Note on the behavior spaces on open Riemann surfaces and its applications to multiplicative differentials

By

Kunihiko Matsui

§ 1. Introduction

1A. Let R be an arbitrary Riemann surface of genus g which may be infinity and $\left\{R_{n}\right\}$ a canonical exhaustion of R, then we can choose a canonical homology basis $\left\{A_{j}, B_{j}\right\}_{j=1}^{g}$ modulo dividing curves such that $\left\{A_{j}, B_{j}\right\} \cap G_{n}^{k}$ is also a canonical homology basis of G_{n}^{k} modulo ∂G_{n}^{k} for each n and k, where G_{n}^{k} denotes a component of $R_{n+1}-\bar{R}_{n}$ (Ahlfors and Sario [1]). Further, let J be the set which consists of integers $1,2, \ldots, y$ and $D_{K}=D_{K}(J)$ denote a patition of J into mutually disjoint subsets $J_{1}, J_{2}, \ldots, J_{K}$ so that $J=\bigcup_{k=1}^{K} J_{k}$ and $2 \leqq K \leqq g$. The totality of square integrable complex (resp. real) differentials on R forms a real Hilbert space $\Lambda=\Lambda(R)($ resp. $\Gamma=\Gamma(R))$ over the real number field with the real Dirichlet inner product. It should be noticed that the meanings of the letter Λ and Γ are different from those in [1]. With these exceptions, we inherit the terminologies and the notations of [1], if not mentioned further. For example, $\Lambda_{h}, \Lambda_{h s e}, \Lambda_{a}$, $\Lambda_{\text {ase }}, \ldots$ (resp. $\Gamma_{h}, \Gamma_{h s e}, \Gamma_{h e}, \ldots$) stand for the real Hilbert spaces of complex (resp. real) differentials on R with corresponding restricted properties. Moreover, for simplicity, we use in this paper the following notations and terminologies:

$$
\begin{aligned}
& \int_{J_{p}} \Lambda_{x}=\left\{\int_{A_{j}, B_{j}} \lambda: \lambda \in \Lambda_{x} \text { and } j \in J_{p}\right\} \text {, where } \Lambda_{x} \text { is a subspace of } \Lambda_{h}, \\
& \int_{A} \Lambda_{x}=\left\{\int_{A_{j}} \lambda: \lambda \in \Lambda_{x} \text { and } j \in J\right\},
\end{aligned}
$$

$\boldsymbol{L}_{K}=\left\{L_{p}\right\}_{p=1}^{K}$, where each L_{p} is a straight line on the complex plane \boldsymbol{C} passing through the origin, $L_{p} \neq L_{q}$ for $p \neq q$ and L_{1} is the real axis,
$S\left(J_{p}\right)=$ the space spanned by $\left\{\sigma\left(A_{j}\right), \sigma\left(B_{j}\right): j \in J_{p}\right\}$ over the real number field where $\sigma(\gamma)$ is the γ-reproducer in Γ_{h}, that is to say, $\int_{\gamma} \omega=\left\langle\omega, \sigma(\gamma)^{*}\right\rangle$ for each $\omega \in \Gamma_{h}$,
$S(A)=$ the space spanned by $\left\{\sigma\left(A_{j}\right), j \in J\right\}$ over the real number field,
$\Gamma_{1}^{\perp}\left(\right.$ resp. $\left.\Lambda_{1}^{\perp}\right)=$ the orthogonal complement of $\Gamma_{1}\left(\right.$ resp. $\left.\Lambda_{1}\right)$ in $\Gamma_{h}\left(\right.$ resp. $\left.\Lambda_{h}\right)$ for any subspace $\Gamma_{1}\left(\right.$ resp. $\left.\Lambda_{1}\right)$ in $\Gamma_{h}\left(\right.$ resp. $\left.\Lambda_{h}\right)$.

Definition 1 (Cf. [2], [6] and [9]). According to [9], we call, in this paper, a closed subspace $\Lambda_{K}=\Lambda\left(D_{K}, \boldsymbol{L}_{K}\right)$ of Λ_{h} an S-behavior space associated with $\left(D_{K}, \boldsymbol{L}_{K}\right)=\left(D_{K},\left\{L_{p}\right\}_{p=1}^{K}\right)$ if the following conditions are satisfied:
(1) $\Lambda_{K}=i \Lambda_{K}^{* \perp} \subset \Lambda_{\text {hse }}$ where $i=\sqrt{-1}$,
(2) $\int_{J_{p}} \Lambda_{K} \in L_{p}$ for each p,
where $\Lambda_{K}^{*}=\left\{\lambda\right.$: the conjugate differential λ^{*} of λ belongs to $\left.\Lambda_{K}\right\}$. Analogously, we call, in this paper, a subspace Λ_{B} of Λ_{h} a B-behavior space if Λ_{B} satisfies the following conditions (Cf. [2]):
(1) $\Lambda_{B}=i \Lambda_{B}^{* \perp} \subset \Lambda_{\text {hise }}$,
(2) $\int_{A} \Lambda_{B}=0$.

Hereafter, we denote S-behavior space (resp. B-behavior space) simply by S-space (resp. B-space).

Definition 2 (Cf. [9]). Let Λ_{0} be an S-space (or B-space). We call, in this paper, a meromorphic differential ϕ on R has Λ_{0}-behavior if there exists a compact region $\bar{D}, \lambda \in \Lambda_{0}$ and $\lambda_{e 0} \in \Lambda_{e 0} \cap \Lambda^{1}$ such that

$$
\phi=\lambda+\lambda_{e 0} \text { on } R-\bar{D}
$$

A single valued meromorphic function f on R is called, in this paper, to have Λ_{0}-behavior if df has Λ_{0}-behavior.

1B. The generalization of the Riemann-Roch theorem in the classical theory of algebraic functions to open Riemann surfaces were studied, at first, by Kusunoki [3] and, afterwards, along his method by many authors, for examples, Baskan [2], Matsui and Nishida [7], Mizumoto [8], Shiba [9] and Yoshida [10]. Above all, Shiba's theorem in [9], an extension of those in [3], [8] and [10], were formulated in terms of differentials with S-behavior, and further, Baskan's result formulated by B-space is somewhat different from [9]. Accordingly, we have the special interest about the notions of S-space and B-space. Whereas we do not know the general existences of these spaces yet, though some restrictive examples of S-spaces were given by [5], [6] and [9]. In this paper, we shall give, in $\S 2$, some classes of B-spaces and their application to the Abelian integral theory. In $\S 3$, we show some classes of S-spaces $\Lambda_{2}=\Lambda\left(D_{2}, \boldsymbol{L}_{2}\right)$ associated with $\left(D_{2}(J), \boldsymbol{L}_{2}\right)$. In $\S 4$, we consider for arbitrary given ($\left.D_{K}, \boldsymbol{L}_{K}\right)(K \geqq 3)$, a sequence $\left\{\left(D_{K}^{n}, \boldsymbol{L}_{K}^{n}\right)\right\}_{n=1}^{\infty}$ which are properly constructed from $\left(D_{K}, \boldsymbol{L}_{K}\right)$ and a sequence of the S-spaces $\left\{\Lambda_{n}\right\}_{n=1}^{\infty}$ with $\Lambda_{n}=\Lambda\left(D_{K}^{n}, \boldsymbol{L}_{K}^{n}\right)(\mathrm{Cf}$. [5]), and give a condition that
the limit of the sequence $\left\{\Lambda_{n}\right\}_{n=1}^{\infty}$ is a behavior space associated with (D_{K}, L_{K}). In §5, we consider certain class of open symmetric Riemann surfaces, and on such a surface we show a formulation of a duality theorem (Riemann-Roch type theorem) for multiplicative differentials which is, in case that the surface is symmetric closed, different from Prym-Weyl's theorem (Cf. Weyl [11]). The author wishes to express his hearty thanks to Prof. Y. Kusunoki for his valuable suggestions and ceaseless encouragements.

§ 2. B-behavior space

2A. Existence. In the following, suppose $\Gamma_{\text {hsc }} \neq\{0\}$.
Lemma 1. Let Γ_{1}, Γ_{2} be arbitrary subspaces of $\Gamma_{\text {hse }}$, and set $\Gamma_{k}^{\prime}=\Gamma_{k}^{* \perp}$, $k=1,2$. For each complex number z such that $z=e^{i \theta} \neq \pm 1$, we have
(1) $\Lambda_{0}=\Gamma_{1}+z \Gamma_{2}$ is a closed subspace in Λ_{h},
(2) a differential λ belongs to the spaces i $\Lambda_{0}^{* \perp}$ if and only if λ can be written in a form $\lambda=\left(z \omega_{1}^{\prime}-\omega_{2}^{\prime}\right) / \operatorname{Im}(z)$ where $\omega_{1}^{\prime}=\operatorname{Im}(\lambda) \in \Gamma_{1}^{\prime}$ and $\omega_{2}^{\prime}=\operatorname{Im}(\bar{z} \lambda) \in \Gamma_{2}^{\prime}$,
(3) analytic differential ϕ belongs to $\Lambda_{a} \cap i \Lambda_{0}^{* \perp} \cap \Lambda_{0}^{\perp}$ if and only if $\operatorname{Im}(\phi) \in \Gamma_{1}^{\prime}$ and $\operatorname{Im}(\bar{z} \phi)=\operatorname{Im}\{(\phi) \cos \theta-\operatorname{Re}(\phi) \sin \theta\} \in \Gamma_{2}^{\prime}$
(4) if $\Gamma_{1} \perp \Gamma_{2}^{*}$, we have

$$
\Lambda_{h}=\Lambda_{0}+i \Lambda_{0}^{*}+\Lambda_{a} \cap \Lambda_{0}^{\perp} \cap i \Lambda_{0}^{* \perp}+\Lambda_{\bar{a}}^{-} \cap \Lambda_{0}^{\perp} \cap i \Lambda_{0}^{* \perp} .
$$

where $\Lambda_{\bar{a}}=\left\{\phi\right.$: complex conjugate $\bar{\phi}$ of ϕ belongs to $\left.\Lambda_{a}\right\}$.
Proof. (1). Suppose the sequence $\left\{\lambda_{n}=x_{n}+z y_{n}\right\}_{n=1}^{\infty}$ with $x_{n} \in \Gamma_{1}$ and $y_{n} \in \Gamma_{2}$ is a Cauchy sequence whose limit is λ. Since $\left\{\operatorname{Im}\left(\lambda_{n}\right)\right\}_{n=1}^{\infty}$ and $\left\{\operatorname{Re}\left(\lambda_{n}\right)\right\}_{n=1}^{\infty}$ are convergent, we have $\lim _{n \rightarrow \infty} \operatorname{Im}\left(\lambda_{n}\right)=\lim _{n \rightarrow \infty} y_{n} \sin \theta=y \sin \theta \in \Gamma_{2}$, and so $\lim _{n \rightarrow \infty}\left\{\operatorname{Re}\left(\lambda_{n}\right)\right.$ $\left.-y_{n} \cos \theta\right\}=\lim _{n \rightarrow \infty} x_{n}=x \in \Lambda_{1}$, hence we get $\lim _{n \rightarrow \infty} \lambda_{n}=x+z y=\lambda \in \Lambda_{0}$.
(2). Let $\lambda=x+i y$ be orthogonal to $i \Lambda_{0}^{*}$, then we have $\left\langle\lambda, i \Gamma_{1}^{*}\right\rangle=\left\langle\lambda, i z \Gamma_{2}^{*}\right\rangle$ $=0$ and so $\omega_{1}^{\prime}=\operatorname{Im}(\hat{\lambda})=y \in \Gamma_{1}^{\prime}$ and $\omega_{2}^{\prime}=\operatorname{Im}(\bar{z} \lambda)=y \cos \theta-x \sin \theta \in \Gamma_{2}^{\prime}$. Thus we get $\lambda=x+i y=\left(z \omega_{1}^{\prime}-\omega_{2}^{\prime}\right) / \operatorname{Im}(z)$ and the converse is also true.
(3). (3) is obvious from (2) and so omitted.
(4). If $\Gamma_{1} \perp \Gamma_{2}^{*}$, then $\Lambda_{0} \perp i \Lambda_{0}^{*}$ and so we have

$$
\begin{align*}
\Lambda_{h} & =\Lambda_{0}+i \Lambda_{0}^{*}+\Lambda_{0}^{\perp} \cap i \Lambda_{0}^{* \perp} \\
& =\Lambda_{0}+i \Lambda_{0}^{*}+\Lambda_{0}^{\perp} \cap i \Lambda_{0}^{* \perp} \cap \Lambda_{a}+\Lambda_{0}^{\perp} \cap i \Lambda_{0}^{* \perp} \cap \Lambda_{\bar{a}} .
\end{align*}
$$

Theorem 1. Let Γ_{x} be a closed space of $\Gamma_{\text {hse }}$ such that

$$
\Gamma_{h m}+S(A) \subset \Gamma_{x} \subset \Gamma_{h: s e} \cap S(A)^{* \perp},
$$

then, for each complex number $z=e^{i \theta} \neq \pm 1$, the space $\Lambda_{x}=\Gamma_{x}+z \Gamma_{x}^{\prime}$ is a B-space where $\Gamma_{x}^{\prime}=\Gamma_{x}^{* \perp}$.

$$
\begin{gathered}
\text { Proof. Since } \Gamma_{h m}^{* \perp}=\Gamma_{h s e}, \text { we have } \Gamma_{h m}+S(A) \subset \Gamma_{x}^{\prime}=\Gamma_{x}^{* \perp} \subset \Gamma_{h s e} \cap S(A)^{* \perp}, \\
\int_{A} \Lambda_{x}=0 \text { and } \Lambda_{h m} \subset \Lambda_{x} \subset \Lambda_{h s e} \text { Next, from } \Gamma_{x}^{\prime}=\Gamma_{x}^{* \perp} \text { we have (Cf. Lemma 1) } \\
\Lambda_{h}=\Lambda_{x}+i \Lambda_{x}^{*}+\Lambda_{x}^{\perp} \cap i \Lambda_{x}^{* \perp} \cap \Lambda_{a}+\Lambda_{x}^{\perp} \cap i \Lambda_{x}^{* \perp} \cap \Lambda_{\bar{u}} .
\end{gathered}
$$

On the other hand, for $\phi=-\omega^{*}+i \omega \in \Lambda_{x}^{\perp} \cap i \Lambda_{x}^{* \perp} \cap \Lambda_{u}$, we have from Lemma 1

$$
\phi=-\omega^{*}+i \omega=(z \omega-\sigma) / \sin \theta
$$

where $\sigma=\operatorname{Im}(\bar{z} \phi) \in \Gamma_{x}^{* * \perp}=\Gamma_{x}$ and $\omega=\operatorname{Im}(\phi) \in \Gamma_{x}^{* \perp}=\Gamma_{x}^{\prime}$. Thus we get $\Gamma_{x}^{\prime} \ni \omega \perp$ $\sigma^{*} \in \Gamma_{x}^{*}=\Gamma_{x}^{\prime \perp}$ and so from $\operatorname{Re}(\phi \sin \theta)=-\omega^{*} \sin \theta=\omega^{\prime} \cos \theta-\sigma$, we have the following orthogonal relations:

$$
\begin{aligned}
& \sigma=\omega \cos \theta+\omega^{*} \sin \theta, \text { and } \\
& \omega \cos \theta=-\omega^{*} \sin \theta+\sigma
\end{aligned}
$$

Therefore, we have $\|\sigma\|^{2}=\|\omega\|^{2}$ and $\|\omega\|^{2} \cos ^{2} \theta=\left(1+\sin ^{2} \theta\right)\|\omega\|^{2}$, hence $\omega=0=\phi$ because $z \neq \pm 1$. Analogously, we can prove $\Lambda_{x}^{\perp} \cap i \Lambda_{x}^{* \perp} \cap \Lambda_{\bar{a}}^{-}=\{0\}$, hence $\Lambda_{x}=i \Lambda_{x}^{* \perp}$.

Conversely, we have the following
Theorem 2. Suppose Λ_{x} is an arbitrary B-space. The necessary and sufficient condition that Λ_{x} can be written in the form $\Lambda_{x}=\Gamma_{x}+z \Gamma_{x}^{\prime}$ where $\Gamma_{x}^{* \perp}=\Gamma_{x}^{\prime}$ and $z=e^{i \theta} \neq \pm 1$, is $\operatorname{Im}\left(\bar{z} \Lambda_{x}\right) \subset\left\{\operatorname{Im}\left(\Lambda_{x}\right)\right\}^{*+}$.

Proof. To show the necessary condition, we set $\operatorname{Im}\left(\Lambda_{x}\right)=\hat{\Gamma}_{x}, \Gamma_{x}=\hat{\Gamma}_{x}^{* \perp}$ and $\Gamma_{x}^{* \perp}=\Gamma_{x}^{\prime}$. Because Λ_{x} is a B-space, we have $\Lambda_{h m}+S(A)+i S(A) \subset \Lambda_{x} \subset$ $\Lambda_{\text {hse }} \cap S(A)^{* \perp} \cap i S(A)^{* \perp}$ and so $\Lambda_{B}=\Lambda_{x}+z \Gamma_{x}^{\prime}$ is a B-space (Cf. Theorem 1) and further, from the assumption, we get $\left\langle\Lambda_{x}, i \Gamma_{x}^{*}\right\rangle=0$ and $\left\langle\Lambda_{x}, i z \Gamma_{x}^{*}\right\rangle=\left\langle\operatorname{Im}\left(\bar{z} \Lambda_{x}\right)\right.$, $\left.\Gamma_{x}^{*}\right\rangle=0$, hence we can get $\Lambda_{x} \subset i \Lambda_{B}^{* \perp}=\Lambda_{B} \subset i \Lambda_{x}^{* \perp}=\Lambda_{x}$. The converse is evident.

From Tneorem 1, we can obtain infinitely many B-spaces $\left\{\Gamma_{x}+z \Gamma_{x}^{\prime}\right\}$ by changing paramter z and subspace Γ_{x} where $S(A)+\Gamma_{h m} \subset \Gamma_{x} \subset \Gamma_{h s e} \cap S(A)^{* \perp}$ and $\Gamma_{x}^{\prime}=\Gamma_{x}^{* \perp}$. However, next example shows the existence of a B-space which can not be written in the form $\Gamma_{x}+z \Gamma_{x}^{\prime}$.

Example 1. Let G be the interior of a compact bordered Riemann surface and $\partial G=\beta_{1} \cup \beta_{2} \cup \beta_{3}$ where each β_{j} is a border contour. At first, we set

$$
\begin{aligned}
& \Gamma_{h c 0}\left(\partial G-\beta_{j}\right)=\left\{d u \in \Gamma_{h e}(G): u=0 \text { on } \grave{\partial} G-\beta_{j}\right\}, \text { and } \\
& \Gamma_{h 0}\left(\beta_{j}\right)=\Gamma_{h e 0}\left(\partial G-\beta_{j}\right)^{+\perp} .
\end{aligned}
$$

Next, for a set of complex numbers $\left\{t_{j}=e^{i \theta_{j}}\right\}_{j=1}^{\}}$such that $t_{p} \neq \pm t_{q}$ for $p \neq q$, we consider the following families of differentials:

$$
\Lambda_{x}=\left\{\lambda \in \Lambda_{h s s}:(1) \int_{A} \lambda=0,(2) \operatorname{Im}\left(\bar{t}_{j} \lambda\right) \in \Gamma_{h 0}\left(\beta_{j}\right), j=1,2,3\right\} .
$$

$$
\Lambda_{x}^{\prime}=\text { closure }\left\{\Lambda_{h m}+S(A)+i S(A)+\sum_{j} t_{j} \Gamma_{h e 0}\left(\partial G-\beta_{j}\right)\right\} .
$$

Since $\Gamma_{\text {heo }}\left(\beta_{p}\right) \perp \Gamma_{\text {heo }}\left(\partial G-\beta_{p}\right)^{*}$ and $S(A) \perp S(A)^{*}$, we have $\Lambda_{x} \supset i \Lambda_{x}^{* \perp} \supset \Lambda_{x}^{\prime} \supset$ $i \Lambda_{x}^{* \perp}$. On the other hand, by using the Kusunoki's formula (for example. Cf . Lemma 6 in [9]), we have $\left\langle\lambda, i \mu^{*}\right\rangle=0$ for each $\lambda, \mu \in \Lambda_{x}$. Thus, $\Lambda_{x}^{\prime}=\Lambda_{x}$ is a B-space. Now we choose $d u_{j} \in \Gamma_{h e 0}\left(\partial G-\beta_{j}\right)$ such that $d u_{j} \in \Gamma_{h 0}\left(\beta_{j}\right), j=1,2,3$, then we have $t_{1} d u_{1}+t_{2} d u_{2}+t_{3} d u_{3}=\omega \in \Lambda_{x}$ and further, ω can not be written in a form $d u+z d v$ with $d u \in \Gamma_{1}$ and $d v \in \Gamma_{1}^{\prime}=\Gamma_{1}^{* \perp}$.

2B. Application. By using B-spaces, we know already the Riemann-Roch theorem for differentials with B-behavior (Cf. [2]). Now besides this, we show in 2B an another application of this space to the Abelian integral theory. We set

$$
\begin{aligned}
& \Lambda_{a}^{0}=\left\{\phi:(1) \phi \in \Lambda_{\text {ase }}, \text { (2) } \phi \text { is a Schottky differential, (3) } \phi=0 \text { if } \int_{A} \phi=0\right\}, \\
& \Gamma_{x}=\text { closure }\left\{\Gamma_{h m}+S(A)\right\}, \\
& \Gamma_{A}=\Gamma_{x} \cap \Gamma_{\text {hse }}^{*}+\Gamma_{x}^{*} \cap \Gamma_{\text {hse }} .
\end{aligned}
$$

By using the B-space $\Lambda_{x}=\Gamma_{x}+i \Gamma_{x}^{* \perp}$, we prove the next proposition which is similar to that of Kusunoki [4].

Proposition 1 (Kusunoki [4]). $\Lambda_{a}^{0}=\left\{\Gamma_{A}+i \Gamma_{A}\right\} \cap \Lambda_{u}$.
Proof. At first, we choose the B-space $\Lambda_{x}=\Gamma_{x}+i \Gamma_{x}^{* \perp}$ (Cf. Theorem 1). Each $\phi \in \Lambda_{\text {ase }}$ with $\int_{A} \phi=0$ has a decomposition of the form

$$
\phi=\lambda+i \lambda^{*}=\sigma+i \tau+i \sigma^{*}-\tau^{*},
$$

where $\lambda \in \Lambda_{x}, \operatorname{Re}(\phi)=\sigma \in \Gamma_{x}$ and $\operatorname{Im}(\phi)=\tau \in \Gamma_{x}^{* \perp}=\Gamma_{\text {hse }} \cap S(A)^{* \perp}$. Terefore, we have $\int_{A}\left(\tau+\sigma^{*}\right)=\int_{A} \sigma^{*}=0$ and $\int_{\gamma}\left(\tau+\sigma^{*}\right)=0=\int_{\gamma} \sigma^{*}=0$, where γ denotes an arbitrary dividing curves. Thus we can get $\sigma=0, \phi=-\tau^{*}+i \tau$, and so $\tau \in \Gamma_{\text {hse }} \cap \Gamma_{\text {hse }}^{*} \cap S(A)^{\perp} \cap S(A)^{* \perp}=\Gamma_{x}^{\perp} \cap \Gamma_{x}^{* \perp}$. If $\phi \in\left(\Gamma_{A}+i \Gamma_{A}\right) \cap A_{a}$ with $\int_{A} \phi=0$, then we get $\phi=-\tau^{*}+i \tau$ where $\operatorname{Im}(\phi)=\tau \in\left(\Gamma_{x}+\Gamma_{x}^{*}\right) \cap \Gamma_{x}^{\perp} \cap \Gamma_{x}^{* \perp}$ and so $\phi=0$. Hence $\left(\Gamma_{A}+i \Gamma_{A}\right) \cap \Lambda_{a} \subset \Lambda_{a}^{0}$, and we get the following

$$
\Lambda_{a}^{0}=\left(\Gamma_{A}+i \Gamma_{A}\right) \cap \Lambda_{a}+\Gamma_{A}^{\perp} \cap i \Gamma_{A}^{\perp} \cap \Lambda_{a}^{0} .
$$

However, for each $\phi=\omega+i \omega^{*} \in \Gamma_{A}^{\perp} \cap i \Gamma_{A}^{\perp} \cap \Lambda_{a}^{0} \subset \Lambda_{\text {ase }}$ with $\operatorname{Re}(\phi)=\omega$, we have

$$
\omega \in \Gamma_{A}^{\perp} \cap \Gamma_{\text {hse }} \cap \Gamma_{\text {hse }}^{*}=\Gamma_{\text {hse }} \cap S(A)^{* \perp} \cap \Gamma_{\text {hse }}^{*} \cap S(A)^{\perp} .
$$

Therefore, we have $\int_{A} \phi=0$ and $\phi \in \Lambda_{a}^{0}$, hence $\phi=0$ and $\Lambda_{a}^{0}=\left(\Gamma_{A}+i \Gamma_{A}\right) \cap \Lambda_{a}$.
§3. S-behavior space $\Lambda_{2}=\Lambda\left(\left\{J_{k}\right\}_{k=1}^{2},\left\{L_{k}\right\}_{k=1}^{2}\right)$
Theorem 3. Let $D_{2}(J)=\left\{J_{k}\right\}_{k=1}^{2}$ be a partition of the set $J=\{1,2, \ldots, g\}$, Γ_{1} the space such that $S\left(J_{1}\right)+\Gamma_{h m} \subset \Gamma_{1} \subset \Gamma_{h s e} \cap S\left(J_{2}\right)^{* \perp}$ and $\Gamma_{1}^{\prime}=\Gamma_{1}^{* \perp}$. Then, for each complex number $z=e^{i \theta} \neq \pm 1$, the space $\Lambda_{2}=\Gamma_{1}+z \Gamma_{1}^{\prime}$ is an S-space associated with $\left(\left\{J_{k}\right\}_{k=1}^{2},\left\{L_{k}\right\}_{k=1}^{2}\right)$ where L_{1} is the real axis and $L_{2} \ni z$.

Proof. Since $\Gamma_{h m}+S\left(J_{2}\right) \subset \Gamma_{1}^{\prime}=\Gamma_{1}^{* \perp} \subset \Gamma_{h s e} \cap S\left(J_{1}\right)^{* \perp}$, we have $\int_{J_{1}} \Lambda_{2}=$ $\int_{J_{1}} \Gamma_{1} \in L_{1}$ and $\int_{J_{2}} \Lambda_{2}=z \int_{J_{2}} \Gamma_{1}^{\prime} \in L_{2}$. From $\Gamma_{1}^{\prime}=\Gamma_{1}^{* \perp}$, we get $\Lambda_{2} \subset i \Lambda_{2}^{* \perp}$, and

$$
\Lambda_{h}=\Lambda_{2}+i \Lambda_{2}^{*}+\Lambda_{2}^{\frac{1}{2}} \cap i \Lambda_{2}^{* \perp} \cap \Lambda_{u}+\Lambda_{2}^{\frac{1}{2}} \cap i \Lambda_{2}^{* \perp} \cap \Lambda_{\bar{u}} .
$$

However, for each $\phi=-\omega^{*}+i \omega \in \Lambda_{2}^{\perp} \cap i \Lambda_{2}^{* \perp} \cap \Lambda_{a}$, we have $\operatorname{Im}(\phi)=\omega \in \Gamma_{1}^{* \perp}=\Gamma_{1}^{\prime}$ and $\operatorname{Im}(\bar{z} \phi)=\sigma=\omega^{*} \sin \theta+\omega \cos \theta \in \Gamma_{1}^{\prime * \perp}=\Gamma_{1} \perp \omega^{*} \in \Gamma_{1}^{\prime *}$. Consequently, we
 Analogously, we can get $\Lambda_{2}^{\frac{1}{2}} \cap i \Lambda_{2}^{* \perp} \cap \Lambda_{\bar{u}}^{-}=\{0\}$, and so $\Lambda_{2}=i \Lambda_{2}^{* \perp}$.
q.e.d.

Conversely, we have the following
Theorem 4. Suppose Λ_{K} is an S-behavior space associated with $\left(D_{K}, \boldsymbol{L}_{K}\right)$ $=\left(\left\{J_{k}\right\}_{k=1}^{K},\left\{L_{k}\right\}_{k=1}^{K}\right)$ where L_{1} is the real axis. The necessary and sufficient condition that Λ_{K} can be written in the form $\Gamma_{1}+z \Gamma_{1}^{\prime}$ where $\Gamma_{h m}+S\left(J_{1}\right) \subset \Gamma_{1}^{* * \perp}$ $=\Gamma_{1} \subset \Gamma_{\text {hse }} \bigcap_{k=2}^{K} S\left(J_{k}\right)^{* \perp}$ and $z=e^{i \theta} \neq \pm 1$, is

$$
\operatorname{Im}\left(\bar{z} \Lambda_{K}\right) \subset \operatorname{Im}\left(\Lambda_{K}\right)^{* \perp}
$$

Proof. At first, we set $\operatorname{Im}\left(\Lambda_{K}\right)=\hat{\Gamma}_{1}, \hat{\Gamma}_{1}^{* \perp}=\Gamma_{1}$ and $\Gamma_{1}^{\prime}=\Gamma_{1}^{* \perp}$. Since $\left\langle\Lambda_{K}, i z \Gamma_{1}^{* *}\right\rangle=\left\langle\Lambda_{K}, i \Gamma_{1}^{*}\right\rangle=0$, we have $\Lambda_{2} \subset i \Lambda_{K}^{* \perp}=\Lambda_{K} \subset i \Lambda_{2}^{* \perp}$ where $\Lambda_{2}=\Gamma_{1}$ $+z \Gamma_{1}^{\prime}$. On the other hand, from $\Lambda_{K} \subset \Lambda_{\text {hse }}$ and $\int_{J_{1}} \Lambda_{K} \in L_{1}$, we get $\Gamma_{1}^{\prime} \subset \Gamma_{\text {hse }}$ $\cap S\left(J_{1}\right)^{* \perp}$ and $\Gamma_{1} \supset \Gamma_{h m}+S\left(J_{1}\right)$. Further, since ${ }_{K}^{\Lambda_{K}} \subset \Lambda_{h s e} \bigcap_{k=2}^{K} i z_{k} S\left(J_{k}\right)^{* \perp}$ where $0 \neq z_{k} \in L_{k}, k=2,3, \ldots, K$, we have $\Lambda_{K}=i \Lambda_{K}^{* \perp} \supset \sum_{k=2}^{K} z_{k} S\left(J_{k}\right)+\Lambda_{h m}^{k=2}$, and so $\Gamma_{1}^{\prime} \supset$ $\Gamma_{h m}+\sum_{k=2}^{K} S\left(J_{k}\right)$. Therefore, we can get $\Gamma_{h m}+S\left(J_{1}\right) \subset \Gamma_{1}=\Gamma_{1}^{*+\perp} \subset \Gamma_{h s e} \bigcap_{k=2}^{K} S\left(J_{k}\right)^{* \perp}$. hence $i \Lambda_{2}^{* \perp}=\Lambda_{2}=\Lambda_{K}$ from Theorem 3.
q.e.d.

Next, we give, analogously as in 2 A , an example of an S-space $\Lambda_{2}=\Lambda\left(\left\{J_{k}\right\}_{k=1}^{2},\left\{L_{k}\right\}_{k=1}^{2}\right)$ which can not be written in the form $\Gamma_{1}+z \Gamma_{1}^{\prime}$ where $\Gamma_{1}^{\prime}=\Gamma_{1}^{* \perp}$.

Example 2. Let G be the interior of the compact bordered surface and $\partial G=\beta_{1} \cup \beta_{2} \cup \beta_{3}$ where each β_{j} is a contour. We use here the same notations as in the example 1 , and consider the following subspaces of differentials on G :

$$
\begin{aligned}
& \Lambda_{2}=\left\{\lambda \in \Lambda_{h s e}: \text { (a) } \int_{J_{k}} \lambda \in L_{k}, k=1,2 \text { where } L_{1}\right. \text { is the real axis, } \\
& \text { (b) } \left.\operatorname{Im}\left(\bar{t}_{r} \lambda\right) \in \Gamma_{h 0}\left(\beta_{r}\right), r=1,2,3\right\}, \\
& \Lambda_{2}^{\prime}=\operatorname{closure}\left\{\Lambda_{h m}+\sum_{k=1}^{K} t_{k} \Gamma_{h e 0}\left(\partial G-\beta_{k}\right)+S\left(J_{1}\right)+\zeta S\left(J_{2}\right)\right\},
\end{aligned}
$$

where each t_{j} is a complex number such that $t_{p} \neq \pm t_{q}$ for $p \neq q$ and ζ is a complex number such that $\zeta \neq 0$ and $\zeta \in L_{2}$. By the same way as in the example 1 , we can prove $\Lambda_{2}=\Lambda_{2}^{\prime}=i \Lambda_{2}^{* \perp}$. Next, the differential ω in the example 1 belongs to Λ_{2}, and further, ω can not be written in the form $d u+z d v$ with $d u, d v \in \Gamma_{h}$.
§4. S-behavior space $\Lambda_{K}=\Lambda\left(D_{K}, \boldsymbol{L}_{K}\right)(3 \leqq K)$
4A. $\Lambda_{\boldsymbol{K}}$ and $\Lambda_{\boldsymbol{K}}^{\prime}$. Let Λ_{K} be an arbitrary S-space associated with ($D_{K}, \boldsymbol{L}_{K}$) where $D_{K}=\left\{J_{k}\right\}_{k=1}^{K}$ and $L_{K}=\left\{L_{K}\right\}_{k=1}^{K}$. We set $\operatorname{Im}\left(\bar{z}_{j} \Lambda_{K}\right)=\Gamma_{j}^{\prime}, \Gamma_{j}^{\prime * \perp}=\Gamma_{j}$, and $\Lambda_{K}^{\prime}=$ closure $\left\{\sum_{k=1}^{K} z_{k} \Gamma_{K}\right\}$, where $z_{k} \in L_{k}$ and $\left|z_{k}\right|=1, k=1,2, \ldots, K$.

Lemma 2. In order that Λ_{K} be equal to Λ_{K}^{\prime}, it is necessary and sufficient that Λ_{K}^{\prime} is an S-space.

Proof. Since $\left\langle\Lambda_{K}, i z_{j} \Gamma_{j}^{*}\right\rangle=0$ for each j, we obtain the relation $\Lambda_{K}^{\prime} \subset i \Lambda_{K}^{* \perp}$ $=\Lambda_{K} \subset i \Lambda_{K}^{\prime * \perp}$. Therefore, $\Lambda_{K}=\Lambda_{K}^{\prime}$ means $\Lambda_{K}^{\prime}=i \Lambda_{K}^{* \perp}$.

Remark. By the same way as in the former examples, we can give an example of Λ_{K} such that $\Lambda_{K} \neq \Lambda_{K}^{\prime}$.

4B. $\Lambda^{n}, \Lambda_{\chi}$ and Λ_{χ}^{\prime}. Let $\beta=\bigcup_{r=1}^{s} \beta_{r}$ be a regular partition of the Stoilow's ideal boundary β of an open Riemann surface $R,\left\{R_{n}\right\}$ a regular canonical exhaustion of R and $R-R_{n}=\bigcup_{r=1}^{s} W_{n}^{r}$ where W_{n}^{r} is an end towards β_{r}. We set

$$
\Gamma_{e 0}^{1}\left(\beta_{r}\right)=\left\{d f: \text { (a) } d f \in \Gamma_{e}^{1}, \text { (b) there exists an end towards } \beta_{r}\right. \text { which is disjoint }
$$ with the support of $f\}$,

$\Gamma_{h e 0}\left(\beta_{r}\right)=\Gamma_{h} \cap$ closure $\left\{\Gamma_{e 0}^{1}\left(\beta_{r}\right)\right\}$,
$\Gamma_{h 0}\left(\beta-\beta_{r}\right)=\Gamma_{h e 0}\left(\beta_{r}\right)^{* \perp}$.
Besides $J=\left\{J_{k}\right\}_{k=1}^{K}$ and $L=\left\{L_{k}\right\}_{k=1}^{K}$, we consider another partition of J, the family of lines and the subspaces of differentials on R such that:

$$
\begin{aligned}
& J_{k, n}=\left\{j: j \leqq g_{n} \text { and } j \in J_{k}, \text { where } g_{n} \text { is the genus of } R_{n}\right\}, \\
& J_{k+r, n}=\left\{j: j>g_{n} \text { and } A_{j}, B_{j} \subset W_{n}^{r}\right\},
\end{aligned}
$$

$l=\left\{l_{r}\right\}_{r=1}^{s}$, where each l_{r} is a line passing through the origin on the z plane,

$$
\begin{aligned}
& D_{n}^{\prime}(J)=\left\{J_{k, n}\right\}_{k=1}^{K+s}, \\
& L_{n}^{\prime}=\left\{L_{k}\right\}_{k=1}^{K+s}, \text { where } L_{k+r}=i l_{r}, r=1,2, \ldots, s, \\
& \Lambda^{n}=\left\{\lambda \in \Lambda_{h s e}:(\text { a }) \int_{J_{k, n}} \lambda \in L_{k}, k=1,2, \ldots, K+s, \text { (b) } \operatorname{Im}\left(\bar{\zeta}_{r} \lambda\right) \in \Gamma_{h 0}\left(\beta_{r}\right),\right. \\
& \quad r=1,2, \ldots, s\},
\end{aligned}
$$

where $i l_{r}$ means the set $\left\{i \zeta: \zeta \in l_{r}\right\}$ and ζ_{r} is a complex number such that $0 \neq \zeta_{r} \in L_{K+r}, r=1,2, \ldots, s$.

Lemma 3. Λ^{n} is an S-hehavior space associated with D_{n}^{\prime} and $\boldsymbol{L}_{n}^{\prime}$.
Proof. Omitted. (Cf. Lemma 4.3 in [5]).
Further, we set
$\Lambda_{\chi}^{\prime}=\left\{\lambda:\right.$ there exists a sequence $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ with $\lambda_{n} \in \Lambda^{n}$ such that $\left\|\lambda-\lambda_{n}\right\| \rightarrow 0$ as $n \rightarrow \infty\}$,
$\Lambda_{\chi}=\{\lambda: \lambda$ is equal to the limit of a locally uniformly convergent subsequence of $\left\{\lambda_{n}\right\}_{n=1}^{\infty}$ with $\lambda_{n} \in \Lambda^{n}$ and $\left.\sup _{n}\left\{\left\|\lambda_{n}\right\|\right\}<\infty\right\}$.

Then we have the following
Proposition 2. (a) $i \Lambda_{x}^{* \perp}=\Lambda_{\chi}^{\prime} \subset \Lambda_{\chi}=i \Lambda_{x}^{\prime * \perp}$.
(b) $\Lambda_{x}=\Lambda_{x}^{\prime}$ is equivalent to $\Lambda_{x}^{\prime}=i \Lambda_{x}^{\prime * \perp}$.

Proof. At first, we prove $\Lambda_{\gamma} \subset i \Lambda_{\chi}^{\prime * \perp}$. From the difinition of Λ_{χ} and Λ_{χ}^{\prime}, we can find for each $\lambda \in \Lambda_{\chi}$ and each $\mu \in \Lambda_{\chi}^{\prime}$ a Cauchy sequence $\left\{\mu_{n}\right\}_{n=1}^{\infty}$ with μ_{n} Λ^{n} and a locally uniformly convergent sequence $\left\{\lambda_{n_{x}}\right\}_{\alpha=1}^{\infty}$ (which we denote $\left\{\lambda_{x}\right\}$ hereafter) with $\lambda_{\alpha} \in \Lambda^{\alpha}$ and $\sup _{\alpha}\left\{\left\|\lambda_{\alpha}\right\|\right\}<K$ such that $\left\|\mu_{n}-\mu\right\| \rightarrow 0$ as $n \rightarrow \infty$ and $\lambda_{\alpha} \rightarrow \lambda$ as $\alpha \rightarrow \infty$, locally uniformly on R.

Further, for arbitrary small positive number ε, we can choose a compact region \bar{G} on R and a sufficiently large integer N such that $\|\lambda\|_{R-G}+\|\mu\|_{R-G}<\varepsilon$ and $\left\|\lambda-\lambda_{n}\right\|_{G}+\left\|\mu-\mu_{n}\right\|<\varepsilon$ for each $n>N$.
Therefore, for each $k>N$, we have

$$
\begin{aligned}
\left|\left\langle\lambda, i \mu^{*}\right\rangle\right| & <\left|\left\langle\lambda, i \mu^{*}\right\rangle_{G}\right|+\varepsilon\|\mu\|<\left|\left\langle i-\lambda_{k}, i \mu^{*}\right\rangle_{G}\right|+\left|\left\langle\lambda_{k}, i \mu^{*}\right\rangle_{G}\right|+\varepsilon\|\mu\| \\
& <\left|\left\langle\lambda_{k}, i \mu_{k}^{*}\right\rangle_{G}\right|+(2\|\mu\|+K) \varepsilon\langle |\left\langle\lambda_{k}, i \mu_{k}^{*}\right\rangle_{R-G} \mid+(2\|\mu\|+K) \varepsilon \\
& <(3 K+2\|\mu\|) \varepsilon .
\end{aligned}
$$

Thus we get $\Lambda_{\chi} \subset i \Lambda_{x}^{\prime * \perp}$. Next, we show $i \Lambda_{x}^{\prime * \perp} \subset \Lambda_{\chi}$. Let $\lambda \in \Lambda_{h}$ be a differential such that $\left\langle\lambda, i \Lambda_{\chi}^{*}\right\rangle=0$. λ has a decomposition of the form

$$
\lambda=\lambda_{n}+i \mu_{n}^{*}, \text { where } \lambda_{n}, \mu_{n} \in \Lambda^{\prime \prime}(\text { Cf. Lemma } 3) .
$$

and so there exists a sequence $\left\{n_{x}\right\}_{\alpha=1}^{\infty}$ (which we denote here simply $\{\alpha\}$) such that $\lambda_{\alpha} \rightarrow \lambda_{\chi}$ and $\mu_{\alpha} \rightarrow \mu_{\chi}$, locally uniformly on R. On the other hand, there exists, for each $\varepsilon>0$, a compact region G such that $\|\lambda\|_{R-G}<\varepsilon$ and so from $=\left\langle\lambda, i \mu_{x}^{*}\right\rangle=0$, we have

$$
\begin{aligned}
& \left|\left\langle\lambda, i \mu_{n}^{*}\right\rangle_{G}+\left\langle\lambda, i \mu_{\chi}^{*}-i \mu_{n}^{*}\right\rangle_{G}\right|=\left|\left\langle\lambda, i \mu_{\chi}^{*}\right\rangle_{R-G}\right|<\varepsilon\left\|\mu_{\chi}\right\|, \text { and so } \\
& \left|\left\langle\lambda, i \mu_{n}^{*}\right\rangle_{G}\right|<\varepsilon\left\|\mu_{\chi}\right\|+\|\lambda\|\left\|\mu_{\chi}-\mu_{n}\right\|_{G} .
\end{aligned}
$$

Therefore, for each $n>N^{\prime}$ which is sufficiently large integer, we have

$$
\begin{aligned}
& \left|\left\langle\lambda, i \mu_{n}^{*}\right\rangle_{G}\right|<\varepsilon\left(\left\|\mu_{\chi}\right\|+\|\lambda\|\right) \text {, hence } \\
& \left|\left\langle\lambda, i \mu_{n}^{*}\right\rangle\right|=\left\|\mu_{n}\right\|^{2}<\varepsilon\|\lambda\|+\varepsilon\left(\left\|\mu_{\chi}\right\|+\|\lambda\|\right) .
\end{aligned}
$$

Consequently, we can choose $\left\|\lambda-\lambda_{n}\right\|^{2}=\left\|\mu_{n}\right\|^{2} \rightarrow 0$ as $n \rightarrow \infty$, hence $\lambda \in \Lambda_{\chi}^{\prime}$, and $i \Lambda_{\chi}^{* \perp} \subset \Lambda_{\chi}^{\prime}$. (b) is evident.

Note. In the case the genus of R is infinite, we do not know the existence of S-behavior space associated with arbitrary partition $D_{K}(J)=\left\{J_{k}\right\}_{k=1}^{K}$ of $J=\{1,2, \ldots\}$ where $K \geqq 3$. The author supposes that, in Proposition $2, \Lambda_{\chi}$ would be equal to Λ_{χ}^{\prime}, hence $\Lambda_{\chi}=i \Lambda_{\chi}^{* \perp}$ is an S-space associated with $\left(\left\{J_{k}\right\}_{k=1}^{K},\left\{L_{k}\right\}_{k=1}^{K}\right)$, but this problem is not affirmatively proved yet.

§5. Multiplicative differentials and Riemann-Roch's type theorem

5A. Multiplicative differentials on $\hat{\boldsymbol{R}}$. Concerning the extension of the duality theorem of Riemnn-Roch's type for Prym differentials (multiplicative differemtials) (Cf. Weyl [11]) to open surfaces, no results are known up to now, and so it seems not to be meaningless to give such a sort of theorem for multiplicative differentials on a specific symmetric open surface.

Suppose that R is a non compact bordered surface whose border ∂R consists of a finite number of contours $\left\{C_{q}\right\}_{q=1}^{m}$ and $P(\beta)=\bigcup_{r=1}^{s} \beta_{r} \bigcup_{q=1}^{m} C_{q}$ is a regular partition of the Stoilow's ideal boundary β of R. Let G be a canonical region of $R \cup \partial R$ such that $\partial G \supset \partial R$, and set $R-\bar{G}=\bigcup_{r=1}^{n} W_{r}$ where W_{r} is an end towards β_{r}. Next, we divide each C_{q} into $\alpha_{2 q-1}$ and $\bar{\alpha}_{2 q}$ where each of $\alpha_{2 q-1}, \alpha_{2 q}$ is an open are on C_{q}. Further, we associate each α_{k} (resp. β_{k}) with a complex number z_{k} (resp. ζ_{r}) such that $\left|z_{k}\right|=1$ and $\left|\zeta_{r}\right|=1$, and denote the set $\left\{z_{1}, z_{2}, \ldots, z_{2 m}\right\}$ (resp. $\left\{\zeta_{1}, \zeta_{2}, \ldots, \zeta_{s}\right\}$) by Z (resp. S). For Z and S we consider the following subspaces of differentials on R :

$$
\begin{aligned}
\Lambda_{0}=\Lambda_{0 G}=\left\{\lambda \in \Lambda_{h s e}:\right. \text { (a) } & \int_{A_{j} \cdot B_{j}} \lambda \in L_{j}, j \leqq \mathscr{G}_{G}=\text { the genus of } G, \text { and } \\
& \int_{A_{j}, B_{j}} \lambda \in i l_{r}, \text { for } A_{j}, B_{j} \subset W_{r}, r=1,2, \ldots, s,
\end{aligned}
$$

(b) $\operatorname{Im}\left(\bar{z}_{q} \lambda\right) \in \Gamma_{h 0}\left(\alpha_{q}\right), q=1,2, \ldots, 2 m$
(c) $\left.\operatorname{Im}(\bar{\zeta}, \lambda) \in \Gamma_{h 0}\left(\beta_{r}\right), r=1,2, \ldots, s\right\}$,
where $\left\{l_{r}\right\}_{r=1}^{s}$ is a family of lines on the z plane passing through the origin and $\zeta_{r} \in l_{r}$ for each r. Then we have

Lemma 4. Λ_{0} is an S-behavior space.
Proof. Cf. Lemma 4.3 in [5] and Lemma 2.6 in [6].
We set

$$
\begin{aligned}
D\left(\Lambda_{0}, \delta, R\right)= & \left\{\phi: \text { (a) } \phi \text { has } \Lambda_{0} \text {-behavior, (b) divisor }(\phi) \text { of } \phi\right. \text { is a } \\
& \text { multiple of } \delta\},
\end{aligned}
$$

$S\left(\Lambda_{0}, \delta, R\right)=\left\{f:\right.$ (b) function f has Λ_{0}-behavior, (b) divisor (f) of f is a multiple of $\delta\}$,
where $\delta=\delta_{a} / \delta_{b}$ and δ_{a}, δ_{b} are finite integral disjoint divisors. Then
Lemma 5. $\operatorname{dim} S\left(\Lambda_{0}, 1 / \delta, R\right)=2\left[\operatorname{ord} \delta_{a}+1-\min \left(\operatorname{ord} \delta_{b}, 1\right)\right]$

$$
-\operatorname{dim}\left[D\left(\bar{\Lambda}_{0}, 1 / \delta_{b}, R\right) / D\left(\bar{\Lambda}_{0}, \delta, R\right)\right] .
$$

Proof. Since Λ_{0} is an S-behavior space, from [9] we have the conclusion.
Next, we show an example of a duality theorem for multiplicative differentials on \hat{R} by considering Lemma 5 on the surface \hat{R}, where \hat{R} is the double of R with respect to ∂R. We set
$J=$ the involutory mapping \hat{R} onto itself,
$\omega^{\sim}=$ the differential on \hat{R} associated with J and $\omega \in \Gamma_{h}(\hat{R})$ such that if ω is expressed as $\omega=a(z) d x+b(z) d y$ in local parameter $z=h(p)$ in V, then $\omega^{\sim}=a(\bar{z}) d x-b(\bar{z}) d y$ in $z=\bar{h}(J(p))$ in $J(V)$ where V is a parametric disc.

Next, let P (resp. Y_{k}) be a point on R (resp. α_{k}), $\gamma(k)$ an analytic arc on $R \cup \partial R$ such that $\partial \gamma(k)=Y_{k}-P$, and set

$$
\begin{aligned}
& \hat{\gamma}_{k}=\gamma(k) \cup\{-J \gamma(k)\}, \\
& \hat{\gamma}_{k n}=\hat{\gamma}_{k} \cup\left(-\hat{\gamma}_{n}\right) .
\end{aligned}
$$

Lemma 6. The analytic continuation ϕ_{k} of $\phi \in D\left(\Lambda_{0}, \delta, R\right)$ from a point P to $J(P)$ along $\hat{\gamma}_{k}$, is $z_{k}^{2} \bar{\phi}^{\sim}$, and so the analytic continuation of ϕ along $\hat{\gamma}_{p q}$ from a point P to P is $z_{q}^{2} \bar{z}_{p}^{2} \phi$. Consequently, we have

$$
\begin{aligned}
& \int_{\substack{J A_{n} \\
J B_{n}}} \phi_{k} \in z_{k}^{2} \bar{L}_{h} \text { for each } h \text {, and } \\
& \operatorname{Im}\left(z_{n} z_{k}^{2} \phi_{k}\right)=0 \text { along } J\left(\alpha_{n}\right) \text { for each } n \text {. }
\end{aligned}
$$

where \bar{L}_{h} means the symmetric line of L_{h} with respect to the real axis.
Proof. At first, we set $\bar{z}_{k} \phi=\omega+i \omega^{*}$ on R where $\omega=\operatorname{Re}\left(\bar{z}_{k} \phi\right)$, then $\omega^{*}=0$ along α_{k}, hence the differential $\hat{\omega}$ on $\hat{R}-\left(\partial R-\alpha_{K}\right)$ such that

$$
\begin{aligned}
\hat{\omega} & =\omega \text { on } R, \text { and } \\
& =\omega^{\sim} \text { on } \hat{R}-\left(\partial R-\alpha_{k}\right)-R,
\end{aligned}
$$

is even for J_{k} and $\hat{\omega}^{*}$ is odd for J_{k} where J_{k} means the restriction of J to $\hat{R}-\left(\partial R-\alpha_{k}\right)$. Therefore, we see that the analytic continuation of $\Phi=\bar{z}_{k} \phi$ to $\hat{R}-\bar{R}+\alpha_{k}$ is equal to $\bar{\phi}^{\sim}=z_{k} \bar{\phi}^{\sim}$, and so the analytic continuation ϕ_{k} of $\phi=z_{k} \Phi$ is equal to $z_{k} \bar{\Phi}^{\sim}=z_{k}^{2} \bar{\phi}^{\sim}$. Consequently, we have

$$
\int_{J A_{h}, J B_{h}} \phi \in \bar{z}_{k}^{2} L_{h} \text { for each } h, \text { and }
$$

$$
\operatorname{Im}\left(z_{n} \bar{z}_{k}^{2} \phi_{k}\right)=0 \text { along } J \alpha_{n} \text { for each } n
$$

Obviously, the analytic continuation of ϕ along $\gamma_{p q}$ is equal to $z_{q}^{2} \bar{z}_{p}^{2} \phi$. q.e.d.
Hereafter, we consider, for each $\phi \in D\left(\Lambda_{0}, \delta, R\right)$ and each $f \in S\left(\Lambda_{0}, \delta, R\right)$, the following elements and families:

$$
\begin{aligned}
\phi\left(j_{2 k+1}, J_{2 k}, \ldots, j_{2}, j_{1}\right) & =Z\left(j_{2 k}\right) \phi \text { on } \bar{R}=R \cup \partial R \\
& =z\left(j_{2 k+1}\right)^{2} \overline{Z\left(j_{2 k}\right) \phi^{\sim}} \text { on } \hat{R}-\bar{R},
\end{aligned}
$$

where we set

$$
\begin{aligned}
& \left.z(p)=z_{p}, \text { and } z\left(j_{2 k}\right)^{2} \overline{z\left(j_{2 k-1}\right.}\right)^{2} \cdots z\left(j_{2}\right)^{2} \overline{z\left(j_{1}\right)^{2}}=Z\left(j_{2 k}\right), \\
& \hat{\phi}=\left\{\phi\left(j_{2 k+1}, j_{2 k}, \ldots, j_{1}\right): j_{p}=1,2, \ldots, 2 m, \text { for } p=1,2, \ldots, k \text { and } k=1,2, \ldots\right\}, \\
& \hat{D}\left(\Lambda_{0}, \hat{\delta}, \hat{R}\right)=\left\{\hat{\phi}: \phi \in D\left(\Lambda_{0}, \delta, R\right)\right\}, \\
& \hat{S}\left(\Lambda_{0}, \hat{\delta}, \hat{R}\right)=\left\{\int(\widehat{d f}): f \in S\left(\Lambda_{0}, \delta, R\right)\right\} .
\end{aligned}
$$

where $\hat{\delta}=\delta \cup J \delta$ Obviously, $\hat{\phi}$ is a multiplicative differential on \hat{R}. Then we have the following proposition 3 which is different from Weyl's theorem (Cf. Weyl [11]).

Proposition 3. Let δ_{a} / δ_{b} be a divisor on R such that $\delta_{a} \cap \delta_{b}=0$ and δ_{a}, δ_{b} are the finite disjoint divisors. Then, we have

$$
\begin{aligned}
\operatorname{dim} \hat{S}\left(\Lambda_{0}, 1 / \hat{\delta}, \hat{R}\right)= & \operatorname{order}\left(\hat{\delta}_{a}\right)+2-2 \min \left[\left\{\operatorname{order}\left(\hat{\delta}_{b}\right)\right\} / 2,1\right] \\
& -\operatorname{dim}\left[\hat{D}\left(\bar{\Lambda}_{0}, 1 / \hat{\delta}_{b}, \hat{R}\right) / \hat{D}\left(\bar{\Lambda}_{0}, \hat{\delta}, \hat{R}\right)\right]
\end{aligned}
$$

where $\hat{\delta}=\delta \cup J \delta$. If g, the genus of R, is finite, the genus \hat{R} is equal to $2 g+m-1=\hat{g}$ and so

$$
\operatorname{dim} \hat{S}\left(\Lambda_{0}, 1 / \hat{\delta}, \hat{R}\right)-\operatorname{dim} \hat{D}\left(\hat{\Lambda}_{0}, \hat{\delta}, \hat{R}\right)=\operatorname{order}(\hat{\delta})-\hat{g}+m+1
$$

Proof. Cf. Lemma 5 and Lemma 4.

5B. Application of Proposition 3. For the case that the order of a given divisor is infinite, several authors investigated the duality theorems of RiemannRch type for Abelian differentials under the respective conditions. In the following, we formulate as an application of Proposition 3, a Riemann-Roch theorem of another type with infinite divisor on a covering surface \tilde{R} of R.

At first, we take an infinite number of copies $\left\{R_{1, p, \ldots, r}^{n}\right\}$ of R and adjoin R_{1}^{1} with $R_{1, k}^{2}$ along $\alpha_{k}, k=1,2, \ldots, 2 m$. Next, thus constructed $R^{2}=R_{1}^{1} \bigcup_{q=1}^{2 m} R_{1, k}^{2}$ has $2 m-1$ number of α_{p} for p, and so we adjoin $R_{1, q}^{2}$ of R^{2} with $R_{1, q, r}^{3}$ along α_{r}, $r=1,2, \ldots, 2 m, r \neq q$, and so on. Thus we can get a covering surface $\tilde{R}=\lim _{n \rightarrow \infty} R^{n}$. Now we take a differentials $\phi \in D\left(\Lambda_{0}, \delta, R\right)$ (resp. df where $f \in S\left(\Lambda_{0}, \delta, R\right)$) and denote the analytic continuation of ϕ (resp. $d f$) to \tilde{R} by $\tilde{\phi}$ (resp. ($\widetilde{d f}$)) (Cf. Lemma 6). We set

$$
\begin{aligned}
& \tilde{D}\left(\Lambda_{0}, \tilde{\delta}, \tilde{R}\right)=\left\{\tilde{\phi}: \phi \in D\left(\Lambda_{0}, \delta, R\right)\right\} \\
& \tilde{S}\left(\Lambda_{0}, \tilde{\delta}, \tilde{R}\right)=\left\{\int(\tilde{d f}): f \in S\left(\Lambda_{0}, \delta, R\right)\right\}
\end{aligned}
$$

where $\tilde{\delta}$ is the divisor such that the restriction of $\tilde{\delta}$ to each $R=\delta$. Then
Proposition 5. $\operatorname{dim} \tilde{S}\left(\Lambda_{0}, 1 / \tilde{\delta}, \tilde{R}\right)=2\left[\operatorname{order}\left(\delta_{a}\right)+1-\min \left\{\operatorname{order}\left(\delta_{b}\right), 1\right\}\right]$ $-\operatorname{dim}\left[\tilde{D}\left(\bar{\Lambda}_{0}, 1 / \tilde{\delta}_{b}, \tilde{R}\right) / \tilde{D}\left(\bar{\Lambda}_{0}, \tilde{\delta}, \tilde{R}\right)\right]$, where $\delta=\delta_{a} / \delta_{b}$ is a finite divisor. If g, the genue of R, is finite, then

$$
\operatorname{dim} \tilde{S}\left(\Lambda_{0}, 1 / \tilde{\delta}, \tilde{R}\right)-\operatorname{dim} \tilde{D}\left(\Lambda_{0}, \tilde{\delta}, \tilde{R}\right)=2\{\operatorname{order}(\delta)-g+1\}
$$

Proof. Cf. Lemma 4 and Lemma 5.

Faculty of Engineering
 Doshisha University

References

[1] L. V. Ahlfors nd L. Sario, Riemann surfaces, Princeton Univ. Press 1960.
[2] T. Baskan, On some behavior spaces and Riemann-Roch theorem on open Riemann surfaces, J. Math. Kyoto Univ., 16 (1976), 101-112.
[3] Y. Kusunoki, Theory of Abelian integrals and its applications to conformal mappings, Mem. Col. Sci. Univ. of Kyoto Ser. A. Math., 32 (1959), 235-258.
[4] Y. Kusunoki, Square ntegrable normal differentials on open Riemann surfaces, J. Math. Kyoto Univ., 3 (1963), 59-69.
[5] K. Matsui, Convergence theorems of Abelian differentials with applications to conformal mappings I, J. Math. Kyoto Univ., 15 (1975), 73-100.
[6] K. Matsui, II, ibid., 20 (1977), 345-374.
[7] K. Matsui and K. Nishida, Note on the Riemann-Roch theorem on open Riemann surfaces, J.

Math. Kyoto Univ., 37 (1980), 735-748.
[8] H. Mizumoto, Theory of Abelian differentials and relative extremal length with applications to extremal slit mappings, JAP. J. Math., 37 (1968), 1-58.
[9] M. Shiba, On the Riemann-Roch theorem on open Riemann surfaces, J. Math. Kyoto Univ., 11 (1973), 495-525.
[10] M. Yoshida, The method of orthogonal decomposition for differentials on open Riemann surfaces, J. Sci. Hiroshima Univ. Ser. A-I. Math., 32 (1968), 181-210.
[11] H. Weyl, Die Idee der Riemannschen Fläche, Dritte Auflage. Teubner, Stuttgart, 1955.

