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Limit theorems for random difference equations
driven by mixing processes
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1 . Introduction

T h e  purpose o f  this paper is to study the weak convergence of laws o f  a  sequence
o f stochastic processes determined through random difference equations driven by sta-
tionary mixing processes. A s concerns limit theorems fo r stochastic processes driven
by mixing processes, including the case of random ordinary differential equations, there
a re  a  lot o f studies on  the  central limit theorem and the diffusion approximation theo-
rem. These results can be found in  Khaslminskii [15], Ibragimov-Linnik [8], Kesten-
Papanicolaou [14], Ethier-Kurtz [4], Kushner [19], Kunita [16], [17], and many articles
i n  their references. T h is  work is much influenced by these papers while we would
like to emphasize that a notable feature o f  this paper is to develop these works to al-
low  t h e  limit processes to have jumps. In  this point, we a re  strongly motivated by
the  works o f Gnedenko-Kolmogorov [7], and Samur [21], [22].

L e t fek ; nEN, kEN*I , where N = {1, 2, •••} and  N *= { 0, 1, 2, •••} , be a n  array of
Re-valued random variables defined on a probability space (Q, g  ,  P ) .  Throughout this
paper, we suppose that le,?; kEN*1 is stationary fo r every nE N .  L e t IFn(x), Gn(x);
n E N I  be a  sequence o f  functions on R d .  T h e n ,  f o r  each ne_ N, we determine an
valued stochasticstochastic process {yD 7

kl ; k c N *}  inductively by

T,on =x0eR d

t qii1: — (0-1=-F n Içoik'-iXe;: — (0)±(1/n)G n (gD1:_,) fo r  k=1, 2, •••

where we se t an=E[W(141:-)] for some positive constant 7  and  /A  denotes t h e  indi-
cator function o f th e  se t A .  Further, we define a n  interpolating process çon of k

by

(1.2) çoil=yqnt3 fo r  tE [0, 00),

where [t] denotes th e  integer p a rt o f  t. T h e n , Içon I nEN is regarded a s  a  sequence of
random variables with values in  the  space D d =D ([0 , 00); R d )  o f cidag (right contin-
uous with left hand limits) functions. A s usual, we equip t h e  space D d  w ith  the
Skorohod J1 -topology.

T h e  problem we would like to discuss in  this paper is to sh o w  th e  weak conver-
gence o f  laws o f  { Wn } 7, determined by (1.1) and (1.2) to  a jum p-diffusion (=strongly
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Markovian cAcIlAg p ro cess). F o r this purpose, we will require several assum ptions on
(1.1). Loosely speaking, they a re  stated a s  follows.

1) T h e  fam ily of random variables {Et': ; kEN*} in (1.1) is not necessarily indepen-
d e n t  b u t  h a s  ce rta in  m ixing property, such a s  th e  strongly  m ixing  property  o r  th e
uniformly mixing one.

2) T h e  random v a riab le s  left'; nE /V, kE N *1 sa tis fy  th e  co nd ition  en su rin g  the
weak convergence of the sum s { — a}.

3 )  The coefficients Fn(x) and Gn(x) te n d  t o  F (x ) a n d  G (x ) i n  suitable function
spaces, respectively.
T hen , w e w ill show th a t  th e  p rocesses Irk , of (1.2) converge in the sense o f  law s on
D , to  a solution of stochastic differential equation o f jump type :

(1.3) sot=x04- F(Ç .-)dB {C(Wu-)+G(so„_)} du
co.t] cot]

(izizri F(sou_)zg (dudz)±
( 0,J ( I zi >71

F ( ço ) z N (d u d z ) ,
(O J

w here B . is  a n  e-dimensional centered Brownian m otion, N(dudz) is  a Poisson random
measure on  (0, 00)x Re, and  g(dudz) denotes th e  com pensated m easure. A lso, C (x ) is
a  correction function arising from  the dependence o f  {$7 }  k  and  the  derivatives o f the
function F (x ) .  See Theorem 2.8 and  a  series o f other theorem s f o r  t h e  precise state-
ment.

In  th e  above, note th a t  th e  processes ÇDn  a r e  not necessarily Markovian w h ile  the
so lu tion  o f (1.3) is  a  jum p-diffusion. T herefo re , w e  can  say  tha t our p rob lem  is the
jump-diffusion approximation f o r  (çOn } n . Also, th e  above jump-diffusion approximation
contains lim it theorem s fo r  th e  sum s of random variables, w hich a r e  stud ied  in  th e
classic  tex tbook [7 ], a n d  [ 2 1 ] .  Indeed, p u t F"(x)--.=- I  ( th e  ex e  id en tity  m a trix )  and
Gn(x)-b(E Re) in  (1.1). Then wit'  of (1.2) is reduced to the  sum Et2i3 {elk'  — a"} -F([nt]ln)b
and w e know  from  (1.3) th a t  th e  limit process go t is represented as

(1.4) got=Bt+bt-0. zS:r (dudz)± z N (dudz).
coi t i z I > T 1

Hence, go t i s  a  Lévy process and  the  righ t hand  side  o f  (1.4) is  e x a c t ly  th e  Lévy-It6
decom position. Therefore, in  th e  class o f  finite dimensional stationary processes, our
result includes the  results in  [7 ], [21 ], an d  [ 2 2 ] .  The precise discussion will be given
in  the  next sec tio n . O n  th e  o ther hand, in the previous paper Fujiw ara [5 ], th e  jump-
diffusion approxim ation for {gon} n  determ ined by (1.1) and (1.2) has been studied under
ra ther restric ted  cond itions. W e w ill also see that th e  results i n  this paper im prove
the  previous ones.

Section 2 w ill be devoted to the case where {$1, 1 ;  kE N *} in (1.1) is uniformly mix-
i n g .  Main results are Theorem 2.8 and Theorem 2 .1 2 . The proof of them will be given
by  app ly ing  a  result essentially shown in  F ujiw ara-K un ita  [6 ]. I t  w ill b e  s ta te d  as
Theorem 2.44, which enables u s  to treat limit theorems in  th is paper in  a  unified way.
Furthermore, the application of them  w ill be  discussed. See Theorem  2.82 and Theo-
rem  2.86.
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In Section 3, w e w ill d iscuss th e  c a s e  o f  strong ly  m ix ing  p rocesses. A pply ing
Theorem 2.44 again , w e w ill show a diffusion approximation theorem a s  a  special case
where the  jum p p a rt o f  (1.3) is degenerate.

The final Section 4 will be devoted to studying the possible application of the theo-
rems established in  the  previous sections to the case where {V,' ; kEN*}„ is  a  sequence
o f  Markov c h a in s . In  o ther w ords, w e w ill try  to  find  a  class o f  Markov cha ins for
which these theorems hold.

2 . T he case  o f uniform ly m ixing processes

F irs t of all, we give precise definition of several mixing properties for the stationary
processes {eTki ; kEN*} „ in  (1.1). Set 3 =a [ei ; 1EN*, 1.<k], gn' k =a[el' ; lEN*,
k ] and define

cr -= sup supflP(ArIB)—P(A)P(B)1; A E g i ,  BE9 n 3 " },LEN*

0,1,1 =  sup su p  
P ( A n B )

i   P (B )1 ;  A E ,  
B E g n , I + k

 1 3 ( 1 1 ) > 0 1 ,
le N . P(A)

Bcg.344, P(A)P(B)>0},

fo r each n , kE N . Then obviously we have a'ki.<0 7,,'Sçb'k ', and 0 0 i f  W I k  is indepen-
d e n t .  T h e  sequence o f stationary processes lei,' ; kEN*} n  is  sa id  to  be  strongly  m ix ing
(a— m ix ing), uniform ly  m ix ing (0— m ix ing), o r 0— m ix ing according as a .  con-
v e rg e s  to  0 a s  k—>00 fo r each n, re sp e c tiv e ly . S e e  Eberlein-Taqqu [3] f o r  various
aspects of m ixing processes. Throughout this paper, w e  w ill dea l w ith  the  stationary
processes with one  o f the  above mixing properties.

N ow , the purpose o f  th is  section is to establish jump-diffusion approximation theo-
rems fo r the  sequence o f  stochastic processes {çon ; nEN} determ ined by (1.1) and (1.2)
w h e n  {$1,1 ; k E N *}  in  (1.1) is  un ifo rm ly  m ix ing . In  o rd e r  to  s ta te  o u r  m a in  results.
Theorem 2.8 a n d  Theorem 2.12, w e introduce th e  following conditions (U.I)--(U.III)
f o r  {e } k , w hich a re  common to them.

(U. I) :  There exists a Borel measure p on Re \ {0} such that fo r a ll gEC(Re)= : the set
o f all bounded continuous functions vanishing on  some neighborhood o f 0,

(2.4) nReg(z)P( Edz)—>Reg(z)p(dz) a s  n—>00

and that

(2.5) minflz12, lItt(dz)<00.
V W ))

(U. II) :  ( 1 )  T here  ex ists a  real num ber 17r fo r a ll p, q=1, • ••, e such that

(2.6) lim lim sup I nEC7A'a( PV :a ( q) ] —  V r =0,
5.0) n-•oo

0 =  sup sup{/EN*
P (A n B )  
P(A)P(B)
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w h e re  iAs=e146 — E[ . s ] ,  eZa=e1:Iii16s and 7271,1 ' ( P )  denotes the P-th component o f yg.
( 2 )  There exists a  real num ber V fq for all p, q=1, • ••, e such that

-1
(2.7) lim lim sup I nnE EDA .1(P) nNoi -  Vfql =0.

ô10k = 1

Let 0  be the rate function defined by (2.2).
CO

(U. III) : E  s u p ( 0 ) 1,2‹  c o .
k=1 nEN

Let C "(R d , Re) (mEN*) be the set of all Cm-maps from R d  to  W .  For feCni(R d ,
Re), we define the norms II • II.* by

Ilf II..= suP f ( )  I,  +  E sup a :f (x ) I ,
1seRd + 1 X 151aISm XERd

where a=(a i , •••, a d )  is a multi-index of nonnegative integers, la I =a i +•••+a d , ag f(x)
=(al"' /(a x i )" 1 . • •(axd )"d)f (x). W e denote by C17,l(R d , R e) the set of all f ECni(Rd , R e) such
that II f  .  The space cg* (Rd , Re) and the norm II Ilf,* are often denoted by C b*(Rd ,
R e ) and J ,  respectively. W e also denote by Rd0Re the set of a ll dXe real matrices.

A s a condition for the coefficients F n  and Gn in  (1.1), we introduce the following :

(C ) : (1 ) FnEC"(Rd, Rd®Re) for a ll nE /V . Further, there  ex ists FE  0*(R d , R d ®Re)
such that lim 7,--.11,F' — F112,K=0 for every  compact set K  in  R d , w here  'I n 2 ,K

=
E la  I

sups E K 3gF(x)1.
(2) GI' Cl(Ra, Re) for all nE/V, and there exists G , R e ) such that lirrin _IIGn

—GII1,K=0 for every compact set K  in  Rd.

Here, it should be noticed that Conditions (U. III) and (C) a re  not sufficient
in  general for the w eak convergence of the p ro c e sse s  Irk . In d e e d , T h e o re m  3.2 in
Samur [221 tells us that it is necessary  to  hold  that limn —nP [I  > s , I >e1=0 for
every s>0 even i f  In}  k  is 1-dependent and F n  G n  are constants. Therefore, we need
to find a  sufficient condition w hich ensures at least th e  a b o v e  p ro p e rty . In  the  next
theorem , we give the condition in term s of the uniform  integrability of som e class of
random variables.

(2. 8) Theorem . Suppose that Conditions (U. III) and (C) are satisf ied. M oreov er,
we suppose

(U.IV)1: { X " = :  nE [ I er,', N12197:-1]; n, kEN} is uniform ly  integrable f o r ev ery  N >0.

A lso , tak e  an=E[e 101, , ]  i n  (1.1) f o r arb itrary  D C(p)=: Ir>0; P (I s ' = r )= 0 } .  Then,
the sequence of  D 2 -valued random  variables I ç e l  determined by (1.1) and (1.2) converges
in  law  as  n—>oc to  the unique solution ço of  the  stochastic dif ferential equation (1.3), in
which

( i )  B ,  is  an  e-dimensional B row nian motion w ith  th e  m ean 0  and the cov ariance
matrix

(2.9) (17Pq= vri+vr+v7P),,,=,
( ii) C(x)=-(C'(x))i=1,..,d is  a  function o f  class C (R d , Rd) defined by
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d e ap a(2.10) C )(x )= F iP (x )V r (x),i=1 p, o =i

(iii) N (dudz ) is a  stationary  Poisson random  m easure w ith th e  intensity measure
dup(dz) and N(dudz)=N(dudz)— dup(dz).

See Ikeda-Watanabe [10] for stochastic integrals based on Poisson random measures
and stochastic differential equations of jump type such a s  (1.3).

(2.11) R em ark. Let { } k  i n  Theorem 2.8  be  g iven  by elk '=enoO k f o r  k eZ ={ •-•,
—1, 0, 1, •••} , w h e re  {en} i s  a  sequence o f  Re-valued random  variables defined on
(Q, ff, P )  and O : ‘2 ,—*Q is  a  bimeasurable, bijective mapping such that S u p -
pose  tha t ieink is  a  uniform ly m ixing process with th e  ra te  function 01: defined by

0 1,,L=sup sup{  P (
p
A

(
(
pi.
-\

)
B )  P ( B )  ;  A E g 7

1', B E g n ' 1", P(A )>0 1iE z

wher ; l e Z , l .. 1z] and  9 -7" ; In  th is  case, Condition (U.
IV) i is sim plified as

(U. IV)?: IX (n )= - n E n  N rIgn  ; n e N }  is uniform ly integrable fo r every N>0.

In  fac t, if  w e  note th a t  EEle;i,NrIsni=E[lel NrIg]oe-i, it is clear that (U . ' WI'
implies (U. IV),

In  th e  next theorem , instead  o f  t h e  uniform  in tegrability  condition (U.IV) 1 ,  we
assume the 0-mixing property.

(2.12) Theorem. Suppose that Condition (U. I)--(U. III)  and  (C ) are  satisfied. M o re -
over, suppose the following

(U. IV)2 : sup Or< co,
n E N

where (Pik'  i s  the rate function def ined by  (2.3). T hen the conclusion of  Theorem 2 .8
still holds.

Let us m ention the connection between this theorem and the p reced ing  w orks. Let
{E,717, k  be an  a rray  o f  1-dimensional, independent, and  identically distributed random
variables sa tisfy ing  Conditions (U. I) and (U. II)-(1). T h e n ,  by Theorem  1  o f  § 25 in
Gnedenko-Kolmogorov [7], it is  k n o w n  th a t a  sequence o f  processes {son} n  defined by

[n t ]
(2.13) çoi1=  1 1$I:— E [eril-E ([nt]/n)b

converges in the sense o f  finite dimensional distributions to  th e  Lévy process o f  (1.4)
w ith  the  characteristics (V o , b, p). Furtherm ore, w e know  from  Samur [21] a n d  [22]
th a t  {r}  „  o f (2.13) converges in law  to  the Lévy process o f  (1.4) w ith  th e  character-
istics (V, b, p )  if leio 7,,k satisfies Conditions (U. III) and  (C). Therefore, Theo-
rem  2.12 is regarded as an extension of them  to  the case w here th e  lim it process is a
so lu tio n  o f  a  stochastic differential equation driven by Lévy process because th e  pro-
c e sse s  W I n  o f  (2.13) a re  obtained by putting F n ( x ) 1  ( th e  e X e  id en tity  m a trix  and
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Gn(x)=- 1) ( R e) in  (1.1).
Also, in  the previous paper Fujiwara [5], the same assertion as Theorem 2.12 is

shown under extra conditions :

sup nECIEN19<cc)
n e N

CX.

for a ll N>0,

E  sup ( 0 ) 1,2 ‹  0 0 ,

k = 1  n e N

and more restricted regularity condition on the coefficients  F .
 S e e  T h e o r e m  1 and

Theorem 3 in  [5 ] .  Therefore, Theorem  2.12 is  an  improvement of the resu lts  in  [5].

(2.14) R em ark. R ecently , lim it theorem s for a sequence of semimartingales have been
studied by many authors. See [11], [12], and [20] for the weak convergence of stochastic
integrals based on semimartingales. Furtherm ore, see [13], [18], and [23] for that of
solutions of stochastic differential equations driven by semimartingales. W e can regard
the processes {çon} 7, in  Theorem  2.8 and Theorem 2. 12 as a  sequence o f  semimarting-
a le s .  But they do not seem to satisfy at least conditions given in [13] or [23] in general.

W e will prove Theorem  2.8 and Theorem 2.12 in  a  unified w a y .  T o  th is  end, we
introduce a  technical condition (U. IV)* as follows.

L et {X } „ be a  sequence of 1-dimensional cadlag processes. W e  s a y  t h a t  {X n}
satisfies Condition (CT &  UI) i f  {X n } is C— tight, th a t  is  to  sa y , {X"} „ is  t ig h t in  D,
and any weak limit law is supported in the space C([0, co), R') and if, fu r th e r , {X }„  is
uniformly integrable for every t.O.

For each nEN, 0<3<iV, define nondecreasing cadlag processes Xit '  and Y '(6 ) by
[n t ]

(2.15) X 7 1 =  ECV,N1 2 1n - i i ,k=1

(2.16)
Cnt3

Y i( 3 ) = E C IV k l 1■, 12 19. 1k1-11,k=1

w h e re  ek:k=e;:•1,,, e iki, „ ) .

(U. IV )* :  (1) f iY a ln  of (2.15) satisfies Condition (CT & UI) for every N.
(2) { Yn(3); nEN, 0<5__N} of (2.16) satisfies

(2.17) lim sup lirn sup P[W T ( Y71 (3), 6 )>E]=0,e.“) s‘N

for alll s>0, w here  147T(yo, 19) denotes the  modulus of continuity defined by
supilgot —çNl; t — s . 0 , s t T I  for q)GD a ,  and

(2.18) lim sup lim sup E[17 11 (6); 17 11 (3)>K]=0,
K toc, N

for each t.

wr(ÇD, 0 )=

Next lemma gives us a useful characterization of C-tightness of a sequence of cAdlag
processes.

(2.19) L e m m a . Let {XII} „ be a sequence o f a id là g  processes. T h e n  the f o llow ing  (a)
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, , , (c) are equivalent.
(a) 1Xn} n  is C-tight.
(b) {Xn} satisfies that fo r  all  7 >0 and 3 >0

(2.20) lim lirn sup P[sup12a >K] =0,
K-.co t s T

(2.21) lirn lirn sup P[wr(Xn, o)>a]=o.
010

(c) {X n} „ is tight and it satisf ies that fo r  all T, 3>0
(2.22) Um sup P [sup AX 1,' > 3] = 0 ,

tsT

where X—

Pro o f . See Proposition 3.26 in  [11, p.315].

F or nondecreasing cadlag processes Xt an d  Y,, w e say that X  is strongly  majorized
b y  Y, and denote by iY,< Yt if  ( Y,—X,) is a lso  nondecreasing. T hen it is c lear from
Lemma 2.10 th a t  {Xn} „ satisfies Condition (C T & UI) i f  there  ex ists {Y } such that
X 7

t` < rt i  fo r a ll n and  th a t  { Y ,, sa tisfies  (C T  & UI). W e w ill often use  this property
without mentioning.

Next results, Lemma 2.23 and  Lemma 2.26, enab le  u s  to  tre a t T h e o re m  2.8 and
Theorem 2.12 in  th e  same framework.

(2.23) L e m m a . Condition (U. IV) i  implies Condition (U. IV)*.

To prove this lem m a, w e prepare a  lem m a w hich gives u s  a  characterization of
uniform integrability.

(2.24) L e m m a . Let {Xn}7,  be a fam ily  o f integrable random  variables. Then the fol-
lowing are equivalent.

(a) 1 ,c -  n  is uniform ly  integrable.
(b) There exists a positive, increasing convex function G(x) defined on [0, 00) such

that limx_,+.{G(x)/x1 = 4- 00 and that sup ii ECG(I Dl<
Pro o f . See Theorem 19 in  Dellacherie-Meyer [1, C hapitre I, p. 34]. D

Proof  o f  Lem m a 2 . 2 3 .  D efine a  cAdlAg p rocess  Utn  b y  Ut=(1/n)EVA 3 X1" ) =
EiVECIV,,NrIgi:-1]. Then w e have XI' <2 { (1  E [ U ] I  and supasn Y ( ô ) «  U .  T h e re -
fore, it suffices to show  th a t  {Un} „ satisfies (CT & UI).

By (U. IV), and by Lemma 2.24, there exists a positive, increasing, convex function
G o n  [0, 00) such that

(2.25) lim {G(x)/x} =00, sup E[G(X,r ) )] < 00.
n,k

T hen  by  the  convexity o f  G , it  is  c le a r  th a t sup„ E[G(Pt i )] <00 fo r  each t ,  which im-
plies the  uniform  integrability o f  { n. W e next show  the  tightness o f  {Un} n . Set

-- -= g .  L et a and r  b e  a rb itra ry  19T1 -stopping tim es such that 0 -< r  7' a n d  that
1---6rSr and  le t C be arb itrary  positive num ber. Since

E [14— un
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ckr3
=E [( 1 /n )  E  X ]

k=Ena7+1

Cnr3 [ n r]
 X I 1 n ) c ) 1 ± ( 1 / n ) E [  E  X V ) /(x,r) >C1]12=Encrj+1 k=fna]-1-1

we have
lirn lim sup sup {E[112

1-'— WI]; a ST- r— o-<r}  <T sup E[X k") ,Ickw>c)1•
r n-.co n, k

Since Condition (U. IV) i  implies that the last term converges to 0 as C  00, we see from
th e  theorem o f  Aldous th a t  {Un} i s  t i g h t  in  D I . S ee  T h eo rem  4.5 i n  [11, p.320].
Finally, me show th a t  ium n  satisfies (2.22). Let G be the function given above. Since

P[suP AUit'> 5 ]= P [  m ax  (1/n)X V ) >3]tz T isk,Enri

En 71 sup P[X V ) >n5]

5 En 71 sup F[G(X V ) )>G(n3)]

[nT ] n a  snup, E[G(X ,P))],na G(na)

(2.22) follows from (2.25). Thus, we see from Lemma 2.19 th a t  1U'l „ is C-tight. D

(2.26) L em m a. Conditions (U. I ) , (U. II), and (U. IV) 2 im ply  Condition (U. IV)*.

Pro o f . By the definition of çbj', we can see that for every n , k eN  and a<N

E[Ink',N12 19T-1] (snp + 1 )E[1 12 N12] ,

and that
E[ V 1 2 191- 1] 5 (sup +1)ECIE019.

Since (U. I) and (U. II) imply that A = : sup,,nECIYgN1 2 1 is finite, )(It ' o f (2.15) is strongly
majorized b y  the deterministic process A(sup r, ON -1)X (Entl/n). Hence, it is obvious
th a t (U.IV)*-(1) is satisfied. Similarly, we can show th a t  { YK3)}.,a of (2.16) satisfies
(U.IV)*-(2) if  we note the property.

sup lim sup nE[tEar]5sup 1.z12,u(dz)5 I zl 2 p(dz)< co .  D
a s N  n .c o a s N  la S lz IS N MSN 1

By Lemma 2.23 and Lemma 2.26, it is immediate that both Theorem 2.8 and Theo-
rem 2.12 follow from the next result.

(2.27) T heorem . Suppose that Conditions (U. I)--(U. III), (U. IV)*, and (C) are satisfied.
Then the conclusion of Theorem 2.8 holds.

In the following, we will give a  proof o f  Theorem 2.27. F o r  this purpose, we
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apply  a lim it theorem  for stochastic processes determined by random difference equa-
tions of general form . Since it can be deduced from  Theorem  2.1 of Fujiwara-Kunita
[ 6 ]  by m aking a little improvement in the conditions and the proof, w e restric t our-
selves to  stating the assertion.

For each nEN, let { f (. ) ; k E N * i  be a C 2 (Rd ,  Rd)-valued stochastic process w ith
param eter k  defined on a probability spoce (Q, g ,  P ) .  We define a  sequence of the
sub  ti-fie lds {F ;  keN*} n e N  of g  b y  SI' f i n .  Let le ( . )  ; n E N , kEN*I
b e  a  sequence o f determ inistic functions of class e ( R d ,  Rd‘.) A ssoc ia ted  w ith  the
sequence ir k', gjell „, we consider the following stochastic difference equation :

(2.28)
9 XDE R d

çpre —1 f i:( 0-1)+ek`(çokL1), k =1 , 2, •••,

and define a sequence of a d là g  processes içonl „ b y  (1.2). W e n o w  put the following
conditions (A. I)--(A. V) on lfk , •

To m ake the notations sim ple, w e often use the fo llow ing  abbrev ia tions. For e,
M >0 , w e set

f '14 m(x)= f f  17:,;,(x) = f ,,<„ f  n

ilel, w (x )=E [f 7ki,m(x)1, ? , ( x ) .=- f m(x)— .714m(x).

W e denote by f "  the i-th component of f k .
For each n eN , let _A" be  the set of all real-valued cà.d1Ag processes 241,' satisfying

( i ) A  i s  {912„t , ; t 13} -adapted,
(ii) t ,-4 4i' is  nondecreasing,
(iii) E [A 't '] <o o  for each tE[O, 00).

For A"EA", it follows from Doob-Meyer's decomposition theorem that there exists
a unique predictable process  4 f l 1) o f class An such that A lti —  X •P is  a martingale. We
call the process A n P  the compensator of A".

W e also denote by S d  the set of a l l  d x d  rea l, sy m m etric , nonnegative definite
matrices.

(A. I) : For every compact set K  in R d and for ev e ry  T>0, and e>0,

lim  m a x  P[sup Ifk(x)1>e]=0.
72 05k Stun xEK

(A. II) :  (1 ) For every compact set K  in R d and for every  positive constants M , T ,
there exists a sequence of stochastic processes {D nEA "} „ satisfying the following pro-
perties (i), either (ii) or (ii)'

(i) For all s t_<_.ti T ,
[ n t ] Ent'J

(2.29) sup  1E[ a7,/,,m(y)ignila.ilik,fricx)i
I 1,5 I k----Ens7+1 x,yEK l= k +1

[n t]
E E sup I ,3f(x) I 2

I/5151 k = [n s ]+ 1  xEK

(ii) The sequence of compensators {Dn'P } „  of „ satisfies Condition (CT & UI).
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(ii)' {D 4 },2 itself satisfies Condition (CT &
(2) For every compact set K  in  R d  and for every positive constants s5M, T,

there exists a  sequence of stochastic processes {En(e)eAn1 satisfying the following
properties

(i)
E n t ]

(2.30) suP I a.l.alf(x)1 2 < E it'(e).
r p i s i  k = 1  x E K

(ii) For every x>0,

(2.31) lim sup lim sup PEIVT(En . P(6), 0)>x] .840 O ge /ff

(iii) For every

(2.32) lim  sup lim sup EIE rt' P (6 ); E i" ) (6)>K]-=0.
K  1 . .0 e 5 M

(3) For every compact set K  and for every positive constants s < M , there exists
a sequence of deterministic nondecreasing functions D 4 }

n  satisfying the following pro-
perties (i) and (ii).

( i)
E n t]

(2.33) E  EIE [suPlaYL'vx)1]4 - sup I g.(x)-k 1 4(x )I} < ix •
i 6 is1  k=1 X E K " X E K

(ii) For every T>0

(2.34) sup D4 <Q. , and lim lim sup WT (D", 0)=0.
n e N

(A . III): (1) There exists a Borel measure v(df) on C0.(R d , R d )  satisfying the follow-
ing properties

(i) There exists some rEC(1))= :{r>0 ; ( =r)=0} such that

(2.35) Ilf 110)(df)< co, and v(Ilf 11.>7.)<00•
,ç(11.f11*57)

(ii) For every M, C O )s e a n d  f o r  every bounded continuous function h  on Rd

E n t]

(2.36) lim asup I E C  E  h(fk(x)) 1 ( <4[:*gmilgA831
x E K k=[ns]-1-1

d  h(f(x))1(,<T4smiv(df)11=0.cb * (Rd,R )

(2) There exists a function ao ECg*(R d , Sd )  such that for every compact set K and
s t

Ent3

(2.37) lim lim sup E[sup I E[ E  f 'PP) (x).h.E( j ) (x )  g 7E'ns]] —(t—s)(16.1(x)11 =0.
EEC(04.o n-co s E K k=[ns]-1-1

(3) There exist functions a4 Cg,.(Rd , R d ® R d )  and cE C1*(R d , R d )  such that for
every compact set K, M>0, and

[ n t]-1 Entl
(2.38) urn a s u p  E l E 971,4431—(t—s)aff(x)11=0,

xE K k -C n8 ]+11=k+1

and
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[n t ]- 1 [n t ] d

(2.39) lim E[sup .EC E E  E  ((a/ax i )h l,g )(x )
s e l f 1=k+1 5-1

yz,„(i)(41 --(t— s)ci(x)1 =0,
respectively.

(4) There exists a  function bECI.(Rd, R d )  such  that fo r every compact set K  and
s_<t

Ent]
(2.40) lim sup I 11 10(x)-F f g r (x)} —(1— s)b(x)1 =:0,

rE K  k = [7 4 3 ]+ 1

where r is  a s  in  (1)-(i).

(A. IV) :  F or every com pact set K, s t ,  M >0 , it holds that
(1)

Cnt7
(2.41) lim s u p  E  a s u p  E [  E  agl4m(x)IgNs]]1]=0,

SECO,t] laI52 x E K k=[ns]+1

(2)
[n t ] [ n t]

(2.42) iim  E  E E  E s u p  I E  aD`t m(Y)I gl'1111-14m(x)12 1 -=0.
k = [n s ]+ 1  x ,y E K 1=k-1-1

(A. V ) :  For every t>0, it holds that

(2.43) lim lim supPr su p  Ilf11.>mi=0.
111-."0 k [ t]

(2.44) Theorem. Suppose that Conditions (A. V ) a re  satisfied. Then, the se-
quence o f D a -valued random variables Içon} 7,  determined by (2.28) and (1.2) converges in
law  to the unique solution of the following stochastic differential equation:

(2.45) yo1 =x0+5o
. (9)„_)dB„+ . (b+c)( )du

( 0,1] (0,13

_)N(dudf),
(0 , t 3  (llfl rl

f ( w , , _ ) S i ( d u d f ) + 1
f (co, ti5 .t- 11.>r I g

w here (i) a is a Lipschitz continuous function from Rd to R d® R
r such that o(x )o(x)*=

ao(x)d- fai(x)-kai(x)*1 where a* denotes the transpose o f  the m atrix  a,
(ii) B 1 i s  an r-dimensional standard Brownian motion,
(iii) N(dudf) is a stationary  Poisson random  m easure w ith the intensity measure

duv(df).

Before giving a  proof o f  Theorem  2.27, w e prepare basic  inequalities which hold
for uniformly mixing random v a r ia b le s . T h e  follow ing result is show n in  th e  proofs
o f  Lemma VIII. 3.102 in  [11] and  Lemma 5.6.2 in  [17].

(2.46) Lem m a. Let {Co} k N *  be a stationary , uniform ly  m ix ing process w ith the rateE

function 95 k. Suppose that e is an L P, g h -adapted random variable fo r  some pEE2, œl,
where g 0 = o l e 0 , Œ k + 1 , T h e n ,  it holds that fo r  all l<k

(2.47) I ER I g. — I 2(0n-t)" q {E[1$1 1'19- 1] 1 P +EEIŒI P TI P I,
where if i =o[e o , •••, e t ]  and q is the conjugate of p, that is, q=1/(1-1/p).
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P ro o f. Let Q(co, do!) b e  a regular conditional probability of P(•Ig 1 )  on 9 .  D e f in e
a  signed measure p(co, do!) b y  p(w, da)=Q(co, dd)—P(dol)Igk, and let p(co, dco')= te(o.),
dal)—p - (co, do/) be  the Jordan-Hahn decomposition of p (o ), da ). Then, by the definition
of the rate function, w e have for all B e g k  p((o, k _ l  P  — a .  s . ,  which implies that
P + (co, Q), r(w, ,Q)95k_1. Hence we have

(2.48) I ECŒI F ,] — E[E] iq= d p

.Ç$dri+1 .ecl

op).
lelPdp+} 9 /  P ( 0 ) 1  Q ) .61 e  P

2q0k4 e 1 P d lp Ir P •

Moreover, since I jul(co, do/) Q(a.) , da )+P(cid )Igk , w e  have
ao,

{ l e l P d1 } 5_1ECIelPlg1]hlP±E[lelPi"PP•

Combining this with (2.48), w e obtain (2.47). D

(2.49) L e m m a . Let { } k be  the same as in Lemma 2.46. Suppose that supk ek(041
C. Then we have fo r a ll m < l<k

(2.50) 1E5707/ I g .1—E[72,77,]1 _<16C2 (0 k  _IP"(01-70 1 " ,

where yik=ek — E[ek] •
P ro o f. Applying Lemma 2.46 f o r  p = .  (q=1), w e have

(2.51) 1.E[11o11 Ign,i— Ernot]l
Similarly, we have

(2.52) IEE7oilg.11 ECIE[yiklgt1172111g.1 8c2Ok_1,

(2.53) a1)kn,J158c20,-1.
Therefore, by (2.51), (2.52), and (2.53), we obtain

IED2knilg.1—E[3?o,71 2

5.1EInk nilg .1— ank nillx ilank nilg .11+1E[notill
(16C2)2,75 k

which implies (2.50).

Proof o f Theorem 2.27. W e first give a  proof of Theorem 2.27 under additional
assum ptions that lim,„11Fn—F11 * -- , --0 and that F is not identically 0 .  In th is case F f -- =
inf,i 1IF"11*>0. For each n N  and k A7*, set

(2.54) f (x)=- F n(x)elki , a n d  e (x ) , (1/ n)Gn(x)— F"(x)an ,

in (2.28). Also, define EL by u[, • •., e r , ].  Then, what we should do is  to  check that,

u n d e r  Conditions (U. I)--(U. III), (U. IV)*, and (C), Pil and e ki  defined a s  above satisfy
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(A. I)'-.'(A. V) in Theorem 2.44. In the sequel, let K be an arb itra ry  compact set in R 4

and let s ,  M  be arbitrary  positive num bers such that s <M.

(Check of (A . I ) )  B y  th e  stationarity o f  {V } k  and (U . I) , it is  obv ious tha t (A . I)  is
satisfied.

(Check of (A. II)) (1 )  For s< M , we set Fs=supnlIF112, F=sup7,11Fa112,K,
6(n)=6/11F 4 11., 6=6/F8 , N(n)=M/I1F"11., and N — M/F 1 . T h e n , s in ce  w e  see  fro m
Lemma 2.46 that

Env
sup I E[

]

E  a g t ,m ( Y )  I ginlyEK
Ent'3

<sup  E  I E [a7 ,F " (Y )i) ;: N (W ig  In  I
YEK 1=k+1

L 7 ' (0 71i-k ) 1 "  E r 1 1274 N 001 2 F L j j ' ' 2 +
E [ I

N 001 2 ] " 2 1
1= k +1

the left hand side of (2.29) is dominated by

(2.55) 2(F)2( (0 - k ) " 2  fa N(n) 1 g  
72]

1 / 2k =Ens1+1 1=41+1

[lit)
+ Irg, N (T ) 1 21 112 i  X N(n) 1 E I 12714 N (n)1 2 )

lz=[ns]+1

n t]
„52(F) z (E (0 ) 1"  E ELI )2 N gn

1=1 k= [,ts]+1

Cnt]
E { I 77g,N(i) 12 -FEC I 771̀, N(7 ) l'11)k < n a j+ 1

Hence if  we define „ by
Ent]

(2.56) (ON'" E ED2 71-0,,N(.)1 2 1 ff7k111=0 k=1

w here w e set w e see from  (2.55) th a t the  left hand side of (2.29) is dominated
by C{DIt"—D 7p1 -1-E[M"—DT,H } f o r  some constant C which does not depend on n, s, t.
Therefore, (A. II)-(1)-(i) is satisfied if  w e define {D n }  „  in (2.29) by

(2.57) 13;' ,C{M"--FEED1"1}

In the sequel, w e prove that the compensators IDn'"I n o f  {D"• 1 1 7,  satisfy (C T &
UI) because it implies that (A. II)-(1)-(ii) is satisfied with I D 1  „  of (2.57).

From  the definition of compensator, we have

(2.58)

w here ) ( .  (') is  a  nondecreasing cAdlAg process defined by

(2.59)X  ( t ) = P E[1724k,N (n)1 2 T - 1 1  •k=1

W e first show inductively  that {X"'" ) } „ satisfies Condition (CT & UI) fo r  a l l  leN *.
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S in ce  w e  m ay  assume th a t N (n )> 1  for a ll n , w e  have 11212,,N(1)12-4{17g,202+1erk13,712+
eôl:41 211 , which implies that XI' . " ) < 4 1X + fl(1 )-f-E [Y 2(1 )] for {X '},. o f  (2.15) and

{17 "(1)} 7,  of (2 .16). On the other hand, we see from Lemma 2.19 that { Y(1)},, satisfies
(CT &  Ul). Hence, it is clear from  (U. IV)* that the assertion holds for 1=0.

W e next consider the case of 1= 1 .  Associated with Xn ( 1 ) , define a  stochastic pro-
cess Z 7 , .( 1 )  o f  class _An by

Ent]
(2.60) Z'1' ( 1 ) = EL I 7274-1,N (,)1 2 I gin •k=1

Then it is easy to see that {Zn ( 1 ) }n  satisfies (CT & UI) because so does IX' ( "I n . A lso,
note that ( " = Z I ' ,  ( 1 ) , P, w here Zi' , " "  denotes the compensator of Z[i' ( I) . Let a- r  be
{9 '}-stopping tim es bounded by T .  Then, by Lenglart's inequality ([11, p. 35], w e
have for arbitrary s, b>0

(2.61) P[X;',(1)— ( 1 ) >6]

(1/ô) Is+ E[stu0 Z" ( 1 ) ]} +P[Z1 1 ( 1 ) —Zr„''( 1 )> s] .

Since (CT & Ul) fo r  {Z"» ("I „, implies that

(2.62) lim E[sup A Zr,"" )]  = 0 ,
n - b c o tL,T

lim lirn sup sup P [Z ".0 )._z j,,(1 ) > s],0
010 n-b“, r - u

we see from (2.61) that

lim lim sup sup P[X," ( 1 )— .X;'." ) >6]=0 ,e t , sO

Hence, by the Aldous criterion, we can conclude that {X". (I ) } „ is tight.
In  order to  prove the C-tightness o f  {X". (l)} n , w e  n eed  to  show  that (2.22) holds

fo r  {ir" (1) } „. Recall Lem m a 2.19. Set

Sn=sup A ZI" (I) ,  max ED 72 il+1 , N (n )r  T i  •
I s k ‘ E n T j

T hen  w e have

su p s max E[E[1)2;41,N(,)1 2 1g'k] gg-1] -5- max E[Sn I 9 1:--1] •
tn T 1. 5 E n T ]1 11 [72.T]

Since {E[S" ; k=1, 2, • ••1 is a martingale, Doob's inequality im plies that fo r  all
o>0

P [sup A X ' ( 1 ) >3]
t n T

- 1, , [ i maxT 3 E [ S "  Lz_1 ] >6]

• 6)ECE[S" I g =-(1/6)E[y7 "tp A Z " ( 1 ) ]

Hence, we see from (2.62) that (2.22) holds fo r  {X". ( 1)1 „.
In order to prove that {Xn• "'I „ satisfies (CT & UI), it remains to show that {X l1 . (I)}

is uniform ly in tegrable . For arbitrary C, M > 0 , w e  have
E[Xr," ( 1) ; X."")>C]=E[Zri"(1) 2' ; Z" ( 1 ) • P > C ]

E[Z 1 ( 1 ) ; ( 1 ) > 111]±E[ZT," ( 1 ) ; Z 7,1 " ) ;  Z r ,"" ) 'P>C]
E[Z1" ( 1) ; (1 ) > M]d-(MIC) sup E[4" ( 1 )] .
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Hence, by the uniform  integrability of IZ i . " ) {,„ w e obtain limc —sup n E[X 1t 1 '(" ; XI"
> C ] = 0 .  T h u s, w e  have sh o w n  tha t {Xn." ) }7,  satisfies (CT & Ul).

Repeating this discussion, we can conclude that IX " ) }  satisfies (CT & UI) for all
1

W e now  prove that ID I "P =  : Er=0(0) 1 1 2 XT. ( 1 ) } 7,  is  C-tight. F o r  a rb itra ry  s>0,
choose I, such  tha t s u p T - 4 0 + 1 ( 9 5 1 ) 1 " < s .  T h e n ,  s in ce  IX 7" ( 1 ) } . is  C-tight for each I,
it is  obv ious tha t E il 0(0 ) 1/2 Xith" )  i s  C -tigh t. On the other hand, note th a t for t  T

CO

n 1---10+1

Then, w e have for a ll  T > 0  and 3>0

lim lim sup P[IfT(Dn'" P  0)>6]
.t

lim sup P r( ± (0 ) 1 / 2  X"' (`) , 0)> /2]
010 0=0

CO

+U m  lim sup P E W (  E  ( 0 ) ' 12 X" . " ) , 0)>3/2]
000 71-000

CO

50+lim  sup PE  E  (0 )1 / 2 XP0 1 )>•5/2]
7 t - .o . 1= 4 + 1

lim sup (2 / 6)EI (0 ) ' X?. ( 1 ) 1_(2/ 6)C , N s .
n-.00 1=10+1

Since s  is  a rb itra ry , w e  see  th a t {D". 1.P} n  sa tisfies (2.21). O n the  o th e r hand, since
sup n E E D V .9 < 0 0 , it  is  o b v io u s  th a t i D n ' I.  „  satisfies (2.20). H ence, w e see from
Lemma 2.19 t h a t  {D"'L P i  is  C-tight.

W e next show the uniform  integrability o f  {DI'. 1 . "} „. For a rb itra ry  s> 0 ,  choose
10 su c h  th a t supnEr=/ 0 +1(¢i1)1/2 < s ,  a s  b e fo re . T h e n  w e  have for a ll C>0

(2.63) E[Y1'1' P  D't" . P  >C]

EEpo (,5 191 /2 x 7ti .  ( , ); A (o ) i i2 x >C/2,,.(,) 

+ E L E3 (on io j o t , (i) ; E > c / 2 ]
1=0 l=10.+1

CO

+E[ E  (0 ) 1 "X ' ]( 1 ) ]
1=10+1

to_<2EEE X i"  ; Xli". ( 1 ) >C /2]-1-2E [ E  (0 ) 1 0 .X "( 1 ) ]1=0 1=0 1=10+1

,2E[t±. x ,.0 ); p o X>C/2]+2ECT.N.

Since IZI'1 0)( 1» ( ' I n  is uniform ly integrable as w e saw  before , by  (2.63), w e obtain

lim sup E[M. 1 ' P  ; Dt" .  P  > C ] 2eC T N •
n

Since s > 0  is  a rb itra ry , w e  can  ob ta in  the uniform  integrability of {/». 1. } n . By the

sup EC E  (0 ) 1 /2 Xt (1 )] 5_ esup[n TYE I  L,N (n )  12 1= : CT, Ns •
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discussion above, w e have show n  tha t ILPI. of (2.57) satisfies (A. Il)-(1)-(ii).
(2) Define a  stochastic process En(E) of class _An by

( n t]
(2.64) Er,"(6)=(supilFalli,K)x E ,

k =0

where we set 6=6/ F s  and N=M/F i  as before. Then it is obvious from  (U.IV)*-(2) that
(A.II)-(2) is sa tisfied  w ith  {E"(e)}  of (2.64) because E l  (E)<(suP)Fl..Fc)X  Y (6).

(3) Note tha t w e m ay  assume tha t 3 < r .  Take

(2.65) rr,--2Ent]E[ ] X suPlIF"111, +(Ent] /n)suPlIG"111, K •

Then, b y  the stationarity o f  {Vkl k  i t  is  c le a r  th a t  (2.33) holds. S in ce  (U . 1 ) im p lie s
that sup,, nal$011<co, it is a lso  c lear tha t (2.34) holds.

(Check of (A . III)) (1 ) Define a  6-finite measure I) on C(Il d , R d )  by

(2.66) v(df )= M - i(df) ,

w here M is  a  mapping from Re to C(Rd , Rd) defined by M (z )= F(•)z  for z  R e .  Also,
set r=z-11F11*. Note th a t rEC(v)= {r>0; (r/l1F110)EC(p)) because w e assume th a t  rE
C ( p ) . (2.35) is  an  obvious result from  (2.5) and (C ). T o see  (2.36), ow ing to  the  poly-
nomial approximation, it is  en ou g h  to  show it w hen h(x )=x 1 4 f o r  m c  N * . For e , M c
C(v), put a(n)=6/11F7'11., N(n)=M/IIF n l l .  Then, by Lemma 2.46, w e have

Ent]
(2.67) E[sup I E C  E  { f I gP,,n]

x E K k=Erts]+1

ti
— E  if g(x)} 11k=[ .83+1

Cnt3
( F e  E  E[ EUeNri7iir — EC(eNT)rik=[.3j+i

. 4(Fs)'95EC(eg,'0.)))"`]' 1 2 — >0 as n—>00

because ERETW4)))2 m 15-Meg",1) 2 m ]. On the other hand, since (U. I) implies that
[ n t]

E[(e 7k1,E 14)))'"]-+(t —  s) z m  I (a<
le=pesi+i

I zl p(dz)

= ( t — S )5  Z '  I (EK:F ,4 1 ,1 1 1 f1 P (d Z )

w e have
[nt]

EESUP Efi frn .figx)} 7.t t. 1f -0e<IIf ,e 1!*531U ( „ - , m -  (e<111"11 / ) , ) ( d f  )11
= 0  .

xE K  k=E n3 j+1

Combining this with (2.67) w e obtain (2.36).
(2 ) Define ti o C ( R d , SO  in  (2.37) by

(2.68) a ( x ) = PP(x)171,Dg Fig(x) ,
p,q=1

where Vo is the matrix defined by (2.6). Then, it is easy to see that (U. II)-(1) implies
(2.37).
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(3) Define ai Cg,,,(R d , Ra®Re) in (2.38) by

(2.69) ati(x)--= PP(x)Vfq loq(x) ,
1), 4=1

where V 1 is  the matrix defined by (2.7). Then, by Lemma 2.49, we have

EE1 ELY28(10 1) 11,a(n)1 9 7 Pizsli —  ED714(3<n)lga(n)11]
0<2

E'(0 1 )' 12 (0 7
2LE.„83 ) 1)2 X165(n)2

k<1

16gT,2 (s/F / )2 —>0 as s 0,

where E ' denotes the summation over (k, 1) such that [ns]-1-1.<k<1_<[nt]. Hence
0 < 1

(U. W-(2) implies that
E n t]-1 [ n t]

(2.70) lirn lim  sup E[ sup I EC E J °  (x ) (X)1 r i „ ] ]
seC( , )--.0 xeK k=p1871-1 1=0+1+1

I] =0 •
Therefore, to show (2.38), it remains to prove that for each s

E nt3 -1 Cnt3
(2.71) lim sup ETsup I E C  E E ff l'o (x)/ 1?.,V(x)

n-.co zEK k=riz m i  1=0+1
— .7k,'Em  (41 ii,P) (x)} I Wins]] I =0 .

But it is an immediate consequence from the facts that we have

urn sup E' EC I EC721,',i‘AM g [an  „ ] I] = 0
0<2

lirn sup E' EL I ECIgel,RA' 7o (n n i s i ]  1] = 0
n-bor,0 < 1

We give a  proof of (2.72) only because (2.73) is similarly shown. By Lemma 2.46, we
have

(2.74) E ' [EC ECY) 7k1(nn)nl,N(n)0 < 1

EE I EC7271:jr (N)727/';N(n) I g 11k <1

E' ECI 72/:,kg I x2(0-0)" 2 fEC I 72'4 N  (O r 1g g] i "  + 7770',N (n)I 2 11 " I]
0<1

E' ( 1-k, I Var I 74 N Cn)! 2 g " 1 + 3 E n 77ô, N (n)1 2 Y " }0 < 1

[ nt]
_52 E E (011)1 1 2 EC I V4 I ECI vr+k,N(„)1 2 ! 

9 f l

] 1 " 1
k=Ertsj+1 1=1

-1-6([nt]—[ns1)ECIENI1ECI 01)1211/2 •

Since it is clear that the second term converges to 0 as n--00, we show that so does
the first term . For arbitrary C>0, take 10 such that supnEr=t0 +1(95191 1 2 <C . Then we
have

Ent]
(2.75) E  (sblii)'"ECIEN I EC I 771}0, N(n) 12 1 9T1 1 2 1k=cn83 +11-1,+1

C([nt] — CnsDEC 12 11"EC I vg,N001 2 1'"5_Cr, NC •

(2.72)

and

(2.73)
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O n the other hand, se t 21" ( 1 ) =Ein=̀ ,' 7214/,N(n)12 I 9 ] .  T h en , fo r  1S1 0 a n d  th e  fo r
arbitrary C>0, w e have

[nt]
(2.76) E E[legtE[IViz+k,N(.)1 2 19] 1 '9

k=.[ns3+1

[nt]
=  E E r  I  ekl I (•6,  Z N III )) 1  " 1k=[nS14-1

5C(Enti — Cnsi)E[1 W i
[nt]
E  E E  e g ,i3v  2] I/2EEA Za.g)) ; sup  A  z r , (1)> 01 / 2

k=Ens3+1

([nt] — EnsDE[ I ei'd  I]
±i(Entl—Ens1)EE I EN 19} " 2 ETZ 77', ' ( e )  ; sup A " ) >0 1/  •

H ere, note th a t  1Z?" ( 1 ) } .  satisfies (CT& UI) because so does iXn. (1 ) 1 n o f  (2.59). So,
w e  h a v e  lim supn—E[Z“ ) ; suPtTA Z“ ) >C]=0, w hich im plies that the  righ t hand
side o f  (2.76) converges to  0 a s  n—>00. Therefore we obtain

[n t ] /0
(2.77) lirn E E ( 0 ) 1 /2 EC I Var I EC I >77/'- F k , N (n )I  l  g le i l i/2 1 = 0

n-.00 k---En8j+1 l=1

Com bining this w ith (2.75) w e  g e t (2.72).
Next, define cE C .(R d , R d ) in  (2.39) by

e aFiP(x)
(2.78) E  E  , VrF ig (x ).j=1 p. g=1

T hen , (2.39) follows by th e  sam e w ay a s  in  showing (2.38).
(4 ) W e w ill show  th a t (2.40) holds w ith r=rIIFII. and b (x )= G (x ) .  Since f g r(x)=

Fn(x)E[M q  I 5r11F11*/(IFN*)11 and  Fn(x)an=Fn(x)E [M i o , „ ) ] ,  w e have

[nt]
sup I E  le(x)+:04,(x)} —(t — s)b(x)
zE K  k= [ns ]+1

[n t]
5.sup (1/) X E Gn(x)—(t— s)G(x) I

x e lf le=[na]+1

F s[ntlECI V,' I I ( 41STliF11*/

T h e  first term  converges to  0 b y  (C ). W e next consider th e  se c o n d  te rm . L e t {e k k
E N } b e  a  sequence o f positive  num bers such that 1±s kE C (p ) f o r  a l l  k  a n d  that
limk —s k = 0 .  Then for each E k, the re  ex ists  NE N  su c h  th a t I 11 F11*/(11F 7q * ) - 1  <  k  for
all n n,. H e n c e , w e  have

lim sup nECI eliIII„eg ,  S r)  
—1.

14  I 5-11F11*/(11Fn,*)) I]

lirn sup nEC I $,1,1 /,r(1-E k)<4157(1+e k )11

IZ I I (r(1- s k)<I zl<r(l+E k ) jp (d Z ) .

Since th e  last term  converges to  11 zl ilizi=r)ti(dz)= 0  a s  k — *o o , w e g e t the conclusion.

(Check of (A. IV)) (1 ) (2 .41) is  a n  immediate consequence from th e  f a c ts  th a t  975<00
and th a t supn  nECI N (n) I < 00 •
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(2) Since we have

(2.89) E ' EtYg, N(n) I 9 ] N ( n )  12 ]k<1

E[2(0'--k) i " {EL  9iN(.)1 2 1
k<1 790■N (n)19 " 2 } I 774 0 0 1 9

w e can show th a t  the last te rm  converges to  0 as n—*00 by  the  sa m e  w a y  a s  in  th e
proof of (2.72). (2.42) follows from this immediately.

(Check of (A . V ))  F irs t, note that

PC su p  11.fin0>M1=P[ sup  1$11,' I >MAIIFNI*)]
k [n t ] k [n t]

.5_ [W]P E I elo' > M / F s ] [W] P [  e  > N ']

for a ll N'EC(a) such  tha t N'</14/Fs. Since (U. I) im plies that nP[elo'  > N '] -->p(IzI>
N ') as n --co, it  is  c le a r  th a t (2.43) holds.

T hus w e  have proved Theorem 2.27 under the additional conditions s ta ted  in  the
first paragraph of the proof of Theorem 2.27. W e next consider the  general case. B ut
w e restrict ourselves to  giving the  idea of the proof.

Since it seems difficult to apply Theorem 2.44 directly to the processes {Tn } n  deter-
mined by (1.1), we introduce the localized and truncated prcesses as fo llo w s . For each
L>0 , le t  r L (x) be a  sm ooth function such that 0._<rL (x)_.<1, rdx)=1 on x LI ,  and
th a t rL (x)=0 o n  { I x I L-F1}. Set Fi(x)=rL(x)Fn(x), GR(x)=7- 1 (x)Gn(x). Let L>0, NE
C(p) b e  f ix e d . Then, associated with (1.1), we consider the following stochastic differ-
ence equation :

Iw ioz. N. L = x 0

T 7ki. N. L
p i(q4 ,N ,L )(elet,N _ an )± (1/ n)G 71 .(T i:-L li'L ).

Define a  sequence of cAdlAg processes / T n. N, LI b y N ,  L W e apply Theorem
2.44 to  th is  f son. N, LI n. Then, b y  the sam e w ay as in  the  first case, w e  c a n  se e  th a t
çon. N . L  converges in law  to  the  process çôA L  w h ic h  is  the unique solution of the sto-
chastic differential equation

(2.81) F L(gO luV L- ) d B (G L +G L)(T IX1 -)C1 1 1

(O. t3 t3

,LF l (yoN

u _)zN(dudz)-+ F (w._)zN(dudz),11 . CoJtizis,) (0, r < i z i ‘N I N.L

w here  B ., N(dudz), g(dudz) are  the same as in  Theorem 2.27, and w e d e fine  CL  b y
(2.10) fo r  F L  in stead  of F .  Furtherm ore, w e can rem ove the restriction on N  a n d  L
b y  the sim ilar w ay in the proof of Theorem 2.1 in Fujiwara-Kunita [6]. T hus w e  have
completed the proof of Theorem  2.27. El

At the final stage of th is  section, we give two consequences from Theorem 2.8 and
Theorem 2.12 in the case w here $1

1:  is  of the form  Vkl=e k ln io  for some a E(0, 2]. As
w e w ill see  below , conditions required fo r  {ed k a r e  m uch sim pler than conditions in
Theorem 2.8 o r Theorem 2.12.

(2.80)
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(2.82) T heorem . L et le k ; kEN*1 be a stationary, uniformly mixing process with the
rate function Ok satisfying E r= 1 0 2 ‹  °C • Suppose that e o is an L 2 -function. S e t ek,_

, a'-=.E[V,ki] f or any NE(O, 00]. Further, suppose that Condition (C )holds. Then,
the sequence of  stochastic processes 1909 n  determined by (1.1) and (1.2) converges in law
to the unique solution so of  the following stochastic differential equation:

(2.83) v)t=xod F(sou)dB.H-(0 lC(sou)+G(sou)}  du,(0, t3 

where B . and C (.) are the same as in  Theorem 2.8, resPectively, in which

(2.84) =EUVP—ECŒV13)($V—Ecen )1 ,
(2.85) V fq =  ECIEV — E [V ) i)(ei g ) — Ef_V/g ) Di for p, q=1, •••, e.1=1

P ro o f. W e will prove this theorem by checking conditions in Theorem 2.8. Since
lim nP [ j >6 ]=0  fo r  a l l  6>0, (U. I) is satisfied with  p O .  I t  is  a ls o  c le a r  th a t
(U . II) is satisfied w ith Vo  o f  (2.84) and V , of (2.85). W e  n e x t sh o w  th a t  Condition
(U. IV), is satisfied. S in c e  I  e012 itself is uniform ly integrable, by L em m a 2.24, there
exists a positive, convex, increasing function G on [0, co) such that limx t.(G(x)/ x)=± 00
and that ECG( eo 12 )1< C O . Then Jensen's inequality implies that

sup E[G(nE[ 1V,N12 1gre-1])]=sup E[G(Enek1 2 1 EkI k  - J D ]

Ssup E [E [G ( ek 2 J rk

S sup E[G(1$0 12 )] = E [G( I $012 )] < co

w here g0_1=6, [$0, •• • , ek _1]. Therefore, again by Lem m a 2.24, we see that (U. IV), is
sa tisfied . T h u s, w e  have completed the proof.

(2.86) T heorem . L et lek; kEN*1 be a stationary, 1-dimensional, uniformly mixing pro-
cess with the rate function Po satisfying Eck°=,01"<00. Suppose that there exists some
ae(0, 2) and nonnegative constants C, C. such that

(2.87) lim xaP[e o > x ]= C „ lirn x "PE$0<x1=C_ .

Define 1$1,' ; n N ,  kEN*1 in  (1.1) by

(2.88) •

Suppose that {V } of  (2.88) satisfies Condition (U. IV) i  (i= 1  or 2) and Condition (C ) with
e=1 is satisfied. Then, the sequence of  nsadlag processes lyDn} determined by (1.1) and
(1.2) converges in law to the unique solution of stochastic differential equation:

yot=x0+(2.89) G (w )du

(0 ,I  ( I z I r
a (dudz)-E (0. t

3 ( 1z i>fl F(Çou_)zNa(dudz)

where Na (dudz) is Poisson random measure with the intensity measure



Random difference equations 783

du- {C+I(z>0)+C_I(2<o)} dz .
1z11 "

P ro o f . By Theorem 2.8 o r  Theorem 2.12, a ll th a t w e  have to  d o  is on ly  to  check
Conditions (U. I) and (U. II). I t  is  im m e d ia te  f ro m  (2.87) that (U. I) is satisfied with

ti(dz)= {C+I(z>0)+C-/(<0)} a  d z  .

W e next show  th a t (U.II) is satisfied with V 0 = V==O. T o  th is  a im , it is sufficient to
prove lim o limn n E [  Vo

2,3 12 ] = 0 .  B ut this easily follow s from  (2.87) because for suffi-
ciently large C w e have

nEDV,51 2 ]= n 1 - ( 2 /' ) ERUHE o i nu”,,i5n i _0 0 ) 13 1 2 1 / n ,

2 X P [ I $ o  >x]clx

301 a
=2n1 -  ( 2 /  a ) i o XP[1$01>x]dx4- 50x P [ l e o l > x ] d x }

-, --2n1 - (2 0 ){C±((C +
+C_)/(2—a)){(71 1 0 3)2 , - 0 - a}}

2(C+ +C _)/(2— a))3 2 -  a a s  3 .1 0 ,

where f(n)'-'-'g(n) m eans that lim„—(f(n)/g(n))=1.

3 .  The case of strongly mixing processes

In  th is  section, w e w ill discuss th e  same problem a s  in  th e  previous section when
k in  (1.1) is  s tro n g ly  m ix in g . L e t  feg ; kEN*I „ be a sequence o f  strongly mixing

processes w ith  th e  r a t e  fu n c tio n  a  d e fin e d  b y  (2 .1 ). C orresponding to  Conditions
(U. IV), and (U. III) in  Theorem  2.8, we introduce th e  following.

(S. I): sup EL Vn $( 1"']< 09 fo r s o m e  ô > 0 .
nEN

-

(S. II): :  E sup(ca)'P< co
k = 1  neN

fo r some p>o such  that (up)E (0, 3/2+6)n (0, 1/2], w here 3  i s  th e  p o s itiv e  number
given in  (S. I).

T hen  w e have  the  following result.

(3 .1 )  Theorem. Suppose that Conditions (S .I), (S .II), (U .II). and (C) are satisfied. We
take a n = -E re7 0 '7  i n  (1.1). T hen, the sequence o f  stochastic processes içon}. determined by
(1.1) and (1.2) converges in law to the unique solution yo of the stochastic differential equa-
tion (2.83) where B . and C(•) are  the  same as  in  Theorem 2.8.

(3.2) Remark. It should be noticed in the conclusion of th is  th e o re m  th a t t h e  limit
process go is restricted to be continuous owing to Condition (S. I).

W e will prove this theorem by applying Theorem 2.44 a s  in  th e  proof o f Theorem
2.27. W e first prepare basic inequalities which hold fo r strongly m ixing random  van-
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ables.

(3.3) Lemma. L e t 1; 1 k E N *  be a stationary, strongly mixing process with thG rate  func-
tion a k . S uppose that e  is an LP, V -adapted  random variable for some p [ 1 ,  c o l ,  where
g k =o lek ,ek +i, •••]• T hen, it holds that f o r all l<k

(3.4) EDE [ 1 1] — E [ ]l ']" ' 5 .2 (2 11 ' -1-1)(ak_i)"q•alel n r n

where g 1=- 0'[E°, •••, El] and (1 /1 ))+(1 /0=1 /r.

P ro o f . See Lemma VIII. 3.102 in  Jacod-Shiryaev [11, p. 456] . 111

(3.5) Lemma. L et led k  be the same as in  Lemma 3.3. Suppose that supk ,1
Then we have f o r all m <l<k

(3.6) EEI E [v k n i lg m i— E D 2 0 2 , i l i2 4 0 ( a k - 1 ) 1 1 2 ( a 1 - 7 0 1 / 2

where .Y) k — $1x — E E e k i •

P ro o f . T h is  lem m a can be proved by the  sim ilar w ay fo r  Lemma 2.49.

Proof  o f  Theorem 3 . 1 .  A s in  the  proof o f  Theorem 2.27, w e w ill prove this the-
o rem  u n d e r th e  assum ption that lim.-11Fn—F11,,=0 and th a t  F  is  no t iden tica lly  0.
Define f k  and gk ' in  (2.28) b y  (2.54), in  w hich w e take an =E [e 1

0
1]. In  the  sequel, w e

show one b y  one th a t Conditions (A. V )  in  Theorem  2.44 a re  sa tis f ie d . B ut we
w ill only check (A. II)-(1), (A. III)-(1), and (A. IV)-(2) because th e  others can be checked
by applying Lemma 3.3 and  Lemma 3.5 in  a  sim ilar m anner fo r  th e  proof o f  Theorem
2.27.

W e w ill use the notations, such a s  E lk',N  th e  )7711,N (n), a s  in  th e  previous section.

(Check of (A . II)) (1 )  Since w e have
E n t'3 [T e r ]

sup1E[ 07111,m(Y)1911k] 1511Fn112,K E  I EL7i',N(7)1
y eK 1=k +11 = k + 1

SUPm ( x ) I 11Fn112zEK
th e  left hand side o f  (2.29) is dominated by

Ent][ n t ]
(3.7) P 2 ( E E  I ED7 1/i, Noo I F'] '2  N (n) I

k =[nu+11=k  +1

[ n t ]
+  E  211$14N(n)12 ±Erle,N(n)k-Ens3 +1

[n t ]  E n 7 '3
-5(P) 2 ( ( 1 / n )x  E  E  I EC ifi l+ k ,N oo  I gle l 1/n igN(n)1

k =rnsj+1 1=1

[n t ]
4-(1/n) X2  1 1  A / n N ( n ) 1 2 4 - - E [1 1 / 1 7 e N ( n ) 1 2 ]} )

k =[ns]+1

w here P. - --sup7,11Fn112,K• Hence, if  we define a nondecreasing cAdlAg process 137,  b y  the
r ig h t  h a n d  s id e  o f  (3.7) fo r s=0, th en  it is  c lea r th a t Condition (i) is satisfied. W e
next show th a t (ii)' is sa tisfied . S ince  Dr,' defined above is th e  sum  of a n d  M .',
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where
Ent3 EnT]

(3.8) D1=F2((1/n)XE E I E [/ + , A /n 721i, N ( n ) 0
k=1

[n i ]
(3.9) D2=P2((1/n)X E 2 { VI/ egi./(n)1 2 ± E L  .0 7CE/./(01 2 11)

k=1

it is sufficient to show  that ID ". 1 7,(i=1, 2) satisfies (CT & UI), respectively. W e first
consider {Dm. '} n . F or n , h , set

Din
(3.10) 10(k )=. E I E [V n  1 11'1-k.Arciol g17111-Vfl 9L,N(n)1 •

1=1

Then, since =F2x(1/n)E2i3K n(k), we see that {D" . 11 n satisfies (CT & UI) i f  {K n(k ):
nEN, kEN*} is uniform ly in tegrable . See th e  proof o f  Lemma 2.23. B u t it  c a n  b e
show n by the  sim ilar w ay in  th e  proof o f  (4.39) in  [6 ] th a t  fo r  som e sE(0, 6/2)

SU P11/0(01(1+ 0< oe
n, k

w here  11.11, denotes th e  L ' -norm  w ith  respect to  P ( d w ) .  H ence, {Kn(k); n , h}  is uni-
formly integrable.

W e nex t consider ID " . 2 1 Since In ' 2 <(1 /n )E  k21' 2{ I V n  e 'kl,NI 2 +ECIA /n— e,N1 2 1}
a n d  since {I A/n 12; n, k }  is  u n ifo rm ly  in teg rab le  b y  (S . I) , it  is  e a sy  to  see  th a t
iDn.2,

t satisfies (CT & UI).
T hus w e  have checked Condition (A. 11)-(1).

(Check of (A . III)) W e show  th a t  (1) is satisfied w ith v ( d f ) ( ) .  In  fac t, in  (2.36), we
have

[n i ]
asup 1 EC E f  .17.(x)) 1  ts<11 I rn

.rEK k=[ns]+1

—11h11.x EKI PEE<I1F"11.1Elkil Al l  - 11h 11: g 1

P
[  e û > S / F S J

F
e
S ) 2 + 5 E [1  VW- 6 101 1" 1 X 11- ( 3 1 2 ) - 0 a s  n--->co

which implies the conclusion.

(Check of (A . IV )) (2 )  A s in  the  check  o f (A. II)-(1), it is sufficient to  show that
[ n i ]  [ n i ]

(3.12) lim E ED27/1,N(.) I 91111IYAN1 2 1=0 ,
n-.00 k=1 l=k+1

because sup,,I1F
,

i112,1c<00 fo r  each com pact set K .  By Holder's inequality and by Lem-
m a 3.3, w e have

ECIEWN(n)1 F g ]  II N  n) IIED2 T̀,N (n ) I gr,̀ 111,1172kNoo

w here C  is  a positive number, (1/r)-1-(1/q).--- 1, a n d  (1/p')+(l/g').=--- 1/r. W e  n o w  note
th a t fo r arbitrary  sE(0, 3)

11V,NIIL=ECIV4N1q(̀ —nl N1(1(1±e)1"q

(3.11)
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sN o -" E[ I e:,N I g̀ '+' ) ] " g5-N( ' - "Ile7:111t-Vs) •
Hence we have

[ n t ]  Ent]
(3.13) E  E E[724(n)1 gIalig,tv(n)1 2 )k=1 l=k+1

[ n t ]  [ n t ]

E E c(a_k)"P'11$ 7.1 11,• x N( ' - e'lleg. 11̀,161-Vs)k=1 1=k+1

CO

Cl. N ( ' - ' ) xsup(E (a )1 ' ) 11A/77er°' 11q, II Vn V'll'ql(M)Xn - ' " )  •
n k = 1

Further, if w e take  q' =2+6, q=(2+6)/(1±e), then 1/y =1—(11q')—(1/q)=(6—s)/(2+6).
Hence we can take s o E(0, 3) so  th a t p' coincides with p in (S. II). Therefore the left
hand side of (3.13) is dominated by

CO

CtN( 1 - eox sup ( (a P )11 P )  V T/ $7:1=  x n -  (.0/2)
nk = 1

which converges to  0  as n—>co. T h u s  w e  have checked Condition (A. IV)-(2).
By the discussion above, w e have completed the proof of Theorem  3.1. D

4 .  Application to the case of Markov chains

In the previous sections, w e  have established several jump-diffusion approximation
theo rem s w hen  {Eg ; kEN*}„ in (1.1) is  a sequence o f  m ix in g  p ro cesse s . S in ce  the
mixing property is sometimes induced by the ergodicity of Markov chain (i. e., Markov
process with a discrete time-parameter), we will study, in this section, a class of Markov
chains to which these theorems can be applied.

Let IV: ; neN , keN *1 be an array  of Re-valued random variables in (1.1) and set

(4.1) =

for a ll n, k. W e suppose th a t  for each neN k e "  is a stationary Markov chain
on R e  w ith  the k-step transition probability cg) and an invariant probability meas-
u re  An(dC).

For these sequences of m easures {PUC', dc) ; keN} n and {A (d )}  t o  we introduce
the following conditions (M. I)--(M. VII).

Associated with A ,  w e  define  a Borel measure pn(dz) by

(4.2) Pn(dz)=-nAn(Vn dz).

(M. I ) :  There exists a Borel measure p on R 0 \ 1O} such  tha t for a l l  g e C (R ') (=the
set of all bounded continuous functions vanishing on some neighborhood of 0),

(4.3)Ç  g ( 2 ) , ( i n  (d 2) - 4
 R e  g(z)p(dz) a s  n—> 00

and (2.5) holds.

(M . II): A n converges weakly to a probability measure A  on R E satisfying IC I " (d )
Re

< 0 0  .

(M . III): For each p, (1=1, •••,e, there exists a real num ber WP0 such  that
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(4.4) lirn urn  sup lirn sup I S. C ( P ) C' ) /( Ar<1 I dTa) A n (c/C) — W Pg I =0 .
N t.0 n-.00 Re

(M. IV) : dO) converges w eakly to  a transition  probability  P i (C', dC) uniformly
on any compact set in C'-space.

(M . V ) :  For every nEN, 5R g  f(C)PNC ' , dC) is bounded continuous in C' if so does f .

(M. V I ) :  T here  ex ist koEN, soE(0, 1], and  a  family of probability measures irn ; nE
N I  on R 1 such  that

(4.5) P4(C', o["(g ) ,

for a ll n and O' R 1 .

(M. V I I ) :  For every  N>0, there  exists p E (1 , .)  such that

(4.6) su6Re IC I 2 /11C15./../V Pi(C' , dOrA n (C1C/)< °° •

T hen  w e have the following result.

(4 .7 )  T heorem . Suppose that Conditions (M. I)--(M.  V II) and (C) are satisf ied. T h e n  the
conclusion of Theorem  2.8 holds, in  which the matrices V a and V i  2 n (2.9) are giv en by

(4.8) 17r= f l e (oc _ C ( 4 ) A(d())A(C/C)+ W ,

(4.9) V fq.A ,C / ( P ) A ( C ) )  C(Q)S(Ç, dC)A(dC ' ) ,

respectively, where

(4.10) S(C', cg)—A(d01

and P k(C', dC) denotes the h-step transition probability  def ined inductively  by  Pk(C',

Pk -1(C", A)PI(C' dC").

(4 .11) R em ark . B y (4.28) in  the proof below , it is assured that th e  r ig h t h an d  s id e
of (4.10) converges uniform ly in C'.

In order to prove Theorem  4.7, we first prepare a  general result on  a  relationship
between the Markov property and the uniformly mixing property.

(4 .12 ) L e m m a . Let { CI, ;  k E N * }  be a stationary  Markov chain w ith the k-step transi
tion probability  Pk(C', dC) and le t  11(dO) b e  an  invariant probability  m easure o f  lOkl
T hen it holds that

(4.13) Ok=(1/2)A -ess. supll P(C', • )— A(•)11var
C'

w here II • I[ear denotes th e  to tal v ariation norm  def ined by  I I Q I I v a r = s u P O R e i d Q l ;  f  is
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continuous, suP f(C)I 1 } .

P ro o f. W e first no te  the  relation :

Ok=supsuPIIIEUBIgil — E[113]11.; B E g i + k }
E N*

w here 9. t=o [CO3 •-•, C1], k =olCk, c k + 1 , • j, an d  II • II. denotes th e  essential supremum
norm  w ith respect to  P .  See the  proof of (17.2.10) in  Ibragimov-Linnik [8]. Now, let
B  be a n  arbitrary  se t  o f  g 1" .  T hen , by  th e  Markov property o f  iCkl k ) there exists
a  measurable function h B ( C )  su c h  th a t EU B  9Ii+1,1 ,--- -hB(C1-1-k) and  th a t 0 hB(C )--1. We
fix co ,Q and denote by (p' —  pl the Jordan-Hahn decomposition o f th e  signed measure

n(C /(w), d ) — A(d)} . Then w e have

21EUB  gil(w)—E[ra]

=21E [E [I B  g 1 + 0] g 1](0 ) ) - 1 3 1

=21 a i l + g 11(W) -  Ell 1 B(C1 +

7=  h ( )  { k (C1(0 )),
 d ) - A ( d ) }  +  1 5 ( 1 -  h B(C)) I 3  k(C1(0 )). CIC.) A ( C }

5_ 1hB(C) i ite(dC)+P - (dC)} - k . (1 — hB(C))Iti + (c/C)+p - (dC)}

=111111.-=11Pk(C1(w), .)— A(.)11,., A -ess.seplIP(C' , -) — A(•)Ilyar ,

which implies that

(4.14) (1/2)A-ess. stpll /AC% • )— 4(•)Ilvar .

O n the other hand, note th a t fo r arb itrary  Borel set B o w e  have

I P k (,  B0) — A(801 = j
 E [ I + k E B O  j g ,] - 0 : 1

,c,+ k EB01 j - çbk

because {(t-Fk E/30 1 E 9- 1 + k  S in ce  II  P—QIIvar=2 suP AEg I P(A ) — Q(A )1 if P and Q a re  pro-
bability m easures, w e get (1/2)A-ess. sup  j P(Ci , •) — J1(•)11var-‹ k Therefore, combin-
ing  th is w ith  (4.14), w e obtain (4.13). LI

Proof of Theorem 4.7. T h i s  theorem is proved by applying Theorem 2.8 . For sim-
plicity, w e w ill check Conditions (U. III) and  (U. IV), only in  the  case  o f e=1.

Concerning (U. I), we have nothing to do because (M. I) is only a translation of (U. I).
L et 0,7, be  th e  ra te  function o f  (2.2) for k. I n  order to check (U. III), it suffices

to  show that

(4.15) 01ki _<Cpk

fo r a ll n and  k , w here w e se t  p=(1— s o)li k o and C=(1-6 0 ) - '.
T h e  proof is based o n  a  result in Doeblin's ergodic theory fo r  Markov chains. Fol-

lowing Deuschel-Stroock [2], Exercise 4.1.48-(ii), it  is  s ta ted  a s  follows.
L et (E , g )  be a  measurable space and P(x , dy) be a  transition  probability o n  (E , g)

w ith  the  property P(x , dy )2aQ (dy ) fo r som e a E(O, 1] a n d  a  probability Q  o n  (E, g).

Then it holds that
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viPk — v2Pk vai. 2 (1  — a)k .

fo r all probability measures vi, v 2 o n  (E , g ) and for a ll k 117; where 2., P k (A )= .LPk (x, A)

v (dx ) and  P k (x, dy) denotes th e  k-step transition p robab ility . F urtherm ore , there  is  a
unique invariant measure p  on (E , g ) su ch  th a t 117,P k — PlIvar 2(1 — a) k f o r  a ll k N  and
probability measure v.

W e apply this result w ith P ( ',  dC)=P1 1,0 (Ci , (lc), Q =En, a=so, vi=3(c , ) , and v2 =A n,
w h ere  6 ( a )  d e n o te s  the D irac measure o n  {al. T h e n  w e  s e e  f r o m  Condition (M. VI)
th a t A n  i s  the unique invariant probability measure and  that

IIPZko(Ci , •) — A n (•)Ilyar5_2(1 — Eor

fo r a ll C'ERe, and m , n E N . Furthermore, since supc , Pn(C' , An( )11var is nonincreas-
in g  in  k , it ho lds tha t fo r  all 1 =1, •••,

-,. 

(4.16) sp lIP171,,k0+/(Ci, •)— /1"(•)11var s r l I P L 0(Ci , •) — A n (•)11var

_<2(1 - 60)74 =210- - 60)
1 / k

°1
i n

k ° + I - 1

<2(1—so)-'{(1-60 ) /k0) mko+1=2Cpmk0+1

H ence, w e get (4.15) from Lemma 4.12.
L et g 'k'  be  th e  a-fie ld  a Ng, • ••, C1:1. T hen  w e  have

nErlekN1 2 1g1;"--11=E[ICT:IcicLii5v7iN)1 2 19T-11= . 8 ,1C1z 1 (lcigvnN)Pn( _,, dc).

Hence, (M. VII) clearly implies (U. IV),
F inally , w e check (U. II). T o  t h i s  end, w e  first show  th a t (2 .6) h o ld s  w ith  V, o f

(4.8). Note that

nEEllgari=nECIeg,a —  ECV,a1

—
.ÇIC12 I (I:15 ./ n51 A n  (C1C) AV (ICI 6) A n  (dC)} 2  .

Since Conditions (M. II) and (M. III) clearly imply that

(4.17) Hm lim supI .ç C1 2 /( s.J.Tis)A"(c/C)— { ICI 2 A(dC)+ W " }  I =0,
54, n-co

(4.18) lim5C/( lc A n(dC)=CA (d()
72 s .

fo r every 3 > 0 , w e g e t the conclusion.
To prove (2 .7) fo r  V , o f  (4 .9 ), it is sufficient to  show  th a t  fo r  every 3>0

n -1
(4.19) n , i .E [72 ,79."3 72Z1'="- C).ne CS(C', C/C).A(C ) .

L et s  be a n  arbitrary  positive number and take k 1 E N  s u c h  th a t  Ei°_ k i ,(Cpk )“ 2 <
s. W e set CZB=C1

7:/, , fo r s im p lic ity . T h en  fo r n> ki d-1 w e  have1, 1 5  •  nol
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n - 1 /L-1 n - 1
(4.20) C"= : n E Cid.0771401=n E E[e(g.a22go]= E CCg,s(Cg,6 — ECCg,a1)1

k= 1 k= 1 k=1

ki n - i
= ECUs(C145—  EECg..31)1+ E — E.[U6])]

k= 1 k = k i+ 1

ki

: ER 1 k-F/'.
k =1

First, we consider the second term R  Since {C;:; kEN*1 7, i s ,  a s  w e h a v e  seen
before, a  sequence o f uniformly mixing processes a n d  th e  ra te  function Ø  satisfies
(4.15), we have

(4.21)I 2 nE- 1  (01:)'"EC I U6 12 1. 222 6 ,k=ki +i

where we se t 2= : supnECIU,61 21712 . Notice that 2 is finite because o f  (4.17).
We next show that fo r every k.

(4.22) I  -31 1. k= ' P k ( ' ,k(C'  d ) —  A(C1 A(C) as

For arbitary N>0, le t  p N (x) be a  nonincreasing, continuous function defined o n  Ix>
0} such that pN(x)=1 if 0 .x N and that pN (x)=0 if  x_N -1- 1 . Using i t ,  devide I

into the  sum D= i ,R N ,  where we set

',N =  ECC41,0 N(I Cg. 1) {Cg,a t 9 Ar(1 Cg — ECC.;',3,0 NO 1)11] ,

g,N= ECUs p pi(lCg 1) ICI45(1—  p N(ICg 1)) — EIC4:a(1 —  p N(1Cg I))111 ,

JgAr=E[Cg,a( 1 - 9 N(1Cl■ i)) (C ik',  — .1,511] •
Then we can see that

(4.23) ir,N=- .Ç(C'i1■c, izvT“i,pN(IC/ 1)

icrs shoN( IC ) { PAC', dC)— Ar`(d)1)A n (dC')

N = p N(I C' )5 p'( CI) IP k(C' d) —A(d)} A(C) a s  n—> 00

and that fo r i=2, 3

(4.24) lirn lim sup IR N  =- 0 •N

Indeed, (M.IV) and (M.V) imply that f o r  every k N  Pg(O ', do) converges weakly to

Pk(C', dC) uniformly on any compact set in C'-space and that .ff(C)Pk(C', d) is bounded

continuous in  C' if  so does f .  Therefore, combining these properties with (M. II), it is
clear that (4.23) holds.

To prove (4.24) fo r i=2, it is sufficient to show  that

(4.25) lim lim sup EIC41,611ELIU,s1( 1 —  p N(I U I))]=0 .
N . . . 7 1 - .0 0

(4.26) lim lim sup E{ I Us I IC/451(1—  p N (1) U  0 .
N.-boo
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Since 2=supnECIV61 2 1' / 2  is  f in ite , (4.25) is im m ediate from  (M il) because

lirn lim supP[l Vi  I /V] =lim lirn supA I CI - N)=0 .
N n—boo n—.co
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W e next prove (4.26). S e t XI:=E[ICks1 2 I gL1- 1] fo r  n, kEN. T h en , w e  have

(4.27) EC I C10',611C7461(1— pN( DA
5_EEI IC1461(1—pN( IC'k̀ . WI 9T-11]

AXEiE[ l(1—pN( ))OV' !Ma
X airk'a(1— p N(I I))1 g 1kLi11̀ 12

.<2><{cPEIC70'1>:Arl-krkpE[X1,';

for arbitrary  C > 0 . S in c e  { X ;  n, kE/Vl is uniform ly integrable a s  w e  have seen be-
fo re , it is  easy  to  see  tha t (4.26) holds.

Sim ilarly, w e can show  th a t (4.24) holds fo r i=3.
N o w , le t iCk kEN*1 be the Markov process determined by the transition probabili-

t i e s  {P 2 ( ,  k  an d  th e  initial distribution A ( d ) .  Letting n-->00 in  (4.16), it follow
from  (M. II) and (M. IV) that

(4.28) (1/2)supl1Pk(C', •) — A(•)IIvar Cp k .

Moreover, note that A (d ) is the unique invariant probability measure o f  {Ck} l e .  Hence,
we see from  Lem m a 4.12 that {CO k is  a uniformly mixing process with th e  ra te  func-
tion çbk satisfying Ok <Cpk . Therefore, if  w e set

(4.29) ./2,N=--C/pN(IC'1)C(1—pN(ICI)){Pk(C' , cIC)— 4(4)} A(c1C') ,

and

(4.30)1 2  N=7 1C' (1 —  p N(C'1))CiPk(C' d ) — A ( d ) }  A(dC') ,

w e can easily  see by th e  sim ilar w ay for i=2, 3} th a t  fo r  i=2, 3

(4.31) liml.h NI=0.

Since 14k— i1,k I IRN — JI,N1+ -1-1/2,NI-FIL.NI, (4.22) follows from (4.23),
(4.24), and (4.31).

W e now complete th e  proof o f  (4.19). Set

cg)A(C), jC/5CIPk(C1, d ) —A(dc)} A(dc/) •

T hen , b y  the  sim ilar w ay fo r  (4.21), w e can show  that

(4.32) 1121 211C12.4(c/C)xe

Therefore, by (4.21), (4.22), and  (4.32), we obtain
kl

liM —c sup {E  11- k—ii,k1+1/ 72'1+1 /21} constantxs
k 1

Since E is  a rb itra ry , we g e t  (4.19). T hus, w e  have completed th e  proof o f  Theorem
4.7. D
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W e now consider Theorem 4.7 in  some special c a s e s .  F irs t, suppose th a t  {M k  is
independent fo r a ll n. T h en , we only need Conditions (M. I)--(M. III) because it is easy
to  s e e  t h a t  Conditions (M. IV)--(M. VII) a re  satisfied. In  th is  c a se , th e  a sse rtio n  o f
Theorem 4.7 holds w ith p (d z ) ,  Vo o f  (4.8), V 1 -=0, and

N ext, instead of Condition (M. VII), we suppose a stronger condition as follows.

(M. V I I )* : For every n E N , th e re  e x is ts  a  (C', C)-measurable function P"(C', C) such
th a t P I`C , d)=- P ' ,  ()An(dC) and sup I P"(C', (,) L  fo r some L>0.

In  th is case, w e can  show th a t {ek}„, k satisfies Condition (U. IV), in  Theorem 2.12, that
is  to  say , i t  is  a  sequence o f  0-mixing processes and  th a t th e  ra te  function d e f i n e d
by  (2.3) satisfies O lki  (L +1)C p k fo r a ll n , k  w here C and  p  a re  th e  sam e a s  in  (4.15).
T h ere fo re , w e  see  tha t the  assertion  o f Theorem  2.12 is  v a lid  if Conditions (M. l)--
(M. VI), (M. VII)*, and (C) a re  satisfied.

H ere , le t us give exam ples satisfying Condition (M. I), (M • III), and  so  on.

(4 .33) E x a m p le . L et e o b e  a  random variable w ith  th e  property (2.87) fo r  som e am
(0, 2) and nonnegative constants C+ , C .  F o r  each nEN, we define a  probability meas-
u r e  A n  b y  th e  law  o f  o f  720 1 2 - 11 "e 0 . T h en , a s  pointed o u t  in  th e  proof o f  Theorem
2.86, Condition (M. I) and  (M. III) a re  satisfied with

p(dz)= {C,/,,, 0 ) +C_/ ( ,< o ) } dz

a n d  W=0, respectively . A lso  Condition (M. II) is satisfied with  A (d )= ö (0 .

(4 .34) E x a m p le . L e t  {A”}7,  be a  sequence o f  probability m easures o n  Re satisfying
Conditions (M. I)--(M. III). F u r th e rm o re , fo r some m E N , let m (c ) ;  1 = 1 , • • • , in}  b e  a
sequence o f  continuous functions o n  R  w ith  th e  following properties (i)—(iii).

( i ) i t e pit'(C)An(dC)=0 fo r a ll n, 1.

(ii) F or each 1, plz converges to a function p i uniformly on any  compact set on  R '.
(iii) I PVC) I •-•1 fo r a ll n, 1, and C.

Put P '° ( ' ,  C)=1-1-13E}n,P}1((')M(C) for some le 1/m), and w e  deno te  by  {Cr, ; kEN*1
a  Markov chain determ ined by Pli(C', dC)=P"(C', C )A n(d) fo r  each n .  Then Theorem
4.7  holds fo r the  sequence o f  Markov chain  le in ; k N *)„  determ ined by the relation
(4.1).

N ext result shows th a t if Condition (M . III) is slightly strengthened, then th e  limit
process can not have any jumps.

(4 .35) T h e o re m . Suppose that Conditions (M. I ) ,  (11d . II), (M . IV) , , - M. V I), and (C) are
satisfied. Moreover, we suppose the following.

(M. III)*: lim  lim  sup1 I (1 2 /(1c1>N) n(dC)=0 .
N t Re

Then the conclusion of Theorem 2.8 holds with 1i(dz)-=-0,
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(4.36) V0=5ReiC(P)-- R e C( P )  A(dC)* ( q )  — 1R e C( l )  A(dC)} ANC)

and the matrix V, of (4.9).

P ro o f .  We first prove that (2.4) holds with asO.  L e t  6</l// be arbitrary posi-
tive numbers. Since

1.z12(pm(121) — paftz1))1.1"(dz)=\1C1 2(p ,/7,m(ICI) — Pv7ia(ICIDA"(dC)

11C12(1— pvTiaCCD)An (dz),

(M.I) and (M. III)* imply that 1z1 2 ( 1
,0ff(lz1) — pa(lz1))/-t(dz)= 0 . Since ô and M  are  arbi-

trary, p(dz) must be zero.
Similarly, it is shown that (4.4) holds with W =O fo r  all p, q=1, •••, e . It is also

clear that (M. III)* implies (U.IV) i . To complete the proof, it is necessary to check
(U. II). In view of the proof o f Theorem 4.7, we need only show that (4.24) holds for
i=2, 3. But, owing to (M.III)*, we can easily show  it. 0

Finally, we find a  class of Markov chains for which Theorem 3.1 holds.
For each nE/V, le t  { P k' ; kEN*} be a  Markov semigroup and suppose that it has

an invariant probability measure A n . Then let us say that the sequence of semigroups
{ Tg; kEN*} n  is uniformly hypercontractive if  there exists lzo lV such that

(4.37) n o l l L 2 ( A n ) - L 4 ( A
n ) , 1  ,

for all nEN where 11 II.; , L2(A n ) - L 4 (  I n ) denotes the operator norm from th e  space L 2 (A ')
to D(An).

A s in the previous theorems, we suppose that {C;: ; kEIV*} „ of (4.1) is a  sequence
o f Markov chains with its transition probability Pg(C', (JO and an invariant probability
measure A 3 (dC). Our final result is stated as follows.

(4.38) Theorem . Suppose that {A"} n  converges weakly to a probability measure A and
that

(4.39) sup IC12 + 5 -An (dC)< co fo r  some 6>0 .

Moreover, we suppose that Conditions (M. IV )  and (M. V) are satisfied and that the se-
quence o f semigroups {T V  keN *} n  determined by 13 11:(C', C is un iform ly  hypercontrac-
tive. In addition, if Condition (C) is satisfied, then the conclusion of Theorem 3.1 holds
with the matrices Vo o f  (4.36) and V , o f (4.9).

P ro o f .  Since (4.39) is a translation of Condition  (S. I), we show that (S. II) is satis-
fied. By Lemma 5.5.11 in Deuschel-Stroock [2], we see that the uniform hypercontrac-
tion property implies that

(4.40) II go f — f M L2(An) ( 1 /  -V 3)11f 111,2( in ) ,
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fo r all bounded measurable functions f ,  w h e r e  w e  se t f  = .ç ( 0 A " ( c g )  and

denotes the L 5 (A ) -n o rm . F u rth e r, fro m  (4.40), it ho lds tha t fo r a ll ni EN

7- 77,i'ko f  — f II Lz(A , )=  7- 1,'„(( 1 —  f ) — ( T g.-00 0 .1- -  f )11 L2(n. )

(1/ '\/ 3 )  7 — f 111.2(A) ,

w hich im plies that fo r a ll k E N

(4.41) — f 11L2(A.) (1/ 3 ) 1 ' k °I II f L2(An) •

O n the  o ther hand, b y  th e  definition (2.1) o f th e  strongly m ixing ra te  function, it
holds that

(4.42) cr7k̀ < sup 11 T  — f II Li (A" ,

fo r  a l l  n, k. Therefore, by (4.41) and (4.42), w e have N./ 3 (1/ ./ 3 ) 1 1 ol k  f o r  all
n, k , which implies that (SAD is satisfied. Applying Lemma 3.3, it can  be  show n by  a
sim ilar w ay in  the  proof o f  Theorem 4.7 and Theorem 4.35 that (U. II) is satisfied with
the m atrices V ,  o f (4.36) a n d  V'  o f  (4.9). So w e om it the  proof. 0
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