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Bernstein-Sato’s polynomial for
several analytic functions

By

Akihiko Gyosa

Introduction

Let X be a complex manifold, @ (resp. Ox) the sheaf of differential operators
(resp. holomorphic functions), xo€ X, f}.....fie Ox ., {1,....{, independent complex
variables, and 2y [{;,....{]1 = 2x ®cC[{;.....{]. The purpose of this paper is
to prove the following theorem.

Theorem. (1) For any p = (4y.....;;)eN', there exist a differential operator
P,()ePDyx ., [Ly,....¢] and a non-zero polynomial b,({)eC[(,.....{;] such that

PO ffrrm e fi i = b, (O fF - S

(2) Moreover, we can take b,({) so that
b,(0) = H(ailCI + ot oyl + ay),

where ;€ N, GCD (%;y,...,%;) = 1 and a;€ Q. for any i.

Historically, the above theorem goes back to a conjecture of M. Sato based
on his theory of prehomogeneous vector spaces (see [8]). When [ =1, (1) is
proved by L. N. Bernstein [1] for X = C" and a polynomial f, and by J. E. Bjork
in general, and (2) is proved by M. Kashiwara [3]. For a general I, the whole
of the assertion except the part concerning q; is proved by C. Sabbah [7]. Thus
what is new in the above theorem is that we can take a; to be positive rational
numbers. Our proof here is based on the results and techniques given in
[3]. [4], [6] and [7].

In order to make the exposition easier to read, we exclusively consider a
connected smooth affine variety X over C and the ring D = Dy of (global sections
of) algebraic differential operators, except the final step of the proof. Thus what
we shall prove in this paper is an algebraic version of the above theorem. But the
necessary modification to get the above theorem will be obvious.

The author learnt from Prof. C. Sabbah that he has also got the same result
(unpublished). The author would like to express his thanks to Prof. C. Sabbah
for his kind communication.

Communicated by Prof. T. Hirai, October 22, 1991
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Convention. The field of complex (resp. rational) numbers is denoted by C
(resp. Q). The rational integer ring is denoted by Z, and N = {0, 1, 2....}.

Except for f = (f,.....f), we denote an [-tuple by a lowercase Greek letter,
and its i-th component by the same letter with the suffix i. Concerning the
I-tuples, we use the following notations. For an [-tuple t of variables,

. . . ¢
0, =(C.,,...). <For a complex variable, say u, sometimes we write 0, for —.)

Ou
For I-tuples o and B, 0™ ' =(a;',...). af=a-f=(2;f;....) and (x|f) =D o,
e.g, 0,1=(0,1,,..). For yeN' (or Z' in some cases), o’ =][[a* and

u’ = (u',...), where o is an [-tuple and u is a single variable etc. For o, feZ',
a > f# means that o; > f3; for any i. We denote the standard basis of C' by &(i)
(I<igl.

1. Preliminaries

1.1. Let X be a connected smooth affine variety over C, and Dy the ring
of algebraic differential operators. Let C[s, t] be the C-algebra with the defining
relation ts = (s + 1)t, and ./ the abelian category of pairs (M, i), where M is a
finitely generated left D-module and i is a C-algebra homomorphism C[s, t] —
Endc(M) such that i(t)e Endp(M). (A morphism in .# is a D-homomorphism
which commutes with the C[s, t]-module structures.) We write s and t for i(s)
and i(r), and we write M e.# instead (M, iYe.#. For Me.#, let by (x) = b(x, M)
be the monic generator of the ideal of polynomials b(x)e C[x] such that b(s) =0
as a C-endomorphism of M/tM (not necessarily compatible with the D-module
structure). Here we admit b, to be zero.

A finitely generated D-module M is called holonomic (resp. subholonomic) if
the dimension of the characteristic variety is dim X (resp. < dim X + I).

Lemma 1.2. Let N, N' e, where N’ is a quotient of N. Then by, divides by.
The proof is easy and omitted.

Lemma 1.3. Let N,N',N'e.#/, where N" = N and N is a quotient of
N!. Assume that N is subholonomic and t: N - N is injective. Then b(x, N)
divides []¥_,b(x + i, N') for a sufficiently large k.

Proof. Let K =ker(N”"— N). then by divides by, and N=N"/K <
N’'/K. Hence we may assume from the beginning that N = N" < N'.

The increasing sequence ker (t/|[N) (j=1,2,...) becomes stationary for
sufficiently large j. (Note that D is a left noetherian ring) Let ker (t?|N') =
ker (tP*!|N')=...=:L. Then Le./. LnN=0 and N < N'/L. Since by,
divides by., we may assume from the beginning that r: N'— N’ is injective. Then
b(s, N') =t -r with some re End¢(N').

Put t /N = {ueN’'|tflue N}. The increasing sequence t 'N (j=1,2..)
becomes stationary for sufficiently large j. Let t “N =¢"4"'N=-.=: Ny. As
is easily seen, Noe.#. Especially b(s, N)N, = N,. Hence t?-trNoc N, ie,
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rNo<t 9 !N =N, Thus r induces an endomorphism, say r,, of Ny, and we
have b(s, N') = try in End¢(Ny), which implies that by, divides by.. Hence we
may assume that N' = N,.

Let C be an irreducible subvariety of the cotangent bundle of X. For a
finitely generated D-module M, denote its multiplicity along C by m(C, M). Since
N c Ny, t"No<= N and t: Ny — N, is injective, we have

m(C, N) < m(C, Ny) = m(C, tNy) < m(C, N).

Thus the characteristic cycle of N, coincides with that of N. Since N is
subholonomic, N,/N is holonomic. (Cf. the proof of [3, Corollary (3.2)].)
Similar argument shows that N/tN is also holonomic. Hence by [3, Corollary
(5.14)], b(x, N) divides []¥_,b(x + i, No) for a sufficiently large k. (In [3], s is
assumed to be commutative with the D-module structure. But this assumption
in not used there.) Thus we have completed the proof.

1.4. Let X, be a simply connected open subset of (i_,f (C™),
Xo x C'a(x, {) = f* =[] fix)* a single-valued branch, C[{] = C[{,.....{,] and
Dy[{]1 =Dy ®cC[{]. Thus we get a Dy[{]-module Dy[{]f°. Let d(u) be the
standard generator of D¢/Dcu, T =(14,...,7) an [-tuple of independent complex
variables, and &(t — f(x)) = [];6(t; — fi(x)). Thus we get a Dy[— d,7] module
Dx[— 0.7]6(r — f(x)).

Lemma 1.5. By the correspondence { <> — 0,1 and [ &(t — f), Dx[{]f° ~
Dy[— 0.1]6(r — f).

Proof. Let { =((,,....0), 1 =(1,,....7), and C[{, 1, T~ '] be the C-algebra
defined by the relations 7,17 ' =17 't,=1, [{;.{1=[1,71]1=0 and 7(;=
({; + 0;)t;, where 0;; is the Kronecker delta. By the correspondence {« — ..
C[{. 1, 171 ]~C[—0d,1. 1, T ']=Da[t7']. Hence Dy[l 1. T ']:=Dy R¢
Cl¢l 1,1 ']~ Dy.[t™']. The annihilator of d(r — f) in Dy, [t~ '] is the left
ideal generated by

! é
n—fil<i<l), and v+ Y o(f)—,
i=1 afi
where v is any vector field on X. These elements correspond to

i

i—fio and v — Y o(f)lir7 eDy[l T Y]

i=1

(1.5.1) T

by the above isomorphism. Define the D[{, 1, t”!]-module structure of

Dy[Z. f~11/¢ by
i POS — LRSS and 10 PSS — P(C + e(i) /540,

We can show that the elements (1.5.1) generate the annihilator of f* in
Dx[{, t,t']. Hence d(t — f)— f* gives an isomorphsim Dy, [t 1]d(r — f) =
Dy[¢ w17 '] =Dy[¢, f ']/ Since the image of Dy[—0a,1]6(t — ) is Dx[{]f5,
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we get the desired isomorphism.

2. Proof (first step)
2.0. In this section, we follow the argument of [6] and [7].

2.1. Let A be the set of aeN' such that GCD (a,,...,) = 1. We fix an
element e A throughout this section. Put E = C', M = Dy, ;6(t — f).

>j _ >j,,—J
D = ZNI Ctfar, D3Pl = ZZ D4, Dﬂu)—%b;; iy,
ﬂﬁ’—yve >pu (a‘ﬁt) >j <

Diwp=Dx®cDi. D =Dx ®cDi*. Dy.p() = Dy ®cDrlw),
M" = D% po(t — f), M**/=D33d(t — f). M(u) = Dy p(u)d(r — f).

where u is a new complex variable. We consider Dg(u) as a subring of
Dy ®cC(u), and M(u) as a submodule of (Dy,  ®cC(u))é(r — f). Let E' be a
copy of E. By the transformation B: E' x C —» E x C defined by (t, u) = B(7', u)
= (u*t’, u), Dg(u) is identified with Dg[u] = Dp. ®C[u]. Hence M(u) has a
Dy . g [u]-module structure. Let u' be a new complex variable, and put
N=N;=M@u) ®cpuClu. 6,16(u —u). Then N is a left module over Dy, p-[u]
®cClu'. 0,1 = Dyxpxclul.

Lemma 2.2. (1) N is a subholonomic Dy, g .c-module.
(2) N/uN is a holonomic Dy, g .c-module.

Proof. Since M(u) = Dy p(u)d(t — f) = Dy xp [u]d(u*t — f),
N =Dy, p oWt — f(x))o(u—u').

Hence there exists a maximum subholonomic submodule N, of N [3, Theorem
(2.10)]. Since g:= d(u*t — f)d(u — u') satisfies
(6 N Laf, ._, i

— U

— g=0 and (t;—u'"%f)g=0,
o, A o, ar;>J @ 1)9

N[u~'] is a subholonomic Dy.p .c[u'~']-module. (Here (x,....) is a local
coordinate system of X.) Hence (N/N,)[u'~']=0. Especially, u*g = u*ge N,
for a sufficiently large k. Since u: N > N is an injective Dy, g . c-endomorhpism,
N ~u*N =Dy, p.clu*gy= N,. Hence N is subholonomic. Hence N/uN is
holonomic.

2.3. Let u be the Dy, p.-endomorphism of M (u) defined by the multiplication
by u. Define a Dy-endomorphism C = C,, of M(u) by

Mu) > M*2iy~ism-u~4 ——C—>((a| —0.1) +jym-u .
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Lemma 2.4. (1) uC =(C + Hu.
(2) For PeDy, B, yeN' and keN,

C(Pt*ar.6(wt — f)-u*) = PtPoV((a| — 0, 7)) — k)o(u*t — f) - u*.
Especially, C is a Dy, p-endomorphism of M (u).
These assertions can be proved by a direct calculation.

2.5. Let us “extend” the endomorphism C of M(u) to N. As a C-vector
space, L:=C[u, 0,]6(u — u')~ C[u, 0,,]. Let C(uPd%)= — puPd., and consider
it as an endomorphism of C[u, d,]d(u —u'), which we shall denote by
C =C,. Define an endomorphism C=Cy of N by Cy=C,,®1 +1®C;.

Lemma 2.6. For any PeC[u', 0,], [C,, P]Lc uL.
Proof. We may assume that P = u'"3J,. Then
[C, P]uPdd.o(u — u)eul  if p>0, and
[C, P]0%.6(u — u')eC(L) = uL.

Lemma 2.7. (1) C = Cy is a well-defined Dy-endomorphism of N.
(2) uC =(C+ YHu.
(3) C induces a Dy, g «c-endomorphism of N/uN.

Proof. (1) In order to prove the well-definedness, it suffices to show that
2.7.1) Cum@n+um®@®@Cn=Cm@un+ m® Cun

for meM(u) and neClu, 0,]0(u — u'). Since we have uC=(C+ Du as
endomorphisms of M(u) and C[u, 0, ]o(u — u’), both members of (2.7.1) are equal
to

—um@®n+ Cm@un +um®@ Cn.

(2) is now obvious. It remains to prove that the endomorphism C of N/uN
commutes with the D¢-module structure. For PeDe, meDy, po(u*t — f)
(c M(u) and neClu, 0,]6(u —u')=C[u'. 0,]0(u — '), we have

CP(m®n) — PC(m® n)
=(Cm@Pn+m® CPn)— (Cm® Pn+ m® PCn)
=m®[C, PlneuN
by (2.6).

Lemma 2.8 ([4, Theorem 4.8] and [5, §5]). The endomorphism algebra of
a holonomic D-module is a finite dimensional C-vector space.

2.9. By (2.2, (2)) and (2.8), the totality of Dy, . c-endomorphisms of N/uN
forms a finite dimensional C-vector space. Since C is a Dy, g x c-endomorphism
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of N/uN by (2.7. (3)), there is a non-zero polynomial b(x)eC[x] such that
b(C) =0 as an endomorphism of N/uN.

Lemma 2.10. For a polynomial b(x)eC[x], the following conditions are
equivalent.

(1) b(C) =0 as an endomorphism of N/uN.

(2) b(C)=0 as an endomorphism of M(0):= M (u)/uM (u)

(3) b((«| — 8,7 +j)M°‘2j < M*23*Y for any jelZ.

@ b((x = 0, ))M*>% = M*>1.

(5) b((x] = 0,1))d(r — freM™>1.

(6) b((a]— ))5(T —f)euDy (ol — f).

(7 blal = d.1))o(w T —f)elleXb [u]o(w*t" — f).

(8) b((x|— ’) —f)0(u — u)euDy g xcOWT — f)o(u — u).

Proof. Note that the restriction of C to M(0) ®cCd(u — u) 0) Xc

C[0,]0(u —u')= N/uN) can be naturally identified with C|M(O). Smce C
commutes with C[d,.], b(C)|(N/uN) = 0 if and only if H(C)|M(0) ® Cé(u — u’) =0,
i.e., b(C)|M(0)=0. Thus we get (1)<=(2). Since

2>

M(0) = M(u)/uM(@u) =Y M—-'u”ﬂ

jez M*=it!

we get (2)<>(3). The implications (1)<>(8), (3)=(4)=(5), and (6)<(7) are
trivial. For P, €Dy, we have

b((a| — 2,0 +j) ) Pytlald(x—f)
(alﬁﬁle)’:'zj

Y Py tPolb((al— 0,1) +j — (| — )t — f)

@lp-n=zj

Z Pl!rtﬂazb((ﬂ —8,1))0(t — f) mod M*2/*1,
(@|p=y=j

Hence (3) <= (5). Since
uDy  p(W)d(t — f) =Y M*=/u~i*1
JjeZ
and b((ax| — 0,7))0(t — f) is free from u, we get (5) <= (6).
2.11. For veZ', put
= M= =Ny M.

aeAd xeA ueZ!
(@) = (2] v)
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(See (2.1) for A.)

Lemma 2.12 [6, 2.2]. (1) There are finite number of o(i)’s in A such that
M* = ﬂiM“(i)Z(“(i)l”) for any /IEZ'.
(2

There exists ke N' such that M* = M* = M*™* for any neZ'.

2.13. Let b,(x) = b(x, x) be the monic polynomial of the minimal degree

satisfying the equivalent conditions of (2.10). (See (2.1) for «.)
have

For a ueN', we

[l

bla(i). (a(i)] = 0,7) + j)M0=0 < pedzelo,
0<j<(ai)|w)

[

i
0 <j<(a(i)|p)

[

i
0<j<(a(d)|p+xK)

b(a(i), (x(i)| — 8,7) + j)M® = M*, and
b(a(i), (x(i)| — 0,1) + j))M® = M*.

By the last inclusion relation and by the isomorphism given in (1.5), we get the
functional equation

[

i
O <j<(a(i)|u+x)

b(a(i), (@(D)IC) +j) - f* = PO f*"

with some P,({)e Dx[({]. (Note that M° contains d(tr — f), which corresponds
to f° by the isomorphism of (1.5).)

Thus it remains to prove that the zeros of the minimal polynomial b,(x) of
CeEnd, (N/uN) are negative rational numbers for each ae 4.

3. Proof (second step)

3.0. Here we consider the case where |J,f;”'(0) is normal crossing. For

the sake of simplicity, we assume that X = C" and f;’s are monomials of the
coordinate functions.

Lemma 3.1. Let o, &(1)....,¢(h) be vectors in Q'. Put H= {12, h},
Y=Y ,,Q.08) for I<H, I'={ieH|E(i)eI)y}, T :={IlcH}, ¥:=
{UeT |ag¢ 1>}, and let i: % > H be a mapping such that i(I)¢I for any I.
Then e i(F£)).

Proof. Assume that a¢ {i(#)) (= (Tﬂ)}). Then I,:= @ef. But by the
assumption on i, i(Iy)¢1,, and hence I,¢.7.

Lemma 3.2. The following conditions for I < H are equivalent.

(1) ag¢ll).
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(2) There exists peZ' such that (x|p) >0 and (E(i)|u) <0 for any iel.
We omit the proof.

Lemma 3.3. Keep the notations of (3.1). Let M = M(x) = {ueZ'|(x|p) > 0},
= {ieH|(&(i)|p) <0} and i: M — H be a mapping such that i(u)¢ () for any
,ueM Then aeli(M)).

Proof. By (3.2), {I(w)|peM} =.#. For any le.#, take u(l)e M so that
I(u(l)) = I, and put i(I) = i(u(l)). Then i(I) = i(u(I))¢I(u(I)) = I and

aei(F)) = iu(f)) = Ci(M)).

Lemma 3.4. (1) Keep the notations of the previous lemmas. Let K(i, u)
(ieH, peZ') be finite subsets of Q. and put

by(Q) = b(u. {) = ﬂ (€D + a).
aElKE(Ii,.u)

Assume that K(i, i) = ¢ if (£(i)|u) < 0. Then the ideal J(a) of C[{] =C[{,,.... ¢
generated by {b,|pe M(a)} contains a polynomial of the form ]—[J.((oc|C) + a;) with
a;eQ.

(2) Assume further that K(i, u) = Q.o for any i and p. Let H = {ieH|
0e K (i, u) for some peM(x)}, and assume also that a¢ {(H'Y. Then we can take
the above polynomial so that a;> 0.

Proof. Let
M = M(@)a1 — (i(g). a(w)e H x Q

by any mapping such that a(u)e K(i(u), n). (Possibly such a mapping does not
exist.) [If i(u)el(n) for some pue M, then (£(i(u))|u) <0 and K(i(n), u) = ¢, which
is absurd. Hence i(u)¢l(n) for any pueM. By (3.3), aedi(M >. Let a=
ZueMc(u)é(i(u)), where c(@)eQ,, and c(u)=0 for almost all u’s. Put

a=73, cwalp).

If the assumptions in (2) are satisfied, then a > 0. In fact, it suffices to show
that ¢(¢) >0 and a(p) > 0 for some pueM. Since a¢<{H'), we have c(uy) >0
and i(uo)¢ H' for some poeM. Then 0¢ K(i(uo), po), and a(uo)€ K(i(uo), po) =
Q.o

Since («, a) is a linear combination of (£(i(u)), a(u)) (Le M), we have

(34.1) N {LeC W) + a(w) = 0f = {{eC'|(@[)) + a = 0}.
ueM
Since (,em by '(0) is a finite union of sets of the form of the left hand side of

(3.4.1), we have
N b, '(0) = U{{eC'(«]{) +a; =0}

neM J
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with finite number of rational numbers ;. Moreover, under the assumptions of
(2). we may assume that a; > 0. By the Hilbert’s Nullstellensatz, the ideal J(«)
contains a polynomial ﬂj((all) + a;)* for a sufficiently large integer k. Thus we
have completed the proof.

Lemma 3.5. Let x = (x,,...,x,)6C"= X, B(i)eN' (1 <i<n), fi(x)=]]i-, xF.
f=ir.... ), and ae N'\ {0}. Then there exist R(u)e Dy, ci[u] (<= Dy et ® ¢ C(u))
and a polynomial b(s)e C[s] such that b(s) is of the form |] s+ ay) with a;e Q.

and
b((a] — 0.7))0(w*t — f) = u- Rw)d(w*t — f).

Proof. In order to make the argument easier to understand, we formally
introduce the Mellin transformation ¢(t') — j(p(t’)r"dr’. Our transformation here
is a formal one and every expression should be understood in the form before
the transformation.

Let ¢ be a single complex variable, and put

t (i>0)
=< /a\" .
<a> (i <0),
P, = ﬁ [t]1*, Q,= ﬁ EARKIC
j=1 i=1

hen+l EQ) =B (I <i<n), En+h=—e(1<i<),
H={1,2,....h},

K(i. g = {{1,2,...,(B(i)|u)}, if 1<i<n, (B(i)p) >0,
e, if 1<i<n (Bi)p<0,
. {0, ],...q_l,l,'_ ]}. if ISI'SL/.[,<O,
K N =
(i {qb, it l<i<l >0,
sn(t)—{l (=0 sn(t)—ﬁsgn(p)“-f
=10 <o BT L e

and P} =sgn(WP,.
Then

Pret= T1(EI0 + @) e =g ¢, and
”ue'l\'_(i','u)

n
Q“fé’fﬂ = Qu n xfﬁ(l}llﬂl)
i=1

= [T (€I +a)-fC=d,Of"

1<i<n
aeK(i.p)
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Put
bu(0):=c,(0d, O =[] (€MD + a).
1:6';(11'1.11)
Then

J‘(P Q/t T — u—af)) : ‘L',Cdl'/ = Qu Jé(TI —u" f) . P:T’gd‘[/

C)Qu _af‘)“.” = bu(C)(u'“f)C CIInN

Note that K(i, u) = ¢ if (E(i)|n) <0 and K(i, u) = Q,, for any u. Let H' be as
n (3.4, (2)). Then {&(i)lieH'} = {—e(1),..., —e(l)}. Since aeN'\ {0}, a¢<H').
Thus we can apply (3.4), and we get polynomials e,({) (ueM(a)) such that
ZueM(a)eu(C)bu({) = b((«|{)), where b(s) = ]—[j(s + a;) with a;€eQ,,. Put

R= Y un=te (= 0,.7)P,Q,.

neMi(a)
Then
j(RO'(t’ —u"%f)) tdr
= Y ytw-t Jeu(— 0. T)P,Q,0(t —u~*f)-v%dr
ueM(x)
= Yy yew! quQ,,cs(r’ —u"%f)- e, (1'd,)1T%dT
pneM(a)
— Z u(“l")_leu(C)bu(C)(tl_aff)g cy el
neM(a)
=u"" b)) ()
=y ! Jb((od — 0. TN — u *f) -t
Hence

RO(t —u?f)=u"'b((a] — 3, 7))z — u%f),

which is equivalent to the desired equality. (In fact, we can identify o(t" — u~*f)
with w*du*t’ — f).)

3.6. By (2.10, (7)) and (3.5), the zeros of the polynomials b,(x€ ) in (2.13)
are negative rational numbers if {J,f;”'(0) is normal crossing. (In this case, f;’s
are monomials in local coordinate functions multiplied with invertible elements,
say ¢;. By the change of variables t; = g;t/, the situation becomes the one
considered in this section.)
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4. Proof (final step)

4.0. Here we prove that the zeros of b, in (2.13) are in general negative
rational numbers. We shall prove this assertion by reducing to the normal
crossing case by using the desingularization theorem of Hironaka [2]. Thus we
can not stay within the affine varieties, and we need the sheaf theory. Localizing
the D-modules considered in the previous sections, we get quasi-coherent sheaves,
which we shall denote by the corresponding script letters, e.g., Zx = Ox @ cx; Dx
etc. Since any variety is covered by affine open subsets, such sheaves can be
defined even if X is not affine, and the argument of the previous sections works
in general (with an obvious modification, if necessary).

4.1. Let X be as before, and F: X' — X a projective morphism such that
F: X' — U fy " 0)> X — U, fi""(0), where f'=fioF, and that {J,f/"'(0) is
normal crossing. Such a pair (X', F) always exists [2]. Put n=dim X =dim X".

4.2, Let g =0t — f(x))o(u—u)., ¢ =0t — f' (X))o —u), & =4
=Py PcDpxd)g. Ny =(Dy RcDpwc)yg,i: X' = X' x X be the mapping x" —
(x', F(x)), and, p': X’ x X - X’ and p: X' x X —» X the projections. For any
variety Z, Qj, denotes the sheaf of regular j-forms on Z. Put

Dy xxex = i_l(QX'xx ®@x,xx(g§("'xx)_l) ®i-l¢rx'xx Q')'(“
For we Q% and w eQ%., put
lyey =F*o@(I @ Aw) ' @u)ep ' Q% @ p-10xi5xPx xxex-

Then, we can show that 1,._, does not depend on w or ', and it defines a
global section. Especially,

lyex & g'EP*(P’_IQ}' ®p" x5 Dx x xex ®£Z7X' ‘f)
Let g” be the image of 1,_y ® g’ by
Palp ™ 2% @ p-rexis Dy s xex ®uy )
> H'(pe(p' ' 23 @ 1oy isZxxxex Quy 1))
= H"Rp,(p"™ ' Q3 @ p-1ex s Dy xxex Qo 157))

cn([ ) r

Here p' " 1Q5. ® is the relative de Rham complex. We can define endomorphisms
C and u of A4} in the same way as in §2. Since C is a Zy.-endomorphism and
uis a D9y QcDg «c-endomorphsim, C induces a Zy-endomorphism of 4™ and
u induces a 2y Q¢ Dg: «c-endomorphism. Put

A= ¥ (Zy @Dy ) Clg" (< .47).

jz0
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Since A" is coherent over Dy XcDp ¢ and A" is a union of an increasing
sequence of coherent Dy & ¢ D . c-submodules of .+, A" is also coherent over
D5 ® Dg « ¢

Lemma 4.3. A" is stable by the endomorphisms C and u of N.
Proof. For PeZy QcDp Q®cCL0,], we have
C(Pu'd(w’t — f)o(u — u')) = P((a| — 0, 7) — )u'd(u*t — f)o(u — u).

From this equality, we can show that [C, P] =0, uC =(C + lu and v'C = Cu
+u as PDy-endomorphisms of .#;.. These relations also hold in End (A7)
Especially, u'Cg” = (Cu' + u)g" = (Cu' + u)g” and C'u'g”" =u'(C —1)g". For
PeDy QcDp ®cC[0,]. we have CPu''Clg" = PC(C + iYu'g" = Pu'(C —i)C/g",
and hence 4" is C-stable. For Qe 2y Q¢ Dp xc-

(4.3.1) uQClg" = Q(C + 1Yug” = Q(C + 1)iu'g" = Qu' Cig",
and hence A" is u-stable.

4.4, Define a surjective homomorphism @: A" - 4" by

P(Y P;Clg)y= ) PiClg

jz0 jiz20

for Pie 2y @cDg xc-
Lemma 4.5. @ is well-defined and ®u = ud.

Proof. Put X, =X —J,fi"'(0). Then (A", g") can be identified with
(#;.9) on X,. Hence, if P=3 PC’ annihilates g". then it also annihilates
g=0Wt — f(x))o(u—u)on X,. Since A4, ®cClu)is asimple Dy @¢cDp xc Xc
C(u)-module, P annihilates g everywhere on X. Hence @ is well-defined. By
(4.3.1) and by the formula obtained by replacing g” with g,

D) P;Clg")= @) Pu'Clg")y =Y P C'g = uy P;Cly.
Hence ®u = ud.

4.6. Let I'(X, A")=N'"and I'(X, .+"")=N". Bys—Candt—-u, N} 1},
A7 and A7 have C[s, t]-module structures. (See (1.1) for C[s, t].) Since u
commutes with the respective Z-module structures and since . 4" = A4}, .4" and
A" are coherent over 2y ®cDg vc, N, N', N"e.#. (Cf. (1.1).) Since .4"" and
4" are quasi-coherent over (4. the surjective homomorphism @: 4" — 4" induces
a surjective morphism N”— N in .#. By (2.10, (1)) and (3.6). the zeros of by
are negative rational numbers. Hence, by (1.3), the zeros of by are negative
rational numbers. Thus we have completed the proof.

Remark 4.7. Let # be the ideal of C[{] consisting of b,’s as in (1) of our
Theorem. It seems that & is a principal ideal of C[{], but the author can not
prove. In our subsequent paper, we shall show that 4 is a principal ideal in a
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certain special case.
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