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Note on the behavior spaces on open Riemann
surfaces and its applications to
multiplicative differentials

By

Kunihiko MATSUI

§1. Introduction

1A. Let R be an arbitrary Riemann surface of genus ¢ which may be infinity
and {R,} a canonical exhaustion of R, then we can choose a canonical homology
basis {4;. B;}Y_, modulo dividing curves such that {4}, B;} n G} is also a canonical
homology basis of G¥ modulo éG* for each n and k, where G* denotes a
component of R, ,, — R, (Ahlfors and Sario [1]). Further, let J be the set which

consists of integers 1, 2,....g and Dy = Dg(J) denote a patition of J into mutually
K

disjoint subsets J,, J,,...,Jg so that J = |J J, and 2 £ K £g. The totality of
k=1

square integrable complex (resp. real) differentials on R forms a real Hilbert space
A = A(R) (resp. I" = I'(R)) over the real number field with the real Dirichlet inner
product. It should be noticed that the meanings of the letter A and I are
different from those in [1]. With these exceptions, we inherit the terminologies
and the notations of [1], if not mentioned further. For example, A,, 4., 1,,
Aysos-.. (resp. Iy, Iyger Then...) stand for the real Hilbert spaces of complex (resp.
real) differentials on R with corresponding restricted properties. Moreover, for
simplicity. we use in this paper the following notations and terminologies:

J A, = {f ArAed, and jel p}, where Ay is a subspace of A,
Jp Aj.B;

Jszij A leA, and jeJ},
A Aj

— (] K oy . ; i ; . ;
Ly = {L,}p-1, where each L, is a straight line on the complex plane C passing

through the origin, L, # L, for p # q and L, is the real axis,
S(J,) = the space spanned by {a(A;)), a(B)): jeJ,} over the real number field

where a(y) is the y-reproducer in Iy, that is to say, J w =L, a(y)*> for

each wel, !
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S(A) = the space spanned by {a(A}). jeJ} over the real number field,
I} (resp. At) = the orthogonal complement of I'y (resp. Ay) in Iy (resp. Ay) for
any subspace I'y (resp. Ay) in I (resp. Ay).

Definition 1 (Cf. [2], [6] and [9]). According to [9], we call, in this paper,
a closed subspace Ax = A(Dg, Ly) of A, an S-behavior space associated with
(Dg. Ly) = (Dg. {L,}5_\) if the following conditions are satisfied:

(1) Ag =idt < Ay, where i =/ —1,

2) J AgelL, for each p,
Ip

where A§ = {A: the conjugate differential * of 7 belongs 10 Ag}. Analogously,
we call, in this paper, a subspace Ay of A, a B-behavior space if Ay satisfies the
following conditions (Cf. [2]):

Hereafter, we denote S-behavior space (resp. B-behavior space) simply by S-space
(resp. B-space).

Definition 2 (Cf. [9]). Ler A, be an S-space (or B-space). We call, in this
paper, a meromorphic differential ¢ on R has Ay-behavior if there exists a compact
region D, e Ay and A,o€ AonA' such that

¢ =4i+ Ao on R—D.

A single valued meromorphic function f on R is called, in this paper, to have
Ag-behavior if df has Ay-behavior.

1B. The generalization of the Riemann-Roch theorem in the classical theory
of algebraic functions to open Riemann surfaces were studied, at first, by Kusunoki
[3] and, afterwards, along his method by many authors, for examples, Baskan
[2], Matsui and Nishida [7], Mizumoto [8], Shiba [9] and Yoshida [10]. Above
all, Shiba’s theorem in [9], an extension of those in [3], [8] and [10], were
formulated in terms of differentials with S-behavior, and further, Baskan’s result
formulated by B-space is somewhat different from [9]. Accordingly, we have
the special interest about the notions of S-space and B-space. Whereas we do
not know the general existences of these spaces yet. though some restrictive
examples of S-spaces were given by [S], [6] and [9]. In this paper, we shall
give, in §2, some classes of B-spaces and their application to the Abelian integral
theory. 1In §3, we show some classes of S-spaces 4, = A(D,. L,) associated with
(D,(J), L,). In §4, we consider for arbitrary given (D, Lg) (K = 3), a sequence
{(D%, LY)}., which are properly constructed from (Dy, L) and a sequence of
the S-spaces {A,}%, with A, = A(D%, L) (Cf. [5]), and give a condition that
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the limit of the sequence {A,}-, is a behavior space associated with (Dg, Lg).
In §5, we consider certain class of open symmetric Riemann surfaces, and on such
a surface we show a formulation of a duality theorem (Riemann-Roch type
theorem) for multiplicative differentials which is, in case that the surface is
symmetric closed, different from Prym-Weyl’s theorem (Cf. Weyl [11]). The
author wishes to express his hearty thanks to Prof. Y. Kusunoki for his valuable
suggestions and ceaseless encouragements.

§2. B-behavior space
2A. Existence. In the following, suppose I, # {0}.

Lemma 1. Let I'), I’y be arbitrary subspaces of I, and set I = ¥+,
k=1.2. For each complex number z such that z = e # £ 1, we have

(1) Ag=1T,+zI, is a closed subspace in A,,

(2) a differential i belongs to the spaces iA%* if and only if A can be written
in a form A= (zw; — w3)/Im(z) where w; =Im (A el and wy =Im(zA)el?,

(3) analytic differential ¢ belongs 1o A,NiAZ 0 A if and only if 1Tm (p)e T
and Tm (z¢p) = Im {($) cos @ — Re (¢)sin 0} € I

4 if I'y | %, we have

Ay=Ag +iA¥ + ANAFNIAEE + Azn AGNIATE.
where Az = {¢: complex conjugate ¢ of ¢ belongs to A}

Proof. (1). Suppose the sequence {4, = x,, + zy,} =, with x,e ", and y, e[,
is a Cauchy sequence whose limit is 4. Since {Im(4,)};2, and {Re(4,)}, are
convergent, we have lim Im(4,) = Ilm y,sinf = ysinferl,, and so lim {Re(4,)

Hn=oc h=>x

—y,cos 0} = llm x,=Xx€A,, hence we get lim A, = x4+ zy = Ae A,.

n—x

(2). Let A=x+iy be orthogonal to iAf, then we have (A, il'}> =4 iz['¥)
=0and so w; =Im(A)=yel| and wy; =Im(z4) = ycos§ — xsinfel,. Thus
we get A=x+1iy = (zw; — w3)/Im (z) and the converse is also true.

(3). (3) is obvious from (2) and so omitted.

(4). If 'y | T#, then A, | iA} and so we have
A, = Ay +iA¥ + A5niAEt
= Ay +id% + AFNiAEF NA, + AniAE 0 A q.e.d.
Theorem 1. Ler I', be a closed space of I'y,, such that
Ly, +S(A) e, = I,nS(A)**

then, for each complex number = = e # + 1, the space A, = I’ 4+ zI'. is a B-space
where I'. = I'**,
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Proof. Since [}y =T, we have I, + S(A)c I'.=1T%* < ,,.nS(4)**.
j A, =0 and 4,, = A, = A,, Next, from I', = I'** we have (Cf. Lemma 1)
A

Ay= A 4+ id* L ANIA* A, £ AL 0iA* 04,
On the other hand, for ¢ = — w* + iweALniA*tn A4, we have from Lemma 1|
¢=—w*+io=(zw— a)/sin0,

where 6 = Im (Z¢p)e ' = I'y and w = Im (P)e I'** =T.. Thus we get I.aw |

c¥*el* =T* and so from Re(¢psinf) = — w*sinf) = wcos ) — g, we have the
following orthogonal relations:

o = wcos 0+ w*sin 0, and
wcosl = —w*sinl + o.

Therefore, we have |o|?>=|w|? and |w]|?cos?® = (1 +sin?0) ||w|? hence
w=0=¢ because z# + |. Analogously, we can prove AiniA¥‘nA;=1{0},
hence A, = iA¥*.

Conversely, we have the following

Theorem 2. Suppose A, is an arbitrary B-space. The necessary and sufficient
condition that A, can be written in the form A, =1+ zI, where I'** =T, and
z=¢€"% £ 1, is Im(z4,) < {Im (A,)}**,

Proof. To show the necessary condition, we set Im (A,) = I, I, = f"j!‘l and
I'¥t =TI, Because A, is a B-space, we have A,,+ S(A)+iS(A)c 4, c
Ause NS(A)*NiS(A)** and so Az = A, + =z is a B-space (Cf. Theorem 1) and
further, from the assumption, we get {A,, il ¥> =0 and (A, iz["*) = {Im(z4,),
I'*»>=0, hence we can get A, cidf*=A,ciA* =A_. The converse is
evident.

From Tneorem 1, we can obtain infinitely many B-spaces {/, + z/.} by
changing paramter z and subspace I, where S(A)+ I, = I, = I,,.NS(A)** and
I, =TI#*". However, next example shows the existence of a B-space which can
not be written in the form I'y + zI,.

Example 1. Let G be the interior of a compact bordered Riemann surface
and 0G = f,UB,UB; where each f3; is a border contour. At first, we set

[.0(8G — ;) = {duel,,(G): u=0 on ¢G — f;}, and
Fio(B)) = oo (G — By)*+.

Next, for a set of complex numbers {t; = ¢")3_, such that 1, # +t, for p # ¢,
p Uy Ji=1 P q

we consider the following families of differentials:

A= {}.e/i,m,: (I)J A=0, (2 Im(t;4)el0B), j=1,2 3}
A
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A = closure {4y, + S(A) +iS(4) + Y. 1;11.0(0G = B)}.
i

Since Ieo(B,) | Theo(@G — B,)* and S(A) | S(A)*. we have A, >id* >4 >

iA¥:. On the other hand, by using the Kusunoki’s formula (for example. Cf.
Lemma 6 in [9]), we have {4, iu*> =0 for each 4, ueA,. Thus, 4. =4, 1s a
B-space. Now we choose dujel,,0(CG — B;) such that du;e I'o(B)). j=1.2,3,
then we have t,du, + t,du, + tydu; = we A, and further, w can not be written
in a form du + zdv with duel’, and dvel; = I'}*.

2B. Application. By using B-spaces, we know already the Riemann-Roch
theorem for differentials with B-behavior (Cf. [2]). Now besides this, we show
in 2B an another application of this space to the Abelian integral theory. We set

A = {qﬁ: (1) peA,,. (2) ¢ is a Schottky differential, (3) ¢ =0 if J ¢ = 0},
A

I, = closure {I}, + S(A)},
Fy=r.nliy, +r¥xnr,.

By using the B-space A, = I, + il"**, we prove the next proposition which is
similar to that of Kusunoki [4].

Proposition 1 (Kusunoki [4]). A0 ={l,+il4nA,.

Proof. At first, we choose the B-space A, = 1,4+ il}* (Cf. Theorem

1). Each ¢eA,, with J ¢ = 0 has a decomposition of the form

A
p=i+it¥*=0c+it+ic* — ¥,
where Jed,. Re(¢p)=ocel, and Im(¢p)=rtel}* = [, NS(A)**. Terefore, we
have J (t + %) =J c* =0 and J(r +0%¥)=0= J ¢* = 0, where 7 denotes an
A A

¥ v

arbitrary dividing curves. Thus we can get ¢=0, ¢ = —t*+it. and so
te N NTENSANSA S =Trinlrt If ¢e,+il)nA, with J ¢ =0,
A

then we get ¢ = —t* +it where Im(¢p)=te(/ + IHnIfnl¥ and so
¢ =0. Hence (I, +ily)nA, <= A2, and we get the following

A=+ il )nA,+ Fxnilzn A
However, for each ¢ = w + io*elinirinA% < A,,, with Re(¢) = o, we have

welsnl NTE, = N NS(A** 0T NS(A)* .
A se

a

Therefore, we have J ¢ =0 and ¢peA2, hence ¢ =0 and A0 = (I, +ilHnA,.
A
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§3. S-behavior space A, = A({J,}7-,, {Li}?-))

Theorem 3. Let D,(J) = {J,}}-, be a partition of the set J ={1,2,....g}.
Iy the space such that S(J,\)+ Iy, = 'y = [ ,NS(J)*t and I'y = T, Then,
Jor each complex number z = ¢ # £ 1. the space A, = I'; + zI', is an S-space
associated with ({J,}}=1. {Li}#=\) where L, is the real axis and L,>:z.

Proof. Since I, + S(J,)c Ty =I*c,.nS(J,)*, we have f A, =
Ji

J I'eL, and J A, =zf I'iel,. From [y =¥, we get A, ciA%t, and
J1 J>2 J2

Ay=Ay +id% F ARniA3nA, + ASniAstn A,

However, for each ¢ = — w* + iweA3niA% nA,, we have Im (@) = we '} = T
and Im(Z¢) =0 = w*sinl + wcosel* =T, | w*el*. Consequently, we
obtain (o, w*» =0 = |w||?sin0), hence ¢ =0 and so A3niAz‘nA,={0}.

Analogously, we can get A3niA¥*nA;= {0}, and so A, = iA*l. g.e.d.
Conversely, we have the following

Theorem 4. Suppose Ay is an S-behavior space ussociated with (Dg. Lg)
= ({J}Fo 1. {Leff=1) where L, is the real axis. The necessary and sufficient
condition that A,\ can be written in the form I'y + zI'y where I',, + S(J;) © I''**
=TI, <l ﬂ S(J)* and z =" # £ 1,

k=
Im (z2Ay) < Im (A )**.

Proof. At first, we set Im(Ag) =1, ¥ =T, and I'; =T} Since
Ay, izT*y = (A, iT¥y =0, we have A, cidAft = A ciA%t where A, =T,

+zI;. On the other hand, from Ay < A,,, and J AgelL,, we get 'y < [,

Jy K
nS(J,)** and Iy o I, + S(J,). Further, since Ah < Ay () iz S(J)** where
k=2
0#zel, k=2,3,..,K we have Ax =idA}" > Z 2.S(J) + Ay, and so I'{ 2

K
Ly + Z S(J,). Therefore, we can get I, +S(J))c ' =¥ <, ﬂ S(J)*L.
hence 1/1*l A, = Ay from Theorem 3. q.e.d.

Next, we give, analogously as in 2A, an example of an S-space
Ay = A({J 2=, {Li}#=1) which can not be written in the form I'; + zI"} where
ry=r¥.

Example 2. Let G be the interior of the compact bordered surface and
0G = B, UB,Up;s where each f; is a contour. We use here the same notations
as in the example 1, and consider the following subspaces of differentials on G:
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A, = {).eA,,se: (a)J AeL,. k=1,2 where L, is the real axis,
Ji

(b) Im (t,A)e [ (B,), r =1, 2, 3},
K
Ay = closure {4y, + Y. 1, 14.0(0G — ) + S(Jy) + {S(J,)},
k=1

where each t; is a complex number such that t,# +¢t, for p#4g and { is a
complex number such that { # 0 and {eL,. By the same way as in the example
1, we can prove A, = A = iA%*. Next, the differential @ in the example 1
belongs to A,, and further, w can not be written in the form du + zdv with
du, dve .

§4. S-behavior space Ay, = A(Dg, L) (3 £ K)

4A. Ag and Ag. Let Ay be an arbitrary S-space associated with (Dg, L)
where Dy = {J,}f- and Ly = {L¢}f.,. We set Im(z;4¢) =T}, I'}** =T, and
K

i

Ay =closure { Y z, Ik}, where z,eL, and |z,|=1,k=1,2,...,K.
k=1

Lemma 2. [n order that Ay be equal to Ay, it is necessary and sufficient
that Ay is an S-space.

Proof. Since (A, iz;I'}) = 0 for each j, we obtain the relation Ay < id}*
= Ag c iAgt. Therefore, Ay = Ay means Ay = iAZ*.

Remark. By the same way as in the former examples, we can give an
example of Ay such that Ay # Ag.

4B. A", A, and A,. Let = |J f, be a regular partition of the Stoilow’s

r=1

ideal boundary B of an open Riemann surface R, {R,} a regular canonical

exhaustion of R and R — R, = |J W, where W, is an end towards f,. We set

r=1
I'l(B,) =1{df: (a) dfer,, (b) there exists an end towards f, which is disjoint
with the support of [},
rheO(ﬁr) = thClosure {1-20(/))1‘)}’
rhO(ﬁ - ﬁr) = rheO(ﬁr)*J-'

Besides J = {J,}K., and L = {L,}K_|, we consider another partition of J, the
family of lines and the subspaces of differentials on R such that:
Jew=1{j1j<g, and jeJ,, where g, is the genus of R,},
Jk+r',n = {J'J > In and Aj7 B/ < er

nje
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I'={l,}i_,, where each [, is a line passing through the origin on the z plane,
Dr:(J) = {'lk,ll}’{(:f‘
}

L,={LJ&*:, where Ly, =il,. r=1,2,. s,

where il, means the set {i{:(el} and (, is a complex number such that
0#¢€elgs,, r=12,...5s.

Lemma 3. A" is an S-behavior space associated with D, and L,

Proof. Omitted. (Cf. Lemma 4.3 in [5]).

Further, we set

A, = {A: there exists a sequence {4}, with A,eA" such that |4 — 4, -0
as n— oo},

A, = {41 Ais equal to the limit of a locally uniformly convergent subsequence

of {4}, with A,eA" and sup {[|4,]} < oo}.
n

Then we have the following
Proposition 2. (a) At =A,c A, =iA}"
(b) A, = A, is equivalent to A, = iA}*.
Proof. At first. we prove A4, c iA**. From the difinition of 4, and A,,
we can find for each ieA, and each pe A, a Cauchy sequence (g, with g,

A" and a locally uniformly convergent sequence {4, }:., (which we denote {4,}
hereafter) with 4,e A* and sup { || 4,]|} < K such that g, — ¢ -0 as n > oo and
a

4, — A as o — o0, locally uniformly on R.

Further, for arbitrary small positive number ¢, we can choose a compact
region G on R and a sufficiently large integer N such that |[Alzx_¢ + litlg_g <&
and [|[A—Z4,llg + it — u, |l <e for each n> N.

Therefore, for each k > N, we have

[ A i Y] < IKA i 6l + el pll < IKA = A 10*D6l + [ A, Tu* D6l + el pl]
<A 116l + Cllpll + K)e < |[<A, il r-6l + Cllpll + K)e
< (3K +2|ul)e.

Thus we get 4, < iA¥t. Next, we show iA** = A4,. Let ie, be a differential

such that (4, iA4%¥)> =0. /1 has a decomposition of the form

A=A, +ipk, where 4, p,eA" (Cf. Lemma 3).
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and so there exists a sequence {n,};_, (which we denote here simply {«}) such
that 4, >4, and p, — . locally uniformly on R. On the other hand, there
exists, for each ¢ >0, a compact region G such that |[i]z_; <& and so from
= {4 ip¥> =0, we have

| iy + Ch i — i dal = <o i r-gl < el ]I, and so
<A i el < el I+ 141 T, — wlle-

Therefore, for each n > N’ which is sufficiently large integer, we have
[<A i 6l < elllp,ll + 141, hence
[<A iy = N2 < el 211+ e(ll I+ A1

Consequently, we can choose |2 — 4,]1* = ||, [I*> > 0 as n — oo, hence A€, and
iA¥t = A,. (b) is evident.

Note. In the case the genus of R is infinite, we do not know the existence
of S-behavior space associated with arbitrary partition Dg(J) = {J,}f-, of
J=1{1,2,...} where K = 3. The author supposes that, in Proposition 2, A, would
be equal to A4, hence A, = iA¥* is an S-space associated with ({J,}K_ . {L,}F-)),
but this problem is not affirmatively proved yet.

§5. Multiplicative differentials and Riemann-Roch’s type theorem

5A. Multiplicative differentials on R. Concerning the extension of the
duality theorem of Riemnn-Roch’s type for Prym differentials (multiplicative
differemtials) (Cf. Weyl [11]) to open surfaces, no results are known up to now,
and so it seems not to be meaningless to give such a sort of theorem for
multiplicative differentials on a specific symmetric open surface.

Suppose that R is a non compact bordered surface whose border dR consists

m

of a finite number of contours {C,}_, and P(f) = U p. U C, is a regular
r=1 qg=1

partition of the Stoilow’s ideal boundary f# of R. Let G be a canonical region

N

of RUGR such that 4G > R, and set R — G = |J W, where W, is an end towards

r=1

B, Next, we divide each C, into a,,_, and a,, where each of x,,_,, z,, is an
open are on C,. Further, we associate each «, (resp. f§,) with a complex number
z; (resp. {,) such that |z,| =1 and [{,| =1, and denote the set {z,,z,,...,25,)
(resp. {{y, {5,....(,}) by Z (resp. S). For Z and S we consider the following
subspaces of differentials on R:

Ay = Apg = {/leA,,se: (a) J ieL;, j < g = the genus of G, and

Aj.Bj

f reil,, for A;, Bjc W, r=1,2,...,s,
Aj.Bj
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(b) Im(z,A)elo(a,), g=1,2,....2m
(mlm@nenmmxr=L2w”*,
where {[,};_, is a family of lines on the z plane passing through the origin and
{,el, for each r. Then we have
Lemma 4. A, is an S-behavior space.
Proof. Cf. Lemma 4.3 in [5] and Lemma 2.6 in [6].
We set
D(Aq, 8, R) = {¢: (a) ¢ has Ay-behavior. (b) divisor (¢) of ¢ is a
multiple of §},
S(A4q, 0, R)y = {f: (b) function f has A,-behavior, (b) divisor (f) of f is a
multiple of d},
where 6 =9,/0, and d,, 9, are finite integral disjoint divisors. Then
Lemma 5. dim S(A4,, 1/6, R) = 2{ord 6, + 1 — min (ord §,, 1)]
—dim [D(A,, 1/5,, R)/D(A,, 6. R)].
Proof. Since A, is an S-behavior space, from [9] we have the conclusion.

Next. we show an example of a duality theorem for multiplicative differentials
on R by considering Lemma 5 on the surface R, where R is the double of R
with respect to dR. We set

J = the involutory mapping R onto itself,

o™~ = the differential on R associated with J and we I',(R) such that if o is
expressed as w = a(z)dx + b(z)dy in local parameter z = h(p) in V. then
o™~ =a(Z)dx — b(z)dy in z=h(J(p)) in J(V) where V is a parametric
disc.

Next, let P (resp. Y,) be a point on R (resp. %,). (k) an analytic arc on RUJR
such that dy(k) =Y, — P, and set

7= (U= Jyk)}.
‘);kn = l)A‘k U ( - }711)'

Lemma 6. The analytic continuation ¢, of ¢pe€D(Ay, d, R) from a point P
to J(P) along 7. is z2¢~, and so the analytic continuation of ¢ along )A'pq from
a point P 1o P is z3z}¢. Consequently, we have

¢ ez2L, for each h, and

Im (z,z2¢,) = 0 along J(x,) for each n.
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where L, means the symmetric line of L, with respect to the real axis.

Proof. At first, we set z,¢ = w + iw* on R where w = Re (z,¢), then w* =0
along a«,, hence the differential @ on R — (OR — ag) such that

@& =w on R, and
=w~ on R—(0R — o) — R,

is even for J, and &* is odd for J, where J, means the restriction of J to
R — (R — o). Therefore, we see that the analytic continuation of @ =z, ¢ to
R—R+ais equal to @~ = z,¢~, and so the analytic continuation ¢, of ¢ = z, @
is equal to z,®@~ = z2¢~. Consequently, we have

j ¢eziL, for each h, and
JAn,JBn

m (z,z} ¢,) = 0 along Ja, for each n.
Obviously. the analytic continuation of ¢ along y,, is equal to z2z} q.e.d.

Hereafter, we consider, for each ¢ e D(A,, d, R) and each feS(4,, d, R), the
following elements and families:

A aks1s Jaksoondarj1) = Z(jy)¢p on R =RUAR

=z(ju+1)*Z(ju)¢~ on R —R,
where we set

2(p) = z,,, and z(j)?2(ja—1)? - 2(j2)?2(j1)? = Z ().

¢ = {DUmerrfrio-ri))idpy=1.2.,2m for p=1,2,..,k and k=1.2,..},
D(Aq. 6. R) = {¢: peD(Aqy, 8. R)}.

S(4,, 4. U(df ): feS(A,y, 0. R)}.

where 6 = §UJ 8 Obviously. ¢ is a multiplicative differential on R. Then we have
the following proposition 3 which is different from Weyl’s theorem (Cf. Weyl [11]).

Proposition 3. Let 9,/9, be a divisor on R such that 9,0, =0 and ¢, J,
are the finite disjoint divisors. Then, we have
dim S(A,. 1/6. R) = order (8,) + 2 — 2 min [ {order (,)}/2. 1]
—dim [D(Ao, 1/6,. R)/D(Ao. 8. R)],

where & =0UJd. If g, the genus of R, is finite, the genus R is equal to
2g+m—1=¢ and so

dim §(Ao, 1/5, Ii) — dim Ij(/io, 5. R) = order (5) +m+ 1.
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Proof. Cf. Lemma 5 and Lemma 4.

5B. Application of Proposition 3. For the case that the order of a given
divisor is infinite, several authors investigated the duality theorems of Riemann-
Rch type for Abelian differentials under the respective conditions. In the
following, we formulate as an application of Proposition 3, a Riemann-Roch
theorem of another type with infinite divisor on a covering surface R of R.

At first, we take an infinite number of copies {R} , .} of R and adjoin R]
2m

with R}, along &, k =1,2,....2m. Next, thus constructed R* = R} |J R?, has
q=1

2m — 1 number of a, for p. and so we adjoin R}, of R* with R}, along 2,

r=1,2..2m, r#¢q, and so on. Thus we can get a covering surface
R=lim R". Now we take a differentials ¢eD(A,.d. R) (resp. df where

n— 0

feS(A,., 9, R)) and denote the analytic continuation of ¢ (resp. df) to R by ¢

~

(resp. (df)) (Cf. Lemma 6). We set

D(Aq. 0, R)=lp: peD(A,. 5, R)},
S(A,, 8. R) = {J‘(ZI}):feS(AO, s, R)}.

where 0 is the divisor such that the restriction of o to each R = 4. Then
Proposition 5. dim S(4,, 1/0, R)=2[order(d,) + I — min {order (3,), 1}]
— dim [D(A,, 1/0,. R)/D(A,. 0. R)],
where 6 = 0,/0, is a finite divisor. If ¢, the genue of R, is finite, then
dim S(A,, 1/5, R) — dim D(A4,, 5. R) = 2 {order (6) — g + 1}.
Proof. Cf. Lemma 4 and Lemma 5.
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