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Logarithmic Enriques surfaces, II

By

De-Qi ZHANG

Introduction

This is  a  sequel o f our paper [2 ]. E very  th ing  w ill be  defined  over the
complex number field C. L e t  V be a normal projective surface. A log Enriques
surface can occur as the base space of a cy  3-fold with a fibration.

D efinition  1. V  i s  a logarithm ic (log, for short) Enriques surfice if the
subsequent conditions are satisfied:

(1) V has at worst isolated quotient singularities;
(2) A multiple NK,7 of a canonical divisor K17 o f  V is linearly equivalent

to  zero for some positive integer N;
(3) 1-11 (V, COO vanishes.
T he index  o f V is defined as:

/  =  Index (V) = Min {N  >  1 ; N I(v  —  .

A  K 3-surface (resp. an Enriques surface) is a log Enriques surface of index
one (resp. tw o ) . I t  is  k n o w n  th a t  1  <  /  <  6 6  (cf. Proposition 1 .3  below).
Furthermore, if /  is a prime num ber then / < 19. Since 1K,7 is linearly equivalent
to  zero, there is a Z//Z— covering : U  V  such that i t is étale over the smooth
part V— (Sing V ) of V and th a t C  is an abelian surface or a K 3-surface possibly
with isolated rational double singularities (cf. [2, D efinition 2.1]). In particular.
the canonical divisor K e of U  is linearly equivalent to zero.

Definition 2. 7E : U V is the canonical covering of V . Actually, -1-/' determines
U  uniquely up to isomorphisms.

A log Enriques surface of index one is  a K 3-surface possibly with rational
double singularities. A log Enriques surface of index 2  is  an Enriques surface
possibly with rational double singularities or a rational surface (cf. [2, Proposition
1.3]). The latter surfaces are classified in  [2 , T h e o re m  3 .6 ]. Log Enriques
surfaces 17 of index /  with smooth canonical coverings U  are classified in [2,
Theorems 4.1 and 5.1]. In particular, if U is an abelian surface then / = 3 or 5.

If V has rational double singular points, we denote by V a minimal resolution
of all rational double singularities of P . Then r/ is a log Enriques surface of the
same index as P . In s tead  o f V  we can treat V without loss of generality.
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In  view of the  above arguments, we shall assume the following hypothesis
in  Theorem 2.11 below.

Hypothesis ( A )  ( 1 )  T he in d ex  I  o f  V  is  g reate r th an  2. H ence  V  is  a
rational surface (cf. [2, Proposition 1.3]) and V admits at least one singular point.

(2) The canonical covering U of , V  is not an abelian surf ace . Hence U is
a K 3-surface possibly with rational double singularities.

(3) Every singularity  of  V  has multiplicity  > 3, i.e., V  has no rational double
singular points.

If  /  =  pa for tw o positive integers p, g , we le t V  :=  U /(Z /p Z ). Then V  is
a log Enriques surface of index p  (cf. [2, Lemma 2.2]) with U  a s  its canonical
covering. So, we shall mainly consider log Enriques surfaces of prime index (See
Proposition 1.3, (2) be low ). The following theorem is a  p a r t  o f  Theorem 2.11
in  §2  and  our starting point.

Theorem 2.11'. L e t  V  h e  a lo g  E n riq u e s  surface satisfy ing the abov e
Hypothesis ( A ) .  A ssum e that the  index  I o f  -12 is  an  odd prim e num ber. T hen
we have:

- T„ - -
(1) T h e re  i s  a  com posite v  •  •  •  vV  := V  ( n > 0 )  of  com bining

morphisms (cf. Definition 2.1 and Proposition 2.8 below  for the definition) between
log Enrigues surfaces o f  the sam e index  I such that U,, is a K 3-surface possibly
w ith rational double singular points of  Dynk in type A ,. H e re  it ,: i s  the
canonical covering of

(2) For each singularity  x  of  U ,, the  im age y := n„(x )ek ; is a  singularity
isomorphic to (C 2  / C2 1  

1
w h e r e  C 2 . 1 . 1 := g GL (2; C) is a cyclic subgroup, ;

o f  order 21 generated by

g  being a prim itiv e 2I-th root of  the unity.
(3) Every  V satisf ies the Hypothesis (A).

The above n, U„ and V„ are uniquely determined by the original surface V
(cf. Theorem 2.11 in  § 2 ) .  We shall describe precisely v  a n d  U„ in  Theorems
3 .1-9 .1 . As consequences, we will have :

Main Theorem . W ith the assumptions and notations of  T heorem  2.11', we
describe in  Tables 1, 2, 3, 5, 7 all possible distributions of singular points on a n d
on U „ as well as the  Picard num ber of  K.

Corollary 1. (1) I f  I  = 3, then #(S ing U„) 6  and #(S ing V) < 15.
(2) I f  I = 5, then #(S ing 3  and #(S ing V) < 16.
(3) I f  I  = 7, then #(S ing U„)- 2  and #(S ing V) 15.
(4) If  /  =  11 , then #(Sing U„)-. 1 and #(S ing = 2, 12, 13.
(5) // ' I = 13, then #(Sing U„) =  1  and #(S ing V) = 10.
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(6) I f  I  = 17 o r  19 then U„ is smooth.

The upper bounds fo r  # (Sing U„) and #(Sing i )  in (1), (2) and (3) above are

best ones (See [2 , Examples 6.11, 6.12 and 6 .1 3 ]) . Fo r I = 3, 5, 7, 11, 13 there

are examples o f  V for which U„ admits at least one singular point (See Examples

3.2, 4.3, 5.3, 6.3 and 7.3).

Corollary 2  (cf. Lem m as 1.2 and  2 .3  below ). L e t  V  b e  a s  in  Theorem

2.11'. Let f: V-> V be a minimal resolution of singularities and set c:= # (Sing V),
D:= f '(S in g  V). Then we have 111 (V, D + 2 K v ) = e -  1  -  ( K )  -  (D, K v ) = O.

Remark. (1) If V is a log Enriques surface of index 13 then the canonincal
covering of V admits at least one singular point (cf. [2, Theorems 4.1 and 5.1]).

(2) For each odd prime number I  with I 13 and I  < 19 we gave examples
in [2, §5] of log Enriques surfaces of index I with smooth canonical coverings.

W hen I  is  a  p rim e number, the  following result characterizes a  combining
morphism, which is indeed a crepant blowing-up (cf. Example 7.3 in §3).

Proposition 2.8. Le t V and V  be two log Enriques surfaces o f the same prime

in d e x  I .  L e t  7r: U -> V  a n d  rci : U 1 -> V, be canonica l coverings. Then the

following conditions are equivalent:

(1) There is a  combining morphism F7-> VI with exceptional curve E.
(2) There is a point y  of V, which is not ci rational double singular point and

there is a birational morphism —> Pi  such that fi is an isomorphism over V - {y}.
the exceptional divisor fi - 1 (y) is an irreducible curve and (y) n (Sing V) consists

o f  two points z 1 , z2 .

(3) There  is  a  po in t x e e  ,  and  there  is  a  ZI IZ-equivariant morphism
U ,  such  that 7r, (x) is  n o t  a  rational double singular point, h  i s  an

isomorphism over U, - {x}, the exceptional divisor F := ( x )  i s  an irreducible

curve, F is ZI IZ-stable and F has exactly two ZI IZ-fixed points {z,. z 21.
Under the above equivalent conditions, we have 7E1 • 13 = fi• 7r. Hence E =

h - 1 (y), F  =  7r - 1 (E ) ,  x = 7 1
- 1 ( y )  a n d  zç = 7r - 1 (z1) ( i =  1 , 2 )  a fte r  a  suitable

relabelling. M oreove r, x e U, is a singular point, and y E V  and z ,E n i=  1, 2) are

singularities of multiplicity > 3.

Terminology. A  ( -11)-curve  on  a  nonsingular projective surface V  i s  a
nonsingular rational curve of self intersection n u m b e r  -  n. A  curve C  on  a
surface V  is called an in-section of a certain fibration from  V  on to  a  curve if
(C, F) in  fo r a  fiber F.

N otation s. L et V  be  a  nonsingular projective surface and  le t D,
H 1 , H 2 , . . . ,  be divisors on V
K v : Canonical divisor o f  V
p(V):= rank NS(V) 0 , Q ,  th e  P ica rd  num ber o f  V , w here NS(V) i s  the

Neron-Severi group of V
H , -  H 2 :  linear equivalence
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H, H 2 : numerical equivalence
f,,,(D): the direct image of D  by a morphism f

* (D): the total transform of D  by a morphism f
f '(D ): the  proper transform of D  by a birational morphism f
#(D): the  number of irreducible components of Supp (D)
Sing V : the  singular locus o f  a  variety V

The author would like to thank Professor M. Miyanishi for the encourage-
ment during the preparation of the present article.

§ 1 .  Preliminaries

L e t V b e  a log Enriques surface of index I. Let f: V—> V b e  a minimal
resolution of singularities. D e n o te  b y  D  the exceptional set .f  '( S in g  V ) .  Then
D  is  a  reduced effective divisor with only simple normal crossings and  its dual
g ra p h  is  a  d is jo in t  u n io n  o f  trees. M oreover, eve ry  com ponen t o f D  i s  a
nonsingular rational curve of self intersection number < —  2 and the intersection
matrix of irreducible components of D  is negative definite.

From  now on, we shall confuse V with a triple (V , D, f) o r a  p a ir  (V, D).
The following four results will be used in the sections below.

Lemma 1.1 (cf . [2 , L em m a 1.2]). L et V be a  log Enriques surface and let
D D, be the irreducible decom position of  D. Then w e have:

(1) 11 1 (V , (4) = O.
(2) T here is a Q -div isor D * =1': = 1 ai Di such that I oc, is an  integer with

0  <  I  <  I  —  1  j r  e a c h  i  and f*(1K )—  1(K  v  +  D * )  0. M oreover, D *  is
uniquely determined.

(3) oci =  o i f  an d  o n ly  i f  the  connected com ponent of  D  containing D, is
contractible to a  rational double singularity  on V

(4) K v —  D * , ( K ,27) = (D*) 2 .

Lemma 1.2. L e t  V b e  a  log Enriques surface o f  index  1  satisfy ing the
Hypothesis (A ) in the Introduction. S et c:= # (Sing V) w hich is also the number
of connected components o f  D. Assume I  >  3. Then we have 11'(V , D + 2K v ) =

— 1 — (K,27) — (D, K r ).

P ro o f  By the proof of Proposition 1.6 in [2], we have

112 (V , D + 2K v ) = H ° (V , D + 2K v ) = 0.

On the other hand, let D = , D, be the irreducible decomposition of D .  Since
th e  d u a l g ra p h  o f  D  i s  a  d is jo in t  u n io n  o f  tree s , w e  h a v e  th e  following
computation:

(D, D + K )  = (Di , D, + K v ) + 2 (Di , D i ) —  2n + 2(n — c)= —  2e.

Then Lemma 1.2 follows from the Riemann-Roch theorem.
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Proposition 1.3 (cf . [2, Lemmas 2.3 and 2.4 and Proposition 6 .6 ] ) .  L et V be
a  l o g  Enrigues surf ace  o f  in d e x  I  s at is f y in g  t h e  Hy pothesis (A )  in  th e
Introduction. Let 7E: U -> V be the canonical covering. Let g: U be a minimal
resolution o f  singularities. S et c:= 4(Sing V). Then we have:

(1) W e have c p ( I ) 2 2  -  p ( U )  21, where cp, is  E lder's  T -function. Thence
we have 2 < I  < 66. I f  I  is  a prim e number then 2 < I  < 19. I f  I is not a prime
num ber then I is div isible by  2, 3 or 5.

(2) I f  I is a prim e num ber then w e have

+ p (U )- p (I.7 )+ l(p (V )-  + 2) = 24.

(3) A ssume I  i s  an  odd prim e num ber an d  U  adm its at least one singular
point. Then we have

p(V ) > c - 1, 2  <  c Min {16, 23 -

I f  I  = 3  then p (V )  c  + 4. I f  I = 5  then p (V ):c  + 2. I f  I  = 7  then p(V )._
+ 1. I f  I  >1 1  then p (V )=c - l .  I f  c = 16 then I = 5.

Let n„ be a primitive n-th root of the unity and let k  be an  integer satisfying
1 < k  < n - 1 and g.c.d. (n, k) = 1. Then C , k  denotes a finite cyclic sUbgroup of
order n in  GL(2, C) which is generated by

L em m a 1 .4 . L e t  V  b e  a  log  Enriques surface o f  prim e in d e x  I  and let
7E: t7 -> V be  the canonical covering. L e t y  be a  singularity  of  V  o f  multiplicity'
>  3 .  Then we have:

(1) x:= 7r - 1 (y) consists of  a  single singular point o f  U . H e n c e  x  is .fixed
by  the natural ZI IZ-action on U. T he cov ering morphism it ramifies exactly  over
f  (Supp D*) which coincides with se t of  singularities of  V  o f  m ultiplicity  > 3  (cf.
the notations o f  L em m a 1.1).

(2) A ssume f urther y  is  a  cyclic singularity. T h e n  x i s  a  rational double
singularity  o f  Dynkin ty pe A ,„_, f o r som e N  > 1 . T he case N  = 1 corresponds
to  the case where x  is sm ooth. M oreover, w e have Y) -= (C 2 I C IN.k , 0 ) for an
integer k  which satisfies the conditions: 

(i) 1 k IN  -  2, (ii) N1(1 + k), ( i i i )  I /I/ k.

I f  N  = 1, w e can list all possible cases o f  k  as  follows:
(2 -1) I  = 3, k = 1.
(2 - 2) I  = 5, k = 1, 2.
(2 -3 ) I  = 7, k = 1, 2, 3.
(2 -4 )  I = 11, k = 1, 2, 3, 5, 7.
(2 -5 )  I = 13, k = 1, 2, 3, 4, 5, 6.
(2 - 6) I = 17, k = 1, 2, 3, 4, 5, 8, 10,I I . 
(2 -7 )  I  = 19, k = 1, 2, 3, 4, 6, 7, 8, 9, 14.

CT
II. := CI )

0  n „k
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P ro o f  ( 1 )  Note that every singularity of U  is a  rational double singularity
because Kg — O. S in c e  the degree I  of n  is  a prim e number, 7E- 1 (y) consists of
one or I  p o in ts . If  7r-  ( y )  consists of I  points x i 's then (U, x 1) (V, y) for each
i. H ence  y  m u s t  b e  a  ra tiona l d o u b le  singularity. T h is  contradicts the
assum ption. So, rc- 1 (y ) consists of one point x . The second assertion of (1)
follows from I(K v  +  D * )  0 (see the construction of U  in  [2 , §2] and  Lemma
Li, (3)).

(2) A ssum e y  i s  a  cyclic singularity o f  m u ltip lic ity  >  3 . T hen  (V,
(C2 /G y , 0) with a  group Gy  which is isomorphic to  C M k  w ith  1  <  k < M —  2 and
g.c.d.(M , k )= I  (cf. Brieskorn [I]). M o re o v e r , x  is  a  smooth po in t o r a  cyclic
singularity. So , x  has D ynkin type A N _ , fo r  some N I. N am e ly , th e re  is  a
subgroup G ,ç  SL(2, C) of order N  such that (U , x )  (C2 /G , 0 ) . S in c e  G , is  a
subgroup  o f  Gy w i t h  in d e x  I w e  h a v e  M  =  I N .  S o ,  Gx = <4,. k >  a n d
1 = det (o- Ii +k)

k ) = Hence INHI(1 + k) and N1(1 + k). This is the condition
(ii) of (2). T he  cond ition  (iii)  follows from g.c.d. (IN , k )= I. T he condition  (i)
follows from the choice of k.

It rem a in s  to  o b ta in  th e  lis t fo r  N  = 1. F irst, w e w rite  dow n a  lis t  of
integers (/, k) satisfying the conditions (i), (ii) and (iii). I f  k ' > k  and (C 2 /C,,,,,,, 0)

(C2 /C1N,k, 0 ) , w e can om it (I, k ') from the list. A  l i s t ,  thus obtained, is the
one given in (2).

§ 2 .  Proof of Theorem 2.11

L e t V  b e  a  log  E nriques surface of index I .  W e  s h a l l  use the notaions
(V, D , f ) in  §1 . A ssum e that there  is a  (-1 )-curve  E  o n  V ; such a (-1)-curve

alw ays exists i f  V  i s  a  ra tiona l su rface . L e t  V = b e  a
composite of blowing-downs of (-1)-curves such that h, is the  blowing-down of
E,:= E, 11,(2 < i < t —  1) is the blowing-down of a (-1)-curve hu + 1 ) (E i) of 11(, +  u(D)
and D ( 1 ) := 11 (D) contains no  (-1 )-cu rves. Here we set V + 1 ) := h i + ,..• h,: 1;.
hod-1) id  and h = h ( 2 ) .

A ssum e f u rth e r th at D (1 ) i s  c o n t rac t ib le  to  q u o tien t singularities. Let
f , : —> V , be  the contraction of D( , ) ,  which makes V, a m inim al resolution of
V,. Set E :=f(E ) and  denote by y the point .1', N E ) o n  V ,.  Then h  induces a
birational m orphism  h: vi s u c h  th a t  h  f  = f , • h, 11- 1 (y) = k  a n d  h  i s  an
isomorphism over V, — .

Definition 2.1 The morphism h  is  a  combining morphism with exceptional
curve E.

Concerning I/1 , w e  have the following:

Lemma 2.2. L e t  V be a  log Enriques surface o f  in d e x  I . L et h: V—  171 b e
a  com bining m orphism . T hen V , is a  log Enriques surf ace o f  th e  same index
I. W e  hav e moreover 14; ) = I i ,(D*) in the notations of  L em m a 1.1.
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P ro o f . Note that r/i is birationally equivalent to Vand h i  (Vi , = h i  ( V ,  v )
= O. N ote also that 17, has at worst quotient singularities by the  definition of
h. So, h f i ,  =  (V , C v ,) = O. Let E  be the exceptional curve of h. Since
1 ( K  + D * )  0 (cf. Lemma 1.1), we have 1(K ,, + h * D*)— O. H e n c e  , f ( /K 17,) —
1(K , + h * D*) and IK  O .  So, P, is a log Enriques surface and its index, say
J ,  is  a  divisor o f I. I n  view o f  Lemma 1.1, (2), we have o n ly  to  show that
J  =  I .  We can write 0 — fi*(JK,7-,) J K F  +  aE with a rational number 7. Since
IK 17 — 0, w e have then I a E  O. H e n c e  a  =  0  and  JK17 — 0. S o ,  we have /1J
by the definition o f index . S o , J = I.

I n  o r d e r  t o  p r o v e  P roposition  2 .8 , w e  n e e d  t h e  following Lemmas
2.3 — 2.7. The assertion (4) in the following lemma will also be used in the proof
of Corollary 2 which is stated in  the Intoduction.

L em m a 2 .3 . L et h: V-> V, be a combinig morphism between two log Enriques
surf aces o f  t h e  s am e  in d e x  1 .  W e  s h a l l  u s e  t h e  notations (V , D ( , ) , f ,),
E = E„ y  = h(E), etc. in  Definition 2.1. Then we have:

(1) For any  i (2 < i < t), k i + 1 ) (E ; ) meets exactly two irreducible components
1P+ 1 ) (13;) and V +  n(B:{) of h ( i ± " ( D ) .  For each 3 < i < t, E 1_, is equal to one of
B : and B 1". Denoting by  z ,/I, I I  the coefficient of 13:, B r in  D *, respectively,
we have (h" + "(E 1), Il>' + "(B M  = (h"' ) (E,), h ( i + "(B ,"))= 1 and a; + > I.

(2) L e t  F i , T 2 b e  t h e  connected com ponents of  D  containing B;, Br ,
respectively, and  se t z ,:= f (T ) (i = 1 , 2). Then w e have z , z 2 , n(Sing V) =

z 2 1, f  - 1 1 (z 1) = T , and f , - 1 (y) = h(E  + F, + T 2 ). Moreover, E is a nonsingular
rational curve.

(3) y eV , and z i e V  (i = 1, 2) are quotient singularities o f  multiplicity >, 3.
(4) h l (V, D + 2K v ) = h i (V,, D o ) + 2K v ,).

P ro o f . Since Do )  = h * (D)= h * (E + D) and  Do )  is contrac tib le  to  quotient
singularities o n  VI ,  the dual graph of E + D  is a disjoint union of trees and the
(-1)-curve E  m eets at m ost two irreducible com ponents o f  D .  In particular.
F 1 0  F 2 a n d  z, z 2 . If E  meets two (one, none, resp.) irreducible components
o f  D , d e n o te s  th e m  b y  B ; a n d  B ," (B ; (/), resp.). A ccordingly, w e have
0 = (E, K v  + D*) = —  1 + a;11 + a," 11(— 1 + 7;11, —1, resp.). By Lemma 1.1, we
have 7;/I <  I. H e n c e  E  meets exactly two components B ; and B," of D and we
have a; + a," = I. L et h,: V = b e  the  blowing-down o f  E  = E ,.  Then
w e have I(K ,, + 11,D *) —  O. I f  h, * (D) contains no  (-1 )-curves, then (1) is
p ro v ed . If h, * (D) contains a  (-1)-curve  h,(E,_,), then E ,_ , m ust be  one of B;
and B [, B ; by the convention. Arguing similarly with h,(E,_,), we can conclude
(1) a n d  (2 ) . Indeed, we have 0 = (E,_,, +  h , * D)< — I + 1 ;-11 1 + at"-

(3) N ote that f ,h (B ) = f , h (E  + T , + F 2 ) = y  and  { f (B ), .f  (B )}  = { z 1 , .72 }
as set. By Lemma 1.1, (2), the coefficients of B'2. , in  D* satisfy 7',// < 1 and

I  < 1 .  Since cx'2 + cpe > I, we have 7'2 > 0  a n d  cx > 0 .  S o ,  z , (i = 1, 2) is not
a  rational double singularity (cf. Lem m a 1.1, (3)). N ote  th a t  7 / /  is  a lso  the
coefficient of the irreducible component h ( B )  in  14, ) = h * (D * ) . So, y  = f1h(fr2)
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is  no t a rational double singularity.
(4) In view of Lemma 1.2, we have on ly  to  show that f(t)= .f(1). Here

we set c(i):= # {connected component of h( i + 1 1 D} and

(i):= c(i) — (K,) — (11 ( +̀  1 ) D. KO.

We have c(t) =  c(i) +  1  for 1 < i < t —1, (K ) = (K,27,) + 1 and

—1 if B = B I  o r  Bi'
(K r i _ hi * B)— (K r i , B)=I i f  B = E 1

0 otherwise.

Note th a t E =  E, is not contained in D  and that E 1 ( i t — 1) is  a component
of D .  W e then obtain f (t) =f (t — 1) = • = f (1).

L em m a 2.4. L e t 17i: V.-+ V be a hirational morphism between two log Enriques
surfaces of the sam e index I. Then the following two conditions a re  equivalent:

(1) h  is a  combining morphism.
(2) There is a  point y  o n  V  which is not a  rational double singular point,

such that h is an isomorphism over V— {y} and the exceptional divisor E:= h - 1 (y)
is a n  irreducible curve.

Assume the above equivalent conditions. Then y  is a singularity o f , multiplicio ,

> 3  (c f. Lemma 2.3).

P ro o f .  If h  is  a combining morphism, then the condition (2) follows from
the definition of h.

Now we assume the condition (2). We use the notations (V, D, f)  for V and
(V, D, o , f 1) fo r  V .  Set E : =  f ' ( ) .  N ote t h a t  E  i s  n o t  a  com ponent of
D .  Hence we have (E, K y ) = (E, — D*) <  0  (cf. Lemma 1.1, (4)). Moreover, we
have (E 2 ) <O because E is contractible to the point y  by the birational morphsim
I .f . So, E  is  a (-1)-curve or a (-2)-curve.

Suppose (E 2 ) = — 2. Then EnD* = 0. Let D1 (1  <  i <  r) be all connected
components of D  with (E, Di) > O. T h e n  D 1 consists of ( -2)-curves (cf. Lemma
1.1, (3)). Note th a t h..f: V—* V is a resolution of the singularity y  on V  with
(10 - 1 (y) E + E 1 D1 . This im plies that y  is  a  rational double singularity, a
contradiction. So, we have (E 2 ) = —1.

S ince h •f : V—> V is a  resolution o f  singularities, there  is a  birational
m orphism  h : V—) 1/1 s u c h  t h a t  f, • h = h f. B y  the assum ption o n  h ,  the
m orphism  h  i s  a composite morphism of the blowing-down o f  E  and the
blowing-downs o f several components o f D .  Moreover, h* (D)= Do ,. Hence
11,(D) contains no ( -1)-curves because f ,  is a minimal resolution. Since V  is a
log Enriques surface, f 1 11* (D) = Sing (V,) consists of quotient singular points. So,
h  is a combining morphism by Definition 2.1.

L em m a 2.5. L e t h: V-4 V be a combining tnorphism between two log Enriques
surfaces o f the  same prime index I and with th e  exceptional curve E  V  Let

7r: U -4 V 7r i : U 1 1
7
,  he canonical coverings. Set y = [4E), E fl (Sing V )= z2{
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(cf. L em m a 2.3), F:= 7 - 1 (F), x:= TC (y ), z [:= 7E (z 1). Then w e have:
(1) x  and z ; consist of  a  single point. F is a  nonsingular irreducible rational

curve.
(2) T h e re  is  a birational morphism C —> C, su c h  th at TC 1 • 171  = h • 7, the

m orphism  h  is an  is o m o rp h is m  o v e r U, — a n d  17i - 4x ) = F . Moreover,
F n (Sing C) g

(3) zi, z 2" are all points on F f ix ed by  the natural action of  Z I IZ  on C . The
curve F is  Z IIZ -stable. 13 is  a  ZIIZ-equivariant morphism.

(4) Let U  b e  a  m inim al reso lu tion  o f  singularities contained  in
z 21 .  Then "g,:=13- ij: U —> I. 7 , is a m inim al resolution of  the singularity x eU,

w ith ij - '(F) as  the ex ceptional set.
(5) B oth C and C , are K3-surfaces possibly  w ith rational double singularities.

P ro o f .  (1) B y L em m a 2.3, y  and z ; a r e  n o t ra tio n a l double singular
points. T h e n  the f ir s t  part o f (1 ) fo llow s from  L em m a 1.4. Hence, F  is
connected. Since E := f (E )  meets Supp (D*) transversally  in exactly two points
(cf. Lemma 2.3). F  is nonsingular and F  is rational by the Hurwitz formula (cf.
Lemma 1.4, (1)).

(2) Since it is  etale over V- (Sing -17), we have Sing (U) g  - 1 (Sing (V ) and
F n (Sing (7) g {z,, ; 2 }. Since U, U1 are respectively normalizations of V and
in the function field C(U) = C(U,), (2) follow s from  properties o f h  before
Definition 2.1.

(3) Since it ramifies exactly over {singularity o f V of multiplicity > 31 (cf.
Lemma 1.4), the first assertion of (3) follows from Lemma 2.3, (3). By the same
reasoning, x  is  f ix e d  b y  the na tu ra l Z//Z-action on U .  S o ,  U, —  X  is
Z// Z-stable. Hence U — F is Z//Z-stable because the actions of Z//Z on U — F
and on U, —  {x}  are the same. The second and hence the third assertion of (3)
follow.

(4) N o te  t h a t  çj. , := fi • C U ,  is a  reso lu tion  o f  th e  singularity
x E U , .  Since U has only rational double singular points, we have K o = -()*(K,7)
O. H e n c e  th e re  are no (-1)-curves on U  and f 7 i  i s  a minimal resolution of the
singularity x e U1 .

(5) W e have only  to  show neither U  n o r U , is  an abelian surface. Since
there  is a rational curve F  o n  U , the surface C  is  n o t  abelian. I f  U , is  an
abelian surface, then U , is especially smooth. However, the assertion (4) implies
that x c  U , is  a singularity . This is  a contradiction. So, U , is  n o t an abelian
surface. This proves (5).

Lemma 2.6. L e t  V , b e  a  lo g  Enriques su rf ac e  o f  p rim e  in d e x  I  an d  let
7r1 : C 1 —> V be the canonical cov ering. L e t (7 be a norm al projective surface such
th at K E  0, C  has at w orst rational double singularities an d  there  is  an  action
of Z lIZ  on U . A ssum e that there is a point x E U , and there is a ZIIZ-equivariant
morphism U  e ,  such that [I is an  isomorphism  over C, —  {x} , the exceptional
divisor F:= Z IIZ -stable and the action o f  Z lIZ  on F is non-trivial. Set
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V :=  1 (Z I IZ )  an d  le t  7r : C -> V b e  the quotient morphism. T hen V  i s  a  log
Enriques surface o f  the sanie index  I as V , and U  is the canonical covering.

P ro o f .  Since h: U U ,  is a surjective Z//Z-equivariant morphism and since
V = U /(Z //Z )  and V, =  U ,/(Z //Z ) , there is a surjective morphism h:17-÷ V, such
tha t i t  •  h = h • 7. Since F is Z //Z -stable, so does x. Therefore, 7T 1- -  1  7 I (X ) =  x
and 7r -  1  7(F) = F .  Set y:= 7r I (X) ,  E :=  n (F ). By the properties of h, we see that
h is an isomorphism over V, -  t y l  and that E = ( y ) .  Hence every singularity
o f  V -  E  i s  a n  iso la ted  quo tien t singularity . L e t  f: V -+  V  b e  a m inim al
resolution. Since the action of the group Z //Z  of prime order on F is non-trivial,
F  contains only finitely many points with non-trivial isotropy g ro u p . So, every
singularity o f  V contained in  E is an  isolated quotient singularity. Thus. V has
at w orst isolated quotient singularities and i t  is  e ta le  o v e r  V -  Sing V. Hence
h i (V, = 111 (V CO= W W 1, = O.

Since V is birational to V, by a morphism h  and since e(K 1)  is not trivial,
w e can  prove that 6(K 17) is  n o t  trivial. O n  t h e  o ther hand , the  fact K E -
im plies that IK, 7 - 0  (cf. [2, L em m a 2.2]). H ence V is  a log Enriques surface
of index I. This proves Lemma 2.6.

Lemma 2 .7 .  L e t V and V , be tw o log Enriques surfaces of  the sam e prim e
in d e x  I .  L et 7r : C  V, 7r : U 1  - >  V, he canonical coverings. T hen the following
conditions are equivalent:

(1) T here  is  a  combining morphistn h : V-> V , w ith  th e  exceptional curve
E .  S et y  = 7(E).

(2) T here  is  a  p o in t x c U 1 a n d  t h e re  i s  a  ZI IZ-equivariant morphism
U U  , su c h  th at 7 1 (x )  i s  n o t  a  rational double singular point, h  i s  an

isomorphism ov er U  -  the exceptional divisor F. h - '(x ) is  an  irreducible
curve and F is  ZI IZ-stable.

Furthermore, suppose the equivalent conditions (1 ) and  (2). T hen w e hare
7r •  h = h • Tr. Hence E = h- 1 (y), F = and x = 7r,- 1 (y). In addition, x EC
is a  singular point.

P ro o f . Assume the condition (1). Set x:= 7,- 1 (y) w hich is a single point
and a singular point by Lem m a 2.5. Let h be the one given in Lemma 2.5. Then
the condition (2) is satisfied (cf. Lemma 2.3, (3)).

A ssum e the  cond ition  (2 ). B y  the  a rgum en t o f L em m a 2 .6 , the re  is  a
birational morphism h : V--+ V , such that 7 •  1 -1 h.  a n d  h  is  a n  isomorphism
over V, -  { n ,( x ) } .  Since F  is  a n  irreducible curve, so does E:= 7 (F ).  Thus, h
is  a  combining morphism with the exceptional curve E  (cf. L em m a 2.4). The
condition (1) is satisfied. The last assertion of Lemma 2.7 is proved in Lemma 2.5.

N ow  Proposition 2.8 in the Introduction follows from Lemmas 2.3, 2.4, 2.5
and 2.7.

W e shall use the following two lemmas in  the  proof of Theorem 2.11.

Lemma 2.9. L ei 1-i: V -+ 1/,- .  b e  a  combining morphism. T hen V satisfies the
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Hypothesis (A ) in the Introduction if  and only  if  so does 17,.

P ro o f . By Lemma 2.5, neither the canonical covering of V  n o r  th a t o f V
is an abelian surface. L e t  E be the exceptional curve of i( and set y =  h ( E ) . Note
th a t h: V—> V , is  an isomorphism over V —  ly1 and E n (Sing -1-/) =  : : 2 1 ;  for
two points z 1 , z 2 . Moreover, ye V ,, zi e V(i = 1, 2) are singularities of multiplicity
>  3 by L em m a 2.3. So, the assertion that every singularity has multiplicity > 3
holds true for 17 if and only if so does for V . B y  L em m a 2 .2 , V  and V  have
the same index. This proves Lemma 2.9.

Lemma 2.10. L et G he a group o f  odd order. L et T  he a graph of  Dy nk in
type A n (n> 1), D n (n > 5) or E„(n 6, 7, 8). A ssum e G acts o n  T  such that the
action o n  edges is determ ined by  the  action on v ertices in  the following sense
(*). T h en  th e  ac tio n  o f  G  on  T  is trivial.

(*) i f  e  i s  an  edge of  T  link ing tw o vertices v ,, v 2 , then for every  elem ent
g  o f  G, g(e) is a  unique edge linking g(v i ) and g(v 2 ).

P ro o f . L em m a 2 .10  is c lear in the case E ,  o r  E8 . Consider the case
A „. Note tha t the set of two tip vertices of the graph T  is  G-stable. Since the
order of G is not divisible by 2, we see that each tip vertex of T  is G-fixed. So
G fixes every vertices by our assumption (*). Then we can deduce that G  acts
trivially on T  b y  the sam e reasoning. The case D„(n >  5 ), E ,  can be proved
similarly.

Now we can prove the following Theorem 2.11. We shall use the notations
(V , D, f) of §1  for V

Theorem 2.11. Let V  be  a log Enriques surf ice satisfying the Hypothesis (A)
in the Introduction. A ssum e that the index  I of  i7 is an odd prim e num ber. Then
we have:

- — _
(1) T h e re  is  a  com posite V , ••• V, —* Vo :=  V  ( n >  0 )  of  com bining

morphisms (cf . Proposition 2.8) between log Enriques surfaces of  the same index
I such that C„ is a K3-surface possibly with rational double singularities of Dynkin
type A ,. H e re  w e  let Tc,: C,—>17 be the canonical covering. M oreover, f o r each
sin g u larity  x  o f  C l„ the im age y := tr,,(x )E 13, i s  a  singularity  isom orphic to
(C2 1C21.1; 0 ). Here C21 . 1 : =  < 6 21,1> GL(2; C) is a  cyclic subgroup of order 21
generated by

q  0 )
a21, 1 = 5

0  17

q being a prim itive 2I-th root of  the unity. Finally ', the hypothesis (A ) is satisfied
by every 13.

(2) L et g: U .— C  be  a  minimal resolution and  denote by  T := g '(S in g  U)
the exceptional divisor. T hen  there  are  natural Z I IZ -actions on  U  an d  C  such
th at g  is IZ -equiv ariant an d  every  irreducible com ponent o f  T  is  Z IIZ -
stable. M oreov er, there  are  exactly  n irreducible com ponents F,(1 < i < n) of  T
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on which Z I I Z  does not triv ially  act. Finally , af ter relabelling subscripts of  F i s,
th e re  is  a c o n trac tio n  G i : U —> U i o f  F — (F, + ••• + F 1) a n d  a  contraction
I-11 : U1 —> Ui _ ,  o f F i := G 1 (F1)  such that i •  G1 = G 1 _ ,  and 7T1_ 1 •  hi  =  7ri • hi . H e re
w e set G0 := g, 7r 0 := iv, 0  : =  U.

Conversely, supposeY , : =  V  ( r  >  0) is a composite of combining
m orphism s w ith  rgi : X i —> Y,. a  canonical covering and satisfy ing (Y .; ru,.(x)) =
(C 2  I C 2 , * 1 : 0) for every singularity  x  of X,.. Then we have r  =  n .  Moreover, there
is a .strictly increasing sequence and there is a
contraction H i : U —> X ; o f  T —  (F„,+ ••• + F,,,). In  particular, ii-e „= U „ and
i7n =  „I ( Z I I Z ) =

(3) n  =# lex cep tional curve of h 1 h : =  p(U)—  p(U)—  #(S ing U„)
<  Min {19, 22 — I}  (See also Proposition 1.3, (2)).

P ro o f . Let TE : U  -> V  be  the canonical covering. Then U  is  a K 3-surface
possibly with rational double singularities by the Hypothesis (A). L e t  g: U U
be a minimal reso lu tion . The U  is a K 3-surface. Set F:= g - 1 (S in g  C ) . Then
F consists of ( -2 )-cu rv es . Write F = , F i where F i is  a connected component
of F .  Then the dual graph of F i has Dynkin . type A„,,(rn i1 ) ,  D „ , i (m i > 4) or
E„, i (m i = 6, 7, 8). By the Hypothesis (A) and by Lemma 1.4, every singular point
of U  is fixed by the Z //Z -a c t io n . Hence there is a non-trivial Z/IZ-action on
U  su c h  th a t g  i s  a  Z//Z-equivariant birational m orphism  and every F i i s
Z //Z -stab le . W e prove first the following:

CLAIM . (1) Let F i (n 1 +• • • +n i _ 1 + 1 j n 1 +•••+11 1)  be all irreducible
components of F i su c h  th a t  Z / /Z  does not act trivially on it. Set n =
Then every connected componet of F— E i'.1= 1 F i  consists of a single (-2)-curve.

(2) Suppose Z / /Z  acts trivially on every irreducible component of F i . Then
F i consists of a single (-2)-curve.

(3) Every irreducible component of F  is Z//Z-stable.

Pro o f  o f  the c laim . (1) Suppose there  is  a  connected componet o f F
F. w ith at least tw o com ponents. Then there are two componets L 1 . L ,

of F — En,= F ,  with an intersection point P. Note that tw o tangents of L ,. L „
a t the point P  are fixed by the Z /IZ -a c tio n . So, the action of Z / / Z  on U  and
U are trivial. This le a d s  to  th a t V = C/(Z//Z) = C and the index I  o f V  is
e q u a l to  one. This i s  a contradiction. So, the assertion (1) of the claim is
true. Then follows the assertion (2) of the claim.

(3) Suppose t h e r e  i s  a n  irreducible com ponent o f  F i w h ic h  i s  n o t
Z //Z -stab le . W e m ay  assume i = I. S e t  x := g(T 1 )E U . y := m (x )eV  which are
singular points. Set z 1 :—  '( y )  g  V  T hen  the action of Z / / Z  on the dual
graph of F ,  is not trivial. B y Lem m a 2.10, the dual graph of F ,  has Dynkin
type D 4 . W r ite  T , =  L i with the central component L 1 . W e  se e  th a t L ,
is  Z //Z -s ta b le . S in c e  /  is  n o t divisible by  2 , w e  have ri(L 2 ) = L 3 ,17(1. 3 ) = L ,,
ti(1. 4 ) = L 2  after relabelling subscripts. H ere ti is  a  generator o f Z / / Z .  So.
311. H e n c e  /  =  3 . S in c e  x  =  g(T 1 ) is a singularity of Dynkin type D 4 ,  the dual
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Figure I

graph of A  is given in Figure 1 (cf. [2, Proposition 6.1]).
In Figure (1), we have A  =1 4

i ,„1 A i w ith  the central component A  and three
irreducible components d i  ( j  = 2, 3, 4) sprouting from  A , .  Let P :=  z fl A ;

= 2, 3, 4) be  an intersection point. Let h : V, -> V be  the blowing-up of three
points P i 's. Set Ei := 17- 1 (P i ), h'(A i ). N ote that the coefficients of A i 's  in
D * for i = 1,...,4 are respectively 1, L So, w e have 0 - + D*)=
3(K „, + h'(D*)) (cf. Lem m a 1.1). Let V  b e  the contraction of h'(D*).
T h e n  w e  have f ( 3 K 1 ) + h '(D *)) and 3 K 0  (cf. [2. Lemma
1.2]). Set E ;:= z i : =  . f , ( A  ) ,  z 2 := f 1 ( 4 ) .  T hen  Ei n (Sing V) = z 2 J 1
and z 1 , z, i 's are quotient singular points. T h e re  is  a  birational morphism
h: V, -* V  such that h • fi  = f  • h, the morphism h  is an isomorphism over V -  ty1
and h - 1 (y) = E, + E3 E4 . Thus, every singularity of V is an isolated quotient
singularitiy. H ence  h i  (V , =  ( V i , v  ,) = h i ( V, ( y ) = O. S o , V , is a log
Enriques surface of index one or three. S in c e  V and hence )7 are rational surfaces
b y  the Hypothesis (A ), r ; h a s  index 3. By Definition 2.1, h  i s  a composite
morphism o f three com bining morphisms. Let n i : U 1 -+ V  b e  the canonical
covering. Set F i := n i

- 1 (E i )• T h e n  F i is  an irreducible curve and is stable under
the natural Z//Z-action on U , (see also Lemma 2.5). Note th a t 7r,- 1 (z 2 i )  is  a
smooth point and Q,:= 7r,- 1 (z 1 )  is a singular point of Dynkin type A , .  By the
same argument of Lemma 2.5, w e see  tha t U  is  a lso  a minimal resolution of
U , .  Let g 1 : U - U 1 b e  the resolution which is, in fact, Z//Z-equivariant. Then
w e  have h • n i • g i  =  7 r  g .  So, w e  h a v e  L , = g i

- 1 (Q 1 ) and 1Lji = 2. 3, 41 =
{ g ( F ) j  = 2, 3, 41. Hence L 1 is  a lso  Z//Z-stable for i = 2, 3, 4 (cf. Lemma 2.5,
(3)). W e reach a contradiction. Thus, the claim is proved.

Next we prove the assertion (I) of Theorem 2.1L W e use the notations of
the claim: ni , n  =1 7 _  n i , F i  (1  <j n).

Assume ni = 0 for som e i, say  i I. T h e n  F ,  is  a single ( -2)-curve on
which Z//Z acts trivially by the c la im . Set x:= g(f",)E U, y := 7 -c(x)e V  which
are singular points. Note tha t g - 1 (y) = x (cf. Lemma 1.4). We can prove that
the singularity y is isomorphic to (C / C— 21,1 ; 0).

Assume ni > 1  for some j. Let G1(1 < i < n): U -› U, be the contraction of
F - (F, + • • • + F 1). Set F i := i ) .  Let h1 : 0- 1 -* U 1 _ 1 b e  the contraction of
F.  W e  set t.713 : =  U , Go :=  g  and x1_,:= fi i (F i). Then hi G i = G 1 _ 1 . By (3) of
the c la im , th e re  is  a  non-trivial Z//Z-action o n  U1 s u c h  t h a t  Gi , i a r e
Z//Z-equivariant and F i i s  Z//Z-stable. Since the action of Z//Z on F 1 is
non-trivial, so does on F,. Set V:= U,/(Z//Z) and let n i : CI -+ l be the quotient
morphism. Set E i := 7r1(F i ). Applying Lemma 2.6 n-times, w e see that every V
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i s  a  lo g  Enriques surface of index I  a n d  7r, i s  th e  canonical covering. Set
y ; = //1(x1). By Lem m a 2.7 , the re  is  a  combining morphism hi : K.-* Ï?_, such
th a t h, • 7 r i =  7 ti_

1
 •  È,  h,- 1 (y ,_ ,) a n d  E , is  th e  exceptional curve o f  h , (cf.

Lemma 2.9  a n d  Hypothesis (A), (3)). H ere w e s e t  Vo  :=  V, 7/0 := 7E. We shall
prove that h is satisfy the conditions in Theorem 2.11.

N ote tha t G„ is a minimal resolution. A  point x  o f U„ is  a  singular point
if and only if G , 1(x) i s  a  connected component o f F— (F, + ••• + F„). By the
claim, every connected component o f F— (F,+•••+ F„) is  a  single (-2)-curve
on which Z//Z acts trivially. As in the case n1 = 0, we see that Sing C,, consists
of singularities x  such that 7/„(x)E V, is a  singularity isomorphic to (C/C21.1; 0 ).
Since U  is a  K 3-surface, every U, is a  K 3-surface possibly with isolated rational
double singularities. B y  L e m m a  2.9 , w e  se e  th a t  V 's satisfy th e  Hypothesis
(A ) . Thus, h i 's s a t is f y  th e  c o n d itio n s  in  Theorem  2 .1 1 , (1 ) . H ence (1 )  is
p roved . The first part of Theorem 2.11, (2) is also proved in the above arguments.

W e now prove the converse part in Theorem 2.11, (2). By Lemma 2.5, U
is  a m inim al resolution of each X , .  Let H i : U —> X , be  the  resolution. L e t S,
b e  th e  exceptional curve o f  fii a n d  s e t  Ti:=

 . 7 1 (g , )
 B y  L e m m a  2.5 , T, i s  a

nonsingular irreducible rational curve a n d  th é  na tu ra l Z//Z-action o n  Ti i s
non-trivial. Moreover, there is a  Z// Z-equivariant birational morphism fi,: X 1 —>

,  such that vi • fi i = fit • tu,, j5, is  the contraction of Ti and .fii (Ti) e ) 7 ,_  is
a  singular p o in t .  S e t  T„ := H i( T ) .  N o te  th a t  fi, • • • fir • H r : U —> X ,0  = I .I  i s  a
minimal resolution a n d  w e  m a y  assume th a t  i t  i s  e q u a l  to  g. Denote by
F':= H ,7  (Sing .A7 ,.) the exceptional divisor of H r . T h e n  w e  have F = g - 1  (Sing U)
= F' + T, + • • • + 'T„, H, - 1  (Sing X ) = F — (T,+ •-• + T i ). Applying the above claim
to  1-7, (cf. Lemmas 2.9 and 2.2), we see that every component of H.7 '(Sing X i )  is
Z//Z-stable. So, H , is a  Z// Z-equivariant birational morphism. The action of
Z//Z o n  Ti i s  non-trivial because so does o n  'Pi . Let x  be  a  singular point of

Then tur (x)E Y, is  a  singularity isomorphic to (C 2/ C2/,1 ; 0). Since mr (x) is
a  branch po in t o f tur  b y  L e m m a  1.4, 11,7 '(x) consists o f a  s ing le  ( —2)-curve
o n  w hich  Z//Z a c ts  tr iv ia lly . T h u s , w e  h a v e  r =  n  a n d  {77 1 < j < =

< j  <  .  The converse part in Theorem 2.11, (2) is proved. H ence (2) is
proved.

Finally, we shall prove (3). The first equality follows from the definition of
hi 's (cf. Proposition 2.8 in  the Introduction). In  the notations of the statement
of the present theorem, we have n = # {irreducible component of / } —  {excep-
tional curve o f  G„: U,, --> U„} = p(U) — p(0)— # (Sing U„) because U„ has only
rational double singularities of Dynkin type A , .  For the last inequality, we have
only to consider the  case  Sing U  4 ) .  By virtue of Proposition 1.3. w e have
p(U)—  p(U)= 24 — c —  I(p(V )—  c + 2) 2 4  —  c — I 22 — I  <  1 9 . This proves
(3 ).

Thus, Theorem 2.11 is proved.

A s a  consequence, we have :

Corollary 2 .1 2 . L e t V  he  a  log Enrigues surface w hose index  I is an  odd
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prim e num ber. L et 7 : C -> V be the canonical covering. Then the following two
conditions are equivalent.

(1) V  satisfies the Hypothesis (A ) in  the Introduction. For every singularity
x o f  C  the im age y := 7(x )e V  is a  singularity isomorphic to (C 2 1C21,1; 0 ).

(2) V satisfies the Hypothesis (A). W e have V = iÇ, i.e., n = 0 in the notations
of  Theorem  2.11.

§ 3 . Index 3 case

W e shall prove the following Theorem 3.1 in the present section. In the
Table I be low , by  S ing  (U) = m A ,, w e  m e a n  th a t  C  consists o f exactly in
singularities of Dynkin type A , .  B y  Sing (V) (3, 1) i , (6, 1)i, w e m ean  tha t V
has exactly i + j singularities, and i  (resp. j )  singularities of them are isomorphic
to  (C2 /C„,„; 0) (cf. Lemma 1.4) with (a, b) = (3, 1) (resp. (6, 1)). W e also use the
notations (V , D, f) in §1 for V

Theorem 3.1. L et V  be a log Enriques surface of  index  3 a n d  le t  : C -> V
be the canonical cov ering. A ssum e V  satisf ies th e  condition (1) o f  Corollary
2.12. Then V and U are described in one of  the rows of  the T ab le  1 . In particular,
111 (V, D + 2K v ) = O.

Table 1

N o. S ing  (V) p(V ) p(V) S ing  (U)

1 (3, 1)9 , (6, 1)6 14 29 6A 1

2 (3, 1)8 , (6, 1)5 13 26 5A,

3 (3, 1)2 , (6, 1)4 12 23 4A 1

4 (3, 1)6 , (6, 1)3 11 20 3A 1

5 (3, 1)5 , (6, 1)2 10 17 2A,

6 (3, 1)4 , (6, 1) 9 14 A1

7 (3, 1)3 8 11 0

P ro o f . If C is sm ooth, then V and C  are described in the seventh row of
the Table 1 b y  [2, Theorem 5.1]. So, we shall assume th a t  C  admits at least
one singular point.

Let yi for 1 < i < in 0 be all singularities of V isomorphic to (C2 /C3 .1 ; 0). Let
yi  for mo + 1 < j  < mo + m , be all singularities of V isomorphic to (C2 /C6.1; 0).
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N ote th a t x „ :=  m  (y„) (1 < n < m o  + m i ) consists of a single point (cf. Lemma
1.4). M oreover, x ; for 1 <  i < m o  (resp. x i for m o +  1  < j  < m o + m i )  is a  smooth
p o in t o f  U (resp . a  singularity of D ynkin  type A 1 ). B y the condition (1) of
Corollary 2.12, every singularity o f  V-  o th e r  th a n  y i's  is  a  cyclic singularity of
o rd e r  3 . So, by Lemma 1.4, we have c:= # (Sing V) = m o + m i . W e have also
p(U) - p(C) = m i a n d  Sing U =  in 1 A 1 . H e r e  U  i s  a  m in im a l resolution of
U . Set z1„:= (y„) g  V  and D :=  =  d„. Then we have :

(1) .61i (1 < i < m o )  is a single ( -3)-curve.
(2) 4 1(m0 + 1 < j  <  c) is  a single ( -6)-curve.

W e can check that f*(K,7) K ,  +  D* with

1 2
D* =A 1  +

3 , 3

Hence we have

1 8
-  - m o -  - m i =  (D*) 2 =  ( K ) =  10 - p(V ) =

3 3

10 - p(V ) - # (D ) = 10 - P(V) - (mo +

2 5
(3.1) p(V ) = 10 - -m o +

3 3

and

This, together with Proposition 1.3, implies :

24 = c + p(U) - p(U) + 3(p(V ) - c + 2) =

(mo  + m i ) + m (i +  3  1 0  -  -

2  

mo +  -
5

m1 -  1 1 1 0  -  in i +  2).
3 3

Hence we have :

(3.2) mo = 3 + m and

(3.1') p(V ) = 8 + w 1 .

O n  the  other hand, b y  Proposition 1.3, we have

-  1  <  p(V ) - c = 8 + 111 1 -  ( 1 1 1 0  M  1 )  G  4.

Namely, 4 < m o <  9 . B y  no ting  tha t

p(V ) = p(V ) + m o  + m i , Sing U =m ,A 1

and  by equalities (3.1)' and (3.2), w e see that 17 a n d  U  are  described in one of
th e  row s of the  T able  1 . T he second assertion  of Theorem 3.1 follows from
Lemma 1.2 and the Table I .  T h i s  proves Theorem 3.1.

The existence of the case No.1 (resp.  No. 6, o r  No. 7) in Table 1 of Theorem



L ogarithm ic Enriques surfaces, II 373

3.1 was given in  Example 6.11 (resp. Example 6.8 and  Remark 6.7, o r  Example
5.3) o f  [ 2 ] .  We shall give below examples of cases No.2, No. 3, No.4 and No. 5.

E x a m p le s  3 .2 . W e  c a n  f in d  a  nonsingular rational surface V ' a n d  a
P'-fibration 0 :  V ' — ÷ F" such that the following two conditions are satisfied.

(1) All singular fibers o f  0  a r e  vertically shown in Figure m (2 < in < 5).
W e set F = F, + F 2  in  the  case F igure 5 . In  particular, in  the  case F igure In
for in = 5 (resp. in = 2, 3, 4), F + D ; + D '2  (resp. F + D ; + D '2 + D )  is the support
o f a  singular fiber o f 0 .  W e have p(V ') = 11.

(2) D enote by D ' th e  reduced effective divisor consisting o f all irreducible
components in Figure in  w ith self intersection num ber <  —  2 . Let f , :  V ' —> V'
be the contraction of D ' .  T hen V ' is  a log Enriques surface of index 3.

Figure 4 Figure 5

L e t  a: V' —> E. 2 b e  a  c o m p o site  m o rp h ism  o f  blow ing-dow ns onto a
Hirzebruch surface Z 2  such that (a(M ') 2 ) =  —  2 . T hen  the existence of a pair
(V', D ') is  equ ive len t to  tha t of (Z 2 , o- (D')). In  add ition , to  m e e t th e  above
cond ition  (2 ), w e  ju s t  r e q u ire  th a t  3  (K r  + D'*) — O ( c f .  L e m m a  1 .1 ) ,  or
equivalently, 3(1< z 2 +  * (D'*)) O.

L e t 7r1 : C' V ' b e  th e  canonical covering. In  the case F igure 2 (resp.
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3 ,4  5 ), T C 1 ( f,(D')) consists of a smooth point and a singular point P  of Dynkin
type D 1 6  (resp. D1 3 , D1 0 , D 7 ). We have Sing (U ')= { P} .

Let I': F» be a composite morphism of combining morphisms such that
V satisfies the condition (1) of Corollary 2.12. In the notations of Theorem 2.11,
we have V= V,: with n = 11 (resp. 9, 7, 5) for the case Figure 2 (resp. 3, 4, 5). Let
f: V-> V b e  a minimal resolution of singularities. Then there is a composite
morphism T :  V -* V ' of blowing-ups of several intersection points of D' and their
infinitely near points such that f • f = .f, • T  and that T - 1 (D) -  D consists of exactly
n disjoint (-1)-curves.

Finally, in the case Figure 2 (resp. 3, 4, 5), -V is  a log Enriques surface of
index 3  fitting the case No.2 (resp. 3, 4, 5) of the Table 1. For the concrete
constructions of (V ', D') and (V, D), we refer to Example 7.3.

§4 . Index 5 case

W e shall prove the following Theorem 4.1 in the present section. In the
Table 2  below, by Sing (II) = rnA , w e  m e a n  th a t  C  consists o f exactly in
singularities of D ynkin type A , .  By Sing ( V ) = (5, 1)', (5, 2)i, (10, 1) k , we mean
that V  has exactly i + j  + k singularities, and i  (resp. j, k) singularities of them
are isomorphic to (C 2 /C a d ,; 0) w ith (a, b)= (5, 1) (resp. (5, 2), (10, 1)). We also
use the notations (V, D, f) in §1  for V

Theorem 4.1. Let V be a log Enriques surface of index 5  and let 7r: U  - 4  V

b e  the canonical covering. Assume r/ satisfies the condition (1 )  of Corollary

2.12. Then V and U are described in one of the rows of the Table 2. In particular,

I-11 (V, D + 2K,7 ) = 0.

Table 2

No. Sing (V) p( V) p( V) Sing (U)

1 (5, 1)4 , (5, 2)9 , (10, 1)3 15 40 3A 1

2 (5, 1)3 , (5, 2)7 , (10, 1)2 12 31 2A,

3 (5, 1)2 , (5, 2) 5 , (10, 1) 9 22 A,

4 (5, 1), (5, 2)3 6 13 0

P r o o f  I f  U  is sm ooth, then V  and U  are described in the fourth row of
the Table 2  by  [2 , T heorem  5 .1]. So, we shall assume th a t  U  admits at least
one singular point.

Let j), for 1 i and yi  f o r  in  +1 < j < + m  be respectively all
singularities o f  -12 isom orphic  to  (C 2 /C 5 , ;  0 )  w i t h  r = 1 and r =  2 .  Set
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mo := rtl ) + m o". L e t  y , fo r  m o + 1 1c15 wo  +  w ,  be  a ll s ingu la ritie s o f  V
isomorphic to (C 2 /C 1 0 1 ; 0). A s  in  T heorem  3 .1 , w e have  c:= #(Sing V) =

+  m i . W e  have also p(U)—  p(U)= w , a n d  Sing U = m , A ,. H ere U  is  a
minimal resolution of U .  Set z1„:= f - 1 (y„) ç  V  and D :=  T h e n  w e
have:

(1) 41,(1 < i < mO) is  a single (-5)-curve.
(2) d i (m,', + 1 j  m o ) is a chain of one (-2)-curve 4

1
 and one (-3)-curve

(3 )
 

d k (mo + 1  < k  < c) is  a single (-10)-curve.

W e can check that f *(K 17) -==,- K v  + D* with

3 1
D* = i + -E (A, 1  24 ; ,2) +-Lzik.5 5 , 5 k

A s in Theorem 3.1, we have

— 1 +  2K; + 32w 1) = (D*) 2 =  (K )  =
5

10 — p(V)—  (in i; + 2)11;; + m i ), and

(4.1) 5(p(V )—  10) = 4n), — 8m 1 +  27m 1 .

This, together with Proposition 1.3, implies

24 = e + p(U)—  p(U)+ 5(p(V )—  e  + 2) =

+ m,; + m l ) + m + (4/11, — 8m (; + 27m 1)

+ 5(12 — in  — in —  m 1 ).

Hence we have:

(4.2) mo" = 3 + 2m 1 .

By the same proposition, we can write

p(17 ) = c —  1 + =(iii + m o" + m i ) — 1 + r fo r  r = 0 , 1, 2 o r 3.

This, together with (4.2), makes (4.1) into the following form:

(4.1')i n  = 16— S r — 4m 1 .

O n the  other hand, by Lemma 1.2, we have:

h l ( V, D + 2K v ) = c — 1 — (10 — (1), =

2e— 12 + r + #(1)1— (D,

2(m ) + + in,)—  12 + r

+ + 2111 + ni t ) — +  in  + 8m ,) =
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— 12 + r + 3m o" — 5m, = — 3 + r + m i .

Hence we obtain

(4.3) 0 <  /11(V , D + 2K v ) = —  3 + r +

S ince  m , >  1 , the equality (4.1') implies that 5r = 16 —  4m 1 — trtO <  1 2  and
r 2. By making use of (4.1)', (4.2) and (4.3), we shall show:

(r, mO, m ,  m i ) = (0, 4, 9, 3), (0, 0, 11, 4), (1, 3, 7, 2) or (2, 2, 5, 1).

So, either the following case (5) occurs or V and U  are described in one of the
rows of the Table 2  (cf. the proof of Theorem 3.1).

Case (5) p(V )= c —  1 --- 14, p(V ) = 40, Sing (U) = 4A 1 and

11 15

D = (d i . , + d • 2) E dk.
j= 1k = 1 2

Here d k is an isolated ( —10)-curve of D .  The curves d  "  and d  are respectively
(-2)-curve  and (-3)-curve, d i . , + d i ,2 i s  a  linear chain and AL ,  +  j . 2  i s  a
connected component of D.

Actually, the above case (5) does not occur by the following Lemma 4.2. The
second assertion of Theorem 4.1 follows from Lemma 1.2 and the Table 2. This
proves Theorem 4.1.

L em m a 4 .2 . The above case (5) does not occur.

P ro o f . Assume, on the contrary, that V is a log Enriques surface satisfying
the conditions of Theorem 4.1 and fitting the above case (5). We use the above
notations for D .  We can write

4  1 5

D* = - (d + 24 1 . 2 )  +  -  E A.
5

j=1 5k=12

Set 14 :=  V, D( l ) := D .  Suppose there is a (— 1)-curve E, on 1/, such that E , meets
a coefficient 4

s  com ponen t o f Dti ) ,  sa y  4 12• Then E i m e e t s  a coefficient
component of D*, say b e c a u s e  K  —  D * .  Moreover, (E 1 , A l 2 ) = (E 1 ,  d L i )
= 1  and E , meets no components of Do ,  other than z1 1 2  and A Let a 1 :
Vi -+  V2 be the smooth contraction of the (— 1)-curve E, and the (— 2)-curve d 1 . ,.
Set D1 2 1 := o- , * (D(, )), D 1 :=  , * (Dt, )). Note th a t 5 (K , 2 +  D t2 1 ) —  0. Continue
this process. W e obtain a composite of smooth contraction V, j% V2 %...4a
such that the following claim holds, where a = a ,,• • • a1 , W := v„+ ,, B:= D 1,, + =

* (D), B* := = a * (D*).

C L A IM  (1). No (-1)-curve on W meets any coefficient 't component of B*.

Note tha t 5(K w  + B*) —  0. A connected component of B  is either a chain
+ 2  (1 11 — n) of one ( —2)-curve F i . ,  and  one ( —3)-curve F i . 2 ,  or
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a tree rk , 0 ••• (12 k 15) of one (2r, — 10)-curve rk , o  as the central
component and rk (r k0 )  ( - 2 ) - c u r v e s  Fk . 1,..., r k . r k  as tw ig s . Let us write

B  =I(F(.1  + ri,2 ) + + • • • + r k , r k ) .

Then we have

1
B* = 5

2
+ 2 T , 2 ) + (2 Tk ,, +  Fk . i . . . 1-1c.rk).

By the construction of o- , we find that 11,1 5 12 rk  = n <11, (K 1
2
v ) ( K 1

2 ) + 2n < —30
+ 2 x 11 = — 8.

The fact K , + B * =_ 0 implies:

C L A IM  (2). Suppose C 1 i s  a (—m)-curve on W w ith m  > 2. Then either C,
is a component of B  or C ,  is  a (-2)-curve disjoint from B.

Let W -4 P i  b e  a  F"-fibration. Since (K ,)  < 8 , th e re  is  a t  le a s t  one
singular fiber S i .

C L A IM  (3). W e  can  w rite  S upp  S , =  E1 E, + E i Ci + Ek B k su c h  th a t  E1 is
a (-1)-curve not contained in B, B k is  a component of B  and C . is  a ( -2)-curve
not contained in B. Moreover, E i +  Ek Bk is a connected tree.

P ro o f . T h e  first assertion fo llow s from  th e  c la im  (2 )  and the fact
2rk — 10 —  1 .  For the second assertion, we use the negative semi-definiteness
of the intersection matrix of S 1 . This proves the claim (3).

C L A IM  (4). T h e r e  is  a singular fiber of 0 ,  say S , ,  such that S i conta ins a
coefficient t  component of B*.

P ro o f . Suppose the claim  is false. Then all four coefficient t  components
of B* are transversal to  the f ib ra tio n  0 . This leads to 2 = (S,, — K w ) = (S 1 . B*)
> 4 x t. This is a contradiction. So, Claim (4) is true.

C L A IM  (5). Let S ,  be a singular fiber containing a coefficient 4s component
rk ,o  of B* . Let r k , 0  ±  •  •  •  + be the connected component of B * containing
rk . 0 in the above notations. After relabelling the indices of we have one
of the following cases:

Case (5-1) r k < 5  and there are (-1)-curves E 9 (1 < s  < 10 — 21- 1)  such that
1 , 1 o -1 ss(E„ Fk , ) = 1 and tha t S , = r k , 0  

+ 2r, ( E  +  r k , ) .

Case (5-2) r, < 4  and there are (-1)-curves E,(1 < s < 9 — 2rk)  such that
12rk s,(Es, T k ,  ) 1 and tha t S , =  2  r k , 0 2 (E  ±1 s

9
: —I— I  k.10 —  21-k + 

r
k.11

-
21

.
k•

P ro o f . If S ,  contains no components of B  except for some F k .s 's, then the
case (5-1) or (5-2) takes place by  the claims (1) and (3). Suppose S ,  contains
a component of B  o th e r  th a n  r k s. W e  s h a l l  show tha t th is w ill leads to  a
contradiction and hence the claim is true.
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By the claims (1) and (3), S , contains a (-1)-curve E l ,  a component B , of
B  o th e r  th a n  r k ,s ' s  and a component o f B  am o n g  r k ,,s 's , sa y  r k , , ,  such that
(E l , Fk . ,) =  (E 1 , =  1 .  Then (Bk) —  3. By the claim (1), B , is a (-3)-curve
with coefficient i n  B* and B 1 , together with a (-2)-curve Bo , forms a connected
component o f B .  The fact (E 1 , B*) = 1 im plies that E ,  meets a coefficient
com ponent B2 o f  B .  Set A : 0  2E 1 +  + B 2 . L e t  W: P 1  b e  the
13 1 -fibration with f o  as its singular fiber. Then r k ,0  i s  a cross-section o f W.

Case (5-3). B 2  0  B o . Then there is a (-3)-curve B , such that B 2  ±  B 3  is
a chain and a connected component of B .  W e see that B , is  a 2-section of W
and B3  i s  a  cross-section o f  W . A ll com ponents o f B — (B, + B 3  + Fk ,o )  are
contained in fibers. Let f ,  b e  the singular fiber o f W containing B o . B y the
claims (1) and (2), f ,  contains a twig, say Fk , 2  sprouting from the cross-section

k,0 • By the claim (3), f ,  contains a (-1)-curve E 2  and a component B 4 (0  B0 )
of B  such that (E2 , B o ) = (E 2 , B ,)= 1. I f  (Bi) = — 2  then  f i =  2E 2 + B o  +  B,.
This leads to  (B3 , f ,) = (133 , 2E 2 ) 0  1 , a contradiction. So, (Bi) = —  3 and B,
has coefficient i n  B * b y  the c la im  (1 ). This le a d s  to  th a t (E2 . B ,) = 1 or
(E2 , B 3 ) =  1 because (E 2 , B*) = 1. H e n c e  (B ,, f 1 ) > 3 or (B3 , f i ) >  2 because E2
has m ultip lic ity  >  2  in 1.

1 . W e reach a contradiction. So, the case (5-3) is
impossible.

Case (5-4). B 2  = B o .  T hen  B , i s  a 3-section of W . A ll com ponents of
B — (B, + Tk ,o ) are contained in fibers. S in c e  p(W )= 10 — (1<1

2„) > 18> 4, there
is an another singular fiber f ,  of W . B y the claims (1) and (2), f ,  contains some
twig, say Fk . 2  sprouting from the 3-section Fk , o. By the claim (3), f ,  contains
a ( -1)-curve E 2  such that (E 2 , - =  1. Since (E 2 , B *)= 1, the fiber f ,  contains
a coefficient t  component B 3  of B* such that (E 2 , B 3 ) = (E2 , =  I. T h e n  B3
a (-2)-curve and f ,  = 2E 2 +  B 3 + T k , 2. This leads to  (B ,, f i ) = (13 1 , 2E 2) = 2.
W e reach a contradiction. So, the case (5-4) is  impossible.

This proves the claim (5).

Now we can finish the proof of Lem m a 4.2. By m aking use of the claims
(4) and (5), we can imply the assertion that all four coefficient t  components Fk . 0
(12 < k  < 15) o f B * are contained in  fibers o f 0 .  Indeed, if a coefficient t
component f l e x  of B* is transversal to the fibration, then Fic , 0 meets a ( -1)-curve
of the fiber S i w hich is described in the claim (5). However, this contradicts
the claim  (1). Thus the assertion is  p roved . So, Tk .0  (12 < k  < 15) are contained
in four distinct fibers, say S k ,  and Sk ,  like S i , fits the case (5-1) or (5-2) of the
claim (5). B y counting  the number of twigs sprouting from the central component
rk , o ,  we see that 10 — 2r k r k ,  2 + (9 — 2r,,) < rk i f  S„ fits the case (5-1), (5-2),

4respectively. So, w e  o b ta in  I ', >  4 . This leads to  11  >  n = 121k > x 4.
W e reach a contradiction. So, the case (5) shown in the proof of Theorem 4.1
is impossible. This proves Lemma 4.2.

The existence of the case No.1 (resp. No. 4) in Table 2  of Theorem 4.1 was
given in Example 6.12 (resp. Example 5.4) of [ 2 ] .  We shall give below several
examples of cases N o.1 , N o.2  and No.3.
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E x a m p le s  4 .3 . W e  c a n  f in d  a  nonsingular rational surface V ' a n d  a
P 1 -fibration 0 : V' 13 1  su c h  th a t the following two conditions are satisfied.

(1) All singular fibers o f 0  are vertically shown in Figure m (6 < ni  <  15).
We set F  = F ,+ F 2 in  the  case  F igu re  14 . In  particular, in the case Figure ni
for ni = 15 (resp. ni #15 ), F + D ',+ D '2 (resp. F + D '2 + D ) is  the support
o f  a  singular fiber o f  0 . F o r  th e  c a s e  F ig u re  m  (m  = 15), w e  have
respectively p (V ')= 12, 13, 12, 12, 14, 14, 12, 12, 13, 12.

(2) D enote by D ' th e  reduced effective divisor consisting of all irreducible
components in Figure ni w ith self intersection num ber <  —  2 . Let f , :  V ' —+
be the contraction of D '.  T hen V ' is  a log Enriques surface of index 5.

Let Tl i : — >  V ' b e  the canonical covering. Then 7E1- 1  (S ing V ') consists of
severa l sm ooth  p o in ts  a n d  iso la ted  singular p o in ts . W e  h a v e  Sing (U') g
7 1

- 1  (Sing '17 '). More precisely, the Dynkin types of Sing ((r) for the cases Figure
ni (6 < m < 15) are respectively given a s  follows :

A , + D 1 6 ,  A „+ D 6 , A ,,, D 1 0 + E 7 , D 4  ±  E, + E 6 ,

D 5  +  D 5  +  E6 ,  A , + D ,,,  A l 2 , D 5  +  E 6 , E,

Figure 8 Figure 9
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Figure 11

    

Figure 12

  

Figure 13

 

Figure 15
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Let -E: V -  V ' be a composite morphism of combining morphisms such that
V  satisfies the condition (1) o f C orollary  2 .12. For the cases Figure in with
ni = 6 ,. . . ,1 5 , w e  have, in  the notations of Theorem 2.11, V =  V ' with
n = 14, 14, 14, 14, 13, 13, 10, 10, 9, 5, respectively.

Finally, V  is a log Enriques surface of index 5 fitting respectively the cases
No. 1, 1, 1, 1, 1, 1, 2, 2, 2, 3 of the Table 2. For the concrete constructions of
(V', D') and (V , D), we refer to Examples 7.3 and 3.2.

§ 5 .  Index 7 case

W e shall prove the following Theorem 5.1 in the present section. In the
Tables 3 and 4  below, by Sing (U) = mA 1 , w e  m ean  tha t C  consists of exactly
ni singularities o f D ynkin type A,. By Sing (17) = (7, 1) l , (7, 2)i, (7, 3) k , (14. 1)',
w e  m e a n  th a t  V  h as ex ac tly  i + j + k + r  singularities, and i (resp. j, k , r)
singularities o f th em  are isomorphic to (C 2 /C 4 ,,,; 0) w ith (a, b) = (7, 1) (resp.
(7, 2), (7, 3), (14, 1)). W e  a ls o  use the notations (V, D , f ) in §1  for V

Theorem 5.1. L et V  he a  log &f loes surface of  index  7 and let 7r: U -* V

Table 3

No. Sing (V) p(V) p(V) Sing (U)

1 (7, 1)2 , (7, 2)5 , (7, 3)6 , (14, 1)2 14 46 /A,

2 (7, 1), (7, 2)3 , (7, 3)4 , (14, 1) 9 29 A,

3 (7, 2), (7, 3)2 4 12 4)

4 (7,1)3 , (7, 2)2 , (7, 3)8 , (14, 1)2 14 47 2,4 ,

5 (7, 1), (7, 2)8 , (7, 3)4 , (14, 1)2 14 45 2A,

Table 4

No. Sing (  V) p(V) p(V) Sing (U)

6 (7, 2)2 , (7, 3)' , (14, 1)3 13 47 3A,

7 (7, 2) 1 1 , (7, 3)2 , (14, 1)2 14 44 2A 1

8 (7, 2) 2 , (7, 3)6 , (14, 1) 9 30 A,

9 (7, 2)", (7, 3)2 , (14, 1) 9 28 A,
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b e  th e  canonical cov ering. A ssum e V  satisf ies th e  condition (1) of  Corollary
2.12. T hen 17 an d  U  are  described in  o n e  o f  ,f iv e  row s o f  the  T ab le  3. In
particular, H 1 (V, D + 2K v ) = 0.

P ro o f . If  U  is smooth, then V and  U  are described in  the third row of the
Table 3 by  [2 , T heorem  5 .1]. So, we shall assume th a t  U  adm its at least one
singular point.

Let y, for 1 i <  n,, y i  for n, + 1  < j < n , + n2 and y k for n , +  n, + 1 < k  <
n, + n 2 + n 3 be respectively all singularities of V isomorphic to (C 2 /C 7 ,7 : 0) with
s = 1, 2 a n d  3 .  Set m o :=  11 +  n2  +  n , .  Let y,. for ill 0  +  1  <  r < m o  + m„ be all
singularities o f  V  isomorphic to (C 2 /C :-  1 4 , 1 ,  ) • A s  in  Theorem  3.1, w e have
c:= # (Sing P) = mo  + m i . We have also p(U) —  p(t7)= m , and Sing U = m , A ,.
H ere U  is a minimal resolution o f U .  Set A„:= f  - 1  (y„) ç  V  and D :=1 "  L  „.
Then we have:

(1) A1(1 i :5_ n 1 )  is a single (-7)-curve.
(2) A(n '  + 1 n  + n 2 )  i s  a  cha in  o f  o n e  (-2 )-c u rv e  4 ; 1  a n d  o n e

(-4)-curve A i2 .

(3) Ak (n, + n 2  + 1 < k  < m o )  is  a  chain o f  tw o (-2)-curves Ak i ,  A k 2 ,  and
one (-3)-curve A k 3  with (zIk „, A k ,„± ,) = 1 (a = 1, 2).

(4) Ar (mo  + 1 r e) is a single (-14)-curve.

W e can check that f K v  + D* with D* =

-
5

+  -
2

E (A1 1 + 2A.2)+ 
1

- L (Ak i +2A k 2 +3A k 3 ) +_
6

I d , .
7 7 7 k 7

A s in Theorem 3.1, we have

1
— - (25 n  + 80 2 +  3 03 + 72 m 1 ) = (D*) 2 =

7

(K) = 10 —  p(V ) —  (n, + 2n, + 3n 3 +  m ,) ,  and

(5.1) 7(P(V) — 10) — 18n, + 6n 2 + 18/1 3 — 65m , =  O.

This, together with Proposition 1.3, implies

24 = c + p(U) —  p(U)+ 7(p(V )—  c + 2) =

(n, + n 2 + 113 + m ,) + m i + (18n, —  6n 2 — 180 3 -p 65m,)

+ 7(12 — n, — n 2 — 0 3 — m,).

Hence we have:

(5.2) 111 = n2 + 20 3 — 5m 1 — 5.

By the same proposition, we can write

p(V ) = —  1 + r -= (n, + + n 3 + — 1 + r fo r  r = 0, 1 or 2.
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This, together with (5.2), makes (5.1) into the following form :

(5.1') 2n2 = 22 — 7r —30 3 +  3m,.

Using (5.1'), we make (5.2) into the following

(5.2') 2n 1 = 12— 7r + n,— 7m 1 .

By (5.2'), we eliminate 03 in  (5.1') and obtain:

(5.3) 0 < 20 2 =  58— 28r — 18m 1 — 6n 1 .

This and the fact m , > 1 im ply r < I.
By m aking use of (5.1' ), (5.2') and (5.3), w e  can  show th a t  V and U  are

described in one of the row s of the Table 3  or 4  (cf. the proof of Theorem
4.1). T hen  T heorem  5 .1  fo llow s from  Proposition 5.2 below (cf. the proof of
Theorem 3.1).

Proposition 5.2. The cases of  T able 4  are  impossible.

P ro o f . This can be proved by the same fashion as in the proof of Lemma 4.2.

The existence of the case No.1 (resp. No.3) in Table 3  of Theorem 5.1 was
given in Example 6.13 (resp. Example 5.5) of [ 2 ] .  We shall give below an example
of the case N o. 2 . W e  do not know  yet w hether or n o t  the cases N o .4  and
N o.5 exist.

Example 5 .3 .  W e  c a n  f in d  a  nonsingular ra tional surface V ' and a
P 1 -fibration 0: V '— P 'I:" such that the following two conditions are satisfied.

(1) All singular fibers of 0  are vertically shown in Figure 16. In particular.
F + D ',  +  •  •  •  +  D ;  is the support of a singular fiber of 0 .  We have p (V ')=  13.

(2) D enote by D' the reduced effective divisor consisting of all irreducible
components in Figure 16 with self intersection num ber <  —  2 . Let 1.

1 : V' —> V'
be the contraction of D'. T h e n  V ' is a log Enriques surface of index 7.

Let 7r, : C' —* V ' be  the canonical covering. Then n i
- 1 ( .f 1 (D )) consists of a

sm o o th  p o in t a n d  a  s in g u la r  point P  o f  D y n k in  type A , .  W e  have
Sing (U ')=  {P}.
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Let t :  V-* V ' be a composite morphism of combining morphisms such that
V satisfies the condition (1) of Corollary 2.12. In the notations of Theorem 2.11.
we have, V = 1 ' with n = 7.

Finally, V  is a log Enriques surface of index 7 fitting the case N o.2  of the
Table 3. For the concrete constructions of (V ', D ') and (V . D), w e refer to
Example 7.3 and 3.2.

Table 5

No. Sing (V) p( r7) p) V) Sing (U)

1 (11, 1), (11, 2)2 , (11, 3)2 , (11, 5)3 , (11, 7)3 , (22, 1) Ii 48 A,

2 (11, 1),(11, 2),(11, 3)3 , (I 1, 5)2 , (11, 7)4 , (22, 1) 11 47 A,

3 (11, 2)3 , (Il, 3)3 , (11, 5), (11, 7)4 , (22, 1) Il 45 A,

4 (11, 1)2 , (11, 3)2 , (11, 5)4 , (11, 7)3 , (22, I) 11 50 A,

5 (II , 2)4 , (11, 3)2 , (11, 5)2 , (11, 7)3 , (22, I) II 46 A,

6 (11, 1)2 , (11, 2), (11, 3), (Il, 5)5 , (11, 7)2 , (22, 1) 11 5) A,

7 (11, I), (Il, 2)3 , (II, 3), (11, 5)4 , (11, 7)2 , (22, 1) II 49 A,

8 (11, 2) 5 , (II, 3), (11, 5)3 , (11, 7)2 , (22, 1) 11 47 A,

9 (11, ) )3 , (11, 5)7 , (Il, 7), (22, I) 11 54 A,

10 (1 1, 1)2 , (11, 2)2 , (11, 5)6 , (11, 7), (22, 1) 11 52 A,

11 (11, I), (Il, 2)4 , (11, 5)5 , (11, 7), (22, 1) II 50 A,

12 (11, 1)3 . (Il, 2)4 , (11, 7)6 12 47

13 (11, 1)4 , (11, 2), (11, 3), (11, 7)7 I/ 48

14 (11, 1)4 ,(l1, 2) 2 , 01, 5),(11, 7)6 12 49

15 (11, 1)5 , (11, 5)2 , (11, 7)6 12 51

16 (Il, 5), (11, 7) 2 II
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§6. Index  11  case

W e shall prove th e  following Theorem 6.1 in  th e  present sec tion . In  the
Tables 5  and 6  below, by Sing (U)= m A ,, w e m ean that C consists of exactly
in singularities of Dynkin type A , .  By Sing ( V) = (11, 1) i , (11, 2)i, (11, 3) k , (11. 5)'
(11, 7)5 , ( 22, 1) 1 ,  we mean that V has exactly i + j + k + r + s + t  singularities, and
i  (resp. j, k , r, s, t) singularities o f  them  a r e  isom orph ic  to  (C/C„,b: 0 )  with
(a, b) = (11, 1) (resp. (11, 2), (11, 3), (11, 5), (11, 7), (22, 1)). W e  a l s o  u se  th e
notations (17, D, f ) in §1 for V

Theorem  6.1. L et V be a log Enrigues surface of  index  11 and let 7T: U -> V
b e  th e  canonical cov ering. A ssum e V  satisf ies the condition (1) o f  Corollary
2.12. Then 17 and U are described in one of  16 rows of  the Table 5. In particular,
111 (V, D + 2K v ) = O.

P ro o f . If U is smooth, then V and U are described in n-th row (n = 12, .... 16)
of the Table 5 by [2, Theorem  5.1]. So, we shall assume th a t U admits at least
one singular point.

Let y, for 1 i n l , y i  for it, + 1 < j  <  n , +  n2 , y k fo r  n, + n 2 + 1  k  n ,
+ n 2 + n 3 , y

r
 fo r n, + n 2  + n 3 + 1 r  n 1 +  • • • +  n4  a n d  ys  for n, + • • • + n 4  + 1

Table 6

No. Sing (V) p(V) p(V) Sing (U)

17 (11, 1), (11, 3)4 , (11, 5), (11, 7) 5 , (22, 1) 11 46 AI

18 (11, 2)2 , (11, 3)4 , (II. 7)5 , (22, 1) 11 44 A,

19 (11, 2 )6 , (11, 5),(11, 7),(22,1 ) 11 48 A1

20 (11, 1)2 , (11, 3), (11, 5), (11, 7)7 , (22, 1) 11 49 A I

21 (11, 1), (11, 2)2 , (11, 3), (11, 7)7 , (22, 1) 11 47 A,

22 (11, 1)2 , (11, 2), (11, 5) 2 , (11, 7 )6 , (22, 1) 11 50 A,

23 (11, 1), (11, 2) 3 , (11, 5), (11, 7)6 , (22, 1) 11 48 A,

24 ( I I ,  2) 5 , (11, 7) 6 , (22, I) 11 46 Ai

25 (11, 3), (11, 5)6 , (11, 7) 2 , (22, 1)2 10 52 2A1

26 (11,
 5 ) 3 ,

 (11, 7 )6 , (22, 1)2 10 51 2A 1

27 (11, 2), (11, 5)7 , (11, 7), (22, 1)2 10 53 2A,
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s n, + • •• + n 5 be respectively all singularities of V isomorphic to (C / C , ,  :  0)
w ith y = 1, 2. 3 ,5  a n d  7. S et m0 :=  n, + •• • + n,. L et y , fo r  i n ,  + 1 < t <
+ m , be all singularities o f  V isomorphic to (C2 / C22,1 ; 0). A s in Theorem 3.1.
w e  h a v e  c:= # (Sing V) = mo +  m ,. W e  h a v e  a ls o  p(U)—  p(U)= 1111 a n d
Sing U = m i A i . H ere U  is  a  minimal resolution o f  U .  Set 41„:=1' ' ( y n) g  V
and D := I 'n = i d n . Then we have:

(1) 4 1(l <  i n i )  is  a single (— 11)-curve.
(2) 4 i (n, + 1 j n ,  +  n 2 )  i s  a  cha in  o f  o n e  (-2)-curve and one

(-6)-curve
(3) 41,,(n, + n2 + 1 < k  < n, + n 2  + n3 ) is a  chain of one (-3)-curve A k l  and

one (-4)-curve 4k2.

(4) 4,.(n, + n2  + n 3  + 1 < r n ,  +  •  +  n , )  is  a  chain o f fou r (-2)-curves
L/r1,•-•,//r4 and one (-3)-curve 41„ with ( '

a
ra

,
ra ,  r , a +  1 )  —  1 ( 1  <  a < 4).

(5) 4 5(n, + • + n4 +1  <s< mo ) is a  chain of three (-2)-curves 4„, '4 52 ,  A s4

and one (-3)-curve A (Lisa, s , a +  1 )  —  1 ( 1  <  a < 3).
(6) 4,(mo  + 1 t c) is  a single (-22)-curve.

W e can check that f *(K 17)._ K ,, + D* with D* =

9 4D i + I(LL , +  24 ; 2 ) + 
11

1I ( 6 4 „ 1 +  7 4 k 2 ) ±
11  i 1 1  i i k

1 v
(A rl 2Ar2 3Z1r3 + 5 L1

r5)
1 1  r

E ( 2 ,6 1 „  + 44, +  64, 3 + 34, 4 ) + 
1 0

1 4 ,
11 s 11 t

By Proposition 1.3, we have p(V )= c —  1. A s in Theorem 3.1, we have

1
11 (81n 1 + 32n 2 + 20n 3 + 5n4  + 6n 5 + 200m i ) =

(D*) 2 = (K) = 11 —  c —  #( D) =

11 — (n, + n 2  + n 3  + n 4  + n 5 + m l )

— (n, + 2n 2 + 2n 3 + 5n 4  + 4n 5 + m ,) ,  and

(6.1) 121 + 59n1 — n 2 — 13n3 — 61 n4  — 49 115 + 178m 1O .

By Proposition 1.3, we have

24 = c + p ( U )  p ( U )  11 x 1 = + m i  + 11.

Hence we have:
5

(6.2)c = +  m ,  =  13 —
i = 1
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Eliminating n ,  by (6.2), we deduce the following (6.1') from (6.1).

(6.1') 74 — 5n 2 — 6n 3 — 10n 4  — 9n 5 + 5m 1 = 0.

On the other hand, as in Theorem 4.1, we have

hi  (V, D + 2K ,) = 2c —  12 + CD) — (D, K ) =
5

2 E n; + 2m 1 — 12 + (n, + 2n 2 + 2n 3 + 5n 4  + 4n 5 +

— (9n 1 +  4n 2 +  3n 3 +  n , + n , + 20m 1), and

— 171(V, D  + 2K v ) = 12 + 6n 1 — n 3 — 6n 4  — 5n 5 + 17m 1 .

This and the above equalities (6.1') and (6.2) imply:

— 5171(V, D + 2K v ) =

5(12 + 6n 1 —0 3 — 6n 4  — 5n 5
1 7 m1)

—30(n 1 + n , + n 3 + n , + n 5 + 2m 1 — 13)

— 6(74 — 5n2 — 60 3 — 10n 4  — 9n 5 5 m 1), and

(6.3) 0  <  5 hi  (V, D + 2K v ) = n5 — n 3 — 1 — 5(1 — m i ).

Note that (6.1') and (6.2) imply

0 > 74 + 5m 1 — 10(n 2 +  n 3 + n 4  + n5)

74 + 5m 1 — 10(13 — 2m 1) + 10n 1 = — 56 + 25m 1 + 10n 1 .

Hence m , < 2. So, m , = 1, 2.
By m aking use of (6.1'), (6.2) and (6.3), w e  can  show th a t  V  and U  are

described in one of the row s of the Table 5  or 6  (cf. the proof of Theorem
4.1). T hen  T heorem  6 .1  fo llow s from  Proposition 6.2 below (cf. the proof of
Theorem 3.1).

Proposition 6.2. The cases of Table 6  are impossible.

P roo f. This can be proved by the same fashion as in the proof of Lemma 4.2.

The existence of the case No. 16 in Table 5  of Theorem 6.1 was given in
[2 , Exam ple 5.6]. W e shall give below an example of the case N o.1  in Table
5. W e  do not know yet whether or not the other cases of Table 5  occur.

E x a m p le  6 .3 . W e  c a n  f in d  a  nonsingular ra tional surface V ' and a
P 1-fibration 0: V'— P 1P 1 su c h  th a t the following two conditions are satisfied.

(1) All singular fibers of 0  are vertically shown in Figure 17. In particular,
F + D +  •••  +  D ; is the support of a singular fiber of 0 .  We have p(V ') = 14.

(2) D enote by D ' the reduced effective divisor consisting of all irreducible
components in Figure m  w ith self intersection num ber <  —  2 . Let f , :  V' —> V'
be the contraction of D '.  Then 17 '  is  a log Enriques surface of index 11.
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Let 7t 1 : r  be  the canonical covering. Then 7G 1 ( f 1 (D')) consists of a
sm o o th  p o i n t  a n d  a  singu la r p o in t  P  o f D ynk in  type  A 1 1 . W e  h a v e
Sing (U ) = {/9 }.

Let t: V -  V ' be a composite morphism of combining morphisms such that
i7 satisfies the condition (1) of Corollary 2.12. In the notations of Theorem 2.11,
we have. V= K: w ith n = 10.

Finally, 17 is a log Enriques surface of index 11 fitting the case No.1 of the
T a b le  5 .  F o r  th e  concrete constructions of  (V ',  D ')  a n d  (V , D), w e refer to
Examples 7.3 and 3.2.

§ 7 .  Index 13 case

W e shall prove the  following Theorem 7.1 in  th e  present section. I n  t h e
Tables 7  and 8 below, by Sing (U) = mA 1 , w e m ean that U  consists of exactly
m singularities of Dynkin type A , .  By Sing (V ) = (13, 1) t , (13, 2)J, (13, 3) k , (13, 4f,
(13, 5f, (13, 6) 1 , (26, 1y, w e  m e a n  t h a t  V  has exac tly  i + j + k + r + s + t + u
singularities, a n d  i  (resp. j, k , r, s, t, u) singularities o f  them  a re  isomorphic to
(C2 /C a b ; 0) with (a, h) = (13, 1) (resp. (13, 2), (13, 3), (13, 4), (13, 5), (13, 6), (26, 1)).
W e also use the notations (V, D , f ) in  §1  fo r V.

Theorem  7.1. L e t V be a  log Enriques surface of  index  13 and let 7t: U V
h e  th e  canonical cov ering. A ssum e V  satisf ies th e  condition (1) o f  Corollary
2.12. T hen V  an d  U  a re  described in  o n e  o f  n in e  ro w s o f  t h e  T ab le  7 . In
particular, 11 1 ( V , D + 2 K v ) = 0.

P ro o f .  By [2, Theorem 5.1], we know that U  admits at least one singular
po in t. L e t y ; for 1 i n i ,  yi  fo r  n, +  1  <  <  n i  +  n , ,  yk f o r  n, + n 2 +  1 < k

n, + n 2 + n 3 ,  y,. for /1 1 +  n 2  +  n3 + 1  < r < n, + • • • + n 4 , y s f o r  n i + •-• + n 4

+ l s n i + • • • + n 5 a n d  y ,  f o r  n i + •• • + n , + 1 s n i + •-• + n 6  b e  r e s -
pectively all singularities o f  V  isomorphic to (C 2 /C 1 3 . „; 0) w ith y 1, 2, 3, 4, 5
a n d  6 .  S e t  m0 := n, + • • • + no . L e t  y „ for m 0  +  1  <  u < m o  +  m ,  b e  a ll
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Table 7

389

No. Sing ( V) p(V ) p(V ) Sing (U)

1 (13, 2), (13, 3) 2 ,  (13, 5) 3 ,  (13, 6) 3 ,  (26, 1) 9 45 A l

2 (13, 1)2 ,  (13, 6) 7 , (26, 1) 9 54 A,

3 (13, 1), (13, 4), (13, 5) 3 ,  (13, 6)4 , (26, 1) 9 48 A ,

4 (13, 1), (13, 3), (13, 4) 2 ,  (13, 5), (13, 6) 4 , (26, 1) 9 49 A ,

5 (13, 1), (13, 2), (13, 4), (13, 5), (13, 6) 5 , (26, 1) 9 50 A,

6 (13, 2), (13, 3), ( (3, 4) 3 ,  (13, 5) 2 , (13, 6) 2
,  (26, 1) 9 45 A ,

7 (13, 2), (13, 3) 3 ,  (13, 4), ( (3, 5), (13, 6) 3 ,  (26, 1) 9 46 A 1

8 (13, 2) 2 ,  ((3, 4) 2
,  (13, 5) 2 , (13, 6) 3 , (26, 1) 9 46 A,

9 (13, 2) 2 , (13, 3) 2
,  (13, 5), (13, 6) 4 , (26, 1) 9 47 A,

singularities o f  V  isom orphic to  ( C 2 / C 2 6 , 1 ;  0). A s  in  Theorem  3.1. w e have
c:= # (Sing V ) = m o  + m 1 . We have also p(U) - p(U)= m i a n d  Sing U = m, A i .
Here U  is a minimal resolution o f U .  Set : = f  '(y ,,)  V  and  D :=1 ǹ  1 4„.
Then we have:

(1) AM i _< n i )  is  a single ( - 13)-curve.
(2) A i (n  + 1  < n, + n 2 ) i s  a  cha in  o f one  (-  2 )-cu rve  A i , and one

(- 7)-curve A j2.

(3) Ak (n , + n2 ± 1 k  < n, + 112 + n 3 ) is a  c h a in  o f  tw o (-2)-curves
A k i ,  4k2  and one ( -5)-curve  4 k 3  with (Ako, A k ,a + 1 )  =  1 ( a  = 1, 2).

(4) 4,(//, +  n2  + 113 + 1 r < n i + • • • + n 4 )  is  a  chain o f three (-2)-curves
Ari' 4 , 2 , 4 r 3  and one (- 4)-curve A r 4  with (4,„, = 1(1 < a < 3).

(5) 4,(n i  + • • • + n 4  + 1 < s < n 1 + • • • + n 5 ) is a  chain of one (- 2)-curve A 5 ,
and two (- 3)-curves A s 2 ,  4 ,3  with (4,„, 4 _,,) = 1(a = 1, 2).

(6) A,(n i  + • • • + n 5 + 1  < t <m 0 )  is  a  chain o f five (-2)-curves 4 „,..., 4,5

and one (- 3)-curve 4, 6  w ith  (4,„, 41,,„+ ,) = 1(1 < a < 5).
(7) 4„(m 0  + 1 _< u <_ c) is a single (-26)-curve.

W e can check that .f *(1(F) .==. K 1, + D * with D* =

3 11

1  A 5, + 1(4 , 1 +  24, 2 ) + 3 E ( A k 1  + 2 4 k 2  +  3 4
k3 ) ±

13 , 13 , ' 1 k

2 I
1  (A „, + 24, 2  + 34 , 3  +  4 4

r4 ) +   (4d
s 

1 +8 4 , 2 +7 3 ) +
13 r1 3  ,  
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Table 8

No. Sing (V) p(V ) p(V ) Sing (U)

10 (13, 1), (13, 4) 5 , (13. 6) 3 , (26, 1) 9 49 A,

11 (13, 1), (13, 3) 3 , (13. 6) 5 , (26, 1) 9 50 A,

12 (13, 4) 2 , (13, 5) 6 , (13, 6), (26, 1) 9 42 A,

13 (13, 4) 6 , (13, 5) 3 , (26, 1) 9 43 A ,

14 (13, 3), (13, 4) 3 , (13, 5) 4 , (13, 6), (26, 1) 9 43 A ,

15 (13, 3), (13, 4) 7 , (13, 5), (26, 1) 9 44 A,

16 (13, 3) 2 , (13, 5) 5 , (13, 6) 2 , (26, 1) 9 43 A,

17 (13, 3) 2 , (13, 4)4 , (13, 5) 2 , (13, 6), (26, 1) 9 44 Ai

18 (13, 3) 3 , (13, 4), (13, 5) 3 . (13, 6) 2 , (26, I) 9 44 A,

19 (13, 3) 3 , (13, 4) 5 , (13, 6), (26, I) 9 45 Al

20 (13, 3) 4 , (13, 4) 2 , (13, 5), (13, 6) 2 , (26, 1) 9 45 A ,

21 (13, 3) 5 , (13, 6) 3 , (26, 1) 9 46 Al

22 (13, 2), (13, 4) 2 , (13, 5) 4 , (13, 6) 2 , (26, 1) 9 44 A ,

23 (13, 2), (13, 4) 6 , (13, 5), (13, 6), (26, 1) 9 45 Ai

24 (13, 2), (13, 3) 2 , (13, 4) 4 , (13, 6) 2 , (26, 1) 9 46 A1

25 (13, 2) 2 , (13, 3), (13, 4) 3 , (13, 6) 3 , (26, I) 9 47 A ,

26 (13, 2) 3 , (13, 4) 2 , (13, 6)4 , (26, 1) 9 48 A,

1 12

13
+ 2z1 12 + 3,4, 3 + 44 14  + 5 5

-
+ I d u •

, 13 „

By Proposition 1.3, we have p (V )  c  -  1 and

24 -= c + p(U ) - p(U ) +  13x1  =  +  m i +13.

So, we obtain:
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6
(7.1) 11 = c + m i = 2m 1 + ni .

O n the other hand, as in  Theorem 3.1, we can compute a s  follows:

— (121n 1 + 50n 2 + 27n 3 + 16n 4  + 15n 5 + 6n 6  +  2 8 8 m1)=13

(D*)2  = (K 13) =

11 — c — (n, + 2n 2 + 3n 3 + 4n 4  + 3n 5 + 6n 6 + m i ),

12 (13(11 — c)+ 275m i ) + 9n, + 2n 2 — n 3 — 3n4  — 2n, — 6n 6 =  0 ,  and

12 (13(11 + 287m 1) — c + 10n 1 + 3n 2 2 n 4  — n5 —  5n = 0.

The latter equality and  the  equality (7.1) imply:

(7.2) — 11 + 26m 1 + 10n 1 + 3n 2 — 2n4  — n5 — 5n 6  = 0.

By (7.1), we eliminate m1 in  (7.2) and obtain 0 = —11 + 13 x 11 — 3n 1 —  10n2

— 13n3 — 15n4  — 14n 5 — 18n 6 > 12 x 11 — 18 E t
6.  1 /11. H e n c e  1 ,6.  ni > 8. On

t h e  o th e r  h a n d , (7 .1) im p lie s  th a t  L 6.=  n i i s  a n  odd integer satisfying
1,6=  n i = 11 — 2m 1 <  9 .  So, 1 ,6._  ni = 9. Thus, we have proved:

6
(7.1') m, = 1, ni = 9, c  = 10.

In particular, we have p(V )= c —  1 = 9 and Sing U = A , .  Using (7.2) again, we
obtain 0 = — 11 + 26 x 1 + 10 1 n1 - 7 n 2 — 10n 3 — 12n 4 — 11 n, — 15n6  and

(7.2') 7n2 + 10/1 3 + 12n 4  + 11n 5 + 15n 5 — 105.

A s in Theorem 4.1, by (7.2'), we have:

h i  (V, D + 2K v ) = 8 + #(D)— (D, =
8 + (n, + 2n 2 + 3n 3 + 4n 4  + 3n 5 + 6n 6  + m 1)

—(11 n i + 5n 2 + 3n 3 +  2n4  + 2n 5 +  n 6  +  24m 1 ) =

—15 — 10n 1 3 n 2 + 2114  + n 5 + 5n 6  — 0.

Note that (7.2') implies 105 15 2 ni and 2 ni >  7. So, 1 =  2  n 1 = 7. 8, 9
and n, = 2, 1, 0 , respectively.

By making use of (7.1') and (7.2'), we can show th a t V a n d  U are described
in  one  o f the  rows of the Table  7  o r  8  (cf. the proof o f Theorem 4.1). Then
Theorem 7.1 follows from Proposition 7.2 below (cf. the proof of Theorem 3.1).

Proposition 7.2. The cases o f  Table 8 are  impossible.

P ro o f  This can be proved by the same fashion as in the proof of Lemma 4.2.
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W e shall give below an example of the case N o.1  in Table 7  of Theorem
7.1. W e  do not know yet whether or not the other cases of Table 7 occus.

Example 7.3 (Case No.1 of Table 7). Let 7: E 2  -> 13 '  b e  a 13 1 -fibration on
the Hirzebruch surface E 2  and let M  b e  the ( -2)-curve on E 2 .  Let L  b e  a
fiber of 7E. Take two nonsingular irreducible members C i . C2 e 1114 + 2L1 such
tha t C , and C 2  share exactly one comon point, say P .  Let L , be the fiber of
it containing P i . Let L i and L 2  be two fibers of TC other than L 3 .  Denote by
P 2  (resP. P 3 , P 4 ) the unique intersection point of L i (resp. L 2 , L 2 ) with C 2  (resp.
C i , C2 ). Let a: V' —>E 2 b e  the blowing-up of four points P t 's  and ten infinitely
near points of them  such  tha t o- *(L i ) (i = 1, 2, 3) is vertically given in Figure
18. Here we denote by M', Ci(i = 1, 2), L'i (j  =  1, 2, 3) the proper transforms on
V ' of the curves M, Ci , L i ,  respectively. To be precise, o- *(L i ) = + F' +
+ E + E 8 + E ; + E „  Set D ':= M ' +C +C + L ', + 112 + + ••• + Ei 0 .

We shall show that (V', D') is a log Enriques surface of index 13. Set 4 =
+ 6L'2  + 9M' + 12L' 1 +  10C , +  5E , +  E 0  + 2E ; +  3E , +  4E ; +  5E ; +  6E2

+ 7C2  + 8E 4' + 4 E .  Note that 10C 1 +  7C 2 + 9M  + 12L 1 +  6L 2 +  13K , 2 O .
W e can check easily that A + 13K,, —  0. Let V' —> V ' be the contraction of
D '.  Then 13K, —  0. Hence FP is a log Enriques surface of index 13. Moreover,
D'* = A  in the notations of L em m a 1 .1 . Let Tc,: U' T7' b e  the canonical
covering. Then 7E - 1 (f 1 ( 1 1 )  for T:= E  +  L 2  ±  M '+  C i  +  E 6  (resp.

+ .E; + E  + E ; +  E  +  E '2  + C '2  + E '4  + E'i )  is  a singularity of Dynkin type
A, (resp. A i )  and there are no other singular points on U ' (cf. Lemma 1.4).

Let T : V — )  r  be the blowing-up of several intersection points of D' and their
infinitely near points such that T-  1 (D ' ) has Figure 19 as its weighted dual graph.

In Figure 19, (i = 1, 2), ii i (j  =  1, 2), f i (k  = 1,...,10) are the proper
transforms on V of the curves M', C .r e s p e c t i v e l y .  W e  d e n o t e  b y  D the
reduced effective divisor consisting of all components of T- 1 (D ' )  of self intersection
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n u m b e r  <  — 2 . T h e n  -r- 1 (D') —  D consists o f  8  disjoint ( -1 )-cu rv es . Let
f: V—* V be  the contraction of D .  W e see that V  is  a log Enriques surface of
index 13. In d e e d , b y  the fa c t  th a t  1 3 (K , +  D'*) 0 ,  w e  c a n  check that
13(K, +  D * )  0 in the notations of Lemma 1.1. W e have also D : =  f  (Sing V).
Note t h a t  p(V ')= 2 +  14  =  16  and p(V ) = 16 +  29 =  45. So, p(V) = p(V) —
# {irreducible component o f D I  =  9 . Let 7r: U - > V  b e  the canonical covering.
Then 7 - 1 (f (ii 1 ))  is  a rational double singularity of Dynkin type A , and there
are no other singular points on U .  Since the weighted dual graph of f  (Sing V)
is precisely given as a subgraph of (D). the singular locus of V is as described
in the first row  of Table 7  (cf. B rieskorn  [1 ]). So, Sing (V), p(P), p (V ) and
Sing (U) are as described in the first row  of Table 7. Since Sing (U )  0 ,  the
surface C  is  no t an abelian surface. Thus, w e see that V  satisfies the condition
(1) of Corollary 2.12 and fits the case N o.1  of Table 7.

There is a composite m orphism  t: V—> V' of 8  combining morphisms such
that • f  = f , • T. In the notations of Theorem  2.11, we have V =  ,  U = U,',
a n d  =  h i • •• h„ with n = 8.

§ 8 .  Index 17 case

W e shall prove the following Theorem 8.1 in the present section.

Theorem  8.1. L et V  or synonymously (V, D , f ) be a log Enrigues surface of
index  17 and let n: U — > V  be the canonical cov ering. A ssum e V  satisfies the
c o n d itio n  (1 )  o f  C o ro llary  2.12. T h e n  C  is n o n s in g u lar. H e n c e  possible
distributions of  singular points of  V  are  given in  [2 , Theorem  5 .1 ] .  (See also
[ibid., Ex am ple 5.7].) In particular, H i (V , D + 2K v ) = 0.

P ro o f . Suppose, on the co n tra ry , th a t U  admit a t  le a s t  one singular
point. Let yi fo r 1 < i <  n i , y i  for n, + 1 <  n , +  n2 ,  y ,  for n , +  n2 + 1 • k

+ n 2 + n 3 , y
r
 fo r  n i + n , + n 3 + 1 < r < n i + •• • + n4 ,  y s fo r  n , + •-• + 114

+1 +  • • •  +  n 5 ,  y , for n, + • •• + n 5 +  1  <  t n, + • • • + n 6 , y„ for n, + • •• +
n,+ 1 n i + •••  + n , and y „ fo r  n , + • • • + n , +1 v < n i + ••• + n 8 b e
respectively all singularities of V isomorphic to (C 2 /C 1 7 ,; 0) w ith  z  = 1, 2, 3, 4. 5.
8, 10 and 11. Set /no :=  n i + • • • + n 8 . Let y,, for mo  + 1 <_ w < m o  +  m , be all
singularities o f  V  isomorphic to (C 2 /C 3 4 , 1 : 0). As in Theorem  3.1, w e have
c:= #(Sing V) = m o  +  m  .  We have also p(U) — p(U) = in, and Sing C = m i

Here U  is a minimal resolution of U .  Set 4„:= f  ( y „)  g  V  and D :=4 „ .
Then we have:

(1) 4 1(I i n i )  is  a single ( —17)-curve.
(2) 4 i (n 1 + 1 j n , +  1 1 7 )  i s  a  cha in  of one ( -2)-curve and one

(-9)-curve zl i 2 .
(3) Ak (n, + n 2 + 1 ni + n, + 0 3 ) is a chain of one ( -3)-curve 4, 1 and

one ( —6)-curve 4, 2 .
(4) 41„(n, + 0 2  + n 3 + 1 r ••• 04 )  is  a  cha in  of three (— 2)-curves
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4,,, A r 2 , d r 3  a n d  o n e  (-5)-curve d r ,  with (d r „, d + ,)  = 1(1  < a <3).
(5) d s (n i + ••• + 0 4  + 1 s n, + ••• + n 5 ) is a chain of one (-3)-curve 4 „,

one (-2)-curve A s 2  and one (-4)-curve A s 3 with
 ( s a ,

 d , a + i ) —  1(a = 1, 2).
(6) 4,(n

1 + ••• + n 5 + 1 t n, + ••• + n 6 )  is  a  chain o f seven (-2)-curves
4, 7 a n d  o n e  (-3)-curve 4 8 w ith  (4,„, 4,,„ ± ,) = 1 (1  < a <7 ).

(7) 4„(n 1 + •• • + n 6  + 1 n1+ ••• + n 7 )  is  a  chain o f three (-2)-curves
du i , A„2 , A „4  and one (-4)-curve A„3  with (4„„, 4 + i ) = 1(1  < a < 3).

(8) 4,(0 1 + •• • + n 7  + 1 y • tno ) is a  chain of five ( -2)-curves
4  a n d  o n e  (-3)-curve 4 , 5 with (4 p„, 4,, +  1 ) = 1(1a 5).

(9) A w (mo  + 1 w c) is  a single (-34)-curve.

W e can check that f * ( K , )  K v  +  D* with D* =

—
15

D , +   7
1

+ 24, 2 1+ I(10.4„, + 134, 2 ) +
17 17 j 1 7  k

3  1

+ 24, 2 + 341, 3 + 44,4 ) +  (94, 1 + 104, 2 + 114 s 3) +
17 r 17 ,

1 (4
+ 24, 2 + 341, 3 + 441,4  + 54,, + 641, 6 + 741, 7 + 84, 8 ) +

17 ,

2
+ 441„2 + 64 3 + 34, 4 ) +

17 „

1 (24 + 4,64 2 + 6.4„ 3 + 84, 4  + 10 4 5 + 54 ,6) ±
16

1 4  ,.
17 , 17 w

By Proposition 1.3, we have p(V ) = c —  1 and

24 = e + p(U) —  p(U) + 17 x 1 = e + w 1 +  17.
So, we obtain:

(8.1) 7 = e  + w , = 2m 1 + iv

O n the  other hand, as in  Theorem 3.1, we can compute a s  follows:

1
(225n 1 + 981) 2 + 62n 3 + 36n 4  + 31n 5 + 806  + 24n 7 + 10n 8 + 5121110 =

(D*) 2  = (K ) =  11 — c

— (0 1 + 2 n 2  + 20 3  +  4n4  + 3n 5 + 8 n6  +  4n 7 + 60 8 + m i ), and

0 = 1(17(11 — c) + 495m 1 )4

+ 52n 1 + 16n 2 + 7n 3 — 8n4  — 5n5 — 32176 — 110 7 — 23n 8 =

17

(17(11 — 515n11) — 5e + 57n , + 210 2 + 12n 3 — 3n4  — 27 176 — 6n 7 — 1 8 0 8.4
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Dividing the latter equality by 3  and  using (8.1), the  following equality can be
obtained:

(8.2)— 6  + 46m 1 +  19n 1 +  7 n 2 +  4n 3 — n4  — 9n 6 — 2n 7 — 6n 8 =  O.

The equalities (8.1) and (8.2) imply

O
8

>  - 6 + 46m 1 —  9 E n i = — 6 + 46m 1 — 9(7 — 2m 1 ) = —69 + 64m 1 .
i =

Hence m , =  1. So, c =  6  and E 1 n; = 5  by (8.1). Using (8.2) again, we obtain

0  =  8 E  ni +  19n, + 7n 2 +  4n 3 — n4  — 9n 6 — 2n, — 6n 8 a n d

(8.3) no = 27n 1 +  15n 2 +  12n 3 +  7n 4  + 8n 5 + 6n 7 +  2n 8 .

This equality implies

"6 > 2 ( n n 6 )  —  2 (5n 6 ) .

So, n6 =  4 , 5  and E i * 6  n i = 5 —  n6  =  1 , 0 , respectively. This contradicts (8.3).
Therefore U  is nonsingular. Then 17  is described in [2, Theorem 5.1]. With

the help of Lemma 1.2, the second assertion of Theorem 8.1 is proved there. This
proves Theorem 8.1.

In  [2 , Example 5 .7 ], w e gave an  example o f log  Enriques surface (V ', D')
of index 17 whose canonical covering admits at least one singularity of multiplicity
> 3.

§9 . Index 19 case

W e shall prove the following Theorem 9.1  in  the  present section.

Theorem 9.1. Let V  or synonym ously  (V, D, f )  be a log  Enriques surface of
index  1 9  an d  le t  m: U —> V b e  the  canonical covering. A ssum e V  satisfies the
condition (1) o f  C o ro llary  2.12. T h e n  U  is nonsingular. H ence possible
distributions of  singular points o f  V  are giv en in  [ 2 ,  Theorem 5 .1 ] .  (See also
[ibid., Example 5 .8 ] . )  In particular, H 1 (V, D + 2K v ) = 0.

P ro o f . S u p p o se , o n  th e  c o n tra ry , th a t U  a d m it a t  le a s t  o n e  singular
p o in t. L e t y ; f o r  1 i n „  y ; f o r  n , + 1  < j n ,  +  n 2 , y k f o r  n 1 + n , +  1 < k
• n, + 11 2  + 11 3 , yr f o r  n , + 112 +  113 + 1 r + • • • + 114 ,  ys f o r  n , + ••• + 114

+ 1 + ••• + n 5 , yf fo r n , + ••• + n, + 1 :5_t + ••• + 11 6 , y „ for /1, + ••• +
n6 + 1 u n i  +  ••• +  n , ,  32,, for n , + •  + n 7  + 1  v  +  •  •  •  +  n 8  a n d  y„, for
n i + • • • + n, + 1 < w < n, + • • • + n 9  be respectively all singularities of V isomorphic
to (C2 /C 1 9 . ,. ; 0) with z  = 1, 2, 3, 4, 6, 7, 8, 9 and 14. Set mo :=  n, + • • • + 119 . Let
Yb for mo  + 1 h + m , be all singularities of V isomorphic to (C2

 
/C 3 8 1 ;  0).
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As in Theorem 3.1, we have c:= # (Sing V) = m, + m 1 . We have also p(U)—  p(U)
=  m ,  a n d  Sing U  =  t n ,A , .  H e r e  U  is a  m in im a l resolution o f  U .  Set
d „:= f - 1 (Y „) g V  and D := d „ .  Then we have:

(1) AM < i < n 1)  is  a  single (-19)-curve.
(2) d i (n , + I <,j n ,  +  n 2 ) i s  a  cha in  o f  o n e  (-2)-curve Ai , and one

(-10)-curve 4 j2 .

(3) d k (n, + n 2 + 1 k + n2 + n 3 ) is a  c h a in  o f  t w o  (-2)-curves
k l ,  4 k2  and one ( -7)-curve 4 k3  with (d k a , d k,a+ —  1 ( a  =  1, 2).

(4) d r (n, + 112 + n 3 + 1 r n 1 + • +1 1 4 ) is a  chain of one (-4)-curve d „
and one (-5)-curve d r 2 •

(5) 4 3 (n 1 + ••• + n 4 +  1 s n, + •• • + n 5 )  i s  a  cha in  o f  five (-2)-curves
• 4 , 5  and one (-4)-curve d „  with ( d ,  d , ,„ ± ,) = 1(1 < a < 5).

(6) 4 1 (n 1 + •• • + n 5 + 1 t n, + ••• +11 6 ) is a chain of one (-2)-curve d „,
one (-4)-curve 4, 2 a n d  o n e  (-3)-curve 4 , 3  with (4„, =  1 (a =  1, 2).

(7) 4„(n 1 + • • • + n 6 + 1 _14  < n 1 + •• • + n 7 )  is  a  chain  o f  tw o  (-2)-curves

•

4„3 a n d  two (-3 )-cu rv es  4„4 with ( d ,  d + ,) = 1(1 <  a < 3).
(8) d„(n, + • •• + n 7 +  1 < y < n 1 + • • • + n 8 )  is  a  chain o f eight (-2)-curves

• A o n e  (-3)-curve d „, with (d„„, d r ,„+ ,) = 1(1 <  a <  8).
(9) 4„(n 1 + •• • + n 8 +  1 w m0 ) is  a  chain of five ( -2)-curves d„,,,

4 3 , , 6  and one ( -3)-curve d „,, with (d d + ,) = 1(1 < a <5).
(10) d b (mo  + 1 b e) is a single (-38)-curve.

W e can check that f * ( K ) - -  K v  +  D* with D* =

51 7

+  8 + 24, 2 ) + — L (4 , 1 +  24 k 2 + 34 k 3 ) +
19 , 19 ' ' 19 k

1 2I ( I3 4 ,
1 + 144, 2 ) + E(4, 1 +  24, 2 + 34, 3 +  44„ +  54, 5 + 64 s 6 ) +

19 r 19 s
1 1

(74, 1 + 144, 2 + 114,31 +
1 9

(641„1 + 124, 2 + 114,43 +  1 0 4 „4.) +19 , „

19 4 n1 + 24,2 + 34„ 3 + 44, 4  + 54„, + 64, + 7  A r7 8 4 „8 + 9 4 ,0  +

1 , 18
+ 64,„2 + 94,„ 3 + 124,„ 4  + 84,„ 5 + 44 6 ) + 19 „, 19 b

By Proposition 1.3 we have p(V )= e —  1 and

24 = c + p(U )—  p(U )+ 19 x 1 = c + m, + 19.

So, we obtain:
9

(9.1) 5 = e +  m, = 2m 1 + ni .
-= 1
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O n the other hand, as in  Theorem 3.1, we can compute a s  follows:

1
— 

1 9

(289n, + 128 n 2 + 75n 3 + 68u 4  + 24n 5

+ 39n 6 + 22n 7 + 911 8 + 12n 9 +  648m ,)=

(D*)2 = (K ) = 11 —

— (n, + 2n 2 + 3n 3 +  2n 4  + 6n 5 + 3n 6 +  4 117 + 911 8 + 611 9 +  m 1 ) and

0 = 1—(19(11 — c.) + 629m,)
6

+ 45n 1 + 15n 2 + 311 3 + 511 4 — 15n, — 3n 6 — 9/1 7 — 27118 — 17119 =

1
(19(11 — c) + 647m,)— 3c

6

+ 48n 1 + 18n 2 + 6/1 3 + 8n 4  — 12n 5 — 6n 7 — 24n 8 — 14119 .

Dividing the latter equality by 2 and  using (9.1), the  following equality can be
obtained:

(9.2) 2 + 57m 1 + 24n, + 9/1 2 + 3/1 3 +  4114  — 6115 — 3n 7 — 12n 8 — 7/1 9 = 0.

This equality and  the  equality (9.1) imply
9

2 + 57m 1 — 12 n i = 2 + 57m 1 — 12(5 — 2/11 1) = —58 + 81m 1 > 0 .
i=1

This is a contradiction.
Therefore, U  is nonsingular. Then V is described in [2, Theorem 5.1]. W ith

the help of Lemma 1.2, the second assertion of Theorem 9.1 is proved there. This
proves Theorem 9.1.

In  [2 . Example 5.8], we gave an  example of log Enriques surface (V', D')
of index 19 whose canonical covering admits at least one singularity of multiplicity
>3.
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