Note on the behavior spaces on open Riemann surfaces and its applications to multiplicative differentials

By

Kunihiko Matsui

§1. Introduction

1A. Let R be an arbitrary Riemann surface of genus g which may be infinity and $\{R_n\}$ a canonical exhaustion of R, then we can choose a canonical homology basis $\{A_j, B_j\}_{j=1}^g$ modulo dividing curves such that $\{A_j, B_j\} \cap G_n^k$ is also a canonical homology basis of G_n^k modulo ∂G_n^k for each n and k, where G_n^k denotes a component of $R_{n+1} - \overline{R_n}$ (Ahlfors and Sario [1]). Further, let J be the set which consists of integers 1, 2,...,g and $D_K = D_K(J)$ denote a patition of J into mutually disjoint subsets J_1, J_2, \ldots, J_K so that $J = \bigcup_{k=1}^K J_k$ and $2 \leq K \leq g$. The totality of square integrable complex (resp. real) differentials on R forms a real Hilbert space A = A(R) (resp. $\Gamma = \Gamma(R)$) over the real number field with the real Dirichlet inner product. It should be noticed that the meanings of the letter A and Γ are different from those in [1]. With these exceptions, we inherit the terminologies and the notations of [1], if not mentioned further. For example, A_h, A_{hse}, A_a , A_{ase}, \ldots (resp. $\Gamma_h, \Gamma_{hse}, \Gamma_{he}, \ldots$) stand for the real Hilbert spaces of complex (resp. real) differentials on R with corresponding restricted properties. Moreover, for

simplicity, we use in this paper the following notations and terminologies:

$$\begin{split} &\int_{J_p} \Lambda_x = \left\{ \int_{A_j, B_j} \lambda \colon \lambda \in \Lambda_x \text{ and } j \in J_p \right\}, \text{ where } \Lambda_x \text{ is a subspace of } \Lambda_h, \\ &\int_A \Lambda_x = \left\{ \int_{A_j} \lambda \colon \lambda \in \Lambda_x \text{ and } j \in J \right\}, \end{split}$$

 $L_K = \{L_p\}_{p=1}^K$, where each L_p is a straight line on the complex plane C passing through the origin, $L_p \neq L_q$ for $p \neq q$ and L_1 is the real axis,

 $S(J_p) = the space spanned by \{\sigma(A_j), \sigma(B_j): j \in J_p\}$ over the real number field where $\sigma(\gamma)$ is the γ -reproducer in Γ_h , that is to say, $\int_{\gamma} \omega = \langle \omega, \sigma(\gamma)^* \rangle$ for each $\omega \in \Gamma_h$,

Communicated by Prof. S. Watanabe, November 13, 1991

 $S(A) = the space spanned by \{\sigma(A_j), j \in J\}$ over the real number field, Γ_1^{\perp} (resp. $\Lambda_1^{\perp}) = the orthogonal complement of <math>\Gamma_1$ (resp. Λ_1) in Γ_h (resp. Λ_h) for any subspace Γ_1 (resp. Λ_1) in Γ_h (resp. Λ_h).

Definition 1 (Cf. [2], [6] and [9]). According to [9], we call, in this paper, a closed subspace $\Lambda_K = \Lambda(D_K, L_K)$ of Λ_h an S-behavior space associated with $(D_K, L_K) = (D_K, \{L_p\}_{p=1}^K)$ if the following conditions are satisfied:

(1)
$$\Lambda_{K} = i\Lambda_{K}^{*\perp} \subset \Lambda_{hse}$$
 where $i = \sqrt{-1}$
(2) $\int_{J_{p}} \Lambda_{K} \in L_{p}$ for each p ,

where $\Lambda_K^* = \{\lambda : \text{ the conjugate differential } \lambda^* \text{ of } \lambda \text{ belongs to } \Lambda_K\}$. Analogously, we call, in this paper, a subspace Λ_B of Λ_h a B-behavior space if Λ_B satisfies the following conditions (Cf. [2]):

(1)
$$\Lambda_B = i \Lambda_B^{*\perp} \subset \Lambda_{hse}$$

(2) $\int_A \Lambda_B = 0.$

Hereafter, we denote S-behavior space (resp. B-behavior space) simply by S-space (resp. B-space).

Definition 2 (Cf. [9]). Let Λ_0 be an S-space (or B-space). We call, in this paper, a meromorphic differential ϕ on R has Λ_0 -behavior if there exists a compact region \overline{D} , $\lambda \in \Lambda_0$ and $\lambda_{e0} \in \Lambda_{e0} \cap \Lambda^1$ such that

$$\phi = \lambda + \lambda_{e0} \quad on \quad R - \overline{D}.$$

A single valued meromorphic function f on R is called, in this paper, to have Λ_0 -behavior if df has Λ_0 -behavior.

1B. The generalization of the Riemann-Roch theorem in the classical theory of algebraic functions to open Riemann surfaces were studied, at first, by Kusunoki [3] and, afterwards, along his method by many authors, for examples, Baskan [2], Matsui and Nishida [7], Mizumoto [8], Shiba [9] and Yoshida [10]. Above all, Shiba's theorem in [9], an extension of those in [3], [8] and [10], were formulated in terms of differentials with S-behavior, and further, Baskan's result formulated by B-space is somewhat different from [9]. Accordingly, we have the special interest about the notions of S-space and B-space. Whereas we do not know the general existences of these spaces yet, though some restrictive examples of S-spaces were given by [5], [6] and [9]. In this paper, we shall give, in §2, some classes of B-spaces and their application to the Abelian integral theory. In §3, we show some classes of S-spaces $\Lambda_2 = \Lambda(D_2, L_2)$ associated with $(D_2(J), L_2)$. In §4, we consider for arbitrary given (D_K, L_K) ($K \ge 3$), a sequence $\{(D_K^n, L_R^n)\}_{n=1}^{\infty}$ which are properly constructed from (D_K, L_K) and a sequence of the S-spaces $\{\Lambda_n\}_{n=1}^{\infty}$ with $\Lambda_n = \Lambda(D_K^n, L_K^n)$ (Cf. [5]), and give a condition that

the limit of the sequence $\{\Lambda_n\}_{n=1}^{\infty}$ is a behavior space associated with (D_K, L_K) . In §5, we consider certain class of open symmetric Riemann surfaces, and on such a surface we show a formulation of a duality theorem (Riemann-Roch type theorem) for multiplicative differentials which is, in case that the surface is symmetric closed, different from Prym-Weyl's theorem (Cf. Weyl [11]). The author wishes to express his hearty thanks to Prof. Y. Kusunoki for his valuable suggestions and ceaseless encouragements.

§2. B-behavior space

2A. Existence. In the following, suppose $\Gamma_{hsc} \neq \{0\}$.

Lemma 1. Let Γ_1, Γ_2 be arbitrary subspaces of Γ_{hse} , and set $\Gamma'_k = \Gamma_k^{*\perp}$, k = 1, 2. For each complex number z such that $z = e^{i\theta} \neq \pm 1$, we have

(1) $\Lambda_0 = \Gamma_1 + z\Gamma_2$ is a closed subspace in Λ_h ,

(2) a differential λ belongs to the spaces $i \Lambda_0^{*\perp}$ if and only if λ can be written in a form $\lambda = (z\omega'_1 - \omega'_2)/\operatorname{Im}(z)$ where $\omega'_1 = \operatorname{Im}(\lambda) \in \Gamma'_1$ and $\omega'_2 = \operatorname{Im}(\bar{z}\lambda) \in \Gamma'_2$,

(3) analytic differential ϕ belongs to $\Lambda_a \cap i \Lambda_0^{*\perp} \cap \Lambda_0^{\perp}$ if and only if $\operatorname{Im}(\phi) \in \Gamma_1'$ and $\operatorname{Im}(\bar{z}\phi) = \operatorname{Im}\{(\phi) \cos \theta - \operatorname{Re}(\phi) \sin \theta\} \in \Gamma_2'$

(4) if $\Gamma_1 \perp \Gamma_2^*$, we have

$$\Lambda_h = \Lambda_0 \dotplus i \Lambda_0^* \dotplus \Lambda_a \cap \Lambda_0^{\perp} \cap i \Lambda_0^{*\perp} \dotplus \Lambda_a^{\perp} \cap \Lambda_0^{\perp} \cap i \Lambda_0^{*\perp}.$$

where $A_{\bar{a}} = \{\phi : complex \ conjugate \ \bar{\phi} \ of \ \phi \ belongs \ to \ A_a\}.$

Proof. (1). Suppose the sequence $\{\lambda_n = x_n + zy_n\}_{n=1}^{\infty}$ with $x_n \in \Gamma_1$ and $y_n \in \Gamma_2$ is a Cauchy sequence whose limit is λ . Since $\{\operatorname{Im}(\lambda_n)\}_{n=1}^{\infty}$ and $\{\operatorname{Re}(\lambda_n)\}_{n=1}^{\infty}$ are convergent, we have $\lim_{n \to \infty} \operatorname{Im}(\lambda_n) = \lim_{n \to \infty} y_n \sin \theta = y \sin \theta \in \Gamma_2$, and so $\lim_{n \to \infty} \{\operatorname{Re}(\lambda_n) - y_n \cos \theta\} = \lim_{n \to \infty} x_n = x \in \Lambda_1$, hence we get $\lim_{n \to \infty} \lambda_n = x + zy = \lambda \in \Lambda_0$.

(2). Let $\lambda = x + iy$ be orthogonal to $i\Lambda_0^*$, then we have $\langle \lambda, i\Gamma_1^* \rangle = \langle \lambda, iz\Gamma_2^* \rangle = 0$ and so $\omega_1' = \text{Im}(\lambda) = y \in \Gamma_1'$ and $\omega_2' = \text{Im}(\bar{z}\lambda) = y \cos \theta - x \sin \theta \in \Gamma_2'$. Thus we get $\lambda = x + iy = (z\omega_1' - \omega_2')/\text{Im}(z)$ and the converse is also true.

(3). (3) is obvious from (2) and so omitted.

(4). If $\Gamma_1 \perp \Gamma_2^*$, then $\Lambda_0 \perp i \Lambda_0^*$ and so we have

$$\begin{split} \Lambda_h &= \Lambda_0 \dotplus i \Lambda_0^* \dotplus \Lambda_0^{\perp} \cap i \Lambda_0^{*\perp} \\ &= \Lambda_0 \dotplus i \Lambda_0^* \dotplus \Lambda_0^{\perp} \cap i \Lambda_0^{*\perp} \cap \Lambda_a \dotplus \Lambda_0^{\perp} \cap i \Lambda_0^{*\perp} \cap \Lambda_{\overline{a}}. \end{split} \qquad \text{q.e.d.}$$

Theorem 1. Let Γ_x be a closed space of Γ_{hse} such that

$$\Gamma_{hm} + S(A) \subset \Gamma_x \subset \Gamma_{hse} \cap S(A)^{*\perp},$$

then, for each complex number $z = e^{i\theta} \neq \pm 1$, the space $\Lambda_x = \Gamma_x + z\Gamma'_x$ is a B-space where $\Gamma'_x = \Gamma^{*\perp}_x$.

Proof. Since $\Gamma_{hm}^{*\perp} = \Gamma_{hse}$, we have $\Gamma_{hm} + S(A) \subset \Gamma'_x = \Gamma_x^{*\perp} \subset \Gamma_{hse} \cap S(A)^{*\perp}$, $\int_A \Lambda_x = 0$ and $\Lambda_{hm} \subset \Lambda_x \subset \Lambda_{hse}$ Next, from $\Gamma'_x = \Gamma_x^{*\perp}$ we have (Cf. Lemma 1)

 $A_{h} = A_{x} \dotplus i A_{x}^{*} \dotplus A_{x}^{\perp} \cap i A_{x}^{*\perp} \cap A_{a} \dotplus A_{x}^{\perp} \cap i A_{x}^{*\perp} \cap A_{a}^{\perp}.$

On the other hand, for $\phi = -\omega^* + i\omega \in \Lambda_x^{\perp} \cap i\Lambda_x^{*\perp} \cap \Lambda_a$, we have from Lemma 1

$$\phi = -\omega^* + i\omega = (z\omega - \sigma)/\sin\theta,$$

where $\sigma = \text{Im}(\bar{z}\phi) \in \Gamma'^{*\perp}_x = \Gamma_x$ and $\omega = \text{Im}(\phi) \in \Gamma^{*\perp}_x = \Gamma'_x$. Thus we get $\Gamma'_x \ni \omega \perp \sigma^* \in \Gamma^*_x = \Gamma'^{\perp}_x$ and so from Re $(\phi \sin \theta) = -\omega^* \sin \theta = \omega \cos \theta - \sigma$, we have the following orthogonal relations:

$$\sigma = \omega \cos \theta + \omega^* \sin \theta, \text{ and}$$
$$\omega \cos \theta = -\omega^* \sin \theta + \sigma.$$

Therefore, we have $\|\sigma\|^2 = \|\omega\|^2$ and $\|\omega\|^2 \cos^2 \theta = (1 + \sin^2 \theta) \|\omega\|^2$, hence $\omega = 0 = \phi$ because $z \neq \pm 1$. Analogously, we can prove $\Lambda_x^{\perp} \cap i \Lambda_x^{\pm \perp} \cap \Lambda_a^{\perp} = \{0\}$, hence $\Lambda_x = i \Lambda_x^{\pm \perp}$.

Conversely, we have the following

Theorem 2. Suppose Λ_x is an arbitrary B-space. The necessary and sufficient condition that Λ_x can be written in the form $\Lambda_x = \Gamma_x + z\Gamma'_x$ where $\Gamma_x^{*\perp} = \Gamma'_x$ and $z = e^{i\theta} \neq \pm 1$, is $\operatorname{Im}(\bar{z}\Lambda_x) \subset {\operatorname{Im}(\Lambda_x)}^{*\perp}$.

Proof. To show the necessary condition, we set Im $(\Lambda_x) = \hat{\Gamma}_x$, $\Gamma_x = \hat{\Gamma}_x^{*\perp}$ and $\Gamma_x^{*\perp} = \Gamma'_x$. Because Λ_x is a *B*-space, we have $\Lambda_{hm} + S(A) + iS(A) \subset \Lambda_x \subset \Lambda_{hse} \cap S(A)^{*\perp} \cap iS(A)^{*\perp}$ and so $\Lambda_B = \Lambda_x + z\Gamma'_x$ is a *B*-space (Cf. Theorem 1) and further, from the assumption, we get $\langle \Lambda_x, i\Gamma_x^* \rangle = 0$ and $\langle \Lambda_x, iz\Gamma'_x \rangle = \langle \text{Im}(\bar{z}\Lambda_x), \Gamma'_x \rangle = 0$, hence we can get $\Lambda_x \subset i\Lambda_B^{*\perp} = \Lambda_B \subset i\Lambda_x^{*\perp} = \Lambda_x$. The converse is evident.

From Theorem 1, we can obtain infinitely many *B*-spaces $\{\Gamma_x + z\Gamma'_x\}$ by changing parameter *z* and subspace Γ_x where $S(A) + \Gamma_{hm} \subset \Gamma_x \subset \Gamma_{hse} \cap S(A)^{*\perp}$ and $\Gamma'_x = \Gamma^{*\perp}_x$. However, next example shows the existence of a *B*-space which can not be written in the form $\Gamma_x + z\Gamma'_x$.

Example 1. Let G be the interior of a compact bordered Riemann surface and $\partial G = \beta_1 \cup \beta_2 \cup \beta_3$ where each β_j is a border contour. At first, we set

$$\Gamma_{hc0}(\partial G - \beta_j) = \{ du \in \Gamma_{he}(G) \colon u = 0 \text{ on } \hat{c}G - \beta_j \}, \text{ and}$$
$$\Gamma_{h0}(\beta_j) = \Gamma_{he0}(\hat{c}G - \beta_j)^{*\perp}.$$

Next, for a set of complex numbers $\{t_j = e^{i\theta_j}\}_{j=1}^3$ such that $t_p \neq \pm t_q$ for $p \neq q$, we consider the following families of differentials:

$$\Lambda_x = \left\{ \lambda \in \Lambda_{hso} \colon (1) \int_A \lambda = 0, \ (2) \operatorname{Im} (\bar{t}_j \lambda) \in \Gamma_{h0}(\beta_j), \ j = 1, \ 2, \ 3 \right\},\$$

Open Riemann surfaces

$$\Lambda'_{x} = \text{closure } \{\Lambda_{hm} + S(A) + iS(A) + \sum_{j} t_{j} \Gamma_{hc0} (\partial G - \beta_{j}) \}.$$

Since $\Gamma_{he0}(\beta_p) \perp \Gamma_{he0}(\partial G - \beta_p)^*$ and $S(A) \perp S(A)^*$, we have $\Lambda_x \supset i\Lambda'_x^{*\perp} \supset \Lambda'_x \supset i\Lambda^{*\pm}_x$. $i\Lambda^{*\pm}_x$. On the other hand, by using the Kusunoki's formula (for example. Cf. Lemma 6 in [9]), we have $\langle \lambda, i\mu^* \rangle = 0$ for each $\lambda, \mu \in \Lambda_x$. Thus, $\Lambda'_x = \Lambda_x$ is a *B*-space. Now we choose $du_j \in \Gamma_{he0}(\partial G - \beta_j)$ such that $du_j \in \Gamma_{h0}(\beta_j)$, j = 1, 2, 3, then we have $t_1 du_1 + t_2 du_2 + t_3 du_3 = \omega \in \Lambda_x$ and further, ω can not be written in a form du + zdv with $du \in \Gamma_1$ and $dv \in \Gamma'_1 = \Gamma_1^{\pm \perp}$.

2B. Application. By using B-spaces, we know already the Riemann-Roch theorem for differentials with B-behavior (Cf. [2]). Now besides this, we show in 2B an another application of this space to the Abelian integral theory. We set

$$\begin{split} \Lambda_a^0 &= \left\{ \phi : (1) \ \phi \in \Lambda_{ase}, \ (2) \ \phi \ \text{ is a Schottky differential, } (3) \ \phi = 0 \ \text{ if } \int_A \phi = 0 \right\}, \\ \Gamma_x &= \text{closure } \{ \Gamma_{hm} + S(A) \}, \\ \Gamma_A &= \Gamma_x \cap \Gamma_{hse}^* + \Gamma_x^* \cap \Gamma_{hse}. \end{split}$$

By using the *B*-space $\Lambda_x = \Gamma_x + i\Gamma_x^{*\perp}$, we prove the next proposition which is similar to that of Kusunoki [4].

Proposition 1 (Kusunoki [4]). $\Lambda_a^0 = \{\Gamma_A + i\Gamma_A\} \cap \Lambda_a$.

Proof. At first, we choose the *B*-space $\Lambda_x = \Gamma_x + i\Gamma_x^{*\perp}$ (Cf. Theorem 1). Each $\phi \in \Lambda_{ase}$ with $\int_A \phi = 0$ has a decomposition of the form

$$\phi = \lambda + i\lambda^* = \sigma + i\tau + i\sigma^* - \tau^*,$$

where $\lambda \in \Lambda_x$, Re $(\phi) = \sigma \in \Gamma_x$ and Im $(\phi) = \tau \in \Gamma_x^{*\perp} = \Gamma_{hse} \cap S(A)^{*\perp}$. Terefore, we have $\int_A (\tau + \sigma^*) = \int_A \sigma^* = 0$ and $\int_{\gamma} (\tau + \sigma^*) = 0 = \int_{\gamma} \sigma^* = 0$, where γ denotes an arbitrary dividing curves. Thus we can get $\sigma = 0$, $\phi = -\tau^* + i\tau$, and so $\tau \in \Gamma_{hse} \cap \Gamma_{hse}^* \cap S(A)^{\perp} \cap S(A)^{*\perp} = \Gamma_x^{\perp} \cap \Gamma_x^{*\perp}$. If $\phi \in (\Gamma_A + i\Gamma_A) \cap \Lambda_a$ with $\int_A \phi = 0$, then we get $\phi = -\tau^* + i\tau$ where Im $(\phi) = \tau \in (\Gamma_x + \Gamma_x^*) \cap \Gamma_x^{\perp} \cap \Gamma_x^{*\perp}$ and so $\phi = 0$. Hence $(\Gamma_A + i\Gamma_A) \cap \Lambda_a \subset \Lambda_a^0$, and we get the following

$$\Lambda_a^0 = (\Gamma_A + i\Gamma_A) \cap \Lambda_a + \Gamma_A^\perp \cap i\Gamma_A^\perp \cap \Lambda_a^0.$$

However, for each $\phi = \omega + i\omega^* \in \Gamma_A^{\perp} \cap i\Gamma_A^{\perp} \cap \Lambda_a^0 \subset \Lambda_{ase}$ with $\operatorname{Re}(\phi) = \omega$, we have

$$\omega \in \Gamma_A^{\perp} \cap \Gamma_{hse} \cap \Gamma_{hse}^* = \Gamma_{hse} \cap S(A)^{*\perp} \cap \Gamma_{hse}^* \cap S(A)^{\perp}$$

Therefore, we have $\int_{A} \phi = 0$ and $\phi \in \Lambda_{a}^{0}$, hence $\phi = 0$ and $\Lambda_{a}^{0} = (\Gamma_{A} + i\Gamma_{A}) \cap \Lambda_{a}$.

§3. S-behavior space $\Lambda_2 = \Lambda(\{J_k\}_{k=1}^2, \{L_k\}_{k=1}^2)$

Theorem 3. Let $D_2(J) = \{J_k\}_{k=1}^2$ be a partition of the set $J = \{1, 2, ..., g\}$, Γ_1 the space such that $S(J_1) + \Gamma_{hm} \subset \Gamma_1 \subset \Gamma_{hse} \cap S(J_2)^{*\perp}$ and $\Gamma'_1 = \Gamma_1^{*\perp}$. Then, for each complex number $z = e^{i\theta} \neq \pm 1$, the space $\Lambda_2 = \Gamma_1 + z\Gamma'_1$ is an S-space associated with $(\{J_k\}_{k=1}^2, \{L_k\}_{k=1}^2)$ where L_1 is the real axis and $L_2 \ni z$.

Proof. Since
$$\Gamma_{hm} + S(J_2) \subset \Gamma'_1 = \Gamma_1^{*\perp} \subset \Gamma_{hsc} \cap S(J_1)^{*\perp}$$
, we have $\int_{J_1} \Lambda_2 = \int_{J_1} \Gamma_1 \in L_1$ and $\int_{J_2} \Lambda_2 = z \int_{J_2} \Gamma'_1 \in L_2$. From $\Gamma'_1 = \Gamma_1^{*\perp}$, we get $\Lambda_2 \subset i\Lambda_2^{*\perp}$, and $\Lambda_h = \Lambda_2 \div i\Lambda_2^{*\pm} \div \Lambda_2^{\pm} \cap i\Lambda_2^{*\perp} \cap \Lambda_a \div \Lambda_2^{\pm} \cap i\Lambda_2^{*\perp} \cap \Lambda_a^{-\epsilon}$.

However, for each $\phi = -\omega^* + i\omega \in \Lambda_2^{\perp} \cap i\Lambda_2^{*\perp} \cap \Lambda_a$, we have Im $(\phi) = \omega \in \Gamma_1^{*\perp} = \Gamma_1'$ and Im $(\bar{z}\phi) = \sigma = \omega^* \sin \theta + \omega \cos \theta \in \Gamma_1^{*\perp} = \Gamma_1 \perp \omega^* \in \Gamma_1^{**}$. Consequently, we obtain $\langle \sigma, \omega^* \rangle = 0 = \|\omega\|^2 \sin \theta$, hence $\phi = 0$ and so $\Lambda_2^{\perp} \cap i\Lambda_2^{*\perp} \cap \Lambda_a = \{0\}$. Analogously, we can get $\Lambda_2^{\perp} \cap i\Lambda_2^{*\perp} \cap \Lambda_{\bar{a}} = \{0\}$, and so $\Lambda_2 = i\Lambda_2^{*\perp}$. q.e.d.

Conversely, we have the following

Theorem 4. Suppose Λ_K is an S-behavior space associated with $(D_K, L_K) = (\{J_k\}_{k=1}^K, \{L_k\}_{k=1}^K)$ where L_1 is the real axis. The necessary and sufficient condition that Λ_K can be written in the form $\Gamma_1 + z\Gamma'_1$ where $\Gamma_{hm} + S(J_1) \subset {\Gamma'_1}^{*\perp} = \Gamma_1 \subset \Gamma_{hse} \bigcap_{k=2}^K S(J_k)^{*\perp}$ and $z = e^{i\theta} \neq \pm 1$, is

$$\operatorname{Im}\left(\bar{z}\Lambda_{K}\right) \subset \operatorname{Im}\left(\Lambda_{K}\right)^{*\perp}$$

Proof. At first, we set $\operatorname{Im}(\Lambda_K) = \hat{\Gamma}_1, \hat{\Gamma}_1^{*\perp} = \Gamma_1$ and $\Gamma'_1 = \Gamma_1^{*\perp}$. Since $\langle \Lambda_K, iz\Gamma_1^{**} \rangle = \langle \Lambda_K, i\Gamma_1^{**} \rangle = 0$, we have $\Lambda_2 \subset i\Lambda_K^{*\perp} = \Lambda_K \subset i\Lambda_2^{*\perp}$ where $\Lambda_2 = \Gamma_1 + z\Gamma_1^{'}$. On the other hand, from $\Lambda_K \subset \Lambda_{hse}$ and $\int_{J_1} \Lambda_K \in L_1$, we get $\Gamma'_1 \subset \Gamma_{hse} \cap S(J_1)^{*\perp}$ and $\Gamma_1 \supset \Gamma_{hm} + S(J_1)$. Further, since $\Lambda_K \subset \Lambda_{hse} \cap iz_k S(J_k)^{*\perp}$ where $0 \neq z_k \in L_k, \ k = 2, 3, \dots, K$, we have $\Lambda_K = i\Lambda_K^{*\perp} \supset \sum_{k=2}^K z_k S(J_k) + \Lambda_{hm}$, and so $\Gamma'_1 \supset \Gamma_{hm} + \sum_{k=2}^K S(J_k)$. Therefore, we can get $\Gamma_{hm} + S(J_1) \subset \Gamma_1 = \Gamma_1^{'*\perp} \subset \Gamma_{hse} \cap S(J_k)^{*\perp}$. hence $i\Lambda_2^{*\perp} = \Lambda_2 = \Lambda_K$ from Theorem 3.

Next, we give, analogously as in 2A, an example of an S-space $\Lambda_2 = \Lambda(\{J_k\}_{k=1}^2, \{L_k\}_{k=1}^2)$ which can not be written in the form $\Gamma_1 + z\Gamma'_1$ where $\Gamma'_1 = \Gamma_1^{\pm \perp}$.

Example 2. Let G be the interior of the compact bordered surface and $\partial G = \beta_1 \cup \beta_2 \cup \beta_3$ where each β_j is a contour. We use here the same notations as in the example 1, and consider the following subspaces of differentials on G:

$$\begin{split} \Lambda_2 &= \left\{ \lambda \in \Lambda_{hse} \colon (a) \int_{J_k} \lambda \in L_k, \ k = 1, 2 \text{ where } L_1 \text{ is the real axis,} \\ & (b) \text{ Im } (\bar{t}_r \lambda) \in \Gamma_{h0}(\beta_r), \ r = 1, 2, 3 \right\}, \\ \Lambda'_2 &= \text{closure} \left\{ \Lambda_{hm} + \sum_{k=1}^K t_k \Gamma_{he0}(\partial G - \beta_k) + S(J_1) + \zeta S(J_2) \right\}, \end{split}$$

where each t_j is a complex number such that $t_p \neq \pm t_q$ for $p \neq q$ and ζ is a complex number such that $\zeta \neq 0$ and $\zeta \in L_2$. By the same way as in the example 1, we can prove $\Lambda_2 = \Lambda'_2 = i\Lambda_2^{*\perp}$. Next, the differential ω in the example 1 belongs to Λ_2 , and further, ω can not be written in the form du + zdv with $du, dv \in \Gamma_h$.

§4. S-behavior space $\Lambda_K = \Lambda(D_K, L_K)$ $(3 \le K)$

4A. Λ_K and Λ'_K . Let Λ_K be an arbitrary S-space associated with (D_K, L_K) where $D_K = \{J_k\}_{k=1}^K$ and $L_K = \{L_K\}_{k=1}^K$. We set $\operatorname{Im}(\bar{z}_j \Lambda_K) = \Gamma'_j$, $\Gamma'_j = \Gamma_j$, and $\Lambda'_K = \operatorname{closure} \{\sum_{k=1}^K z_k \Gamma_K\}$, where $z_k \in L_k$ and $|z_k| = 1, k = 1, 2, ..., K$.

Lemma 2. In order that Λ_K be equal to Λ'_K , it is necessary and sufficient that Λ'_K is an S-space.

Proof. Since $\langle \Lambda_K, iz_j \Gamma_j^* \rangle = 0$ for each *j*, we obtain the relation $\Lambda'_K \subset i \Lambda_K^{*\perp} = \Lambda_K \subset i \Lambda_K^{'*\perp}$. Therefore, $\Lambda_K = \Lambda'_K$ means $\Lambda'_K = i \Lambda_K^{'*\perp}$.

Remark. By the same way as in the former examples, we can give an example of Λ_K such that $\Lambda_K \neq \Lambda'_K$.

4B. Λ^n , Λ_{χ} and Λ'_{χ} . Let $\beta = \bigcup_{r=1}^{s} \beta_r$ be a regular partition of the Stoilow's ideal boundary β of an open Riemann surface R, $\{R_n\}$ a regular canonical exhaustion of R and $R - R_n = \bigcup_{r=1}^{s} W_n^r$ where W_n^r is an end towards β_r . We set

 $\Gamma_{e0}^{1}(\beta_{r}) = \{ df: (a) \ df \in \Gamma_{e}^{1}, (b) \text{ there exists an end towards } \beta_{r} \text{ which is disjoint with the support of } f \},$

$$\Gamma_{he0}(\beta_r) = \Gamma_h \cap \text{closure } \{\Gamma_{e0}^1(\beta_r)\},\$$

$$\Gamma_{h0}(\beta - \beta_r) = \Gamma_{he0}(\beta_r)^{*\perp}.$$

Besides $J = \{J_k\}_{k=1}^K$ and $L = \{L_k\}_{k=1}^K$, we consider another partition of J, the family of lines and the subspaces of differentials on R such that:

$$J_{k,n} = \{j : j \le g_n \text{ and } j \in J_k, \text{ where } g_n \text{ is the genus of } R_n\},\$$

$$J_{k+r,n} = \{j : j > g_n \text{ and } A_j, B_j \subset W_n^r\},\$$

$$l = \{l_r\}_{r=1}^s, \text{ where each } l_r \text{ is a line passing through the origin on the } z \text{ plane,} \\ D'_n(J) = \{J_{k,n}\}_{k=1}^{K+s}, \\ L'_n = \{L_k\}_{k=1}^{K+s}, \text{ where } L_{k+r} = il_r, r = 1, 2, ..., s, \\ \Lambda^n = \left\{\lambda \in \Lambda_{hse} \colon (a) \int_{J_{k,n}} \lambda \in L_k, k = 1, 2, ..., K + s, (b) \text{ Im } (\bar{\zeta}_r \lambda) \in \Gamma_{h0}(\beta_r), \\ r = 1, 2, ..., s \right\},$$

where il_r means the set $\{i\zeta: \zeta \in l_r\}$ and ζ_r is a complex number such that $0 \neq \zeta_r \in L_{K+r}, r = 1, 2, ..., s$.

Lemma 3. Λ^n is an S-behavior space associated with D'_n and L'_n .

Proof. Omitted. (Cf. Lemma 4.3 in [5]).

Further, we set

 $\Lambda'_{\chi} = \{\lambda : \text{ there exists a sequence } \{\lambda_n\}_{n=1}^{\infty} \text{ with } \lambda_n \in \Lambda^n \text{ such that } \|\lambda - \lambda_n\| \to 0$ as $n \to \infty\},$

 $\Lambda_{\chi} = \{\lambda \colon \lambda \text{ is equal to the limit of a locally uniformly convergent subsequence}$ of $\{\lambda_n\}_{n=1}^{\infty}$ with $\lambda_n \in \Lambda^n$ and $\sup \{ \|\lambda_n\| \} < \infty \}.$

Then we have the following

Proposition 2. (a)
$$i\Lambda_{\chi}^{*\perp} = \Lambda_{\chi}' \subset \Lambda_{\chi} = i\Lambda_{\chi}'^{*\perp}$$
.
(b) $\Lambda_{\chi} = \Lambda_{\chi}'$ is equivalent to $\Lambda_{\chi}' = i\Lambda_{\chi}'^{*\perp}$.

Proof. At first, we prove $\Lambda_{\chi} \subset i\Lambda_{\chi}^{*\perp}$. From the difinition of Λ_{χ} and Λ_{χ}^{\prime} , we can find for each $\lambda \in \Lambda_{\chi}$ and each $\mu \in \Lambda_{\chi}^{\prime}$ a Cauchy sequence $\{\mu_n\}_{n=1}^{\infty}$ with $\mu_n \Lambda^n$ and a locally uniformly convergent sequence $\{\lambda_{n_x}\}_{x=1}^{\infty}$ (which we denote $\{\lambda_x\}$ hereafter) with $\lambda_{\alpha} \in \Lambda^{\alpha}$ and $\sup_{\alpha} \{\|\lambda_{\alpha}\|\} < K$ such that $\|\mu_n - \mu\| \to 0$ as $n \to \infty$ and $\lambda_{\alpha} \to \lambda$ as $\alpha \to \infty$, locally uniformly on R.

Further, for arbitrary small positive number ε , we can choose a compact region \overline{G} on R and a sufficiently large integer N such that $\|\lambda\|_{R-G} + \|\mu\|_{R-G} < \varepsilon$ and $\|\lambda - \lambda_n\|_G + \|\mu - \mu_n\| < \varepsilon$ for each n > N. Therefore, for each k > N, we have

$$\begin{split} |\langle \lambda, i\mu^* \rangle| &< |\langle \lambda, i\mu^* \rangle_G| + \varepsilon \|\mu\| < |\langle \lambda - \lambda_k, i\mu^* \rangle_G| + |\langle \lambda_k, i\mu^* \rangle_G| + \varepsilon \|\mu\| \\ &< |\langle \lambda_k, i\mu_k^* \rangle_G| + (2\|\mu\| + K)\varepsilon < |\langle \lambda_k, i\mu_k^* \rangle_{R-G}| + (2\|\mu\| + K)\varepsilon \\ &< (3K + 2\|\mu\|)\varepsilon. \end{split}$$

Thus we get $\Lambda_{\chi} \subset i \Lambda_{\chi}^{* + \perp}$. Next, we show $i \Lambda_{\chi}^{* + \perp} \subset \Lambda_{\chi}$. Let $\lambda \in \Lambda_h$ be a differential such that $\langle \lambda, i \Lambda_{\chi}^* \rangle = 0$. λ has a decomposition of the form

$$\lambda = \lambda_n + i\mu_n^*$$
, where $\lambda_n, \mu_n \in \Lambda^n$ (Cf. Lemma 3).

and so there exists a sequence $\{n_x\}_{\alpha=1}^{\infty}$ (which we denote here simply $\{\alpha\}$) such that $\lambda_x \to \lambda_\chi$ and $\mu_x \to \mu_\chi$, locally uniformly on R. On the other hand, there exists, for each $\varepsilon > 0$, a compact region G such that $\|\lambda\|_{R-G} < \varepsilon$ and so from $= \langle \lambda, i\mu_x^* \rangle = 0$, we have

$$\begin{aligned} |\langle \lambda, i\mu_n^* \rangle_G + \langle \lambda, i\mu_{\chi}^* - i\mu_n^* \rangle_G| &= |\langle \lambda, i\mu_{\chi}^* \rangle_{R-G}| < \varepsilon \|\mu_{\chi}\|, \text{ and so} \\ |\langle \lambda, i\mu_n^* \rangle_G| &< \varepsilon \|\mu_{\chi}\| + \|\lambda\| \|\mu_{\chi} - \mu_n\|_G. \end{aligned}$$

Therefore, for each n > N' which is sufficiently large integer, we have

$$\begin{split} |\langle \lambda, i\mu_n^* \rangle_G| &< \varepsilon(\|\mu_{\chi}\| + \|\lambda\|), \text{ hence} \\ |\langle \lambda, i\mu_n^* \rangle| &= \|\mu_n\|^2 < \varepsilon \|\lambda\| + \varepsilon(\|\mu_{\chi}\| + \|\lambda\|). \end{split}$$

Consequently, we can choose $\|\lambda - \lambda_n\|^2 = \|\mu_n\|^2 \to 0$ as $n \to \infty$, hence $\lambda \in \Lambda'_{\chi}$, and $i\Lambda_{\chi}^{*\perp} \subset \Lambda'_{\chi}$. (b) is evident.

Note. In the case the genus of R is infinite, we do not know the existence of S-behavior space associated with arbitrary partition $D_K(J) = \{J_k\}_{k=1}^K$ of $J = \{1, 2, ...\}$ where $K \ge 3$. The author supposes that, in Proposition 2, Λ_{χ} would be equal to Λ'_{χ} , hence $\Lambda_{\chi} = i\Lambda_{\chi}^{*\perp}$ is an S-space associated with $(\{J_k\}_{k=1}^K, \{L_k\}_{k=1}^K)$, but this problem is not affirmatively proved yet.

§5. Multiplicative differentials and Riemann-Roch's type theorem

5A. Multiplicative differentials on R. Concerning the extension of the duality theorem of Riemnn-Roch's type for Prym differentials (multiplicative differentials) (Cf. Weyl [11]) to open surfaces, no results are known up to now, and so it seems not to be meaningless to give such a sort of theorem for multiplicative differentials on a specific symmetric open surface.

Suppose that R is a non compact bordered surface whose border ∂R consists of a finite number of contours $\{C_q\}_{q=1}^m$ and $P(\beta) = \bigcup_{r=1}^s \beta_r \bigcup_{q=1}^m C_q$ is a regular partition of the Stoilow's ideal boundary β of R. Let G be a canonical region of $R \cup \partial R$ such that $\partial G \supset \partial R$, and set $R - \overline{G} = \bigcup_{r=1}^s W_r$ where W_r is an end towards β_r . Next, we divide each C_q into α_{2q-1} and $\overline{\alpha}_{2q}$ where each of $\alpha_{2q-1}, \alpha_{2q}$ is an open are on C_q . Further, we associate each α_k (resp. β_k) with a complex number z_k (resp. ζ_r) such that $|z_k| = 1$ and $|\zeta_r| = 1$, and denote the set $\{z_1, z_2, ..., z_{2m}\}$ (resp. $\{\zeta_1, \zeta_2, ..., \zeta_s\}$) by Z (resp. S). For Z and S we consider the following subspaces of differentials on R:

$$\Lambda_0 = \Lambda_{0G} = \left\{ \lambda \in \Lambda_{hse} \colon (a) \int_{A_j, B_j} \lambda \in L_j, \ j \leq g_G = \text{the genus of } G, \text{ and} \\ \int_{A_j, B_j} \lambda \in il_r, \text{ for } A_j, B_j \subset W_r, \ r = 1, 2, \dots, s, \right\}$$

(b) Im
$$(\bar{z}_q \lambda) \in \Gamma_{h0}(\alpha_q), q = 1, 2, ..., 2m$$

(c) Im $(\bar{\zeta}_r \lambda) \in \Gamma_{h0}(\beta_r), r = 1, 2, ..., s$

where $\{l_r\}_{r=1}^s$ is a family of lines on the z plane passing through the origin and $\zeta_r \in l_r$ for each r. Then we have

Lemma 4. Λ_0 is an S-behavior space.

Proof. Cf. Lemma 4.3 in [5] and Lemma 2.6 in [6].

We set

- $D(\Lambda_0, \, \delta, \, R) = \{ \phi : (a) \ \phi \ has \ \Lambda_0 \text{-behavior, (b) divisor } (\phi) \ of \ \phi \ is \ a$ multiple of $\delta \},$
- $S(\Lambda_0, \delta, R) = \{ f: (b) \text{ function } f \text{ has } \Lambda_0 \text{-behavior, } (b) \text{ divisor } (f) \text{ of } f \text{ is a multiple of } \delta \},$

where $\delta = \delta_a/\delta_b$ and δ_a , δ_b are finite integral disjoint divisors. Then

Lemma 5. dim
$$S(\Lambda_0, 1/\delta, R) = 2[\operatorname{ord} \delta_a + 1 - \min(\operatorname{ord} \delta_b, 1)]$$

- dim $[D(\overline{\Lambda}_0, 1/\delta_b, R)/D(\overline{\Lambda}_0, \delta, R)].$

Proof. Since Λ_0 is an S-behavior space, from [9] we have the conclusion.

Next, we show an example of a duality theorem for multiplicative differentials on \hat{R} by considering Lemma 5 on the surface \hat{R} , where \hat{R} is the double of Rwith respect to ∂R . We set

- J = the involutory mapping \hat{R} onto itself,
- ω^{\sim} = the differential on \hat{R} associated with J and $\omega \in \Gamma_h(\hat{R})$ such that if ω is expressed as $\omega = a(z) dx + b(z) dy$ in local parameter z = h(p) in V, then $\omega^{\sim} = a(\bar{z}) dx b(\bar{z}) dy$ in $z = \bar{h}(J(p))$ in J(V) where V is a parametric disc.

Next, let P (resp. Y_k) be a point on R (resp. α_k), $\gamma(k)$ an analytic arc on $R \cup \partial R$ such that $\partial \gamma(k) = Y_k - P$, and set

$$\hat{\gamma}_k = \gamma(k) \cup \{-J\gamma(k)\},\\ \hat{\gamma}_{kn} = \hat{\gamma}_k \cup (-\hat{\gamma}_n).$$

Lemma 6. The analytic continuation ϕ_k of $\phi \in D(\Lambda_0, \delta, R)$ from a point P to J(P) along $\hat{\gamma}_k$, is $z_k^2 \bar{\phi}^{\sim}$, and so the analytic continuation of ϕ along $\hat{\gamma}_{pq}$ from a point P to P is $z_q^2 \bar{z}_p^2 \phi$. Consequently, we have

$$\int_{\substack{JA_h\\JB_h}} \phi_k \in z_k^2 \overline{L}_h \text{ for each } h, \text{ and}$$

Im $(z_n \overline{z}_k^2 \phi_k) = 0 \text{ along } J(\alpha_n) \text{ for each } n.$

where \overline{L}_{h} means the symmetric line of L_{h} with respect to the real axis.

Proof. At first, we set $\bar{z}_k \phi = \omega + i\omega^*$ on R where $\omega = \operatorname{Re}(\bar{z}_k \phi)$, then $\omega^* = 0$ along α_k , hence the differential $\hat{\omega}$ on $\hat{R} - (\partial R - \alpha_k)$ such that

$$\hat{\omega} = \omega$$
 on R , and
= ω^{\sim} on $\hat{R} - (\partial R - \alpha_k) - R$,

is even for J_k and $\hat{\omega}^*$ is odd for J_k where J_k means the restriction of J to $\hat{R} - (\partial R - \alpha_k)$. Therefore, we see that the analytic continuation of $\Phi = \bar{z}_k \phi$ to $\hat{R} - \bar{R} + \alpha_k$ is equal to $\bar{\Phi}^{\sim} = z_k \bar{\phi}^{\sim}$, and so the analytic continuation ϕ_k of $\phi = z_k \Phi$ is equal to $z_k \bar{\Phi}^{\sim} = z_k^2 \bar{\phi}^{\sim}$. Consequently, we have

$$\int_{JA_h, JB_h} \phi \in \bar{z}_k^2 L_h \text{ for each } h, \text{ and}$$

Im $(z_n \bar{z}_k^2 \phi_k) = 0$ along $J\alpha_n$ for each n .

Obviously, the analytic continuation of ϕ along γ_{pq} is equal to $z_q^2 \bar{z}_p^2 \phi$. q.e.d.

Hereafter, we consider, for each $\phi \in D(\Lambda_0, \delta, R)$ and each $f \in S(\Lambda_0, \delta, R)$, the following elements and families:

$$\phi(j_{2k+1}, J_{2k}, \dots, j_2, j_1) = Z(j_{2k})\phi \text{ on } R = R \cup \partial R$$
$$= z(j_{2k+1})^2 \overline{Z(j_{2k})\phi^{\sim}} \text{ on } \hat{R} - \overline{R},$$

where we set

$$z(p) = z_p, \text{ and } z(j_{2k})^2 \overline{z(j_{2k-1})^2} \cdots z(j_2)^2 \overline{z(j_1)^2} = Z(j_{2k}),$$

$$\hat{\phi} = \{\phi(j_{2k+1}, j_{2k}, \dots, j_1) \colon j_p = 1, 2, \dots, 2m, \text{ for } p = 1, 2, \dots, k \text{ and } k = 1, 2, \dots\},$$

$$\hat{D}(\Lambda_0, \hat{\delta}, \hat{R}) = \{\hat{\phi} \colon \phi \in D(\Lambda_0, \delta, R)\},$$

$$\hat{S}(\Lambda_0, \hat{\delta}, \hat{R}) = \{\int (\hat{df}) \colon f \in S(\Lambda_0, \delta, R)\},$$

where $\hat{\delta} = \delta \cup J \delta$ Obviously, $\hat{\phi}$ is a multiplicative differential on \hat{R} . Then we have the following proposition 3 which is different from Weyl's theorem (Cf. Weyl [11]).

Proposition 3. Let δ_a/δ_b be a divisor on R such that $\delta_a \cap \delta_b = 0$ and δ_a, δ_b are the finite disjoint divisors. Then, we have

$$\dim \hat{S}(\Lambda_0, 1/\hat{\delta}, \hat{R}) = \text{order}(\hat{\delta}_a) + 2 - 2\min\left[\{\text{order}(\hat{\delta}_b)\}/2, 1\right] \\ -\dim\left[\hat{D}(\bar{\Lambda}_0, 1/\hat{\delta}_b, \hat{R})/\hat{D}(\bar{\Lambda}_0, \hat{\delta}, \hat{R})\right],$$

where $\hat{\delta} = \delta \cup J \delta$. If g, the genus of R, is finite, the genus \hat{R} is equal to $2g + m - 1 = \hat{g}$ and so

$$\dim \hat{S}(\Lambda_0, 1/\hat{\delta}, \hat{R}) - \dim \hat{D}(\hat{\Lambda}_0, \hat{\delta}, \hat{R}) = \text{order}(\hat{\delta}) - \hat{g} + m + 1.$$

Proof. Cf. Lemma 5 and Lemma 4.

5B. Application of Proposition 3. For the case that the order of a given divisor is infinite, several authors investigated the duality theorems of Riemann-Rch type for Abelian differentials under the respective conditions. In the following, we formulate as an application of Proposition 3, a Riemann-Roch theorem of another type with infinite divisor on a covering surface \tilde{R} of R.

At first, we take an infinite number of copies $\{R_{1,p,\ldots,r}^n\}$ of R and adjoin R_1^1 with $R_{1,k}^2$ along α_k , $k = 1, 2, \ldots, 2m$. Next, thus constructed $R^2 = R_1^1 \bigcup_{q=1}^{2m} R_{1,k}^2$ has 2m-1 number of α_p for p, and so we adjoin $R_{1,q}^2$ of R^2 with $R_{1,q,r}^3$ along α_r , $r = 1, 2, \ldots, 2m$, $r \neq q$, and so on. Thus we can get a covering surface $\tilde{R} = \lim_{n \to \infty} R^n$. Now we take a differentials $\phi \in D(\Lambda_0, \delta, R)$ (resp. df) to \tilde{R} by $\tilde{\phi}$ (resp. $(d\tilde{f})$) (Cf. Lemma 6). We set

$$\widetilde{D}(\Lambda_0, \,\widetilde{\delta}, \,\widetilde{R}) = \{ \widetilde{\phi} : \, \phi \in D(\Lambda_0, \,\delta, \,R) \},\\ \widetilde{S}(\Lambda_0, \,\widetilde{\delta}, \,\widetilde{R}) = \left\{ \int (\widetilde{df}) : f \in S(\Lambda_0, \,\delta, \,R) \right\},$$

where $\tilde{\delta}$ is the divisor such that the restriction of $\tilde{\delta}$ to each $R = \delta$. Then

Proposition 5. dim $\tilde{S}(\Lambda_0, 1/\tilde{\delta}, \tilde{R}) = 2 [\text{order} (\delta_a) + 1 - \min \{\text{order} (\delta_b), 1\}]$ $- \dim [\tilde{D}(\bar{\Lambda}_0, 1/\tilde{\delta}_b, \tilde{R})/\tilde{D}(\bar{\Lambda}_0, \tilde{\delta}, \tilde{R})],$

where $\delta = \delta_a/\delta_b$ is a finite divisor. If g, the genue of R, is finite, then

 $\dim \tilde{S}(\Lambda_0, 1/\tilde{\delta}, \tilde{R}) - \dim \tilde{D}(\Lambda_0, \tilde{\delta}, \tilde{R}) = 2 \{ \text{order} (\delta) - g + 1 \}.$

Proof. Cf. Lemma 4 and Lemma 5.

FACULTY OF ENGINEERING DOSHISHA UNIVERSITY

References

- [1] L. V. Ahlfors nd L. Sario, Riemann surfaces, Princeton Univ. Press 1960.
- [2] T. Baskan, On some behavior spaces and Riemann-Roch theorem on open Riemann surfaces, J. Math. Kyoto Univ., 16 (1976), 101–112.
- [3] Y. Kusunoki, Theory of Abelian integrals and its applications to conformal mappings, Mem. Col. Sci. Univ. of Kyoto Ser. A. Math., 32 (1959), 235-258.
- [4] Y. Kusunoki, Square ntegrable normal differentials on open Riemann surfaces, J. Math. Kyoto Univ., 3 (1963), 59-69.
- [5] K. Matsui, Convergence theorems of Abelian differentials with applications to conformal mappings I, J. Math. Kyoto Univ., 15 (1975), 73–100.
- [6] K. Matsui, II, ibid., 20 (1977), 345-374.
- [7] K. Matsui and K. Nishida, Note on the Riemann-Roch theorem on open Riemann surfaces, J.

Math. Kyoto Univ., 37 (1980), 735-748.

- [8] H. Mizumoto, Theory of Abelian differentials and relative extremal length with applications to extremal slit mappings, JAP. J. Math., 37 (1968), 1-58.
- [9] M. Shiba, On the Riemann-Roch theorem on open Riemann surfaces, J. Math. Kyoto Univ., 11 (1973), 495-525.
- [10] M. Yoshida, The method of orthogonal decomposition for differentials on open Riemann surfaces, J. Sci. Hiroshima Univ. Ser. A-I. Math., 32 (1968), 181–210.
- [11] H. Weyl, Die Idee der Riemannschen Fläche, Dritte Auflage. Teubner, Stuttgart, 1955.