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On limit theorems related to a class of “winding-type”
additive functionals of complex brownian motion
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§0. Introduction

Let z(t)=x(t)++—1y(1), 2(0)=0, be a complex Brownian motion starting at the
origin. Many works have been done on the limit theorems for additive functionals of
z(t). Well-known classical results are due to G. Kallianpur and H. Robbins ([5]) for
occupation times and to F. Spitzer ([10]) for winding number of z(¢#) around a given
non-zero point. The former result has been extended by Y. Kasahara and S. Kotani
([6]): They obtained scaling limit processes for a class of additive functionals of z(¢)
including occupation times of z(¢) in bounded sets. The latter result has been extended
by J. Pitman and M. Yor ([7], [8], [9]) who obtained the joint limit distribution, as
time tends to infinity, of a class of additive functionals of z(¢) including winding
numbers around several non zero points. Main purpose of the present paper is to
reproduce and extend some results of Pitman-Yor by the method of Kasahara-Kotani:
In particular we discuss the convergence as stochastic processes of time scaled additive
functionals belonging to a little more general class.

First, we describe briefly the main idea of Kasahara-Kotani. In order to study
the limit process as i—oo of additive functionals A*(¢), 1>0, given in the form

1 uCt)
A=yl Sz

where u(f)=e**—1 and N(A) is some normalizing function, we set
Z(t)=log (z(t)+1)

and introduce an increasing process
A 1 -1 -1/ 92
T (t)=7u (KZ>-2%)).
(Generally, <M>(t) is the usual quadratic variation process of a conformal (local) mar-

tingale M(¢) and g '(¢) is the right continuous inverse function of a continuous in-
creasing function g(#).) Then, by the time substitution, we have

AX(eA ()= _Nl(,z) [ feer#r—peiziewa 22s)
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where Z*(1)=(1/2)Z({Z>-(a%)). Note that Z3(t) is a complex Brownian motion for
every 1>0. The limit process of A*(¢) can be found if we can obtain the limit process
as A—oco of the joint continuous processes {A*(z%(t)), Z(t), z*(t)}. The limit process
of {Z), TX ()} is given by {b(?), p(?)} where b(t) is a complex Brownian motion and
p(t)=maX,sss, Re[b(s)] (¢f. Lemma 3.1 of [6]). The study of convergence for the
above joint processes is therefore reduced to that for

—Nl( 5 [[ sterer —neirodps)

as A—oo. If we represent i(f) as

b(t)=x()+v/—1 S:d(i(s),

where 6(¢) is a Brownian motion on the unit circle T=R/2zZ=[0, 2z] so that (x(2),
0(1)) is a Brownian motion on the Riemannian manifold RX 7', then, in this study, the
ergodic property of 6(¢) plays an important role; indeed, it is a homogenization pro-
blem for (x(1), 8(t)).

We would apply this method of Kasahara-Kotani to some problems discussed by
Pitman-Yor, namely to the study of joint limit distribution, as A—oco, of the processes
(Ai;*) given by

1 uCat) f(zx)
. 2 - J
0.1) A= 75 g 2z,
where a,, -+, a, are distinct points on C\{0} and f, j=1, :--, m, are some Borel

functions on C. If f;=1, then ym[A;;*(t)] is a normalized algebraic total angle wound
by z(f) around a; up to the time ¢***—1. Writing

flai—ae* ' )=g,(x, ), (x, 0)eRXT,

Pitman-Yor discussed the case when g;; depend only on #. Here we consider a more
general case by introducing a notion of functions regularly varying at point a; and
also at the point at infinity. This class of functions was introduced by S. Watanabe
in an unpublished note. In order to apply Kasahara-Kotani’s method to this class of
additive functionals, we need an ergodic theorem for Brownian motion (x(¢), 6(¢)) on
RXT which we establish in § 1 by using the method of eigenfunction expansions.

Finally, we summarize the contents of this paper. In §1, we consider a class of
diffusion processes on R¢xM where M is a compact Riemannian manitold and obtain
an ergodic theorem for them. In §2, we apply the result of §1 to a homogenization
problem for Brownian motion (x(¢), 6(¢)) on RXT and thereby describe the limit pro-
cess as A—oo of the joint processes

(1 N
1 Nl(l) Sofi(a_ael ‘ ))dZ(S)}lsism ’

where a=C\ {0}, z(t)=x(t)+«/—~'lgzd0(s) so that z(#) is a complex Brownian motion,

and f; are taken from the class of regularly varying functions in the sense given by
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Definition 2.1. Here, the asymptotic Knight’s theorem of Pitman-Yor [9] for a class
of conformal martingales also plays an important role. In §3, we obtain the joint
limit theorem for additive functionals of the form (0.1) by applying the results in §2.

§1. An ergodic theorem for some class of diffusion processes on compact manifolds

Let M be an m-dimensional compact (connected) C*-Riemannian manifold without
boundary and (@,),., be a Brownian motion on M (see lkeda and Watanabe [4],
Chapter 5, section 4). The generator of (@,) is (1/2)Ay, where A, is the Laplace-
Beltrami operator for M. Since M is compact, Ay has pure point spectrum

(1.1) 0=2>— A= —2A= -

and we denote the corresponding normalized eigenfunctions by {¢,}. Itis known that
the transition density q(¢, 0, n) of (6,) has the following expansion :

(L.2) at, 0. m)= 3 e~ 0. (O)paln),

which converges uniformly in (6, 5) for every t>0 (see Chavel [1] p. 140).
Let (X,).so be an R%-valued diffusion process determined by the stochastic dif-
ferential equation

(1.3) dXL=0'(Xt)dBL+[)(X[)dt,

where o(x) and h(x) are bounded and smooth, ¢(x) is uniformly non-degenerate and
(B:)z0 is a d-dimensional Brownian motion.

We assume that X and @ are independent and X,=0 and ©@,=0,(6,=M) throug-
hout this section.

Our main result in this section is as follows:

Theorem 1.1. Let h be a Borel measurable function from R to R' and f be a
Borel measurable function from M to R' satisfying the following conditions:

1) [h(x)| Sconst. x| for every xcR?

for some a>—min(2, d),

(2) f isin LP(M)=LP"M, dB) for some p with p=1 and p>m/(a+2), where dO
is the volume element of M,
(8) f is null charged i.e.

ng(0>40=0.
Then for every T >0, it holds that

el g L1000 |

as A—oo,

To prove our theorem, we prepare some estimates for E,.|h(X,)| and E,|f(6,)].
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Lemma 1.1. Suppose that h: R*—R' satisfies |h(x)| <const.|x|" for every xR?,
where a>—d. Then for every xR® and t>0,

E .| h(X,)| Zconst. 1*2+4const. | x| “1¢a>n) -

Proof. From the assumption of X,, we have the following estimate for the transi-
tion density p(¢, x, y) of X,:

—_ 2
(1.4) p(t, x. y)<const. t~¢/ eXp{_%zltx—y_l_}'

(See Friedman [3], p. 141, Theorem 4.5.)
Then, from the assumption for A(x),

a2
(15) E. [A(X.)] Sconst. -4 exp{— E@%f——y-'—} lyledy

. const. |&]®
2

)IVTE+x|de.

=const.§m exp(

If @>0, the right hand side (RHS) of (1.5) is bounded by

const. |&|?

const.SRd exp(—— —2—~)(\/7 [E1)"dé

—|—const.gm exp(— COL;l&Ii) |x|"dé

=const. t*/24-const. |x|*.
If —d<a<0, the RHS of (1.5) is bounded by

const. |&|*?

5 )16+ x/N T |7

al2 —
const. ¢ Skd exp(

exp(—%)wﬂ/«/ﬂ"ds

=const. t”’zg _
Jig+z/Viica

+const. t"”S xp(—w)|€+x/\/71"(lé

1&+z/VLi21 2
gconst.twg _\ex/VT|dE
16+2/Y11<1
const. | &2
al2 —_ 2
+const. t Slemmzlexp( 5 )de

<const. t**. Q.E.D.

Lemma 1.2. Suppose f& LP(M—R*, d0) with some p=1. Then for every &M
and t>0,

Ef(O,)] <(const. t™/*?4const.)|| | .

Proof. TFor a moment, let p>1. First note that
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Eol £001=] g, 0. I sl an=(] act. 0. prdn) “1f1s.

where ¢(t, 6, 7) is the transition density of @, and 1/¢+1/p=1.
Since we have the uniform estimate

g1, 8, p)<const. t-™/? (t10)
(see Chavel [1], p. 1564~155), setting 6>0 small enough,

/ 1/
(1,00, 0. p2dn) “Lacn=(comst. | =ma-brqct, 6, p)dn) Lescs

=const. "™2? 1 ,<ay .

On the other hand, from (1.2) we have

o 1/2/ o 1/2
at, 0, Dlasn=(S e r0.00) (e *r'ean?)  Lusn

1/2

<(Z e tpu0r) (S e wpuny)

=q(0, 6, 6)'*q(0, 5, 9)'/*

<const..
Hence

/
(qu(t’ 0, 77)"d77)l ql(t>5)§const. VM),

where V(M)={, do.
Therefore,
Ey|f(0.)| (const. t=™/? 1,5 +const. V(M V9| fl|,
<(const. t"™/*P4const.)|| f1|, .

In the case that p=1, we can prove the lemma similarly by replacing
(S”q(t, 4, n)qdr))l/q with sup ¢(¢, 6, 7). Q.E.D.
L 7

Proof of Theorem 1.1. First we will prove the theorem in the case that f=¢,
for some n=1. From now on we write the expectation E. 0, simply by E.
Set

wix, 0= Bee (X )pu(O:11)ds
and
M =ui(Xe, 020+ h(X)pu(0:0)ds

In order to prove that
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t
(L6) Esup [ MX)pn(@1)ds| —> 0 (41— o),
it is clearly sufficient to prove that
(1.7) E sup |u(X,, O)| — 0 (A —> o0)

ostsT
and
(1.8) Esup IM*| —0 (A—> ).
ostsT

The convergence (1.7) is proved as follows. By the orthonormality of {¢:} and
(1.2), we see the following identity :

Eo(pn(@:)= atis, 0, pan)d7
=e *n%tp,(0)  for every O&M.

Clearly ¢,(#) is bounded since ¢, is continuous and M is compact and hence we have
the basic estimate

(1.9) E o(@a(O;5))<const. e~*n1*,

By Lemma 1.1 and (1.9), we obtain the following estimate for u;:

(1.10) LaCx, 0))] gg:E,lh(xm |E o(0n(61:))| ds

gconst.g s“’*e"n“ds-{—const.|x|"1<,,>o,g e *nisds
0 0

=const, =27 4const. | x | 1a>nd™t.

Hence
E sup |ui(X,, ©;.) Sconst.2="2"'+const. A" E sup | X" Lca>o -
0stsT 0stsT
Here
(L.11) E sup | X,|"< 400
0stsT

holds for a>0. Indeed, if a>1, we have by (1.3) and the martingale inequality that

t a
E sup |X,|*=E sup S‘a(X.)dB,+§ b(X,)dsl
ostsT ostsT | Jo Jo
<const. E sup Wa(X,)dB,|n+c0nst.
ostsT 1o

<const. E }S:a(Xx)dB. "—I—const.

<const. E | Xr|“+const.,

and the finiteness of E|Xp|® follows from (1.4). It is easy to see that (1.11) is also
valid for 0<a =1 since
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E sup | X,|*<Zconst.(E sup | X,|%)*/?
ostsT ostsT

by Hélder’s inequality. Thus (1.7) is proved.

We now show (1.8). Fixing A>0 and setting F,=o{(X;, @1:); s<i}, we can
prove that M,* becomes an (&,)-martingale by a repeated use of Fubini’s theorem.
(Note by Lemma 1.1 and (1.9) that

E [S:IE(Xt'eu)(h(Xu)(Pn(Gzu))‘ du]

=B | [ Bx (XD Eo, (0n(B2.) 1 du] < +e0 )
Then we have
E sup |M.* | <(E sup | M,?|?)"?<const. (E | Mp* |?)/2
ostsT 02isT

1/2

T 2
<(const. E|us(Xz, 617)|*+const. E‘So h(Xs)go,,(@;,)ds‘ )

by the martingale inequality. Hence it is only necessary to show that

L=Flu;(Xr, ©;7)]*—>0 as 1—> o
and

T 2
12=E(Soh(Xs)<p,,(@;,)ds) 50  as A—>oo.
We can easily see that [,—0 as i—oo. Indeed, (1.10) implies that
I,<const. =% 24const. A""2 2 E | X7|* 1ca>ny+const. A 2E | X724 Lca>o

and the finiteness of E|X7|"la>e and E | X 7|2 1ia>yy follows from (1.4).
Finally we shall prove that [,—0 as A— o, By Lemma 1.1, (1.9) and Fubini’s
theorem, we have

]2=2E[S:dsS:du h(X,)/l(X,,)gon(@u)SDn(@xu)]

=2{ ds('du B HXDE x (h(Xo-) | E[ 9(81.(E o, (9a(B-0))|-
Since Lemma 1.1 implies that
|ELA(X E x (WX~ D] SELTRX )| E x (| A(Xs-)])]
<const. (s —u)*2u* +u% Laso
and (1.9) implies that
|E[pa(010)E6,3,(@n(O1cs-w:))]| Sconst. g=int =0,

T 8
Igéconst.§ dsS du e~ *niG-w (s —y)arryar
Jo [

T 8
+const. So dsgodu e~AndG-mya] o
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<const. 1~ */2"*4const. A7 Lea>n
—>0 (A —> o0).

Thus the proof of (1.6) is complete.

Next we will show Theorem 1.1 for general f satisfying the conditions (II) and
(I). Let .£ be the set of all linear combinations of finite number of ¢,, ¢,, ---. We
know by (1.6) that Theorem 1.1 holds for fe.£. Furthermore, by Lemma 1.1 and
Lemma 1.2 we have that

B sup || h(X0£@as| <[ EIMXIINE 7O 1D)ds
g(const. g:s"“(Zs)""’“’ds +const.§:s“/2ds)||f||,,

<(const. A=™"*P4-const.)|| fl .
Therefore,

t
B sup |{ 1(X)f(O1)ds| SoD+eonst)Ifl, (21— e0).

To complete the proof we have only to note the following facts: Since M is
compact, any continuous function f on M satisfying the null charged condition (IlI)
is uniformly approximated by functions of .£ (¢f. Chavel [1], p. 139-140), and con-
tinuous functions are dense in L?(M). Q.E.D.

§2. Some limit theorem for additive functionals of a Brownian motion on the
cylinder

In this section, we will prove some limit theorem (Theorem 2.1) for additive func-
tionals of a Brownian motion on the cylinder RXT, T=R/2xZ=[0, 2x], as an ap-
plication of Theorem 1.1 in the previous section.

First of all we prepare some notations for conformal martingales. Let z(#)=x(f)+
v/ —1y(t) be a conformal martingale i.e. <x)()=<y>(¥) and <{x, y>(1)=0. We denote
these common processes <x>(¢) and <{yX(t) by <z)(¢). Throughout this paper we always
denote by <z>~!(t) the process obtained by the right continuous inverse function of
t—={2(t). If {2D(t)—oo(t—o0) a.s., then the time changed process 2(<z)>~'(f)) becomes a
complex Brownian motion by the Knight theorem. We always denote this Brownian
motion by 2(t).

If z,()=x,(1)++—1y.(t) and z,(t)=x,(t)+~/—1y,(t) are conformal martingales, then

. . - {xyy x2)(0)Kx1, Y2 )(1)
Vl:;e den;:tf by <z, z,)(t) the matrix of quadratic variation processes e 151y, oo (D))"
ote tha

L 0) and

G D=0,

([:052tz, {0518 0= 0 00X (3 )

+§f,ﬂm<d»,<bz*><s>d<2>s((1) _3)'
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(Here @* represents the complex conjugate of @.)

Let (S, 8(S), ) be a measure space and set F={A€B(S); u(A)<+oo}. A family
of random variables M ={M(A); A%} is called a (real) Gaussian random measure on
S with mean 0 and variance measure g if and only if M is a Gaussian system such
that E[M(A)]=0 and E[M(AM(B)]=p(ANB) hold for any A, B€%. Furthermore,
a complex Gaussian random measure M on S with mean 0 and variance measure g is
by definition a family of complex random variables M(A) which can be expressed in
the form M(A)=M,(A)++/ —1M,(A) where M, and M, are mutually independent Gaus-
sian random measures with mean 0 and the same variance measure p.

Throughout this section, we always denote L¥T—C, d8/2r) by L¥*0, 2x). Let us
introduce a definition of regularly varying functions of a complex variable:

Definition 2.1. A function f(z) defined on 0<|z—a|<R is called regularly varying
at a(#0) with order p(>—1/2) if there exist some slowly varying (at o) function
L(2), ¢(8)e L¥0, 2z) and r>(log|a/R|)V0, which have the following two properties :

1°) There exist some constants ¢=0, >0, and 2,>0 such that e<p+1/2 and

& -1/ ) B
g: dﬂg— / I(X"'L(X))ﬂf(a_aeuw_](;)lze_zz/s(jx

SK (87 P2 Loy 8P4 P 1isz1y)

for all Az=4, and s>0.
2°) For any s>0,

-7

d P o
[Fa0{ " 16 Ly 0 —aet s 10y —c(O)—xye =1t x
—>0 as A —> oo,

For a=0, we substitute the condition »>(log|a/R|)Vv0 with the condition »>
(—log R)VO and a—a e**+'~'" with ¢***’~'% in the above definition.

We call N(A)=4°L(2) and ¢(8) the regular normalizing function of f at a and the
asymptotic angular component of f at a, respectively.

Furthermore, we call a function f(z) defined on |z|>R regularly varying at oo
with order p if F(z)=f(1/z) is regularly varying at 0 with order 0. The regular
normalizing function of f at co and the asymptotic angular component of f at oo are
those of f at 0, respectively.

Remark 2.1. The class of functions regularly varying both at ¢ and at oo defined
above contains the original class of functions regularly varying at a defined by Wa-
tanabe ([11]).

Example 1. For any given domain D C C such that D or D¢ is bounded, the
function f(z)=1p(z) is regularly varying at ¢ with order 0 for any a=C\U {co}\oD.
The regular normalizing function of f at a is 1 and the asymptotic angular component
of f at a is 1 if ae€D and 0 if a¢¢D. (Here we consider that co) when D¢ is
bounded.)
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Example 2. Let g(8)e L%0, 2x) and let h(x) be an ordinary regularly varying
. function at oo with exponent p(< o) such that

| h(Ax)
h(R)

for all 2, where K >0 and ¢=0 are some constants satisfying e<p+1/2. Then

2 )i

is regularly varying at ¢ with order p. The regular normalizing function of f at a
is h(2) and the asymptiotic angular component of f at a is g(@).

|§K'(x‘°—sl(|z|<1>+x””1<|z|zx))

f@)= g(arg

When f(z) is regularly varying at o, the asymptotic behavoir of f(a—a e?2+*~1%)
lee>y, a8 A—oo for every a#0 can be described using that of f(e?**'™ )l z>0

Proposition 2.1. Snppose that a function f(z) defined on [z|>R be regularly
varying at oo with order p. Then for any a=C\{0}, there exists r'>log(1+R/|al)
such that the following two properties hold :

1°) There exist some constants €20, K >0 and 2,>0 such that e<p+1/2 and

2.1) I :=S2n Sr'/zl NG fla—a e*=+'= 10) -2%3 4

[]
gK‘(s‘o-e“/z1(o<s<1)+3p“+“21(821))
for all A=A, and s>0.
2°) For any s>0,
(2.2) I '=Szndl9ger ‘——1—f(a—a A=) _o(—f—arg(—a))-x°| e~ dx
' 2 o ropal N(R)
—>0 as A—> oo,

where N(R) and ¢(0) are the regular normalizing function of f at oo and the asymptotic
angular component of f at oo, respectively.

Proof. By the assumptions, there exists some r>(logR)V0 which satisfies the
following two properties:
1°) There exist some constants ¢=0, K>0 and 2,>0 such that e<p-+1/2 and

——= f(e*=+7= ’0)‘ e =g x KK (8”751 Loy + 8P+ 2 1iyay)

(2.3) S dﬁg p

for all 2=4, and s>0.
2°) For any s>0,

(2.4) S dﬁg N(Z) —— f(e*=*7710)—¢(—0)- ‘C"\ e~ dx —>0 as A1—> 0.

Now denoting max(r, log(|a|®*+2]al), log(14+1/|al)) by r again, we see that (2.3)
and (2.4) clearly hold for this new r. Therefore we may assume that r=log(la|*+
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2la|) and r=log(1+1/|al|). Set r'=log(l+e"/|al|). We have that »'>log(1+R/lal)
since r>log R.
In order to change the variables of the integrals I, and I, above, we set

a—a elz'+v/—-10':elz+~’—_10:z.

Then
x'=x—Llog|aj‘|,
A
0'=0—arg(—aj?*)
and
dx' ANdO' =(—2+/=12|z—a|?) - dzAdz=|]*|2dx NdE,
where
2 B (1 pp-Rz-dTI0y-1
] (xy 0)"‘ zZ—a (]- ae ) .
Hence

2n —
1=(7d0( Liazmtogiasiise INGYf(h=+ 0]

xexp(— (v ——loglajA1/s) | J**dx .

Noting that | J*|=(+|ale **)™! and #'=log(l4+e"/|a|), we see that if Ax—log|a/?*|>
r’, then 1x>r. So we have

2z

Ilgg

0

d0S:; \ﬁf(ez“«_—w)’ ><exp<_(x—%log|aj/1 I)Z/s)lji *dx.

Moreover by the inequality »=log(|a|?+2]a]|) it holds that
[JH=A—lale ") <(1—ale ) '<|a| e 2.

This implies that

1 X
(2.5) jloglaj |<-2—

for x>r/A. Therefore,
27 +00 1 2
[l§|a[—2ergo degrﬂymf(elzw’-w) e-xﬁ/udx

which proves (2.1) together with (2.3).
Similarly,

o e (% o 1 aaevTie
2.6) n<lae | dogml T RAC)
—c(—0+arg]l)~(x—%logla])I)pre““’“’dx.

On the other hand, by r=log(1+1/|a|) it holds that
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S z(A+ale ) >+ ale™ ) >a] e .

This implies that

1
710g|aj‘l>—x

for x>r/A. Noting this and (2.5) we have the estimate

1 o
\xp—(x_ TIOgI a/* |) ‘1(.r>t/1)§00n5t- X1 ez

for any p>—1/2. Hence we can easily prove that
2.7) Sz“dag:: ‘c(——ﬁ)x"—c(—ﬂ)(x—%logl aji1)’|ertax
—0 as A—> o
by Lebegue’s convergence theorem and the fact that
JHx, ) —> 1 as A—>

uniformly in 6 for any x>0.
Since arg /% —0 as 1—oo uniformly in 0 for any x>0, we can also prove that

2.8) [Fao("™ (x—%logl a)’

iz
X|e(—0)—c(—O+arg J2)|%e ¥ dx — 0 as A1—>

by Lebesgue’s convergence theorem and the fact that

[Fle—0—c(—0+arg JH1ta0 — 0 as 31—

for fixed x>0.
Combining (2.6), (2.7), (2.8) and (2.4), we obtain (2.2). Q.E.D.

Let (x,, 8,) be a Brownian motion on the cylinder R X 7T satisfying x,=0 and
6,=0 a.s. Clearly

_(t
Z¢=X¢+'\/'—].S dﬁx
0
becomes a complex Brownian motion. Our main theorem in this section is as follows:

Theorem 2.1. (1) Suppose that the functions fi, -+, fum defined on 0<|z—a|<R
are regularly varying at a with order p,, -+, pm, respectwely. Denote the regular
normalizing function of f, at a and the asymptotic angular component of f; at a by
Ni(A) and c{8), respectively for i=1, -+, m. Then there exists some r>(logla/R|)V0
and we have

{Ni(l)_lg fa —ae“8)1(1%<_,)dzs,

0
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NG| 1 fla—aet )| Lasicrds)

1sigm

e ARG D e
«(2=z
+ e —ax—x)r Ms e ds, 40),

|"c?2§'(—xs>2f'i —y

lsjsm

as A—oo in law, where c':%S::c(ﬁ)dO and M is a complex Gaussian random measure

on [0, )X [0, 2r] with mean 0 and variance measure dit-(d0/2x) which is independent
of z(t).

(2) Suppose that the functions f,, -, fn defined on |z| >R are regularly varying
at oo with order p,, -, pn, respectively. Denote the regular normalizing function of
fi at oo and the asymptotic angular component of f; at oo by Ny(2) and c(8), respec-
tively for i=1, ---, m. Then, for every a=C\{0}, there exists some r>(log(1+R/|al))
V0 and we have
N\ fla—act ) Laapndz,

N\ I fia—aet®)|* Lz s nds)

sism

— {C—ig;(xs)pi Lizg>ndzs

+| 1 eanr—amy M sods, 46).,

[l S;(xs)“’f l(zs>0)dsjl’l

sjsm

as A—oo in law, where ¢= 2%8?6(0)(1’0 and M is a complex Gaussian random measure

on [0, 0)X[0, 2z] with mean 0 and variance measure dt-(d60/2x) which is independent

of z(t).

Proof. We will prove (1) only, because by Proposition 2.1, the proof of (2) proceeds
similarly. (Note that

{So S::(ci(—ﬂ —arg(—a))—c) (%) M1z >0y ds, d0)}

1sism

is equivalent in law to

{S;S:z(ci(a)_c_t)(Xs)!’iM(l(x")o)ds, dﬁ)} ).

1sism

Let {e,=1, e,, ---, ep} be some orthonormal system in L0, 2x) such that
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()= B a®ed),  a®eC  (k=0, -, p)
for i=1, ---, m. Define
2.9) Vﬂ(t):S:ek(M,)l(;z,<_r)dzs (=0, -, )
for some r>(log|a/R|)Vv0. Then it holds that

(2.10) [;=E sup ‘N,-(R)-IS‘ Fla—aet ™)1 e ndzs
0stsT 0

D
——kz_}oai"”g:(—x,)“de*(s)l2 — >0 as A—>oco.

The proof of (2.10) is as follows. Let ¢(¢, 8, ) be the transition density of 6(#).
Then

0

T

<const. E\ | Ny 'f {a—ae**s)—cy(A0:X(—x5)Pi|* Laz,cmrrds

0

L=E sup |S’(M(x)-*fi(a—ae“s)—cm,)(—x,>m>1(m<-r>dz., :
ostsT

L]

=c0nst.ES | NJA) fola—aes+ /=102y 0 (G(A2)N(— x5)°1] 2 Leaz c-rrdS

0

o
-r

T 2n _
—const. Sodsgo d0g(2%s, 0, 0)g LN fi(a—aet=rT0)

) 1
—Ci(a)(_x)p"|2_‘—_/—2ﬂs e =By,
Hence noting the inequality
g(s, 6, p)<const. s '/*4-const.

which we have seen in the proof of Lemma 1.2, we have

T
I, <const. So ds(const. A-'s~'+const. s7/%)

ngﬂdege_o /2 | Ni(z)—‘fi(a'—(lezx_¢__w)“‘ci(6)(_x)pi|Ze_leudx .

This last expression clearly tends to 0 as A—0 for some r>(log|a/R|)VO0 by the
definition of regularly varying functions at ¢ and Lebesgue’s convergence theorem.
Similarly we have

t
@.11) J2=E sup \Niu)-zg | Fa—aet )| ? Las - rrds
ostsT 0

—>0 as A—> o0,

el (—xresacviy,

Actually,
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t —
J3=E sup | [N £ (a— aet )= TG =200 Lus < rods|
ostsTlJo
T
=B N1 (a—ae )= e0.) X =" Lz, nds

t —_—
+E sup, [ (12001~ TeTX =20 L2, rds|
ostsT1Jo

=0 ®

By Theorem 1.1, we have that J;®—0 as i—o. As for J;V,
r ) 1/2
L0 S(B| 1N £ da—aet*)] + e (=% Lz <o rrds)
T 2 . 1/2
x(E{ NG 1 f da—ae?) | = 1200 (=5 Lz, rods)

by Schwartz’ inequality. The first expectation in the last form is bounded by a con-
stant by the definition of the regularly varying functions. The second expectation in
the last form is bounded by the expectation

T
B[ I NG fa—ae )= A0 X— 2" " iz e rods

which tends to 0 as 2—o as we have seen above in the proof of (2.10).
Therefore if we can prove that the joint processes

{S;(—xa)”idV(,‘(s), g;(—xs)”de‘(s) ’

1sksp

S;(_xa)z‘uid<vol>s, S;(—xs)z‘oida/kl)s}

1sism

converge to
. ) . (2
{I.=x0ritemmdz, || | eu0X= 200 ML cnds, 40),

1sksp

S;(—xs)“‘l(zs<0)d3, S;(—xs)zpil(rg@)ds}

1stsm

as 1— in law, then we can finish the proof of our theorem. This follows at once
from Lemma 2.3 and Lemma 2.4 below. Q.E.D.

Before stating these lemmas, we introduce the following two general lemmas
which have been obtained in Watanabe [11].

Lemma W1. Let M; be a continuous conformal martingale for any A(1<Ai< )
satisfying the following properties:

(2.12) ECMpD@P<K\(t)  for any t>0 and 12< >,

(2.13) E(S:[@g(S)l%i(M;)(s))ngz(t) for any t>0 and 1<1<oo,
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(2.14) S:|@1(s)lzd<M;>(s)—> o  as t—> o0 a.s. for any A(1<A<oo0),

where K(t) and Kt) are some positive functions independent of A, and @ (t) (1L1=Z )
are some (F M )-predictable real or complex valued processes.

If
{Ma, a5, ([ Daoranais), M), [ 1017006}
— M. ML, <S O(s)dMo(s), Mm>, S |Du(3)|*d<M(5)]
as A—oo in law on C([0, 0)>CXRXR*XR), then

{Ms, [ 0aamiis), { 10:s)12a<rs))

. {M.,,, So O (s)dM(s), S |D(s)] 2d<Mw>(s)}
as A—oo in law on C([0, c0)—>C*XR).

Proof. We will prove the lemma assuming that M; and @; are real valued,
because the proof of the general case follows at once from this case. Set

N;(t)zg:(l)z(s)a’M;(s) (1=<1<00).

By the condition (2.14) and the Knight theorem, we see that N; (1<1< ) becomes
a Brownian motion. Thus the laws induced by N;=N;({N,>) form a tight family,
which implies that the family of laws induced by

{Ma, Nz, <Mp>, <M, N>, <N}

is tight. IHence we may choose one of the limit points of the above family which we
may assume to be the law of

{Mw, X, Moy, {Ma, Nop, <N},
where

NFS; Oo(5)d Mo(s)

and X is some continuous process. Then we can conclude that X=N. as follows.
We see from the condition (2.12) that both {M;*t)}:., and {<M;>(¢)} 1z, are uniformly
integrable for any ¢>0. Similarly we see from the condition (2.13) that both
{N;%()} 1. and  {<ND(®)} 1. are uniformly integrable for any ¢>0. Therefore
{Ma(ON (D)} 12: and {<M;, N D()}a:, are also uniformly integrable for any ¢>0. Con-
sequently, we see that M., and X are (¥~ ¥)-martingales and that

X>=(Ny= | 10512 M(),

(X, M>={(N., MQ:S;(Dm(s)d(Mw)(S)
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from the Skorohod theorem realizing a sequence of random variables converging in
law by an almost sure convergent sequence. From these we have

:zg; |q)m(s)|2d<1‘fm>(8)—2g; @m(s)d<X’ Mw>(s)
=2 1991 42 | D) M)
=0 a.s.,

which implies that X=N. a.s. Q.E.D.

Lemma W2. Let M, be a continuous conformal martingale such that 1im,,..{M (1)
=o0 a.s. for every A(1LA<+0).
If
{My, <MD} —> {Ma, Mo} as A —> oo

in law on C([0, 0)—>CXR), then
(M, M3y, M3} ——> {Mw, <Moy, M} as A —> oo
in law on C([0, 0)»CXRXC).
Proof. Let X(¢) be a process such that
IM3(t), KMoy, Ma(t)} —> {Mu(t), <M)(t), X(D)}

as A—oo in law and realize this sequence by an almost sure convergent sequence.
Since MM D(1)=M(t), we have that X({M.>(1))=M«(t). Hence X()=M({MLy~1(1))
=M. Q.E.D.

Now we state our lemmas which are essential in our proof.
Lemma 2.1. If ¢ LY0, 2x) and p>—1, then
t L
I;=E sup }S 5(203)(_)53)”1(1.7:.&—r)ds—c_g (_xs)"l(rsqnds
ostsT 0 0
—> 0 as A—> oo

for any r=0.
Proof.

T
Ii=const. E | 1620.X—x)(Liazicoro— Lo en) s

~t
+E sup M (c(205)—CEX—x5) Lz cords
ostsT 0
=141, say.

By Lemma 1.1 and Lemma 1.2 we have



826 Youichi Yamazaki
E1e(20:X—x5)?(Laaz - — Lz o) | SE2¢(20)(—x5)° |
S2E (x| PE [ c(205)| =2E | xs| *E | c(0(2%3))]
<const.|c|/;s?/(A"*s~**+const.)< +co .
Then we can see easily that
Elc(A0:)(—x)(Laazgc-r—Llagcn) —> 0 as 2 ——> o0
for any s>0 by Lebesgue’s convergence theorem. Since
S:s””(z—’s‘”2+c0nst.)ds<+°°,

we have that [;?—0 as i—oo using Lebesgue’s convergence theorem again.
On the other hand, it follows from Theorem 1.1 that [;®—0 as 4—oo since 10(t)
has the same law as 6(2%). Q.E.D.

Lemma 2.2. [f ¢(#£0)eL'(0, 2x) and p>—1, then for any A(1<A<) and any
r=0,

[ 163001~ 2) e rds —> a5, as t—> .

Proof. Fix K>0,t>0, and 1<A<co. Then for any a>0 we have

P 1601 (5 e s> K |
=P| [ leat@ ) (— K@) Lerscatine- nds K fat]

:P[g:l c(laos)l(—x’)P1(1“1;<-r)dS>K/a2+,0]

This, together with Lemma 2.1, gives an inequality

lim inf P[gfz‘ €0 (— 2 Lz rds>K |2 P[TT| (— x0T ends>e ]

X —00

for any ¢>0. The last expression obviously converges to 1 as e—0 because x,=0.
Therefore, noting that the process involved is increasing in ¢, we obtain the lemma.
Q.E.D.

Lemma 2.3. Let VA1) (=0, -+, p) be as (2.9). Then
Vo, Vi, Vo>, <Vi*dhisess

—{[ 1awodzs, | | s @M cnds, a0),

So Lz cnrds, So 1(z3<o)d3}

1sksp

as A—oo in law.

Proof. First note by Lemma 2.1 that
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10
Ve, Vl/l)(t):Sime(ekez*)(lﬂs)luxs<—r)dS(O 1)

¢ 0 -1
+§ Im(erer) A0 iz y<-rr ds
0 1 0

¢ 10
——)5kl§ol(‘zI<o)ds 01 for k, (=0, -, p

as A—oco on C([0, co)—R* in probability for any (>0 and, also by Lemma 2.2 that
V*>(U) —> o a.s. as | —> oo for k=0, -+, p.
Fix >0 and ¢>0. Since the facts stated above imply that
PV, Hm)<t] — 0 as n—> oo,
P[S:l(,8<g)ds<t] —>0 as n —> oo
and
PLCV o A5(n)<t] —> P[S:l<,s<o)ds<t] as A—> oo
for any n>0, there exist 4,>0 and 7n,>0 such that
PV 1) >n =PV H(n)<t]<e
for all A=4,. Therefore there exists 4,>0 such that
PLIKV A, VIS IV @) >e]
SPIV e (t)>nd+Plsup |V, VidH [(6)>€]

<2e¢
for all z=4,. Consequently we have
(2.15) V4, V,‘)((Vk‘>“‘(t))———>(z 2) if k=l
as A—oo in probability for any ¢>0, from which we obtain that {ﬁ, 17,\", IR ﬁ}

converges in law to a (p+1)-dimensional complex Brownian motion as A—co by the
“asymptotic Knight’s theorem” in Pitman and Yor [9] (p. 1008).
On the other hand, we easily see by Lemma W1 and Lemma W2 that the limit

N
law of {V %, V%>, V4#} is that of

{So lizcnrdzs, So Lz <ndz, SO 1(18<o)dzs} .

Hence we can conclude that the limit law of V() (=1, ---, p) can be represented
by the law of

S:Sznek(O)]w(ds' do) (k=1, -, M.
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Thus we have

1Sksp

2 2 2 -/\ . (22 L
Wi, Vi, ks — ([ lacoda, [T Mas, a0), [ 1w,

as A—oo in law. This implies the assertion of the lemma. Q.E.D.

Lemma 2.4. Let V, 2@ (=0, -, p) be as (2.9). If p>—1/2, then

(2.16) {ve. [(=xoeavides), [ (= avin

——){S‘l(rs@)dzx. g‘(—xs)/’](mx<o)dzs, g'(_Xx)“l(xsq;)ds}
Jo Yo %
as A—oo in law and
2.17) {Vkl, g;(—xs)"dVﬂ(s), g;(_xs)z‘”d<Vkl>s}
—> {S; S:xek((})j\/l(l(.,;s<0)dsv dﬂ)’
- (‘21
Sogo er(0)(—x)* M1z cnrds, dB),

[l (=x01c,cns)
0
for k=1, -+, p as A—co in law.
Proof. Set
t
Vow(l)_—'g Lz <0y d2s
J0
t(ren
Virt={ [Ten M ands, ab).

By Lemma 2.1, we have

E sup ‘St(—x")“d<vkz>3—St(—xs)zp(KVk°°>s —0 as A —> o
ostsT o 0
and
E sup |{'(—rracv i =[x d i —>0as 4o
ostsT|Jo 0
for k=0, 1, -, p. On the other hand, Lemma 2.3 implies that

Vi, VD — (V= V™)) as A—> oo

in law for each k. Therefore,

i, @i, (= xravio, vy ([ (-xorav i)
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={Vit, v, S;(—x,)-“d<vk‘>s((l) (1)) [l (—xreacviis

. 1 0\ ..

—{re v, | <—xs>ﬂd<vk°°>s( ) [ xareacr iy
0 0 1 (]

as A—oo in law for each k.

Thus if we can prove that the above processes satisfy the conditions (2.12)-(2.14)
in Lemma W1, then (2.16) and (2.17) follow from Lemma W1. It is easy to show that

(2.18) E<XV > ()2 < const. (#'/2+const. 1)?, 1£A< o
for each k. Indeed,

¢ t
EQV 45 =2E( ds| 1es(30)1%14(20.)"Les ez e

t

nggzds&|ek<zos>|2|ek(wu>|2du

t

:2ES:(lsSs|ek(0(lzs))|Zlek(ﬁ(lzu))l tdu

<const. g:dsgi(l“s'”z—i—const.) {2~ (u—s)~"*4const.} du.

Here the last inequality follows from Lemma 1.2. Then we have (2.18).
We can also prove that

E } S:(—xs)”d<v,,1>, * <const. 2o(f 2 +-const. 1),  1<A<oo

for each k by a similar argument as above using Lemma 1.1 and Lemma 1.2.
Further it has already been shown in Lemma 2.2 that

Sz(—xs)z”d<Vk‘>s—>oo (t —> ) a.s., <A<

and
S:(—x,)“d(Vk""),:S:(—xs)zf'l(qu,ds —> (t —> o0) a.s.

for each k. Consequently we have completed the proof of the lemma. Q.E.D.

§3. Application to a limit theorem for “winding-type’’ additive functionals

Throughout this section let z(t)=x(#)++v—1y(), 2(0)=0, be a complex Brownian

motion starting at the origin. Let a,, a, -, a, be given distinct points on C\{0}
and go=o0. For i=1, -+, n, oo, let f;, fi, -, fim be some regularly varying func-
tions at a; with order p;i, pis, =+, pim, respectively. (See Definition 2.1.) We denote

the regular normalizing function of f;; at a; by N;;(1) and the asymptotic angular
component of f;; at a; by ¢;;(8) for i=1, .-, n, oo and j=1, ---, m.
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The main purpose of this section is to give the joint limit processes, as i—oo, of
the processes {A;;_*, A;;+*} defined by

1 uCAt)
Ay A(t)= (0 Luked ) e,

3. ZN‘I(Z) L )z}_?‘)
2 _ uadt 0i(2s ‘
Al 0= ) e Lon(zdan,

where u(t)=e**—1, D(7—) is some bounded domain containing a; and D(4) is some
domain such that D(+)° is bounded and a;&¢D@+). As we shall see, a particular
choice of D(i—) and D(i+) is immaterial in the limit theorem.

First, we introduce the notion of K-convergence for stochastic processes:

Definition 3.1. Let D,=D ([0, «o)—>R%) be the space of all R%valued right con-
tinuous functions with left limits. A sequence of D,-valued stochastic processes {X,()}
is said to be K-convergent to X.(t) if there exist a sequence of R%X R-valued stochastic
processes {(Y,(), ¢.(1)} and (Y«(2), ¢(t)) such that

1°) Y,@) (1£n=c) and ¢,(t) (1Sn<co) are all continuous stochastic processes,

2°) ¢,(t) is non-decreasing a.s., ¢,(0)=0 and @,(t)—>c0 as t—co a.s. for all 1<
n<oo,

3°) Xa(O)=Y.(¢.7'(?)) 1=n<00),

4°) AV n, @)} 2 (Y, @) as n—oo in law on C([0, o) R*XR).

We remark that the main limit theorems by Kasahara and Kotani [6] are in the
sense of K-convergence. If {X,(f)} is K-convergent to X.(t) as n—oo and X.(t) is
non-decreasing w.p. 1, then {X,(¢)} is weakly M,-convergent to X.(t). Generally, M,-
convergence does not follow from K-convergence but, if {X,(t)} is K-convergent to
X(t) as n—oo and ¢.~' has no fixed discontinuous point, then {X.(f)} converges to
X(t) as n—oo in the sense of finite dimensional distributions. This fact is obviously
derived from the following real variable proposition :

Proposition 3.1. Let {y,()} and {¢.(@)} be sequences of continuous functions on
[0, o) such that ¢,() is non-decreasing and @,()— o (t—o0) (n=1, 2, ---). Suppose
Ya{t)—=y(t) and @,()—@(t) uniformly in t on each compact sets as n—oo and @(t)—oo
(t—o0).

If y(@) is constant on (¢ '(t,—), ¢ '(t:) for some t, &[0, co), then we have

(3.2) Yalpa () —> ¥(@7'(%))  (n —> o).

Particularly, if ¢ '(t,—)=¢ '(t,) then we have (3.2) also.

We omit the proof.

Next, in order to describe the joint limit processes, we introduce a particular
system of n complex Brownian motions and n+41 complex Gaussian random measures.
As in the preceding section, we always denote by M(t) the time-changed process
MEM>-1(¢t)) for a conformal martingale M(?).
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Let {=(&, -+, L) be a C"-valued continuous process which has the following
properties :

(1) Each ;=¢&;++/—1y; is a complex Brownian motion starting at the origin for
i=1, .-, n.

(2) Setting

()= S:1<ei<s)<o)dCt(S)
Ci+(t)=g:1($¢(3)>0)dCi(s) ,

2N N\ N\ N\ N\ N\
the family {{,_, -+, {n-, {,+} is mutually independent and {,, =, =--=C,..

An important fact is that a C"-valued process with these properties exists uniquely
in the sense of law. We will explain the structure of { in Remark 3.1 in the last
part of this section.

Furthermore we take n+1 complex Gaussian random measures M, -+, M,, M,
with the following properties:

(3) Each M;is a complex Gaussian random measure on [0, «)X [0, 27x] with mean
0 and variance measure dt-d@/2n for i=1, ---, n, +.

(4) The family {{, M,, ---, M,, M.} is mutually independent.
Now define, for i=1, 2, -+, n,
¢ dzs
Za=X+v =1 (= —F—,

ZA=X )+ v —1Y )= —];Zi(<Zi>-‘<Pt))
and
2 __1 -1 —12_1 By 2‘21,?-13)
£ )= 5 U (Zy w0 =7 log | #lay | et i as+1 |
A 22 0
Then our theorem can be stated as follows:

Theorem 3.1.
(Z4 T, Ay red), Ay A ) sEn —s (L, ti, Lijo, L5} 1SIET
as A—co in law on C([0, «0)>C*"X R*XC™" X C™™"), where
pi(t)=max§y(s),

(3.3 Lo (=60 (—&ds) sl (s)
+ S’: 27
|
|

(ei(0)—ci)(—Eus)P1IM(d<C:->(s), db),

0

t

(3.4) Li5:(1)=Coo;

0

t(en

£4(5)P3d Ly (s)
S (Coi(B) — Cmp ()P =IM L (d<Casd(s), dO)

+

0Jo
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d e===("c0)d0, i
an C—ESO c(0)d0, in general.

As a corollary to Theorem 3.1, we can conclude the following:

Theorem 3.2.

{ZA, Ay, APV iiEm — (Lo L), L )}E

jsm
isn
as A—oo in the sense of K-convergence.

Proof of Theorem 3.1. The fact that

(Z4, 7} —> (L, maxé(s)  as 1—> oo

in law on C([0, ) = CXR) for each ; was obtained by Kasahara and Kotani ([6],
Lemma 3.1).
The first important step in our proof is the following transformation:

(3.5) = dzy= = flai—ae?i®)dZ (s)

1S<zi>"uzc> f(zs) 1g<zt>"'<12¢>
2 0 23— 2 0

:S:f(af—ate”“"’)dft‘(S)-

By this transformation, we have

Ay A= N%mgz(fu" Lpci-s)a—aer2i2@)d 7 3(s)

1

Az )= Mo

S:(feaj' Lpcn)as—aetZi? @) d 7.3(s).

Fix sufficiently large »>0 and set

1 t i
Fis- 2= _S —aettiio Aar<-rd Z it
3-4(0) N ofu(cu ae Nz f2w<erd ZiA(s)
n 1 ¢ s e A
[fij+2(t): —N;('17Sofmj(ai—(lielzli( ))1(1.\"11(8)>r)(1/,:2(s),
Since
sup |1pci-y(ai—a@?**" 1) —1.c | — 0
0sfs2r
and

vy1
sup |lpaa(ai—a:e?®* " 1) —1geom| —> 0
osfsen

as A—oo, we can easily deduce that
(3.6) Eé‘z‘Er' A @A) —Fi 2 ()2 — 0 as 1—> oo
and

3.7 Esup [<Ais Az Di—<Fip®> ] — 0 as 21— oo
0stsT
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by a similar argument as in the proof of Theorem 2.1.
Therefore the joint processes

{Z4, Ay, Ay ATy, Azt rih), Ao HgiEm
have the same limit law as the joint processes
(Z:4, Fit, (s, Fugl?, (Fgalopisiss

We know by Theorem 2.1 that the joint limit processes as 1—co of {Z,%, Fy_%,
CFis-Pbissem and {22, Fip?, (Fisehisjsm are {Go Lo, {Lij->}isgsm and Ly, Ly,
{Lij>tisssm respectively for each i, where .£;;- and .C;;, are defined by (3.3) and
(3.4). Then the laws of

(Z2, AyAed), <A A@d)y, Aud(ed), Ayt (ed)phisiss,

A>0, form a tight family because each component converges in law. Further it is
clear from the above argument that we may assume for any limit point of this family
that it is the law of

{Ciy Aijey CAus=d, Aige, {Ausap}iS5En,

where £, {,, -+, £, are some complex Brownian motions,

Ay (D=0 (6 IALi-(5)
+{ 1 et —cox—gasnramiacss), d0),
Aigs (= §:(5)P 1L (9)

+S:§:H(C°°f(")“5;f>5f<5>”°°f1\7t(d<cf+>(s)' d6)

and M,, M,, -, M,, A7[l, A712, e, 1\71,Z are some complex Gaussian random measures on
[0, o0)x [0, 2x] with mean 0 and variance measure dt-df/2z. We fix these {,, -
s My, -, M, 1\7[,, -+, M, below. It remains to prove the identity

PAN P N\
(3.8) C1+:C2+: :Cn+ ’
the identity

’

(3.9) M=M,= - =M, :=M,
and the mutual independence of
N\ N\ N\ N\
(3.10) Cico Comy o, G Chy MYy My, -+, M, M,

Firstly we prove the identity (3.8). As a consequence of (3.6) and (3.7), we may
replace D(i4+) by DA+)ND@2+)N --- "ND(n+). Therefore we may assume that

DA+)=D@2+)= - =D(n+) :=D(c0).
Set
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1 cu@atd 1
Wi A(t)= _[So Za, Ipy(2s)dzs .

This is the particular case of Ay;,*(t). We remark that

(3.11) Eoi‘tlé)rIWHX(TII(t))—WHI(TIA(t))| t—0 as A—> oo
and
(3.12) Eossttlng<Wi+‘(n‘)>t—<W,+‘(rl‘)>¢I —0 as 1—>

for any 7. To prove (3.11), note that

<z, > 'aln

1
W¢+1(Tll(t))=7S —a—ilucw)(za)dza

0 Zs—
1 S<zl>“<z’n 1 TR Ze—a, 2
=5 D(0) :
2 Jo Z;—a, Yoze—a;

= tow@—ae B R GRA, ¥ DaZ ),

where .
Riyx, O)=—a,e**""%/(a,—a;—a,e**'"19),
Hence
Eossltlng Wi Ao ) =W A (2 (1)) 2

T ~ -
<const. ESO Lpeos(@1— a6 213 R (AR 2, A7) —1]2ds .

Since lpesy(ai—a,e*' )| Ry(x, 8)] is bounded in (x, )& RXT and supespsss Llpceo (@ —
a,e*** =10 R,(Ax, )—1|—0 as A1—oo for any x#0, we can deduce the convergence
(3.11). The proof of (3.12) can be given similarly.

Then the laws of P;, 2>0, of

(Z4, Wik @h), Wt @y, Wot@mA), WA @)D isisn
form a tight family and we may assume one limit point P. of {P;} to be the law of

{Ci’ Ci+y <Ct+>, C1+7 <Cl+>}l$t$n'

Let P; —P. for some subsequence and write 4, as 4 for the notational simplicity.
We can prove that W, A(r;%)),—oo and <W,,*(r,*)>,—co as t—oo by a similar argu-
ment as in the proof of L.emma 2.2, and hence we have, by Lemma W2, that

5 T A 2 A AN T Arm2
{Zil; Wi A(Th), Wi (), Wl (mh), WA (T )} isisa
N\ N\
3 {Ciy Ci+y Ci-h Cl+r Cl+}lsi5n
as A—oo in law. We may assume by the Skorohod theorem that this convergence is
N\ N\
uniform on each compact interval a.s. Then we see that {;, is identical to ,, for

— — . . .
i=1, ---, n because W, *(t;*)=W,.*(t;*). Thus the identity (3.8) is now proved.
Secondly, we prove the identity (3.9). We can prove similarly to (3.11) and (3.12°
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that
Esup | Ay (@A 0))— Ayt @A) — 0 as A—> oo
0stsT

and
E Sl;lPT| <Aij+I(T1l)>t“<A1j+l(Txl)>t| —0 as A—>
osts

for any 7 and ;. Let P. be one limit point of the tight family of the laws P;, A>0, of
{ZAiz, Aij+x(ril): <Aij+'1(1'il)>, AU+1(2'11), <Aij+1(712)>}%§{§11': .
We may assume the law of P. to be the law of

{Ci, Jlltjh <~14tj+>s Jlljh <J41]+>H§{§77y: .

Let P;,—P. for some subsequence and write A, simply as 1. Since we can prove
that {A;,(t:*))—c0 and <Ay.(r,?)),—00 as A—oo by a similar argument as in the proof
of Lemma 2.2, and hence by Lemma W2 we have that

n n 1sjsm
—> {Li, Auge, Aije, Arge, AjeHEER

as A—oo in law. We may assume by the Skorohod theorem that this convergence is
uniform on each compact interval a.s. Then we have that

(3.13) T O=dopsty= - =dasu® (=1, =, m)

— T —
because A,;j+z(‘l'i2):A¢j+)(Tll).
Set
Ni5e(O=A:;:(Lee> (@)

The identity (3.13) implies that

(3.14) T O=Togs(O)= - =Tft)  G=1, -, m).

On the other hand, note that
fflin(t):CZ)S:(&«C“V’(S))\/O)”wfda+(8)

+S:SZR(CwJ(o)_aj)(éi(<€i+>_1(5))\/0)”“1}\2,((13, 46)

and

e O=Temy | ELCerd NV O Pids

Since &;(K: > ')V, 1=1, ---, n, are the same reflecting Brownian motion by the
identity (3.8) (See remark 3.1 below), we have that
(3.15) (5> =L T30 () =+ =T >(2) (=1, -, m).

Combining (3.14) and (3.15), we obtain the identity
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m1j+(t)::nzj+(t): =glnj+(t) (=1, -, m).

This clearly shows the identity (3.9).

Finally, we prove the mutual independence of (3.10). Let {e,=1, e;, -

some orthonormal system in L%*Q0, 2z) such that
P
cif(0)= 2 aisex(0), a;; el (k=0, -+, p)
for i=1, -+, n, o0 and j=1, -+, m. Set

t ~ . ~
Va 0= esGP i (sDla o ndZ4S)

t P 5o
V0= esQP ANl s wsnd 246

By (2.10) and (3.6), we have

’ ep} be

Esup\Au_%n*(t»—éaif'”g‘(—&*(s))wv”-%s)]z~»0 as A—> oo
ostsT k=0 0

and

E sup lA¢j+"(ri‘(t))— 5 am,<k>g‘)?,.*(s)f'wfdvt,,J(s)r —>0 as A—>co.
osesT k=0 0

Hence by Lemma 2.3, Lemma 2.4 and Lemma W2 we may assume the law of one

limit point of the tight family of the laws of

. . n . ] ' o~
{Zix, Ay A (@it), AT, So('—XiA(S))pijdVik-A(s)’ Vi, Vit

S ,/”\\1}1sj5m;osk5p

CRANIAV 1 A6), Vars, Ve

,
1sisn

A>0, to be the law of

. N
{Cn Aijoy Az, So(—éi(s))ﬂ“dcvik—(s)y Wiy Vik-s

1Sjsm; 0SksSp

. A~
Soét(S)”“deVm(S), Viks, Cthz+} ,

where
W O=Le)
\ V- O={[TenOMULCI, d0) k=1, p)
) Vioalt)=Lusl®)
1 Ve ={ [ e OM@Cu>s) d0) k=1, . p).

Therefore if we can prove that

P A\ P P
{CVU:—, CVzk—, tty Cvnk—, CV1k+}osk5p
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is an (n+1)-(p+1)-dimensional Brownian motion, then the mutual independence of
(3.10) follows at once.
To prove this, set

Gi,,_*(t)=%:2‘e,,(arg z‘_—‘:‘ ) Latogtzy-ais-agi<-n Zf_z; ,
Gs“"(t):%S:Zte,,(arg et )lmgl,,_a,./_ai»n z:f;,. .
By the transformation (3.5), we have
Gurs A KZT @)=V (1)
This implies that
(3.16) (Gix-*, Gu"Y(KG - D=V i, VDIV 5710

By (2.15), the right hand side of (3.16) converges to (g g) in probability as A—oo for
any t>0 if k+#[. On the other hand, since

l(loglzs-ai/-uil<—r)' l(loglz,—uj/-ajl<—r)50 if 1F]

for sufficiently large », we have that
0 0 ) )
(3.17) <Gik_i’ Gﬂ_2>(t)E( ) if 1:#]
0 0
for any k, [. Combining (3.16), (3.17) and the obvious relation
0 0
<le+2’ Gil—1>(t)E )
0 0

for any ¢, k, [, we can conclude by the asymptotic Knight’s theorem in Pitman-Yor [9]
. S 7 . . .
that {Gix-%, =+, Gar-*, Gir+*}tocrsp converges in law to an (n+1)-(p+1)-dimensional
7 7
Brownian motion. Then noting that Gi.*(#)=V::.*(t), we arrive at the needed con-

clusion.
Now the proof is complete. Q.E.D.

Remark 3.1. (due to S. Watanabe)

The C™-valued process {=({,, :--, {,) can be constructed as follows: We follow
the notions and notations concerning Brownian excursions to [4], Chapter I, section
4.3. Take n poisson point processes of Brownian negative excursions p,”, p,”, -,
pa~(i.e. stationary Poisson point processes on %~ with the characteristic measure n-),
a Poisson point process of Brownian positive excursion p* (i.e. a stationary Poisson
point process on * with the characteristic measure n*) and n+1 one-dimensional
Brownian motions B, B, -+, Ba, 8+ such that the family (p,~, -+, p.~, p*, B1, ==, B
B.) is mutually independent. The sum p; of p,~ and p* is a Poisson point process of
Brownian excursions (i.e. a stationary Poisson point process on W= UW* with the
characteristic measure n=n-+n*) and we can construct a Brownian motion &; from
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p: as in Chapter I, section 4.3 of [4], i=1. ---, n. Set

¢ t
1]i(t):ﬁi(Sol(ei(s)<0)d8)+ﬁ+(gol(Si(”>o)ds)
and define finally
LO=E@O+V=Iq), =1, -, n.

Then it is easy to see that {{,, ---, {,} satisfies the conditions (1) and (2) above.

Conversely, suppose we are given a family {{,, -+, {,} possessing the properties
(1) and (2). Set

Ci—(t)=S:1<eim<o)dCi(S) @i=1, -, n)

Col={ Tewswdlis) (=1, -, n)

and write
i-t = i-t +\/:I i-t ':"‘lv crry
3.18) {C #):=&:-(®) ,_,n @ @ n)
Cie@®) :=E0)+ v —19::0) (=1, -, n)
and
PAN —
{ Ci-@)i=a)+V—=1B:) (=1, -, n)
(3.19) ~ A~ N _
Cl+(t):C2+(t): o =Cn+(t) :=a+(t)+ \/'_1‘8.;(0.
By the assumptions, a,, -+, @a, a. Bi, --*, Bz B+ are mutually independent 1-di-
mensional Brownian motions. By Tanaka’s formula, we have
(3.20) EMNO=&, 1@ (=1 -, n)
and
(3.21) EVO=E,(D+1) @=1, -, n),

where [i(t) is the local time at 0 of one-dimensional Brownian motion &;(t). If we
make a time change t—<&;_>~(t) for (3.20) and t—<&;.>~(t) for (3.21), then &;(<&;-)>~'(®))
A0, i=1, ---, n, are mutually independent reflecting Brownian motions on (—oo, 0]
and &;(<&:.>"'@)VO0, i=1, ---, n, are the same reflecting Brownian motion on [0, o).
That is, from (3.20) and (3.21) we have n+1 equations

{ rd)=at)—ot) (=1, -, n)
re)=a.(O)+¢.0),

where 7,(1)=E&(<&:- >IN0, i=1, -, n, r ()=E(E:> M EONVO, Gu(t)=1(KE:-D7@)), 1=1,
-, n and ¢,(t)=U:(<€:x>"'(t)). These equations give the Skorohod decompositions of
ri(t), i=1, .-+, n, +; in particular,

(3.22)

1 L
per=lim o Lacrancods  G=1, -, n, +).

If p* is the Poisson point process of positive Brownian excursion corresponding to 7,
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and p;~, i=1, ---, n, are the Poisson point processes of negative Brownian excursions
corresponding to r;, then p,”, -, p,~, p*, Bi, -+, Ba, B+ are mutually independent.
Thus we have recovered this independent family from {{;},sis» and hence, the uni-
queness in law of {{},sic. is now obvious.
Set
pt)=max§(s) (@F=1, -, n)
0gsst

and
0+(t)=(grs1§ls)f ro(s) H)=inf{u; r.(u)=t}.

Then we have the following:

(3.23) L ()= (0.(1)) :=e(?),

{ EidU@N=0:7' (1)
(3.24)
<Ei+>(li_l(t)):¢+—l(t)
and
i) ())=0: (9. (a.@)) =¢; (et
3.25) { Eio(pi™ =0 (9+(a. (1) (=¢:7'(e())))
(' ()=0.() (#¢. ' (e®)).

These properties are easily deduced by our way of construction of {{;(t)}isi<n, ¢f. [4].
The structure of the process t—e(t) is well known: It is the inverse of the Dwass’s
extremal process (¢f. [2]), in particular, for fixed ¢>0 e(t) has the exponential dis-
tribution with mean ¢.

Putting together (3.18), (3.19), (3.22), (3.24) and (3.25), and noting that (¢, '(¢))=0
(=1, -, n, +) and r.(o.())=t, we can express {;.(/;7'(¢)) and {;.(p;7'(t)) as follows:

{Ct-(li"(t))= t++v—=1Ci()
(3.26)
ol ON=—t4+ v —=1C.()
and

{Ci—(ﬂi-l(t»: e@)+~—1C(e(t))
(3.27) -

Cirlp ' @N=t —e®)++~—18.(a.@)),

where

C:t)=Bye:7'®) (=1, -, n, +).

Note that C,, ---, C,, C. are mutually independent Cauchy processes in (3.26). Note
also that C,, -, C,, v, B+ are mutually independent in (3.27).

These processes appear as components of limit process of windings of z(): The-
orem 3.2 implies that

{Wish, Wit} isisn —> {Co-Cue™), Lot D} isisn
as A—oo in the sense of K-convergence, where

1

Z2s—ay

1z
WA=~ Ipciey(2s)dz, (=1, -+, n).
A Jo
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Taking D(G+)=D(G—), the process Im[W,_*)+W,.. ()] is a normalized algebraic
total angle wound by z(¢) arocnd a; up to the time u(it)=e?**—1. Then the imaginary
parts of (3.27) clearly show that the primary description by Pitman and Yor ([7]) of
the asymptotic joint distribution of windings of z,.

In addition, using above analysis, we give an another description of the joint limit
process of windings of z, below. Let g(z) be a bounded function such that

[ lg@11z1m(an<eo
for some ¢>0, where m(dz) denotes the Lebesgue integral. Set

EZ%SCIg(Z)Im(dZ)
and

1 rucav>
TR -
f@—A., g(z)ds .

Then, by Kasahara-Kotani's result (see [4]), we have

(3.28) {Z4, T Hhisizn —> (G0 2800t Mhisisn= {Co 280} isisn

as A—oo in the sense of K-convergence. Combining (3.28) and Theorem 3.1, we have
Wi AT, Wi (T Dhisssa —> G- (- /22)), Ll (- /22 1sisn

as A—oo in the sense of K-convegence if g(z)>0. By (3.26), we can express this last
limit process as

{ G- t/@aM= t/@2a)+~v—1Ct/(28)
Coslli™'(t/ Q2= —1/2E)+~ —1C.(t/(28)) .

This is one of natural (symmetric) descriptions for the joint limit process of windings
of z(¢) in the compact Riemannian surface C\U {oo}.
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