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Note on the behavior spaces on open Riemann
surfaces and its applications to

multiplicative differentials

By

Kunihiko MATSUI

§ 1. Introduction

1 A .  Let R be an arbitrary Riemann surface of genus g which may be infinity
and {R„} a  canonical exhaustion of R, then we can choose a  canonical homology
basis {/li , }5_ 1 modulo dividing curves such that IA »  B,} n G,k, is also a canonical
hom ology basis o f  G"; m odulo OG,k,  fo r  each  n  a n d  k, w here G,k,  denotes a
component of R„,, — k,, (Ahlfors and S a r io  [1 ]) . Further, let J be the set which
consists of integers 1, 2,..., g and D, = D,„(J) denote a  patition of J into mutually

disjoint subsets J 1 , J2 ,...,J K  s o  th a t  J  =  U  
J k

 a n d  2 K g. The totality of
k = 1

square integrable complex (resp. real) differentials on  R forms a  real Hilbert space
A = A(R) (resp. F = F(R)) over the real number field with the real Dirichlet inner
p ro d u c t. It shou ld  be  no ticed  tha t th e  meanings o f  th e  le tte r A  a n d  F  are
different from those in  [1]. With these exceptions, we inherit the terminologies
and the notations of [1 ] , if not m entioned further. F o r  example, A . A„„, A a ,
/ lase ,  •  •  

(resp. T h , T„,, T„,,...) stand for the real Hilbert spaces of complex (resp.
real) differentials o n  R  with corresponding restricted properties. Moreover, for
simplicity, we use in  this paper the following notations and terminologies:

{Ax = 2: 2e A s  an d  feJ p

AJ ,B,

IA A , = 2: ).E A  and j e J} ,

where /1„ is a subspace of  A,„L
L K  = {L p I p

K
= 1 , where each L p  is  a straight line on the complex plane C passing

through the origin, L p  0 L, f o r p 0 g  and L , is  the  real axis,

S(J p )-= the space spanned by  fi a(A i ), u(Bi ): je  J,,}  over the real num ber f ield

fwhere u(y) is the '-reproducer in  T h , that is to say, w = <co, o( )*> for
)each W ET,, F,„
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S(A ) = the space spanned by {u(A i ), je J}  ov er the real number .field,
11-  (resp. the orthogonal complement of F, (resp. A ,) in F„(resp. A „) for

any  subspace F, (resp. A ,) in Eh (resp. A„).

Definition 1 (C f. [2 ], [6 ] an d  [9 ]) . A ccording to [9 ] , we call, in this paper,
a  closed subspace A K = A (D„, L K )  o f  A h  an S -behav ior space associated w ith

L K ) = (D K ,I,L p I p
K __,) if  the following conditions are satisfied:

(1) AK = iAtc-L OE A h se  where i = —1,

(2) AKELp f o r each p,f,„
where A t =  ft 2 : the conjugate dif ferential 2* of  2 belongs to A O. A nalogously ,
we call, in this paper, a subspace A , of  A „ a B -behav ior space if  A , satisf ies the
following conditions (Cf. [2]):

(1) A B = i.AV -

(2) AB= O.

Hereafter, we denote S-behavior space (resp. B-behavior space) simply by S-space
(resp. B-space).

Definition 2 (C f . [9 ] ) . L et A , be  an S -space (or B-space). W e  c all ,  in  this
paper, a meromorphic differential on R  has /1 0 -behavior if  there exists a compact
region D, 2e A o  and  2 , 0 e A e o  n A ' such that

= 2 + 2, 0  on R  —  D.

A  single valued m erom orphic function f  on R  is called, in  this paper, to hare
A 0 -behavior i f  d f  has A 0 -behavior.

1 B . The generalization of the Riemann-Roch theorem in the classical theory
of algebraic functions to open Riemann surfaces were studied, at first, by Kusunoki
[3 ]  and, afterwards, along his method by many authors, for examples, Baskan
[2], Matsui and Nishida [7], Mizumoto [8], Shiba [9] and Yoshida [10]. Above
all, Shiba's theorem in  [9 ], an  ex tension  o f those in  [3 ] , [8 ]  a n d  [1 0 ] . were
formulated in  terms of differentials with S-behavior, and further, Baskan's result
formulated by B-space is somewhat different from [9]. Accordingly, we have
the special interest about the notions of S-space and B-space. Whereas we do
n o t k n o w  th e  general existences of these spaces ye t, though som e restrictive
examples of S-spaces w ere given by [5], [6] a n d  [ 9 ] .  I n  this paper. we shall
give, in  § ,  some classes of B-spaces and their application to the Abelian integral
th e o ry . In §3, we show some classes of S-spaces A , = A (D ,, L ,) associated with
(D2 (J), L2 ). In §4, we consider for arbitrary given (DK , L K ) (K 3), a  sequence
{(D`k, 4 ) } , ',_

1
 w h ich  a re  properly constructed from (DK , L K )  a n d  a  sequence of

the S-spaces {A n },',_ ,  w ith A „= A (D',, 4 )  (C f. [5]), and  give a  condition that
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the lim it o f the  sequence 1/1„1,',_ 1 i s  a  behavior space associated with (DK , LK ).
In §5, we consider certain class of open symmetric Riemann surfaces, and on such
a surface  w e  show  a  fo rm u la tion  o f a  duality theorem  (Riemann-Roch type
theorem) fo r  multiplicative differentials which is, i n  c a s e  th a t  th e  surface is
symmetric closed, different from Prym-Weyl's theorem  (C f. W eyl [11]). The
author wishes to express his hearty thanks to Prof. Y . Kusunoki for his valuable
suggestions and ceaseless encouragements.

§2. B-behavior space

2 A . E xistence. In  the following, suppose 0 {0}.

Lem m a 1. Let E 1 , F, be arbitrary  subspaces o f  T h u ,, an d  se t F r ,
k = I, 2. For each com plex  num ber z  such that z  = e i°±  1 ,  w e  h a v e

(1) A o = E  + z 1 -
2 is a closed subspace in Ah,

(2) a differential 2 belongs to the spaces iA i f  and only  if  2  can he written
in a form A  = (zw', —  w)/lm(z) where co1 Im (2 )E  F1  an d  o f ., = lm (i ;.)E ,

(3) analytic dif ferential 0 belongs to A , fliA fl A i, if  and only  if  Im (0)e P i

and Im (i0) = Im {{ (0) cos 0 — Re (0) sin 01 E E
( 4 )  if  F, T i', w e have

A „= A o A c T n * , n i 4 ± .

w here A  = { 0: com plex  conjugate 0 of  0 belongs to A a }.

P ro o f . (1). Suppose the sequence {il„ = x„ + zy„},TL , with x„ e F i and  y„ e F,
is a Cauchy sequence whose limit is il. Since {Im(2„)1,','=  ,  and  {Re (i.„)1,',_ are
convergent, we have lim Tm (il„) = lim y„ sin O = y sin 0 e T 2  and  s o  lim  {Re (2„)

n

— y„ cos 01 = lim  x„ = x A i ,  hence we get lim = x + zy = A ,.

(2). Let /I = x + iy  be orthogonal to iA ,  then we have O it, irn  =
= 0 a n d  so co{ = Im (it) = y e  T i and w'2 = Im = y cos 0 — x sin 0 e F ; .  Thus
we get A =  x  +  iy = (zw1 — co)11m (z) and the converse is also true.

(3). (3) is obvious from (2) and so omitted.
(4). If F, then A 0 i A , ;  and so w e have

A„ = A o

= A 0  +  iA t .46`ni 4 i nA„ n A .q . e . d .

Theorem I. L e t  IT , be a closed space of  F„s e  such that

F„,„ S ( A )  F x  F „ „  nS(A)*',

then, f o r each complex number z = e i°+1 , th e  s p ac e  A F ., z T  is a B-space
where T  =  T .
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P ro o f  Since fr„-; =  F „„, w e  h av e  T„„, + S(A) c T  = T V - c F„„nS (A )* ± ,

JA  —  0  and A„,„ A A i s e  N e x t, f ro m  r ,  = we have (Cf. Lemma I)
A x

A„ = A i + nA,, + niA± n

On the other hand, for (/) = — co* + /co EA*, n /M I  n /1„, we have from Lemma 1

= — co* + iw = (zw — o- )/sin 0,

where a = Im (i(P)e TI* ±  = T x  and  (o = Im e = T .  Thus we get T n w
0- *  E = T 'x i  a n d  so from Re (4) sin 0) = —  w* sin 0 = w  cos 0 — a , w e have the
following orthogonal relations :

= a) cos 0 -4- co* sin 0, and

co cos 0 = —  w* sin 0 -4-- a.

=Therefore, we have cos' 0 = (1 + sin' 0 )  d w ,11 0" 2C O  11 2 and w 112h e n c e
= 0 = 4) because z ±  I. A na logously , w e  can  p rove  A .

1, n i n = {0},
hence A x =iA t i .

Conversely, we have the following

Theorem 2. Suppose A , is an arbitrary  B -space. The necessary and sufficient
condition that A  „ can be written in the form  A ., = T  + z T , w h e re  T r = and
z ±  1 , is Im (i/1„) { lm(A ,)}* ± .

P ro o f . To show the necessary condition, we set Im (A ,)= T ,  T  = and
= T .  B e c a u s e  A ,  is a  B-space, w e  h a v e  A„„, + S (A )+ iS (A ) A , c

A„„nS(A)* 1  niS(A)*± a n d  so  A B = A , + z T  i s  a  B-space (Cf. Theorem 1) and
further, from the assumption, we get <A ,, = 0 and <A ,, = <Im
F„'*> = 0 ,  h e n c e  w e  c a n  g e t  A , c iA t i  = A B  c  iA .,*±  =  A .  T he converse  is
evident.

F rom  Tneorem 1, w e can obtain infinitely m any B-spaces +  z / 1  by
changing paramter z  and subspace r  where S(A )+ F,„„ c c F„„nS(A )* ±  and
r„ = T .  However, next example shows the existence of a  B-space which can
not be written in  the  form  F„ + z F.,' .

Example 1. Let G  be the interior of a com pact bordered Riemann surface
and OG = 13,U 13 2 U 133  w here each 13 is a  bo rder con tour. A t first, we set

F„,,o (OG — 13i ) = { due F„,(G): u = 0  o n  ÎG — 13,1, and

rho(fli) = Theo ((1 G —

Next, fo r a  se t o f complex numbers such that t,, +I ', for p a,
we consider the following families of differentials:

A  = { ).E A„,,,: (I) 0, (2) Im .1 = 1, 2, 3},
A
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= closure {A i m , + S(A )+ iS(A ) —

Since F„,(13 ,) T11e0(aG 13 /1p )*  a n d  S(A) I S(A)*, w e h a v e  „,

i . O n  th e  other hand, by using th e  Kusunoki's formula (for example. Cf.
Lemma 6 in  [9]), we have <1, ite> = 0  for each 1, pc /I x . Thus, A , = A , is  a
B-space. N ow  w e choose dui r„eo(aG  f3 such  tha t du i  E rho(N , j  = 1. 2, 3,— i)
then we have t, d u , +  t 2 du 2  + t 3 du 3 = WE AX  a n d  further, u) can not be written
in  a  form du + zdt) with du e  T , and dv  F', = T .

2 B . Application. By using B-spaces, we know already the Riemann-Roch
theorem for differentials with B-behavior (Cf. [ 2 ] ) .  Now besides this, we show
in 2B an another application of this space to the Abelian integral theory. We set

• = { 0: (1) 0  E A „, (2) 0  is a Schottky differential, (3) 0 0  if I = 0},
A

F, = closure { T„„, + S(A)},

TA = Tx n F ite  + T  n
By using the  B-space A , = T  + i F* -1- ,  we prove the  next proposition which is
sim ilar to  that of Kusunoki [4].

Proposition 1 (K usunoki [4]). X , = { FA  + iF A } n A„.

P ro o f . A t  f irs t, w e  ch o o se  t h e  B-space A , = F „ + i T x* "  (C f. Theorem

1). Each 0 EA,,„ fwith 0 =  0  has a  decomposition of the form

=  + = a  + i t  + ia* — r*,

where 2E A X , R e  (0) = a a Tx  a n d  Im (0) = t a F.,*" = F„„ n S(A)* ± . Terefore, we

have (r + a*) =
A

o- * = 0  and
A

I  (r + o-*) = 0 = a* = 0, where y  denotes an

arbitrary dividing curves. Thus we can get a  = 0, =  — T * it. and so

r E r h„ n Trs e n S(A) i- n S(A)* 1  = T.,+ n If c/oe (F A  +  irA )n A„ with =
A

0,

then we get 0 = — r* + i t where Im (0) = T (Fx  + F„"n 17,!-L and so
= O. H e n c e  (F, + i FA ) n A„ A ,  a n d  we get the following

/1,°, =  (T A  +  i FA ) n A n + T niTn A .

However, for each 0 =  +  iw* c 1-1:; n n X ,  A „„ w ith Re (0) = co , we have

CO E  r ; iL n rime n Fl*ise =  h s e  n s(A )* -1- n Fite n s(A )± .

Therefore, we have
 J

= 0  and  0e X „ hence 0 =  0  and  X , = (FA  + i I' A ) n A„.
A

A
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{§3. S-behavior space A 2  =  A( Lkil=,

Theorem 3. Let D 2 (.1) = {J k }1= ,  b e  a  partition o f  the set J = { 1, 2,..., 0 ,
F , th e  space such that S (J,) + F„,,, F ,  F „ s e nS(.1 2 )*±  an d  F i = T .  T h e n ,
f o r each com plex  num ber z  = e"  ±  I .  t h e  space A2 = F , + z r,  i s  an S-space
associated with (1.411-= { I-0 1 =0  w h ere  L , is  th e  real ax is and L 2  D z.

P ro o f  Since  F„„, + S(J 2 ) OE Fi = Ft ±  r „ , , , n S ( J i )* ± , w e  h a v e  I l i  A 2  =

JF, EL  
f

,  and A2 = z E L 2 . From  Fi = 1- ;-L, we get A 2  i - ,  and
J1 .12 J2 

A„ = A 2  4- M ' 4- ni/q± n A „  /Gni/Plink,-.

However, for each 0 = — co* + iwEA fliA fl A,,, we have Im (0) = w e Ft i  = Fi
a n d  Im LEM  = a  =  co* sin O + w  cos Oc P i *-L = F, co* e T .  C onsequently , w e

o b ta in  <a, (.0*> = 0 = 11(4)112  sin 0, h e n c e  0  =  0  a n d  so A fliA flA , = 101.
Analogously, we can get A± ni n  /1 = {0}, and so  A 2  =  iA .  q. e. d.

Conversely, we have the following

Theorem 4. Suppose A K  i s  an S -behav ior space associated w ith (D K , L K )

=  a = 1 , f l L k}fc<=1)
condition that A K  can he written in the f orm  F, + z ri w here F„,,,+ S (J 1 ) 1 - ,*1

—  
T

1 hse n S(J,)* 1  and z  = e i °  ±  1 ,  is
k=2

1m (i A K ) OE 1m (A K )* .

P ro o f . A t  first, w e  s e t  lm (A K ) = f „, 1-1 -L =  F ,  a n d  Fi = T .  S in c e
<A K , iz r,*> = <A K , i r n  =  0 , w e have A 2 OE iilt -L = A K C i l q i  w h e re  A 2 = F,

+ z F fi. O n  th e  other hand, from AK C A i s e  and  A K e L i ,  w e get Fi c  F„„
.1, K

nS(J 1 )* 1  a n d  F, D F„,,, + 5 (J,) . F u r th e r , s in c e  A K  C A „se n izks(4)*± where
k= 2

0 z k e L k ,  k  = 2, 3, ..., K , we have AK =  i A t ' E zk s(J k ) + A„,„, and so  Fi
k= 2

F,,,„+ S(J k ). Therefore, we can get F„„, + S(J,)OE F 1 = Ti * 1  OE F„se n S ( 4 ) * I .
k = 2 k = 2

hence iA '2' ±  = A2 = AK from Theorem 3. q.e.d.

N e x t, w e  g iv e , a n a lo g o u s ly  a s  i n  2 A , a n  exam ple  o f  a n  S-space
A2 = A ({ 4} 1' = 1 ,  {Lk}1 = 1) which can not be written in  the  form F, + z  Fi where
F i = F t '.

Example 2. L e t G  b e  th e  interior of the  com pact bordered surface and
(1 G =13,U13 2 U13.3 w here each /3;  i s  a  c o n to u r . W e use here the  same notations
as in the example 1, and consider the following subspaces of differentials on G:

w h e re  L , is  th e  real ax is. T he  necessary  an d  sufficient
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{A 2  -  ) .E  A h .se  :  (a) ..1E L k , k  = 1, 2 w here L , is the  real axis,
f k

(b) 1m (t,..1)E rho (A,), r = 1, 2, 3},

= closure {A„ + tk rheo(aG — I3k ) + S(.11) + 2)1
k=1

where each ti  i s  a  com plex num ber such that t p ±  t ,  fo r p q  and is  a
com plex num ber such that 0 0 and çnL 2 . By the same way as in the example
1, w e can prove A 2 =  A'2  =  i A .  N ext, th e  differential co in  th e  example 1
belongs to A 2, a n d  further, co can not be w ritten in  th e  form  du + z dv  with
du, d v  Fh.

§4. S-behavior space A K = A(D K , L K )  (3 K)

4A. A , and A ,' . L et A K be an  arbitrary S-space associated with (DK , L K )
where DK = { Jk } f = i  a n d  LK = IL K l i

k
<=  .  W e  set 1m (i f /1K ) = =  T ,  and

A K'  = closure { zk  TK } , where z k e L k  a n d  zk =  1 ,  k  = 1, 2, ... , K.
k=1

Lemma 2. In  o rd e r th at A , b e  e q u al to  A K' ,  it is necessary  and suf f icient
that AK'  i s  an  S-space.

P ro o f .  Since <A K , = 0  for each j ,  we obtain the relation AK'  O E iAZ ±

= AK OE iAK' * 1 . Therefore, AK = AK'  m e a n s  AK'  =

Remark. B y  th e  sam e w ay a s  in  th e  form er exam ples, w e can give an
example of A K such that AK 0 A K' .

4B. A", A z and A .  Let 13 = U 13
r
 b e  a  regular partition of the Stoilow's

r=
idea l boundary  fl o f an  open  R iem ann  su rface  R , { R „}  a  regular canonical

exhaustion of R  and R  —  R „ = U 1/V,'; where 147:  i s  an  end  towards [3,.. W e set
r = 1

' 0 (13r )  = {df: (a) die  F, , (b) there exists an  end towards fir  w hich is disjoint
with the support of f l ,

Try,0(f ir) = Fry n closure {rel o(13 r)} ,

rho(fl — (3r) = rheo(firr i .

Besides J = { Jk } =1  a n d  L = we consider another partition of J .  th e
family of lines and  the  subspaces of differentials o n  R  such that :

J k . „ g„ and j E J o  where g„ is  the genus of R } ,

=  t i :  >  y„ and  Ai , B
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/ = 1/X- 1 , where each /, is a line passing through the origin on the z plane,

D „(J)= I f k.nlil,( : '),
L„ = {L k } , where L ,_,„= il, r —  1, 2,...,s,

{

A "  = )1 E A h „ :  (a) 21 e L k , k  = 1, 2,...,K + s, (b) 1m („).)E Th o (/3,),

r = 1, 2, ..., s

where m eans th e  s e t  {iC: e/ r } a n d  C„ i s  a  com plex num ber such that
0 0 r = 1, 2,...,s ,

Lemma 3. A " is an  S-behavior space associated with D„ and L .

P ro o f . Omitted. (Cf. Lemma 4.3 in  [5]).

Further, we set

A ;= {2: there exists a  sequence 12.„},T= 1  w ith  2.„E A " such that 112. — i.„11 —> 0
as n 091 ,

A x = ). is equal to the limit of a locally uniformly convergent subsequence

of with AR EA".„e A " and sup } 2,„1} < col.
11

Then we have the following

Proposition 2. (a) iA x* ' = A ;c  A x =iA ;* '.

(b) Ax ------ A ; is equiv alent to A ;= iA ;* ± .

P ro o f . A t first, we prove A x c iA ;* ± . From  the difinition of Ax a n d  A ;,
we can find for each 2,E /1, and each ite A ; a Cauchy sequence 1/41 1 w ith
A " a n d  a  locally uniformly convergent sequence 121}f= , (which we denote 121,1

.11hereafter) with 2, )1 }„e A " and sup } < K  such that 1,u„ — 0 as n —> oc and

—A a s  a —> co, locally uniformly o n  R.
Further, fo r arbitrary sm all positive number E, w e can choose a compact

region G on R  and a  sufficiently large integer N  such that R - G R - G < e
a n d  II — ).„ +  P
Therefore, for each k  > N , we have

ite>1 < 1“, /P * >GI + EJL < +iG I-111

PinG (211P11 K)E <1<;q0 >R-G1 (214111 K)e

<(3 K  + 211PII)e.

Thus we get A x c  A ;* ±  N e x t ,  w e  show i A;* ±  c  A .  L e t  2.e Ah be a differential
such that “,  iA >  = O .  ) ,  has a  decomposition of the form

I. = yt„ i i ' , w here 2.„, /2„ E A'  (C f. Lemma 3).

<e  fo r  each n > N.
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and so there exists a sequence (which we denote here simply fx11 such
th a t 2„ —> 2, and ,ux, locally uniformly on R .  On the o ther hand, there
exists, for each e > 0, a compact region G  such that R - G < e and so from
= <2, /4 >  = 0, we have

l<21, + i = i R - <e and so

<4 l>( < p,11 + 12,1 Px/ 1„11G.

Therefore, for each n > N ' which is sufficiently large integer, we have

1<;11,  k t: > <  E (  it x 11 + hence

l<2, 04> I = II ti„ 1 2 < c 2 + c( /I x +  ) j ) .

Consequently, we can choose 112 — =  p  2 —> O as n—> op, hence 2e A'7 , and
(b) is evident.

N o te . In  the case the genus of R  is infinite, we do not know  the existence
of S-behavior space  assoc ia ted  w ith  a rb itra ry  partition 1),(J)= { J,} t = , of
J [ 1 ,  2,...} where K  3. The author supposes that, in Proposition 2, A 7 would
be equal to A., hence A 7 = iA,* ± is  an S-space associated with ,),
but this problem is not affirmatively proved yet.

§5 . Multiplicative differentials and Riemann-Roch's type theorem

5A . Multiplicative differentials o n  A .  Concerning the extension of the
duality theorem  of Riemnn-Roch's type for Prym differentials (multiplicative
differemtials) (Cf. Weyl [I1]) to open surfaces, no results are known up to now,
and so  it seem s no t to  be  m ean ing less  to  g ive  such  a sort o f theorem for
multiplicative differentials on a specific symmetric open surface.

Suppose that R  is a non compact bordered surface whose border oR consists

o f a  finite num ber of contours ÇC q }Jci"=  , a n d  P(I3)= U  I r
 U  C g i s  a  regular

r 1 q 1
partition of the Stoilow's ideal boundary 13 of R .  Let G  be a canonical region

of R uaR  such that ac oR, and set R  —  = U 14 where W, i s  an end towards
r=

13,.. Next, we divide each Ca in to  ot,q _ 1 and 0-C 
2 q

 w here each of 7
2 „  - 2 q  

is an
open are on C q . Further, we associate each ock (resp. fik )  with a complex number
z , (resp. ,.) such that Z k =  1  and = 1, and denote the set {z,,
(resp. C2, b y  Z  (resp. S). For Z  and S  we consider the following
subspaces of differentials on R:

{A o = A U G  = i,e  A ,,,: (a) 2e L i , j  g 0  = the genus of G , and
Ai .B;

IA,i • Bi 
2,e for A i , B. OE 14<„, r = I, 2,...,s,
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(b) Im (i,))e T„,(aq ), q = 1, 2, ... , 2m

(c) Tho(13,), r = 1, 2,...

where {/ r },.%, is a  family of lines on the z plane passing through the origin and
Cr E I, for each r. Then we have

Lemma 4. A , is  an  S-behavior space.

P ro o f . C f. Lemma 4.3 in  [5 ] an d  Lemma 2.6 in [6].

W e set

D(710 , 6, R)= {0: (a )  0  has A 0 -behavior, (b) divisor (0) of 0 is  a
multiple of 6},

S(A o , 5, R)= I f : (b) function f  h a s  A 0 -behavior, (b) divisor ( f )  of f  i s  a
multiple of (51,

where 5 = 5a 16, and 6„, 5, are finite integral disjoint divisors. Then

Lemma 5. dim S(A o , 1/(5, R)= 2 [ord
 a

 + 1 — min (ord 5,, 1)]

— dim [D(A o , 116,, R)1D(il 0 , 5, R)].

P ro o f .  Since A , is  an S-behavior space, from [9] we have the conclusion.

Next, we show an example of a duality theorem for multiplicative differentials
o n  f i  by considering Lemma 5 on the surface R ,  where k  is  the double of R
with respect to  O R . W e set

J  =  the involutory mapping k onto itself,
=  the differential on associated with J and coeF„(fi) such that if a i  is

expressed as co = a(z) dx + b (z) dy in local parameter z = h(p) in  V, then
=  a(i)dx — b(i)dy in  z = h(J(p)) in  J(V) where V is a  parametric

disc.

Next, let P  (resp. Yk )  be  a  po in t on  R (resp. ock ). y(k) a n  analytic a rc  on  Ru
such that ey(k)= Yk — P, and set

=  (k) — Jy (k)}

");

Lemma 6. The analytic continuation 0k o f  0E D(A o , R )  f rom  a poin t P
to  J(P) along '̂,;k , is z,N5 -  , and so  the analytic continuation o f  0 along -21,a f rom
a point P  to  P  is 4 4 0 .  Consequently, we have

1 J A N  

kEzkLh fo r  each  h, and

1m (z„27,10 k ) = 0 along J(&) f o r each  n,
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where L„ m eans the symmetric line o f  L h  W ith respect to the real axis.

P ro o f  At first, we set z- , 0  =  +  iw* on R  where w = Re (444, then w* = 0
along o(„, hence the differential 6  o n  fi — (aR — 040 such that

6  =  w  o n  R , and

= (.0-  o n  — (aR — ak ) — R,

is even fo r J„ a n d  6 *  is  o d d  fo r J k  w h e re  J k  m e a n s  the restriction of J  to
— (aR  — 1 ) . Therefore, we see that the  analytic continuation of 45 = to

R —  R +
 k

 is equal to = z k (-/) - , and so the analytic continuation Ok of 4) = zk

is equal to zk=  zH) - . Consequently, we have

1 ,Ah,,,3„ 
(P E  L „ for each h, and

i m (z„z-zok)=  0 along Jan f o r  each n.

Obviously, the analytic continuation of 4) along ',) I N  is equal to  4 42 0. q.e.d.

Hereafter, we consider, for each 4) E D(A o , 15, R ) and each f e S(A o , 6, R ), the
following elements and  families:

4)(i2k-1-1 ,  J2 k , ••• , 12 , 11) -  Z 0 2 1 0  o n  R  = R UaR

=  z (j2k 4 -1 ) 2 z ( l2 k )4 ) -  o n  fi —  k,

where we set

z(p) = z p ,  and z( i z( ( i ( i..,2k, 2—  Z ( i

=  { 0 (j2k+ 12k,•••1/1): ip = 1, 2,...,2m, for p  = I, 2 ,...,k  and  k  = 1. 2,...}.

15(110 , 3, /4. ) {4; : E D (A o , 15,  MI,

§(A 0 , 3 , /4 )  =  f(cîf): f eS (A 0 , 6, R)} ,

where 3 =  6 u J6  Obviously, ,rb is a multiplicative differential on 1 . T h e n  w e  have
the following proposition 3 which is different from Weyl's theorem (Cf. Weyl [11]).

Proposition 3 . L et óa/ 15b be  a  divisor o n  R  such that 6 a n 6b = 0  an d  6 , 61)
are  the .f inite disjoint divisors. T h e n , w e  have

dim ,(/1 0 ,  1/3, = order (3„) + 2 — 2 min [{order (301/2 , 1]

—  dim [b(A o , 1/3b, k‘)/6(A0, S, k' )i ,

w here 3 =  6 U.16. I f  g ,  the  genus o f  R ,  is  ,f in ite , the  genus R  is  equal to
2g + m —  1 = (3 and so

dim S- (A 0 , 1/3, fi) — dim /5(;1 0 , S, fi) = order (3) — +  in + 1.
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P ro o f  Cf. Lemma 5 and Lemma 4.

5 B .  App lication  of Proposition  3. For the case th a t the order of a given
divisor is infinite, several authors investigated the duality theorems of Riemann-
R ch  type for A belian differentials under the respective conditions. In the
following, we formulate as an application of Proposition 3 , a Riemann-Roch
theorem of another type with infinite divisor on a covering surface o f  R.

At first, we take an infinite number of copies of R  and adjoin R
2m

with along ak , k  = 1, 2, ..., 2m. Next, thus constructed R2  =  R  U R k has
q !

2m — 1 number of ap  fo r p, and so w e adjoin k q  o f  R2 w ith along a„
r = 1, 2,...,2m , r q ,  and s o  o n . T h u s  w e  c a n  g e t  a  covering surface

= lim R " .  N o w  w e  t a k e  a  differentials (/) e D(A 0 , R )  (resp. d f  where
00

f ES(A o , 6, R )) and denote the analytic continuation of 6/) (resp. df ) to  it-  b y
(resp. (d7)) (Cf. Lemma 6). W e set

.15(A0 , 3, = E 1)(A,,, 6, R)},

g (710 , 3, Th = f ( c ) : f ES(A o , 6, R)},

where 3 is the divisor such that the restriction of 3 to  each R = 6. Then

P ropos it ion  5. dim g(A o , 1.4)= 2 [order (0„) + 1 — min {order (60, 11]

— dim [ii(A 0 , 1 /5,, k)/ii(A 0 , 5, i?)],

where 6 = 6„I6,, is a f in ite  d iv isor. If  y, the genue of  R . is  fin ite , then

dim g(A o , 1/3, — dim 13(4 0 , = 2 {order (6) — g + 1}.

P ro o f . Cf. Lemma 4  and Lemma 5.
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