conditions:

(a) either y; and 73t are trivial on A, for all i or non-trwial on A, for all i,

(b) for ac(A,—{1})X 4,,

Snda)= Fnia).

Then {g., -, n.t=1{n1, -, 97}.
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Proof. For 7}6:4,

n(ga

ged-11)

) { (1A;|—1)p(a) 7 is trivial on A,,

B n(a) otherwise.

Therefore we get from (a) and (b), i, p:a)=21-,ni(a) for acA. Hence our lemma.
Since 6| px=80’| px, we may assume # and @’ is trivial on F*. By virtue of f(8)

=f(@")=m+1, we can regard # and #’ as quasi-characters of L*/F*(1+PI"*"). More-

over L*/F*(14+P/*') can be regarded as the direct product of F*(1+P.)/F*(1+P[**")

and L*/F*(1+P.) since the order of F*(1+P.)/F*(14+PFr*') is prime to the order of

L*/F*(1+P;). Therefore we can apply the above lemma to {f-0},cr and {0'-c}.er
by virtue of (2.2.5). Thus §'=0-0 for some oc=Gal(L/F).

The rest of our work is to prove Proposition 2.2.4.

Proof of Proposition 2.2.4. We recall Il,=ind%«,. By Proposition 6.11 in [K],
xll()(x):xx(;(x) for xeLy..

Thus we have only to consider X,,. We start with the case f(¢)=1. In this case,
ko |k is a pull-back of an irreducible cuspidal reprentation of GL,(kr), whose character
formula is well-known. For example, Theorem 7.12 in [Sp] tells us X, (x)=2Jserf(x7).
We consider the case f(8)>1. If f(#) is even, it follows from (2.1.2) that:

Xo()= 2 pe(g'tg) for teli,,,
8€K|H
where gy is defined by
{pg(x) if xeH
bo= .
0 otherwise.
If (@) is odd, it follows from (2.1.4) that:
J— ¥ -1 X
x;:g(t)—’ekzlﬂlpr(g l‘g) for teLreg,
where X, is defined by
. Xop(x) if xeH
Xpb:

0 otherwise .
We note that

2.2.7) Xop()=ps(t)=06(2) for 1eL;,.
(See (2.1.1) and (2.1.3)).
By Skolem-Noether theorem, there exists an element £ K, such that:

&-'xé=x° for any x&L,
where ¢ is a generator of Gal(L/F) and

M(Op)=0.PEOLD --- PE-1O; .
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Our prposition follows immediately from (2.2.7) and the following lemma.
Lemma 2.2.8. Let geK andtelL;,. If gligt'eL*K;, then g&& L K, for some j.

Proof. Let g 'tgi~'=u(l4v) for u€0; and veA,. Let g=3}&a; where a,&
O.. Since tgt-'=gu mod A;, we get (t"’t"—u)ajEO mod Pf. If there exist 7, and j,
such that j,#j, and t*’'t"'=¢"’*t' mod P,, then teF*(1+P;). Since teLi=L"—
F*(14P.), we get our lemma.

Remark. Proposition 2.2.4 follows directly from Theorem 5 in [G1].
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