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Introduction

Let X  be a  complex manifold, g x  (resp. (9 x ) the sheaf of differential operators
(resp. holomorphic functions), x o E X , f, i , • • • , f / E 0 x , x 0 , C 1 , " • ' C I  independent complex
variables, and g [ =  g x  Oc C c d .  The purpose of this paper is
to prove the following theorem.

Theorem. (1) For any  y  = (y i ,...,y ,)e N I ,  there exist a dif ferential operator
P A ( ) E 9 x , x 0 V 1 , . . . , C i l  and a non-zero polynomial b m ()E C [C ,,..., such that

Pp(C).fi` + '  • f l '
+

' bp(C)fi t

(2) M oreover, we can take 1)(C) so that

b,(C) = (ati + • + au(i+

where cc i i  e N, GCD (a„ , ac„) = 1 and a, e
 Q > 0

 f o r any i.

Historically, the above theorem goes back to a  conjecture of M . Sato based
o n  his theory of prehomogeneous vector spaces (see  [8]). W hen 1= 1, (1) is
proved by I. N. Bernstein [I] for X  = C" and a polynomial f ,  and by J. E. Bj6rk
in  general, and (2) is proved by M . K ash iw ara  [3 ]. F o r a  general 1, the whole
of the assertion except the part concerning a, is proved by C . S abbah  [7 ]. Thus
what is new in  the above theorem is that we can take a, to  be  positive rational
num bers. O u r  p ro o f  h e re  is  b a se d  o n  th e  results and techniques given in
[3], [4], [6] and [7].

In  order to  m ake the exposition easier to read, we exclusively consider a
connected smooth affine variety X  over C and the ring D = D x  of (global sections
of) algebraic differential operators, except the final step of the proof. Thus w hat
we shall prove in this paper is an algebraic version of the above theorem . But the
necessary modification to  ge t the above theorem will be obvious.

The author learnt from Prof. C. Sabbah that he has also got the same result
(unpublished). The author would like to express his thanks to Prof. C. Sabbah
for his kind communication.

Communicated by Prof. T . Hirai, October 22, 1991
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Convention. The field of complex (resp. rational) numbers is denoted by C
(resp. Q ) . The rational integer ring is denoted by Z, and N = {0, 1. 1...).

Except for f  =  ( f , , . . . , f , ) ,  we denote an /-tuple by  a lowercase Greek letter,
and its i-th  com ponent by  the sam e letter w ith the suffix i. Concerning the
/-tuples, w e  use the following notations. For an /- tu p le  t  of variables,

(

= (Or i ,...). For a complex variable, say u , sometimes we write 0„ for f i .

For /-tuples a and [3, a -
 1  =  (a,-  ' , ...), 1,6' = a • [3 = (a, [3 ,, ...) and (alf3) = l a  ,• [3 i ,

e.g., Or t  =  (a, i T 1 , ... ). F o r  y E N I ( o r  Z '  in  so m e  cases), a  = 111P and
ttY  = (le' , ...), where a is an /-tuple and u  is a single variable etc. For z  13E Z',
a  >  [3 means that a, >  /I ; for any i. We denote the standard basis of C ' by E(i)
(1 < i I).

1. Preliminaries

1.1. Let X  be a connected smooth affine variety over C, and Dx  the ring
of algebraic differential operators. Let C[s, t ] be the C-algebra with the defining
relation ts = (s + 1)t, and u i  the abelian category of pairs (M, i) , w here M  is a
finitely generated left D-module and i  is  a C-algebra homomorphism C[s, t]•-+
E n d (M ) such  tha t i(t)e E n d ,(M ). (A  morphism in d i '  is  a D-homomorphism
which commutes with the C[s, il-module structures.) W e write s  and t  for i(s)
and i(t), and we write M E d /  instead (M, i)E.W . For M e di% let bm (x )= b(x . M )
be the monic generator of the ideal of polynomials b(x)EC[x] such that b(s)= 0
as a C-endomorphism of M itM  (not necessarily compatible with the D-module
structure). Here we admit bm  to  b e  zero.

A  finitely generated D-module M  is called ho/oriomic (resp. subho/orfornic) if
the dimension of the characteristic variety is dim X  (resp. dim X  + 1).

Lemma 1.2. Let N , N 'E .R , where N ' is a quotient of  N .  Then bx , divides /N.
The proof is easy and omitted.

Lemma 1.3. L e t N , N ', N "E d i, w h ere  N "  N '  an d  N  i s  a  quotient of
A ssum e th at N  is  subholonom ic and  t: N  N  i s  injective. T hen b(x, N)

divides f l L 0  b(x  + I, N ') f o r a sufficiently large k.

P ro o f  Let K  = ker (N "  N ) .  th en  bN ,/,  divides b N ,, and N  = N " I K  OE
N '/ K .  H ence w e m ay assume from  the beginning that N  = N " OE N '.

The increasing sequence ker (t IN ')  ( j  = 1, 2 ,...) becom es sta tionary  for
sufficiently large j. (Note th a t D  is  a left noetherian ring.) L e t  ker (t" N ') =
ker (t' ' N ')  • •  •  =: L .  T h e n  Le d i ,  Ln N  = 0  and  N  OE N' I L .  Since b,„, /,
divides b N , we may assume from the beginning that t: N ' i s  injective. Then
b ( s ,  N ') = t  r w ith som e r End c (N).

Put t - jA l = {u E N 'I t iu e N } .  The increasing sequence t N  ( j  =  1, 2,...)
becomes stationary for sufficiently large j. Let t - gN  = t I N  =•••=: N o . As
is easily  seen , N o e Especially b(s, N ')N 0N o . Hence tg • tr N oN ,  i. e.,
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rN , c  t - q- 1  N  = N o . Thus r induces an endomorphism, say 1.0 ,  of N ,, and we
have b (s , N ')= tr, in  End,(N o ) , which implies that b N 0 d iv ides b„,.. Hence we
may assume tha t N ' = N o .

L et C b e  a n  irreducible subvariety o f the  cotangent bundle o f  X .  For a
finitely generated D-module M, denote its multiplicity along C by tn (C , M ). Since
N No , ON ° N  and  t: N 0 -4  N , is injective, w e have

m(C, m(C, N 0 ) = m(C, tq N 0 ) m (C , N ) .

T h u s  th e  characteristic c y c le  o f  No c o in c id e s  w ith  th a t o f  N .  Since N  is
subholonomic, N  „IN  is  h o lo n o m ic . (C f . th e  p roof o f  [ 3 ,  Corollary (3.2)].)
Similar argument shows tha t N ItN  is also holonomic. Hence by [3, Corollary
(5.14)], b(x , N ) divides f r i = o b(x  + j ,  N „) fo r  a  sufficiently large k. (In  [3 ], s  is
assumed to be commutative with the D -m odule structure. But this assumption
in  not used there.) Thus w e have completed the proof.

1.4. L e t  X ,  b e  a  sim ply  connected  o p e n  su b se t  o f  n= 1 f,-1 (C "),
X , x 9 (X, C) = n i f(x)c' a  single-valued branch, C [ ]  =  C  and
M C ] =  Dx  C) c  C [ ] .  T h u s  w e  g e t  a D [ 4 ] - m o d u l e  D x [ C ] f .  Let 6(u) be the
standard generator of Dc ID c u, T = (T 1 , ,  TO an /-tuple of independent complex
variables, and 5(1 - — f  (x)) =FIA T ; — fi (x)). Thus w e get a  Dx  [—  8 ,7 ]  module
Dx [—  ar T]S(r — .f (x)).

L em m a 1 .5 . B y the correspondence —  T and 6(T — f), D x [C]f
• 0,116(T  — f ) .

P ro o f .  Let = (C i ,...,c 1) , 7 = (T 1 , TO, and C T, 7 - 1 ]  be  the C-algebra
d e fin e d  b y  th e  re la tio n s  Ti Ti-  1  =  t  Ti = 1, =  [ 7 i ,  T i ]  =  0  and t ,  =
(C;  +  bi i)t i ,  where J i i i s  the K ronecker delta . By the correspondence C4-- — T.
CE", T, 7 - 1 ]  =  C[ — at t ,  T , t - 1 ]  =  Do [T - 1 ]. H ence  DX [, T , T  : =  DX OC
• T , T  1 ]  =  Dx ,i c i[T - 1 ]. The annihilator of (5(t — f )  in Dx „,i[T - 1 ]  is the left
ideal generated by

Ti -  (1 i < I), a n d  y  + y(f )
/=1 aTi

where y is any vector field on X .  These elements correspond to

(1.5.1) Ti a n d  y — y ( i g i t i -
 1 E D [ ,  T, t 1 ]

i= 1

b y  t h e  a b o v e  isom o rp h ism . D e f in e  t h e  D [,  T, T- 1 ]-m o d u le  s tru c tu re  o f
Dx[C, f  1] f  by

C, P (C)f C, f '  a n d  T i  P ( ) f f )( + g(i)).f + E ( i ) .

W e  c a n  sh o w  t h a t  t h e  elements (1.5.1) generate t h e  annihila tor o f  f :  in
Dx R , T, t ' ] .  H e n c e  ( 5 ( t  f )-_* f ' gives a n  isomorphsim [T-1]6(T —  f)
Dx U, T, T  1 ] .f  =  Dx  [C, f  ' ] f .  S in c e  the image of D[— O r t]b(r — f  ) is Dx[i]f4,
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we get the desired isomorphism.

2. Proof (first step)

2.0. In  this section, we follow the argum ent of [6] and [7].

2.1. L et A  b e  the  se t o f a e IV such that GCD (cci , ,  7 1) =  1. W e  f ix  an
element a e A  throughout this sec tion . P u t E = C 1 , M = D x x  E MT — f),

D iE  =  E D Œ E ,i =  E  D ,  D E (u) = E D u 1 ,
fl,yeN,g e Z , jeZ
fl — y ^ i

. E  D x  ® € D , =  Dx Dx .E(u) = Dx 0 cD E(u),

= , E 6(1- — f ) ,=  D œx ider — f M (u) = Dx  E(u)(5(T — f ) .

w here u  i s  a  new  com plex variab le . W e consider DE (u ) a s  a  su b r in g  o f
DE C(u), and M(u) as a submodule of (Dx x E 0 c C(0)6(2 — f ) .  L et E ' be a
copy of E .  B y  the transformation B: E' x C •-4 E x C  defined by (r, = B(T' , u)
= (uat' , u), D E (u) is identified with D E, [1,1] = DE , 0  EC [u ] . H e n c e  M (u) h a s  a
Dx  x  E lu Im o d u le  s t ru c tu re . L e t  u' b e  a  new  com plex  variab le , and  pu t
N = M (u )  C [U ]  C  [U , u ]  (5(u — u'). Then N  is a  left module over Dx  E , [1.1]

0 C  C[u' a u , ]  =  DxxExc[u].

Lemma 2 .2 .  (1) N  is  a subholonornic D X ,, E x -module.
(2) N / uN is a  holonomic DX XE XC -modu/e.

P ro o f . Since M (u ) D x  „ E (u)Ser — f) = D x , E, [14] 6(4 1 —  f ) ,

N = D x x C 5 ( 1 ,1 2  —  f (x))6(u — u').

Hence there exists a maximum subholonomic submodule  N 1 o f  N  [3. Theorem
(2.10)]. S in c e  g:= i5 ( u t '  — f )6(u — u') satisfies

( + u—  L .j ) g  =  0  a n d  (  — = 0,
Ox, ,=,• x,a •

N [ u ' ' ]  i s  a  subholonom ic Dx  x x  c [u" - 1 ]-m odu le . (Here (x 1 , ...)  is  a local
coordinate system o f  X . )  Hence (N/N,)[u — l ] =  0. E spec ia lly , u'k g = u k geN ,
for a sufficiently large k. Since u : N  N  is an injective Dx  , , c -endomorhpism,
N  u k N = D x x  E, ,,,(u k g) N 1 . H ence N  is subholonom ic . H ence N /uN  is
holonomic.

2.3. Let u be the Dx  x  E -endomorphism of M(u) defined by the multiplication
by u. Define a D x -endomorphism C  C ,  of M(u) by

M(U)M  1 u nm  • 1,1- i ( ( a  —  ,T ) +  DM • u .
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Lemma 2 .4 .  ( 1 )  uC = (C + 1)u.
(2) For P e D x , y  eIN I and k  E N,

C(P-CP0.7,45(u'r' — f ) - = Pei Y ((ocl—  ac t') — k)(5(te-t. ' — f) • tt".

Especially , C is a  D,„,—endomorphism of M(u).

These assertions can be proved by a direct calculation.

2.5. Let us "extend" the endomorphism C of M (u) to  N .  As a C-vector
space, L:= C[14, au ] b(u — u') C [ u ,  ] •  L e t  C ( u P )  = — pu" , and consider
it a s  a n  endom orphism  o f  C[u, 0„,]6(u —  u'), w h ic h  w e  sh a ll d e n o te  b y
C = C L . Define an endomorphism C = C ,  of N  by  C N = C m 0 1 + 1 0 C L .

Lemma 2.6. For any  P C[u' , e„,], [C i , P] L c uL .

P ro o f . W e may assume th a t P  =  u '  .  Then

[C, P]uP 0?,45(u — uL i f  p > 0, and

[C, 110,45(u —  u')e C(L) = uL.

Lemma 2 .7 .  ( 1 )  C =  C , is a well-defined D x -endomorphism o f  N.
(2) uC = (C + 1)u.
(3) C  induces a D x „E „c -endotnorphism of N I uN.

P ro o f . (1) In order to prove the well-definedness, it suffices to show that

(2.7.1) Cum 0  n + um  ®  C n = C m  u n  + m  C u n

fo r  m E M (u )  an d  n e C[u, 0„,]6(u —  u'). S in c e  w e  have uC =  (C +  1 ) u  as
endomorphisms of M (u) and C[u, 0,](5(u —  u'), both members of (2.7.1) are equal
to

— 1 1 M 0 1 1 +  CM® un + um C) Cn.

(2) is now  obvious. It rem ains to  prove that the endomorphism C  of N IuN
commutes w ith  the D € -module structure. For P e Dc , m  E D, x E .6(ter' —  f)
(c M (u)) and n  C [u , 0 ,] 5(u — u') = C[u' , ]6(u —  u'), we have

CP(m C) n) — PC(m 0 n)

= (Cm () Pn + m  CPn) —  (Cm  0 Pn + m  0 PCn)

= m  C)[C, Pine uN

by (2.6).

Lemma 2.8 ([4, Theorem 4.8] and [ 5 ,  § 5 ] ) .  The endomorphism algebra of
a holonomic D-module is  a finite dimensional C-vector space.

2.9. By (2.2, (2)) and (2.8), the totality of D „ „ „c -endomorphisms of N /uN
forms a finite dimensional C-vector space. Since C is a D5  ,E,,,c-endomorphism
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o f  N Iu N  by (2 .7 , (3)), there  is a non-zero polynom ial b(x) e C[x] such that
b(C) = 0  as an endomorphism of N

Lemma 2 .1 0 .  F o r a  poly nom ial b(x )EC[x ], the  follow ing conditions are
equivalent.

(1) b(C) = 0  as an endomorphism  of N I uN

(2) b(C) = 0  as an endomorphism  o f  M(0):= M(u)/uM(u).

(3) b((ocl — a r t) A l 2 i + 1  f or any  je Z.

(4) b((xl — ar t)) M ' '  OE Ma?- i

(5) 1)((al — a r t) )6 ( t —  f ) E m '.

(6) b((ocl — a tt))6 (t . — f )eupx .E(1-1)6(T — f ).

(7) b((al — T'))6(te t —  f) uD x  E .  [U ] 6 (ti a t 'f ) .

(8) b((al — r, T' )) (14 2 f l  ó(u —  u')EuD, — f)6(u — u').

Pro o f . N ote  th a t  the restriction of C  to M (0) O c CS(u — u")( OE M(0 ) O c
C[O,]o(u —  u') = N 1 uN) can  be  na tu ra lly  iden tif ied  w ith  C 1M (0). S ince  C
commutes with C [ O ] ,  b(C)1(N 1 uN) 0 if and only if b(C) M (0) C ( u  —  u ')  0,
i.e ., b(C)1/14(0) 0. T h u s  w e  g e t  (1) <=> (2). S in c e

M(0) = M(u)/uM(u) — E  
M " + 1

we get (2).=.. (3). The implications (l )<=> (8), (3) (4) (5), and (6)<=> (7) are
trivial. F o r  / 3

1, E D ,, we have

b((71— att) +1)E 1913, g  a V 5 ( t  f )
ft,yeN 1

= Pfi.„-cfla b((al— att)-+- — (7113 — »)6( -c — f )
(71/3 — T ).-j

E P # ) ,Tfl a b((al —  7))6(7 —  f) mod

Hence (3) (5). S in c e

u.1), „E (u)5er —  f) = E m " j u - i+
jeZ

and b((al — a r t))6(r f) i s  free from u, we get (5) <=> (6).

2.11. For v e put

:=  n m—wo = n E  Mn).
aeA aEAi t e Z '

(orlm) 010
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(See (2.1) for A.)

Lemma 2.12 [ 6 ,  2 .2 ] .  ( 1 )  T here are .finite num ber o f  a(i)'s in  A  such that
M " = n

1
llP ( i ) (2 ( i )1 ") f o r any  p E P .

(2) T here ex ists K E N ' such  that M" M " ' f o r an y  p c

2 .1 3 .  Let b Œ(x) = b(Œ, x )  b e  th e  monic polynomial of the m inim al degree
satisfying the equivalent conditions of (2.10). (See (2.1) for x.) F o r a  p E N I , we
have

JI b(c(i), (a( )1 a— + /)ItI' O m . (0 ,0 0 0 1 0 .

flb ( c x ( i) ,  ( 401 — at -c) +.i)Ar and
O j <  (a ffir At)

flN a ( i ) ,  ( ( i 1 —  art) +Pm°
0 - j< (a lin l 1 +K )

By the last inclusion relation and by the isomorphism given in  (1.5), we get the
functional equation

11 Naco, (0401) +.i)•.f‘ = Pp()f + 4

with some P 12 ( ) E  D , [] .  (N ote  th a t M ° con ta ins (5(T — f ) ,  which corresponds
to ‘r  by the isomorphism of (1.5).)

Thus it rem ains to prove that the zeros of the minimal polynomial  b (x )  of
C E End ), (N luN) are negative rational numbers for each c e  A.

3. Proof (second step)

3.0. Here we consider the case where U i f i
-1 (0) is  norm al c rossing . For

the  sake o f simplicity, we assume th a t X  = C" and f ' s  a re  monomials of the
coordinate functions.

Lem m a 3 . 1 .  L e t  a, (1 ) ,...,(h )  b e  v e c to rs  in  Q ' .  P u t  H  = {1, 2,...,h} ,
<I ) :=I iE lQ >o ( )  f o r  I OE H ,  I:= [iEHI M E<I>} , :-= H I „f  :=
{I e 51a0 M },  an d  le t  i: H  b e  a m ap p in g  such  that I  f o r a n y  I .
T h e n  e <i(f)>.

P ro o f .  Assume that /  <i(.f )>(= <4.1)>). Then /0 :=  i( f )E f . . But by the
assumption o n  i, 4/ 0 )0 /0 ,  and  hence

Lemma 3.2. The follow ing conditions f o r I OE H  are  equivalent.

(1) c ( “1 > .
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(2) T here ex ists y el i such that (alp) >  0  and (W H Y )  0 f or any  ie I.

We omit the proof.

Lemma 3 .3 .  Keep the notations of  (3.1). L e t  M  = M ( a) = G Z` I (a I P) > 0}.
I(y ) = f ielig(011.1)< 0}  a n d  i : M  H  he a m apping such that i(p)01(y) f o r any
y e  M . Then ac<i(M )>.

P ro o f .  By (3.2), } /(y)ly e MI =  5 .  F o r  any /  e , f ,  take p (I)e M  so that
/(p(/)) =  I ,  and  pu t i(/) =  i(p(I)). Then i(/) =  i(kt(1)) 411(1))= I and

E <i(f)> = <ii1(5 )> <1(M)>.

Lemma 3 .4 .  ( 1 )  K eep the  notations of  the prev ious lem m as. L et K (i, p)
( ic  H , p eP) be ,f inite subsets of  Q , and put

b m ( )  = =  H ( ( ( i ) ) a) .
ieH

aelCH,m)

Assume that K (i, y) = if  ((i)ly )  O. Then the ideal J(a) of  C [ ]  =  C , Ci]
generated by  { by e M ()}  contains a poly nom ial of  the form +  ai ) with
ai eQ.

(2) A ssume f urther that K (i, y ) c  Q , 0 f o r an y  i  an d  p . L e t  H ' =
0 e K (i, p) for some yEA PIX )I, and assum e also that act <H'>. T hen w e can take
the above polynomial so that a i > 0.

P ro o f . Let

M  = M(c)u p - - - - 0  (i (p) a(p))eH x  Q

by any mapping such that a(p)eK (i(y ), y). (Possibly such a  mapping does not
exist.) I f  i(y) I(y ) for some y e M, then ( (i(p))y) 0  and K (i(p), y )= 0., which
is  a b su rd . Hence i(y )0 /(y )  f o r  any y e M . B y  (3.3), a e <i(M )>. Let •a =

c(u) W 01)), where c(y)E Q > 0  a n d  c(y) =  0  f o r  alm ost all y's. Put

a = c(u)a(u).

If the assumptions in (2) are satisfied, then a > 0. I n  f a c t ,  it suffices to show
that c(y) >0  a n d  a(p) > 0 f o r  some y  M. Since a <H '>, w e  have c ( / 1 0 ) > 0
and  4/1 0)0 I f  for some p o  E M . Then 0 K (41 1o), yo), and a(R0)E 10 4 / 10) , Po)
Q>e•

Since (a, a) is a  linear combination of ( (i(y)), a(y)) (ye M ), we have

(3.4.1) n Icecig(icitm)+ 00 = 0 } g e c o lo +  a =
/L E M

Since nA tE M  b '( 0 )  is a  finite union of sets of the form of the  left hand side of
(3.4.1), we have

n b; 1(3 ) U  { C E 0 1(a1) + a i =
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with finite number of rational numbers ai . Moreover, under the assumptions of
(2), we may assume th a t a;  >  0 .  B y  the  Hilbert's Nullstellensatz, the  ideal JOO
contains a polynomial 11(0/10 + a1)" for a  sufficiently large integer k. Thus we
have completed the proof.

L em m a 3.5. L et x =(x ,,...,x „)EC" = X , f3(i)EN ' (1<i <n),Ii(x )= 117=i x 11( i ) i

f =  ( f 1 ,...,f ,), and a e \  1 0 1 .  Then there exist R(u)E „ c i[u ](c  D ,,, c , C),C(u))
and a polynomial b(s)EC[s] such that b(s) is of the form Fl i (s + a1)  with ai e ( ) , , ,
and

b((od— e t i-C))6(tef —  f)= u • R(u)C5(u't - ' — f).

P ro o f. In  order to  m ake the argument easier to understand, we formally
introduce the Mellin transformation 49(1') S cpeef t'ctr'. Our transformation here
is a  formal one and every expression should be understood in  th e  form before
the transformation.

L et t  be a single complex variable, and put

(i > 0)
[ t ] '  =

(i < 0),

P  =  H [ t ],ti Q  =  H  [ x ] -0010
= = 1

h  =  n  +  W ) =  MO (1 < i n ) , (n  + i)= —  4 0 (1  < i < l) ,

H = {1,

K ( i ,  p )  =  
5 11, 2 , . . . , 0 0 1 1 4 } , i f  1  <  <  n, (/.3(i) p)> 0,

if  1  <  i <  11, (fl p) 0,

if  1  <  <  / ,  ,u, <0,
K (n  + p )  =

i f  1  <  <  1, p i > 0,

 

sgn (t) =  1 sgn (p )= H  sgn (p1)Pi,
j=

Then

and P : = sgn

  

=f l ( ( ( i ) l ) + a)• = : c p ( ) T '± " ,  and
n < i< n + 1
aeKli,

11

Q = Q p  H

FT ((ww+ a). •
i s,,

aeti(i. p)
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Put

b,(C):= c,(C)dp(C) = 11 K(i)I0 + a).
0.Voi

Then

f(1),, Qder' —  u - "f )) • t'cIt' =- Q  16(f  — )

= cp(C)Qp.(14 7 f ) = b,(C)(u - œ  f ) • u
- ( lg) .

N ote  tha t K(i, it) = cb if ( (i)1/,t)_-_ 0  a n d  K(i, it) Q 0  f o r  any tc. L et H ' be as
in (3.4, (2)). Then { (i)lie H'}  ca-— . Since a E \ {0}, <H'>.
T hus w e  can  app ly  (3.4), a n d  w e get polynom ials em(C) (ye M (a)) such that

eX )b,(C) = b(041)), where b(s) = f l i (s + a i )  with ai e  Q  0 . Put

R E  u w o - i —
pE M ( )

Then

f(Rt-5(1- ' — u - Œf )) • tit'

— u f1 (c" ) -  1  e,(—  0 „T')13 ,Q ( t ' —  u - 'f ) • T4  d f
pe114(a)

=  1  U ( I i) — 

' J P,Q,,t5(r' —  u7f)- e (T ' e r ,) -c' d-c'
LEM(Œ)

=  1  U ( ' I" )— 1 eo (C)h,,G)(u - 'f f  • u - ( 2 1 ")

geM(a)

= U - 1  •  b((a1C))(14 - 'f )

= Iti -  ' b ( ( al — a , î ' ) ) ( î '  —  u 'f )  •  -r'cit'.

Hence

W (t' —  u 'f )  = 1 b((ocl T ') )6 (T '

which is equivalent to the desired equality. (In fact, we can identify 6(r' — ti f )
with u '5 (te -c ' — f ) .)

3.6. By (2.10, (7)) an d  (3.5), the  zeros o f th e  polynomials k (ac  A) in  (2.13)
a re  negative rational numbers if  U i f  - 1 (0) is  norm al crossing . (In  this case, f i 's
a re  monomials in  lo ca l coordinate functions multiplied with invertible elements,
say  g1. B y th e  ch an ge  o f v a riab le s  T ; =  g iT r ,  th e  s itu a tio n  becomes th e  one
considered in  this section.)
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4. Proof (final step)

4.0. H ere w e prove that the  zeros of b (2 .1 3 )  a re  in  general negative
ra tiona l num bers. W e sha ll p rove  th is assertion by  reduc ing  to  the normal
crossing case by using the desingularization theorem o f H iro n ak a  [2 ]. Thus we
can not stay within the affine varieties, and we need the sheaf theory. Localizing
the D-modules considered in the previous sections, we get quasi-coherent sheaves,
which we shall denote by the corresponding script letters, e.g., g x  = Ox Oc[x]Dx
etc. S ince  any  varie ty  is  covered  by  affine open subsets, such sheaves can be
defined even if X  is no t affine, and the argument of the previous sections works
in  general (with a n  obvious modification, if necessary).

4.1. Let X  be  a s  before, and F : X ' -> X  a projective morphism such that

F: X ' -  ( 0 )  X  -  (0), where =  f t . F ,  a n d  th a t  U i f, - 1  (0) is
normal crossing. Such a pair (X ', F) always exists [2]. Put n = dim X  = dim X '.

4.2. L e t g = (5(uŒT' - f  (x ))6(u - u'), g ' =  ( u t ' -  '( x ') )6 (u  -  u ') ,  X  -  1 7}
=  x  ® C DE .C)g, = (9 x , D j: X ' X '  x  X  be the mapping x' -»
(x', F(x )), and, p': X ' x X  -> X ' a n d  p: X ' x  X  -> X  the  p ro jec tions. F o r any
variety Z, 52-1,  denotes the  sheaf of regular j-forms on  Z .  Put

x X X  = 1 1g.r x x  0e ,  x10 14'.  x )  1 ) 0 i - x  x  g2 X-

For w e and Cti E Qnx ,, put

F* w  0 (1 0 (w ' (o) ' 0 w')e p' .5 4 ,  0  I ex ,  i X  X , - X '•

Then, w e can show th a t l x _ , d o e s  n o t d e p e n d  o n  w  or a n d  it defines a
global section. Especially,

l x - x , 0 g'E P* 1110 p - - x  x -x ' 0 17:0 •

Let g "  be  the image of 1 x _ x . g ' by

P*(P - 1 Q'k, Op— iex i* x C) V x,

- i i n (P*(13 ' 1 .( 7 )(' p ' - ,C x j* C-- X '  X .-X ' a C i)x ,

-> 11"(Rp * (p '  1 2 ;, x, i* „9 X a g x  `
1

.1 ) )

= H ° (  IF
Here p- i s  the relative de Rham complex. We can define endomorphisms
C and u of Afj , in  the  same way a s  in  § 2 . Since C is a  g x -endomorphism and
u is a  g „ C),D E„,-endom orphsim , C  induces a  g x -endomorphism of ,1" and
u induces a  9 x  (D c D„, „c -endomorphism. Put

Ax. " E ( x  0 ,D E ,„,)Ci g "
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Since .i1/' is coherent over g x Oc DE
, x c a n d  Az. "  is  a  u n io n  o f  a n  increasing

sequence of coherent g ,  (Dc„ c -submodules of A,'" is also coherent over

L em m a 4 .3 . X "  is stable by  the endomorphisms C and u o f A1 '.

P ro o f . F or P E g x ,D E ,  O c C [ e „ , ] ,  we have

C(Pu i 6(uŒt -  f ')6(u - u')) = P((al - at , T') - i)u 1 6(u"T' - f ')(5(u - u').

From this equality, we can show tha t [C , P ] =  0 , uC = (C + 1)u and u'C = Cu'
+  u  a s  g x -endomorphisms o f  X r . These relations a lso  h o ld  i n  End (X ).
Especially, u'Cg" = (Cu' + u)g" = (Cu' +  u ')g " and Cu ' g" =  u '(C  - 1 ) 1 g" . For
Pe  9 x  (1) c  DE , OcC[au , ], we have CPu' i Cig" = PC(C + i)ju' i g" = Pu' l (C  - g "
and hence .A'" is  C -stab le . F or Q e9 x  C) c DE ,

(4.3.1) uQC g" = Q(C + 1)- ug" = Q(C + 1)in' g" = Qu' C g" ,

and hence .ilf" is  u-stable.

4.4. Define a surjective homomorphism 0: J f  by

o( E Pi Cig") = E g
.; ()

for p i E g ,

Lem m a 4.5. 0  is well-defined and Ou = u0.

P ro o f . P u t  X  =  X  -  u f - 1 (0). T h e n  (X " , g " )  can be identified w ith
(.'1(f , g )  o n  X , .  Hence, i f  P = Epi Ci annihilates g ", then it also annihilates
g = (5(u'T' — f(x))5(u -  u') on X 1 . S in c e  C) C(u) is a simple g ,  (Dc DE ,
C(u)-module, P  annihilates g  everywhere o n  X .  Hence 0  is well-defined. By
(4.3.1) and by  the formula obtained by replacing g" with g,

O(uEp i Ci g") = 0(Ep1 u' C g") = E P i u'Ci g  =  uEp i Ci g.

Hence Ou = u0.

4.6. Let F(X , „1, - ) =  N ' and F(X, J . ") =  N " .  By s C  and t u , v
„V ' a n d  X "  have C[s, ti-module structures. (See (1.1) fo r  C[s, t].) Since u
commutes with the respective 9-m odule structures and since .1( = „t}, .1 -  and
.1r" are coherent over g , „ , ,  N, N', N"e di'. (Cf. (1.1).) Since „I and
.1^ are quasi-coherent over ex, the surjective homomorphism 0: ->  v • induces
a surjective morphism N" N  in  Jll. By (2.10, (1)) and  (3.6), the zeros of bN ,

a re  negative rational num bers. H ence, by (1.3), th e  zeros o f  bN  a r e  negative
rational num bers. Thus w e have completed the proof.

Rem ark 4.7. Let .1  be the ideal of C [ ]  consisting of bp 's  as in  (1) of our
Theorem . It seem s that M is  a principal ideal of C H I  but the  author can not
p ro v e . In  our subsequent paper, we shall show that .<3' is a principal ideal in a
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c e r t a in  special case.
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