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Logarithmic Enriques surfaces, Il
By

De-Qi ZHANG

Introduction

This is a sequel of our paper [2]. Every thing will be defined over the
complex number field C. Let ¥ be a normal projective surface. A log Enriques
surface can occur as the base space of a cy 3-fold with a fibration.

Definition 1. V is a logarithmic (log, for short) Enriques surface if the
subsequent conditions are satisfied:

(1) V has at worst isolated quotient singularities;

(2) A multiple NK; of a canonical divisor Ky of V is linearly equivalent
to zero for some positive integer N:

(3) H'(V, ©y) vanishes.

The index of V is defined as:

I = Index (V) = Min{N > 1; NK; ~ 0}.

A K3-surface (resp. an Enriques surface) is a log Enriques surface of index
one (resp. two). It is known that | <1 <66 (cf. Proposition 1.3 below).
Furthermore, if I is a prime number then [ < 19. Since IKy is linearly equivalent
to zero, there is a Z/IZ—covering n: U — V such that # is étale over the smooth
part ¥V — (Sing V) of V and that U is an abelian surface or a K 3-surface possibly
with isolated rational double singularities (cf. [2, Definition 2.1]). In particular,
the canonical divisor K5 of U is linearly equivalent to zero.

Definition 2. 7: U — V is the canonical covering of V. Actually, V determines
U uniquely up to isomorphisms.

A log Enriques surface of index one is a K3-surface possibly with rational
double singularities. A log Enriques surface of index 2 is an Enriques surface
possibly with rational double singularities or a rational surface (cf. [2, Proposition
1.3]). The latter surfaces are classified in [2, Theorem 3.6]. Log Enriques
surfaces ¥ of index I with smooth canonical coverings U are classified in [2,
Theorems 4.1 and 5.1]. In particular, if U is an abelian surface then I = 3 or 5.

If ¥ has rational double singular points, we denote by ¥ a minimal resolution
of all rational double singularities of ¥, Then V is a log Enriques surface of the
same index as V. Instead of ¥, we can treat ¥ without loss of generality.
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In view of the above arguments, we shall assume the following hypothesis
in Theorem 2.11 below.

Hypothesis (A) (1) The index I of V is greater than 2. Hence V is a
rational surface (cf. [2, Proposition 1.3]) and V admits at least one singular point.

(2) The canonical covering U of V is not an abelian surfuce. Hence U is
a K3-surface possibly with rational double singularities.

(3)  Every singularity of 'V has multiplicity >3, i.e.. V has no rational double

singular points.

If I = pq for two positive integers p, g, we let V,:= U/(Z/pZ). Then V, is
a log Enriques surface of index p (cf. [2. Lemma 2.2]) with U as its canonical
covering. So, we shall mainly consider log Enriques surfaces of prime index (See
Proposition 1.3, (2) below). The following theorem is a part of Theorem 2.11
in §2 and our starting point.

Theorem 2.11°. Let V be a log Enriques surface satisfving the above
Hypothesis (A). Assume that the index I of V is an odd prime number. Then
we have: B -

(1) There is a composite V, B Vi n W=V (n>0) of combining
morphisms (¢f. Definition 2.1 and Proposition 2.8 below for the definition) between
log Enrigues surfaces of the same index I such that U, is a K3-surfuce possibly
with rational double singular points of Dynkin tvpe A,. Here n;: U, — V is the
canonical covering of V.

(2) For each singularity x of U, the image y:=m,(x)eV, is a singularity
isomorphic to (C?]Cyy 13 0), where Cyy :=<064,.1> = GL(2; C) is a cyclic subgroup
of order 21 generated by

n 0
)

n being a primitive 2I1-th root of the unity.
(3) Every V satisfies the Hypothesis (A).
The above n, U, and ¥, are uniquely determined by the original surface V

(cf. Theorem 2.11 in §2). We shall describe precisely ¥ and U, in Theorems
3.1-9.1. As consequences, we will have:

Main Theorem. With the assumptions and notations of Theorem 2.11°, we
describe in Tables 1,2, 3, 5,7 all possible distributions of singular points on V, and
on U, as well as the Picard number of V,.

Corollary 1. (1) If I =3, then #(Sing U,) < 6 and #(Sing V) < 15.
(2) If I =5, then #(Sing U,) <3 and #(Sing V) < 16.

(3) If 1 =71. then #(Sing U,) <2 and #(Sing V) < 15.

(4) If I =11, then #Sing U,) < | and #(Sing V) = 2. 12, 13.

(5) If 1 =13, then #(Sing U,) = | and #(Sing V) = 10.
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6) If I =17 or 19 then U, is smooth.

The upper bounds for #(Sing U,) and #(Sing V) in (1), (2) and (3) above are
best ones (See [2, Examples 6.11,6.12 and 6.13]). For I =3,5,7, 11, 13 there
are examples of V for which U, admits at least one singular point (See Examples
3.2,4.3, 53,63 and 7.3).

Corollary 2 (cf. Lemmas 12 and 2.3 below). Let V be as in Theorem
2.11'. Let f: V-V be a minimal resolution of singularities and set c:= #(Sing V).
D:=f~'(Sing V). Then we have h*(V,D +2K,)=c¢ — | —(K2) — (D, K,) = 0.

Remark. (1) If Vis a log Enriques surface of index 13 then the canonincal
covering of V admits at least one singular point (cf. [2, Theorems 4.1 and 5.1]).

(2) For each odd prime number I with / # 13 and I < 19 we gave examples
in [2, §5] of log Enriques surfaces of index I with smooth canonical coverings.

When [ is a prime number, the following result characterizes a combining
morphism, which is indeed a crepant blowing-up (cf. Example 7.3 in §3).

Proposition 2.8. Let V and V, be two log Enriques surfaces of the same prime
index 1. Let n:U—-V and n,:U, -V, be canonical coverings. Then the
following conditions are equivalent:

(1) There is a combining morphism h: V-V, with exceptional curve E.

(2) There is a point y of V, which is not a rational double singular point and
there is a birational morphism h: V-V, such that h is an isomorphism over V, — {y}.
the exceptional divisor h™'(y) is an irreducible curve and h='(y)n(Sing V) consists
of two points z,, z,.

(3) There is a point xeU, and there is a Z]/1Z-cquivariant morphism
h:U—U, such that m,(x) is not a rational double singular point, h is an
isomorphism over U, — {x}. the exceptional divisor F:= h=Y(x) is an irreducible
curve, F is Z/1Z~stable and F has exactly two Z/1Z-fixed points {z}. z}}.

Under the above equivalent conditions, we have m,-h=h-n. Hence E =
h™'(y), F=n"YE)., x=na;"y) and z{=n"Yz) (i=1,2) after a suitable
relabelling.  Moreover, xe U, is a singular point, and yeV, and z;e V(i = 1, 2) are
singularities of multiplicity > 3.

Terminology. A (—n)-curve on a nonsingular projective surface V is a
nonsingular rational curve of self intersection number —n. A curve C on a
surface V is called an m-section of a certain fibration from V onto a curve if
(C, F) = m for a fiber F.

Notations. Let V' be a nonsingular projective surface and let D,

H . H,,... be divisors on V.

K, : Canonical divisor of V

p(V):=rank NS(V) ®,Q, the Picard number of V, where NS(V) is the
Neron-Severi group of V

H, ~ H,: linear equivalence
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H, = H,: numerical equivalence

f«(D): the direct image of D by a morphism f

f*(D): the total transform of D by a morphism f

f'(D): the proper transform of D by a birational morphism f
#(D): the number of irreducible components of Supp (D)

Sing V: the singular locus of a variety V

The author would like to thank Professor M. Miyanishi for the encourage-
ment during the preparation of the present article.

§1. Preliminaries

Let ¥ be a log Enriques surface of index I. Let f: V— ¥ be a minimal
resolution of singularities. Denote by D the exceptional set f~!(Sing V). Then
D is a reduced effective divisor with only simple normal crossings and its dual
graph is a disjoint union of trees. Moreover, every component of D is a
nonsingular rational curve of self intersection number < — 2 and the intersection
matrix of irreducible components of D is negative definite.

From now on, we shall confuse ¥ with a triple (V. D, f) or a pair (V. D).

The following four results will be used in the sections below.

Lemma 1.1 (¢f. [2, Lemma 12]). Let V be a log Enriques surface and let
D =Y"_| D; be the irreducible decomposition of D. Then we have:

() H'(V,0,)=0.

(2) There is a Q-divisor D* =Z',.'=l o;D; such that la; is an integer with
O0<lo; <I—1 for each i and f*(IKy)~ I(K, + D*)~0. Moreover, D* s
uniquely determined.

3) «; =0 if and only if the connected component of D containing D; is
contractible to a rational double singularity on V.

@) K, = —D*, (K= (D",

Lemma 1.2. Let V be a log Enriques surface of index 1 satisfving the
Hypothesis (A) in the Introduction. Set ¢:= #(Sing V) which is also the number
of connected components of D. Assume 1> 3. Then we have h'(V, D + 2K,) =
¢ — 1 — (K} — (D, K,).

Proof. By the proof of Proposition 1.6 in [2], we have
H2(V,D +2K,)=H°(V, D + 2K,) = 0.

On the other hand, let D = 7_| D; be the irreducible decomposition of D. Since
the dual graph of D is a disjoint union of trees, we have the following
computation:

(D,D+Ky)=> D,Di+K,)+2) (D;;D)=—2n+2n—c)=—2c

i=1 i<j

Then Lemma 1.2 follows from the Riemann-Roch theorem.
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Proposition 1.3 (¢f. [2. Lemmas 2.3 and 2.4 and Proposition 6.6]). Let V be
a log Enriques surface of index 1 satisfying the Hypothesis (A) in the
Introduction. Let n: U — V be the canonical covering. Let g: U — U be a minimal
resolution of singularities. Set c:= #(Sing V). Then we have:

(1) We have o(I) <22 — p(U) < 21, where ¢ is Euler’s ¢-function. Thence
we have 2 <1 <66. If I is a prime number then 2 <1< 19. If I is not a prime
number then 1 is divisible by 2,3 or 5.

(2) If I is a prime number then we have

c+pU)—pU)+1(p(V)—c+2)=24

(3) Assume I is an odd prime number and U admits at least one singular
point. Then we have

p(V)=c—1, 2<c<Min{l6,23—1I}.

If 1=3then p(V)<c+4. If 1 =5 then p(V)<c+2. If =7 then p(V) <
c+ 1. If I>11 then p(V)y=c—1. If ¢ =16 then I = 5.

Let #, be a primitive n-th root of the unity and let k be an integer satisfying
l<k<n-—1and g.cd (n, k)=1.Then C,, denotes a finite cyclic subgroup of
order n in GL(2, C) which is generated by

<n., 0 >
O'Hu := .
k 0 #

Lemma 1.4. Let V be a log Enriques surface of prime index I and let
n: U—V be the canonical covering. Let y be a singularity of V of multiplicity
> 3. Then we have:

(1) x:==n""(y) consists of a single singular point of U. Hence x is fixed
by the natural Z/1Z-action on U. The covering morphism n ramifies exactly over
f(Supp D*) which coincides with set of singularities of V of multiplicity >3 (cf.
the notations of Lemma 1.1).

(2) Assume further y is a cyclic singularity. Then x is a rational double
singularity of Dynkin type Ay_, for some N > 1. The case N =1 corresponds
to the case where x is smooth. Moreover, we have (V.y) = (C?/Cy.0) for an
integer k which satisfies the conditions:

()1 <k<IN-=2, (iiy N(1 +k), (i) I}k

If N =1. we can list all possible cases of k as follows:

Q-1)I=3k=1.
2-21=5k=12
2-3)1=7k=1,23.
Q-4I=11,k=1,2,3,57

Q-5 1=13k=1234,56
Q—6)I=17.k=1,2734,58, 10, 11
Q-7 I=19k=1234,6 7.8,09, 14
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Proof. (1) Note that every singularity of U is a rational double singularity
because Kj ~ 0. Since the degree I of n is a prime number, 7~ !(y) consists of
one or I points. If 77 '(y) consists of I points x;’s then (U, x;) = (V, y) for each
i. Hence y must be a rational double singularity. This contradicts the
assumption. So, 7~ !(y) consists of one point x. The second assertion of (1)
follows from I(K, + D*) ~ 0 (see the construction of U in [2, §2] and Lemma
1.1, (3)).

(2) Assume y is a cyclic singularity of multiplicity > 3. Then (V, y) =
(C?/G,. 0) with a group G, which is isomorphic to Cy, with | <k <M — 2 and
g.c.d. (M, k) =1 (cf. Brieskorn [1]). Moreover, x is a smooth point or a cyclic
singularity. So, x has Dynkin type Ay_, for some N > 1. Namely, there is a
subgroup G, < SL(2, C) of order N such that (U,x) = (C?/G,, 0). Since G, is a
subgroup of G, with index I we have M =IN. So. G,={d},> and
| = det(aty ) = ni**P. Hence IN|I(1 + k) and N|(1 + k). This is the condition
(i1) of (2). The condition (iii) follows from g.c.d.(IN, k) = 1. The condition (i)
follows from the choice of k.

It remains to obtain the list for N = 1. First, we write down a list of
integers (I. k) satisfying the conditions (i), (i) and (iii). If k"> k and (C?*/C,y .. 0)
~ (C?*/Cy4 0), we can omit (I, k') from the list. A list, thus obtained, is the
one given in (2).

§2. Proof of Theorem 2.11

Let V be a log Enriques surface of index I. We shall use the notaions
(V, D, f) in §1. Assume that there is a (—1)-curve E on V;such a (—1)-curve

hy he -1

always exists if ¥V is a rational surface. Let V=V->V_, 5 . M V. be a
composite of blowing-downs of (—I)-curves such that h, is the blowing-down of
E;:=E, (2 <i<t— 1)is the blowing-down of a (—1)-curve h"*(E;) of hi* V(D)
and D,,:= h,(D) contains no (—I)-curves. Here we set h'* V=l - h: V- V.
h'*Y = id and h= h?.

Assume  further that D, is contractible to quotient singularities. Let
fi: V, » ¥V, be the contraction of D,,, which makes /; a minimal resolution of
V. Set E:= f(E) and denote by y the point fih(E) on V. Then h induces a
birational morphism h: V— ¥, such that h-f=f,-h,h='(y)=E and h is an
isomorphism over ¥, — {y}.

Definition 2.1 The morphism h is a combining morphism with exceptional
curve E.
Concerning ¥, we have the following:

Lemma 2.2. Let V be a log Enriques surface of index 1. Let h: V-V, be
a combining morphism.  Then V{ is a loy Enriques surface of the same index
1. We have moreover D}, = h, (D*) in the notations of Lemma 1.1.
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Proof. Note that ¥, is birationally equivalent to V and h*(V{, ¢,))=h'(V, (})
=0. Note also that ¥, has at worst quotient singularities by the definition of
h. So, h'(V, €)= h'(V,. ®,)=0. Let E be the exceptional curve of h. Since
I(Ky, + D*) ~ 0 (cf. Lemma 1.1), we have I(K,, + h,D*)~0. Hence [*(IKy )~
I(Ky, + h,D*) and IKy ~0. So, ¥ is a log Enriques surface and its index, say
J, is a divisor of I. In view of Lemma 1.1, (2), we have only to show that
J =1 We can write 0 ~ I;*(JK,—,l) ~ JKj; + oF with a rational number «. Since
IK; ~ 0, we have then IaE ~0. Hence « =0 and JKy ~0. So, we have I|J
by the definition of index. So, J =1L

In order to prove Proposition 2.8, we need the following Lemmas
2.3 ~27. The assertion (4) in the following lemma will also be used in the proof
of Corollary 2 which is stated in the Intoduction.

Lemma 2.3. Let h: V-V, be a combinig morphism between two log Enriques
surfaces of the same index 1. We shall use the notations (V.D,, f1),
E=E, y=h(E), etc. in Definition 2.1. Then we have:

(1) For any i 2<i<t), h"*'N(E,) meets exactly two irreducible components
R Y(B)) and W V(B!) of h"*'(D). For cach 3 <i<t, E;_, is equal 10 one of
B! and B]. Denoting by a//l, a/'/1 the coefficient of B[, B/ in D*, respectively,
we have (W't V(E,), h*V(B,)) = (W V(E), h"*Y(B)) =1 and «/ + a > I.

(2) Let I'y, Iy be the connected components of D containing B/, B/,
respectively, and set z;:= f(I) (i=1,2). Then we have z, # z,, En(Sing V)=
{2,250, f N z) =T and f7H(y) = hE + T'y + I',).  Moreover. E is a nonsingular
rational curve.

(3) yeV, and z;eV (i = 1, 2) are quotient singularities of multiplicity > 3.

(4) h'(V.D +2Ky)=h'(V;, Dy, + 2K})).

Proof. Since D, = h,(D)= h,(E + D) and D, is contractible to quotient
singularities on V. the dual graph of E + D is a disjoint union of trees and the
(—1)-curve E meets at most two irreducible components of D. In particular.
I #7T, and z; #:z,. If E meets two (one, none, resp.) irreducible components
of D, denotes them by B, and B, (B,.¢. resp.). Accordingly, we have
O0=(E. Ky +D*=—1+o//1 +o'/1(—1+0a//], —1,resp). By Lemma 1.1, we
have «,/1 < 1. Hence E meets exactly two components B, and B,” of D and we
have o« + o, =1. Let h: V=V->V¥_, be the blowing-down of E =E,. Then
we have I(K, , + h,D*)~0. If h,(D) contains no (—1)-curves, then (1) is
proved. If h, (D) contains a (—1)-curve h,(E,_,), then E,_, must be one of B,
and B/, B, by the convention. Arguing similarly with h(E,_,), we can conclude
(1) and (2). Indeed, we have 0 = (E,_,, Ky,_, + h D)< — | +o/_ /] +o/_ /I

(3) Note that fih(B3)=fil(E+ ', + I';) =y and {f(B3), f(B3)} = {z,, z,}
as set. By Lemma 1.1, (2), the coefficients of B3, B; in D* satisfy a5/I <1 and
as/I < 1. Since oy + a5 = I, we have a; >0 and a; > 0. So, z; (i =1, 2) is not
a rational double singularity (cf. Lemma 1.1. (3)). Note that o5/l is also the
coefficient of the irreducible component h(B)) in D¥, = h,(D*). So. y = f,h(B3)
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is not a rational double singularity.
(4) In view of Lemma 1.2, we have only to show that f(t) = f{1). Here
we set c(i):= # {connected component of hi*"D} and

f(i):=c(i) = (KE) — (Wi* V' D. Ky).
We have c(t)=c(i)+ 1 for 1 <i<t—1, (K¢, )= (K})+ | and

—1 if B= B/ or B/
(Ky, ,»hyB)—(Ky,.B) =<1 if B=E,
0 otherwise.

Note that E = E, is not contained in D and that E, (i <t — 1) is a component
of D. We then obtain f(t) = f(t — 1) =--- = f(I).

Lemma 2.4. Let h: V-V, be a birational morphism between two log Enriques
surfaces of the same index 1. Then the following two conditions are equivalent :

(1) h is a combining morphism.

(2) There is a point y on V, which is not a rational double singular point.
such that h is an isomorphism over V — {y} and the exceptional divisor E:= h™'(y)
is an irreducible curve.

Assume the above equivalent conditions. Then y is a singularity of multiplicity
>3 (¢f. Lemma 2.3).

Proof. 1f h is a combining morphism. then the condition (2) follows from
the definition of /.

Now we assume the condition (2). We use the notations (V, D, f) for V and
(W, Dy, f1) for V. Set E:=f'(E). Note that E is not a component of
D. Hence we have (E, K,) = (E, — D¥) <0 (cf. Lemma 1.1, (4)). Moreover, we
have (E?) < 0 because E is contractible to the point y by the birational morphsim
l;~f. So. E is a (—1)-curve or a (—2)-curve.

Suppose (E?) = —2. Then EnD* =¢. Let D, (1 <i<r) be all connected
components of D with (E, D;) > 0. Then D, consists of (—2)-curves (cf. Lemma
1.1, (3)). Note that ii-f: V— ¥ is a resolution of the singularity y on ¥, with
(hif)"*(y) = E+Y,D;. This implies that y is a rational double singularity. a
contradiction. So, we have (E%) = —1.

Since h-f: V-7V, is a resolution of singularities, there is a birational
morphism h: V-V, such that f,-h=h-f. By the assumption on h. the
morphism & is a composite morphism of the blowing-down of E and the
blowing-downs of several components of D. Moreover, h, (D)= D,,. Hence
h,(D) contains no (— I)-curves because f; is a minimal resolution. Since V is a
log Enriques surface. f, h, (D) = Sing (V) consists of quotient singular points. So,
h is a combining morphism by Definition 2.1.

Lemma 2.5. Let h: V— V, be a combining morphism between two log Enriques
surfaces of the same prime index I and with the exceptional curve E < V. Let
n:U—V.r: U, -V, be canonical coverings. Set y=h(E), En(Sing V)= {z,. z,}
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(¢f. Lemma 2.3), F:=n Y(E), x:=n~"(y), zi:=n""(z;). Then we have:

(1) x and z| consist of «a single point. F is a nonsingular irreducible rational
curve.

(2) There is a birational morphism h: U— U, such that my-h=h-n the
morphism h is an isomorphism over U, — {x} and h~Y(x)=F. Moreover,
FnSing U) < {z. 23).

(3) zi, zj are all points on F fixed by the natural action of Z/1Z on U. The
curve F is Z/1Z-stable. h is a Z.]1Z-equivariant morphism.

(4 Let §:U—U be a minimal resolution of singularities contained in
{z1, z5}. Then g,:= h-G: U— U, is a minimal resolution of the singularity xe U,
with §~'(F) as the exceptional set.

(5) Both U and U, are K 3-surfaces possibly with rational double singularities.

Proof. (1) By Lemma 23, y and z; are not rational double singular
points. Then the first part of (1) follows from Lemma 1.4. Hence, F is
connected. Since E:= f'(E) meets Supp (D*) transversally in exactly two points
(cf. Lemma 2.3). F is nonsingular and F is rational by the Hurwitz formula (cf.
Lemma 1.4, (1)).

(2) Since n is etale over ¥V — (Sing V), we have Sing (U) < n~'(Sing (V) and
Fn(Sing U) < {z}, z5}. Since U, U, are respectively normalizations of V and ¥
in the function field C(U)= C(U,), (2) follows from properties of h before
Definition 2.1.

(3) Since 7 ramifies exactly over {singularity of V of multiplicity > 3} (cf.
Lemma 1.4), the first assertion of (3) follows from Lemma 2.3, (3). By the same
reasoning, x is fixed by the natural Z/IZ-action on U,. So, U, — {x} is
Z/1Z-stable. Hence U — F is Z/1Z-stable because the actions of Z/IZ on U — F
and on U, — {x} are the same. The second and hence the third assertion of (3)
follow.

(4) Note that §,:=h-§:U—>U, is a resolution of the singularity
xeU,. Since U has only rational double singular points, we have Ky = §*(Kz) ~
0. Hence there are no (—1)-curves on U and §, is a minimal resolution of the
singularity xe U, .

(5) We have only to show neither U nor Ul is an abelian surface. Since
there is a rational curve F on U, the surface U is not abelian. If U, is an
abelian surface, then U, is especially smooth. However, the assertion (4) implies
that xe U, is a singularity. This is a contradiction. So, U, is not an abelian
surface. This proves (5).

Lemma 2.6. Let V, be a log Enriques surface of prime index I and let
n,: U, =V, be the canonical covering. Let U be a normal projective surface such
that Kg ~0, U has at worst rational double singularities and there is an action
of ZJ1Z on U. Assume that there is a point xe U, and there is a Z]1Z-equivariant
morphism h: U — U, such that h is an isomorphism over U, — {x}, the exceptional
divisor F:= h™'(x) is Z/1Z-stable and the action of Z/1Z on F is non-trivial. ~Set
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Vi=U/(Z]1Z) and let n: U =V be the quotient morphism. Then V is a log
Enriques surface of the same index 1 as Vi and U is the canonical covering.

Proof. Since h: U — U, is a surjective Z /I Z-equivariant morphism and since
V="U/( Z/IZ )and V, = U,/(Z/1Z), there is a surjective morphism h: ¥V— ¥, such
that nl h=h-n Since F is Z/IZ-stable. so does x. Therefore, L "(x) = x
and n'n(F)= F. Set y:=n,(x), E:= n(F). By the properties of i, we see that
h is an isomorphism over ¥, — {y} and that E = i~ '(y). Hence every singularity
of V—E is an isolated quotient singularity. Let f:V—V be a minimal
resolution.  Since the action of the group Z/IZ of prime order on F is non-trivial,
F contains only finitely many points with non-trivial isotropy group. So. every
singularity of V contained in E is an isolated quotient singularity. Thus, V has
at worst isolated quotient singularities and n is etale over ¥ — Sing V. Hence
h'(V, ¢p) = h'(V, @) = h' (V. C)) = 0.

Since V is birational to ¥, by a morphism /i and since ((Ky,) is not trivial,
we can prove that ¢*(Ky) is not trivial. On the other hand, the fact Kz~ 0
implies that IK; ~ 0 (cf. [2, Lemma 22]). Hence V is a log Enriques surface
of index I. This proves Lemma 2.6.

Lemma 2.7. Let V and V, be two log Enriques surfaces of the same prime
index 1. Let m: U -V, n,: U, -V, be canonical coverings. Then the following
conditions are equivalent :

(1) There is a combining morphism h: V-V, with the exceptional curve
Set y = n(E).

(2) There is a point xeU, and there is a Z/lZ-equivariant morphism
h:U—-U, such that nl(x) is not a rational double singular point, h is an
isomorphism over U, — {x}., the exceptional divisor F:= h=Y(x) is an irreducible
curve and F is Z/1Z- stable

Furthermore, suppose the equivalent conditions (1) and (2). Then we have

“h=h-n. Hence E=h"'(y), F=n YE).and x = n; '(y). In addition, xe U,
is a singular point.

o]

Proof. Assume the condition (1). Set x:=m;'(y) which is a single point
and a singular point by Lemma 2.5. Let /i be the one given in Lemma 2.5. Then
the condition (2) is satisfied (cf. Lemma 2.3, (3)).

Assume the condition (2). By the argument of Lemma 2.6, there is a
birational morphism h: ¥— ¥, such that 7, -h=h-n and h is an isomorphism
over ¥, — {m,(x)}. Since F is an irreducible curve, so does E:= n(F). Thus, I
is a combining morphism with the exceptional curve E (cf. Lemma 2.4). The
condition (1) is satisfied. The last assertion of Lemma 2.7 is proved in Lemma 2.5.

Now Proposition 2.8 in the Introduction follows from Lemmas 2.3, 2.4, 2.5
and 2.7.
We shall use the following two lemmas in the proof of Theorem 2.11.

Lemma 2.9. Ler h: V-V, be a combining morphism. Then V satisfies the
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Hypothesis (A) in the Introduction if and only if so does V.

Proof. By Lemma 2.5, neither the canonical covering of V nor that of I
is an abelian surface. Let E be the exceptional curve of i and set y = h(E). Note
that h: V- ¥, is an isomorphism over ¥ — {y} and En(Sing V)= {z,, z,} for
two points z,, z,. Moreover, ye ¥, z;e V(i = 1. 2) are singularities of multiplicity
>3 by Lemma 2.3. So, the assertion that every singularity has multiplicity >3
holds true for V if and only if so does for ¥,. By Lemma 2.2, ¥V and ¥, have
the same index. This proves Lemma 2.9.

Lemma 2.10. Ler G be a group of odd order. Let I' be a graph of Dynkin
tvpe A,(n=1), D,(n=5) or E,(n=06,7,8). Assume G acts on I such that the
action on edges is determined by the action on vertices in the following sense
(*). Then the action of G on I' is trivial.

(%) If e is an edge of I linking two vertices v,.v,, then for cvery element
g of G, gle) is a unique cdge linking g(v,) and g(v,).

Proof. Lemma 2.10 is clear in the case E; or Eg4. Consider the case
A,. Note that the set of two tip vertices of the graph I is G-stable. Since the
order of G is not divisible by 2. we see that each tip vertex of /" is G-fixed. So
G fixes every vertices by our assumption (x). Then we can deduce that G acts
trivially on I" by the same reasoning. The case D,(n > 5), E; can be proved
similarly.

Now we can prove the following Theorem 2.11. We shall use the notations
(V. D, f) of §1 for V.

Theorem 2.11. Let V be u log Enriques surfuce satisfying the Hypothesis (A)
in the Introduction. Assume that the index I of V is an odd prime number. Then
we have: _ _

(1) There is a composite V, b Vi N V=V (n>0) of combining
morphisms (c¢f. Proposition 2.8) between log Enriques surfaces of the same index
I such that U, is a K 3-surface possibly with rational double singularities of Dynkin
type A,. Here we let n;: U, — V be the canonical covering. Moreover, for each
singularity x of U, the image y:=mn,(x)eV. is a singularity isomorphic to
(C?/Cyy.1:0). Here Cyy :={043,1» S GL(2; C) is a cyclic subgroup of order 21

generated by
< ) >
Gy = ,
21,1 0 n

n being a _primitive 21-th root of the unity. Finally, the hypothesis (A) is satisfied
by every V.

(2) Let g: U—U be a minimal resolution and denote by I':= ¢~ '(Sing U)
the exceptional divisor. Then there are natural Z.]1Z-actions on U and U such
that g is Z/l1Z-equivariant and every irreducible component of I is Z/1Z-
stable.  Moreover, there are exactly n irreducible components F(l <i < n) of I’
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on which Z/1Z does not trivially act.  Finally. after relabelling subscripts of Fs,
there is a contraction G;:U->U; of I'—(F, +--+ F) and a contraction

hi:U;»U;_, of Fii= G(F) such that h;-G; = G,_, and m;_, - h;=7;-h;. Here
we set Gyi=g¢. ny:=mn, Uy:=U.

Conversely, suppose Y, oS Y, it Yo:= V (r = 0) is a composite of combining
morphisms with @;: X; = Y, a canonical covering and satisfying (Y,; m,(x)) =
(C?/C,; 2 0) for every singularity x of X,. Then we have r = n.  Moreover, there
is a strictly increasing sequence {F, | < {F, . Fy,}---c {Fy,....,F, } and there is a
contraction Hi: U — X, of I'—(F,, +-+F,). In particular, X,=U, and
Y= X,/2/12)= 7, o ) )

(3) n=4#{exceptional curve of hy---h,: V, >V} =pU)— p(U)— #(Sing U,)

< Min {19, 22 — I} (See also Proposition 1.3, (2)).

Proof. Let n: U— V be the canonical covering. Then U is a K 3-surface
possibly with rational double singularities by the Hypothesis (A). Let g: U —» U
be a minimal resolution. The U is a K3-surface. Set I':= ¢~ '(Sing U). Then
I consists of (—2)-curves. Write I'= 3" I, where I is a connected component
of I. Then the dual graph of I'; has Dynkin type A, (m; > 1). D, (m; > 4) or
E,.(m;=6,7,8). By the Hypothesis (A) and by Lemma 1.4, every singular point
of U is fixed by the Z/IZ-action. Hence there is a non-trivial Z/IZ-action on
U such that ¢ is a Z/IZ-equivariant birational morphism and every I is
Z./1Z-stable. We prove first the following:

Cram. (1) Let Fyny +--+n_; +1<j<n; +--+n) be all irreducible
components of I'; such that Z/IZ does not act trivially on it. Set n =) "
Then every connected componet of I"— ) "_ | F; consists of a single (—2)-curve.

(2) Suppose Z/IZ acts trivially on every irreducible component of I;. Then
I'; consists of a single (—2)-curve.

(3) Every irreducible component of I" is Z/IZ-stable.

;.

Proof of the claim. (1) Suppose there is a connected componet of [ —
Z;’:,Fj with at least two components. Then there are two componets L,. L,
of I'— Z;=1 F; with an intersection point P. Note that two tangents of L,. L,
at the point P are fixed by the Z/IZ-action. So, the action of Z/IZ on U and
U are trivial. This leads to that V= U/(Z/IZ)= U and the index I of V is
equal to one. This is a contradiction. So, the assertion (1) of the claim is
true. Then follows the assertion (2) of the claim.

(3) Suppose there is an irreducible component of [/ which is not
Z/1Z-stable. We may assume i = 1. Set x:=g(I",)e U, y:= n(x)e V which are
singular points. Set 4:=f"'(y)< V. Then the action of Z/IZ on the dual
graph of I'; is not trivial. By Lemma 2.10, the dual graph of /', has Dynkin
type D,. Write I, = Z;IL,- with the central component L,. We see that L,
is Z/1Z-stable. Since I is not divisible by 2, we have 5(L,) = Lj, n(L;) = L,.
n(L,) = L, after relabelling subscripts. Here y is a generator of Z/IZ. So.
3|1. Hence I =3. Since x = ¢(/,) is a singularity of Dynkin type D,, the dual
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A, A, 4
Figure 1

graph of 4 is given in Figure 1 (cf. [2, Proposition 6.1]).

In Figure (1), we have 4 = Z?=1 4; with the central component 4, and three
irreducible components 4; (j =2, 3,4) sprouting from 4,. Let P;:=4,n4;
(j=2,3,4) be an intersection point. Let h: ;- V be the blowing-up of three
points P;’s. Set E;:=h~'(P)), 4{:= h'(4,). Note that the coefficients of 4s in
D* for i=1,....4 are respectively 3, 3.4, 3. So. we have 0 ~ h*3(K, + D*) =
3(Ky, + h'(D*)) (cf. Lemma 1.1). Let f,: V; - ¥, be the contraction of h'(D*).
Then we have f*(3Ky)=3(K,, +h'(D*) and 3Ky ~0 (cf. [2, Lemma
1.2]). Set E;:=fi(E), z,:= fi(4}), z,;:= f1(4)). Then E;n(Sing V) = {z,, z,;}
and z,,z,;s are quotient singular points. There is a birational morphism
h: V, > V such that h-f, = f- h, the morphism h is an isomorphism over ¥ — |y}
and h™'(y)= E, + E; + E,. Thus, every singularity of ¥, is an isolated quotient
singularitiy. Hence h'(V;, Op)=h'(V,. €, )=h"(V.C,)=0. So, ¥ is a log
Enriques surface of index one or three. Since V and hence V] are rational surfaces
by the Hypothesis (A), ¥, has index 3. By Definition 2.1. i is a composite
morphism of three combining morphisms. Let 7,: U, - ¥, be the canonical
covering. Set F;:= n7 '(E;). Then F, is an irreducible curve and is stable under
the natural Z/IZ-action on U, (see also Lemma 2.5). Note that n{l(zzj) is a
smooth point and Q,:= n; '(z,) is a singular point of Dynkin type 4,. By the
same argument of Lemma 2.5, we see that U is also a minimal resolution of
U,. Letg,: U—U, be the resolution which is. in fact, Z/IZ-equivariant. Then
we have h-m, -g, =n-g. So. we have L, =g;'(Q,) and {Ljli=234} =
{g’l(Fj)|j =2,3.4}. Hence L; is also Z/IZ-stable for i = 2, 3. 4 (cf. Lemma 2.5,
(3)). We reach a contradiction. Thus, the claim is proved.

Next we prove the assertion (1) of Theorem 2.11. We use the notations of

m

the claim: n, n=%" n, F; (1 <j<n).

Assume n; =0 for some i, say i=1. Then I, is a single (—2)-curve on
which Z/IZ acts trivially by the claim. Set x:=g(I"))eU, y:= n(x)eV which
are singular points. Note that 77 '(y) = x (cf. Lemma 1.4). We can prove that
the singularity y is isomorphic to (C*/C,, ,; 0).

Assume n; > 1 for some j. Let G,(1 <i<n): U—- U, be the contraction of
I —(F,+--+F). Set F;:=G(F). Let h;:U,-»U,_, be the contraction of
F.. Weset Uy:=U, Gy:=g and x;_,:= h(F). Then h;-G,=G,_,. By (3) of
the claim, there is a non-trivial Z/IZ-action on U, such that G, h, are
Z/1Z-equivariant and F; is Z/IZ-stable. Since the action of Z/IZ on F, is
non-trivial, so does on F;. Set V:=U,/(Z/IZ) and let 7;: U, > ¥ be the quotient
morphism. Set E;:= n;(F;). Applying Lemma 2.6 n-times, we see that every V

i
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is a log Enriques surface of index I and =; is the canonical covering. Set
y; = mi(x;). By Lemma 2.7, there is a combining morphism i;: ¥ - ¥_, such
that h;-m,=m,_,-h. E,=h7'(y,_,) and E, is the exceptional curve of h; (cf.
Lemma 2.9 and Hypothesw (A). (3)). Here we set V,:=V, my:=n. We shall
prove that h/s satisfy the conditions in Theorem 2.11.

Note that G, is a minimal resolution. A point x of U, is a singular point
if and only if G, *(x) is a connected component of /' — (F, +---+ F,). By the
claim, every connected component of I"— (F, +---+ F,) is a single (—2)-curve
on which Z/IZ acts trivially. As in the case n; = 0, we see that Sing U, consists
of singularities x such that m,(x)e¥, is a singularity isomorphic to (C?/C,; ;: 0).
Since U is a K 3-surface, every U, is a K 3-surface possibly with isolated rational
double singularities. By Lemma 29, we see that ¥’s satisfy the Hypothesis
(A). Thus, h’s satisfy the conditions in Theorem 2.11, (1). Hence (1) is
proved. The first part of Theorem 2.11, (2) is also proved in the above arguments.

We now prove the converse part in Theorem 2.11, (2). By Lemma 2.5, U
is a minimal resolution of each X,. Let H,: U X, be the resolution. Let §;
be the exceptional curve of p; and set T,:= w; '(S). By Lemma 25, T is a
nonsingular irreducible rational curve and the natural Z/IZ-action on T; is
non-trivial. Moreover, there is a Z/IZ-equivariant birational morphism pit Xi—
X._, such that w,_,-p, = p,- @;, p; is the contraction of T; and p(T)eX,_, is
a singular point. Set T,:= H/(T). Note that p,-p,-H,:U—->Xo=U is a
minimal resolution and we may assume that it is equal to g. Denote by
I'":= H'(Sing X,) the exceptional divisor of H,. Then we have I" = g~ '(Sing U)
=I"+T,+-+T, H *Sing X)=I—(T, + -+ T). Applying the above claim
to Y, (cf. Lemmas 2.9 and 2.2). we see that every component of H; '(Sing X)) is
Z/1Z-stable. So, H; is a Z/IZ-equivariant birational morphism. The action of
Z/1Z on T, is non-trivial because so does on T,. Let x be a singular point of
X,. Then w,(x)eY, is a singularity isomorphic to (C*/C,; ;0). Since @,(x) is
a branch point of @w, by Lemma 1.4, H '(x) consists of a single (—2)-curve
on which Z/IZ acts trivially. Thus, we have r=n and {T}|l <i<n}=
{F;|1 <j<n}. The converse part in Theorem 2.11, (2) is proved. Hence (2) is

proved.
Finally, we shall prove (3). The first equality follows from the definition of

h’s (cf. Proposition 2.8 in the Introduction). In the notations of the statement
of the present theorem, we have n = # {irreducible component of I'} — # {excep-
tional curve of G,: U,— U,} = p(U) — p(U) — #(Sing U,) because U, has only
rational double singularities of Dynkin type A;. For the last inequality, we have
only to consider the case Sing U # ¢. By virtue of Proposition 1.3, we have
p(U)—p(U)=24 —c—I(p(V) —c+2)<24 —c—1<22—1<19. This proves
3).
Thus, Theorem 2.11 is proved.

As a consequence, we have:

Corollary 2.12. Let V be a log Enriques surface whose index I is an odd
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prime number. Let m: U — V be the canonical covering. Then the following tvo
conditions are equivalent.

(1) V satisfies the Hypothesis (A) in the Introduction. For every singularity
x of U the image y:= n(x)eV is a singularity isomorphic to (C*/C,; ' 0).

(2) V satisfies the Hypothesis (A). We have V= V,. i.e.. n = 0 in the notations
of Theorem 2.11.

§3. Index 3 case

We shall prove the following Theorem 3.1 in the present section. In the
Table 1 below, by Sing(U) = mA,, we mean that U consists of exactly m
singularities of Dynkin type A,. By Sing (V)= (3. 1)), (6. 1Y, we mean that V
has exactly i + j singularities, and i (resp. j) singularities of them are isomorphic
to (CZ/CM: 0) (cf. Lemma 1.4) with (a, b) = (3, 1) (resp. (6, 1)). We also use the
notations (V. D, f) in §1 for V.

Theorem 3.1. Let V be a log Enriques surfuce of index 3 and let n: U -V
be the canonical covering. Assume V satisfies the condition (1) of Corollary
2.12. Then V and U are described in one of the rows of the Tuble 1. In particular,

H'(V.D + 2K,) = 0.

Table |

No. Sing (V) p(V) p(V) Sing (U)
1 (3, 1%, (6, 1)° 14 29 64,
2 (3, H¥, (6, 1)° 13 26 54,

3 (3, 1)7, (6, )* 12 23 44,
4 (3, Do, (6, 1)? 11 20 34,

5 (3, %, (6, 1) 10 17 24,
6 (3, )*, (6, 1) 9 14 A,
7 (3, 1)° 8 11 ¢

Proof. If U is smooth, then V and U are described in the seventh row of
the Table 1 by [2, Theorem 5.17. So, we shall assume that U admits at least
one singular point.

Let y; for 1 <i < m, be all singularities of ¥ isomorphic to (C?/C; ,; 0). Let
y; for my + 1 <j <my + m, be all singularities of V isomorphic to (C?/Cq ,; 0).
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Note that x,:=7n"'(y,) (I <n<my+ m,) consists of a single point (cf. Lemma
1.4).  Moreover, x; for 1 <i < mq (resp. x; for my + 1 <j < mgy + m,) is a smooth
point of U (resp. a singularity of Dynkin type A4,). By the condition (1) of
Corollary 2.12, every singularity of ¥ other than yjs is a cyclic singularity of
order 3. So, by Lemma 1.4, we have ¢:= #(Sing V) =m, + m,. We have also
p(U)—p(U)=m, and SingU =m,;A,. Here U is a minimal resolution of
U. Set 4,:=f""(y)<=Vand D:=Y"_ 4, Then we have:

(1) 4;(1 <i<myg)is a single (—3)-curve.
(2) 4;img+1<j<c)is a single (—6)-curve.

We can check that f*(Ky) = K, + D* with
1 2
D*:"ZA,'+ ZA].
35 35

Hence we have

1 8
— gmo — gml =(D*)? =(K3)=10—p(V) =

10 — p(V) — #(D) = 10 — p(V) — (my + m,). and

_ 2 5
(3.1) p(V)= 10—§mo+§ml.

This, together with Proposition 1.3, implies:

2d=c+pU)—pU)+3(p(V)—c+2) =

2 5
(mg + my) +m; + 3<10 - 3m0 + gml —mg —m; + 2>.

Hence we have:

(3.2) my =34+ m;, and

(3.1) ‘ p(V)=8+m,.

On the other hand, by Proposition 1.3, we have
—1<pV)—c=84+m — (mg + m;) < 4.

Namely, 4 < my, <9. By noting that
p(Vy=p(V)+my+m,, SingU=m, A,

and by equalities (3.1) and (3.2), we see that ¥ and U are described in one of
the rows of the Table 1. The second assertion of Theorem 3.1 follows from
Lemma 1.2 and the Table 1. This proves Theorem 3.1.

The existence of the case No.1 (resp. No.6, or No.7) in Table | of Theorem
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3.1 was given in Example 6.11 (resp. Example 6.8 and Remark 6.7, or Example
5.3) of [2]. We shall give below examples of cases No.2, No. 3. No.4 and No. 5.

Examples 3.2. We can find a nonsingular rational surface V' and a
P!-fibration @: V' — P! such that the following two conditions are satisfied.

(1) All singular fibers of @ are vertically shown in Figure m (2 <m <5).
We set F=F, + F, in the case Figure 5. In particular, in the case Figure m
for m =5 (resp. m = 2, 3, 4), F + D} + D; (resp. F + D{ + D} + Dj) is the support
of a singular fiber of @. We have p(V') = 11.

(2) Denote by D’ the reduced effective divisor consisting of all irreducible
components in Figure m with self intersection number < —2. Let f;: V' — V'
be the contraction of D’. Then V' is a log Enriques surface of index 3.

Figure 4 Figure §

Let ¢:V'>2%, be a composite morphism of blowing-downs onto a
Hirzebruch surface X, such that (6(M')?) = — 2. Then the existence of a pair
(V', D) is equivelent to that of (X,, ¢(D’)). In addition, to meet the above
condition (2). we just require that 3 (K, + D*)~0 (cf. Lemma I.1). or
equivalently, 3(Ky, + o,(D*)) ~ 0.

Let n,: U' - V' be the canonical covering. In the case Figure 2 (resp.
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3.4.5), ny ' (f1(D') consists of a smooth point and a singular point P of Dynkin
type D¢ (resp. D3, Do, D;). We have Sing (U') = {P}.

Let 7: V- V' be a composite morphism of combining morphisms such that
V satisfies the condition (1) of Corollary 2.12. In the notations of Theorem 2.11,
we have V=V, with n = 11 (resp. 9, 7. 5) for the case Figure 2 (resp. 3, 4. 5). Let
f: V-V be a minimal resolution of singularities. Then there is a composite
morphism 7: V- V' of blowing-ups of several intersection points of D’ and their
infinitely near points such that 7-f = f, - t and that t~'(D’) — D consists of exactly
n disjoint (— 1)-curves.

Finally, in the case Figure 2 (resp. 3,4, 5), V is a log Enriques surface of
index 3 fitting the case No.2 (resp. 3,4.5) of the Table 1. For the concrete
constructions of (V’, D’) and (V, D), we refer to Example 7.3.

§4. Index 5 case

We shall prove the following Theorem 4.1 in the present section. In the
Table 2 below, by Sing (U) = mA,, we mean that U consists of exactly m
singularities of Dynkin type A4,. By Sing(¥)=(5.1).(5.2V, (10, 1)*. we mean
that ¥ has exactly i 4+ j + k singularities, and i (resp. j, k) singularities of them
are isomorphic to (C?/C,,: 0) with (a, b) = (5, 1) (resp. (5, 2), (10, 1)). We also
use the notations (V, D. f) in §1 for V.

Theorem 4.1. Let V be a log Enriques surface of index 5 and let m: U-V
be the canonical covering. Assume V satisfies the condition (1) of Corollary
2.12. Then V and U are described in one of the rows of the Table 2. In particular,
HY(V.D +2K,)=0.

Table 2
No. Sing (V) p(V) p(V) Sing (U)
1 (5. *, (5, 2)°, (10, 1)3 15 40 34,
2 (5, 1)3,(5,2)7, (10, 1)? 12 31 24,
3 (5, 1)%,(5,2)%, (10, 1) 9 22 A,
4 (5. 1), (5,2} 6 13 I3

Proof. 1f U is smooth, then V and U are described in the fourth row of
the Table 2 by [2, Theorem 5.1]. So, we shall assume that U admits at least
one singular point.

Let y; for 1 <i<m, and y; for mg + 1 <j<mg+ mg be respectively all
singularities of ¥ isomorphic to (C?/Cs,;0) with r=1 and r=2. Set
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mg:=my +my. Let y, for mo+1<k<mg+m, be all singularities of V
isomorphic to (C2/C,.,;0). As in Theorem 3.1, we have c¢:= #(Sing V)=
my + m,. We have also p(U) — p(U)=m, and SingU = m;A4,. Here U is a
minimal resolution of U. Set 4,:=f"'(y)<V and D:=)"_, 4, Then we
have:

(1Y 4,1 <i<mg)is a single (—5)-curve.
(2) 4;(mg + 1 <j < my)is a chain of one (—2)-curve 4; ; and one (—3)-curve
(3) 4d.(mg+ 1 <k<c)is a single (— 10)-curve.

We can check that f*(Ky) = K, + D* with
3 1 4
D¥ =2 4,4+ - (4;, +24;,) + =Y A,
59 57 5%
As in Theorem 3.1, we have

1
- 5(9171(’, + 2mg + 32m,) = (D*)? = (K}) =

10 — p(V) — (mg + 2mg + my), and

4.1 S(p(V) — 10) = 4my — 8mg + 27m,.

This, together with Proposition 1.3, implies
24 =c+pU)—p0)+5(pWV)—c+2)=
(mo +mg +my)+my + (4dmy — 8mg + 27m,)
+ 5(12 — my — mgy — my).

Hence we have:

4.2) mg =3+ 2m,.

By the same proposition, we can write

p(Vy=c—1l4+r=mi+mi+m)—14r for r=0,1,2 or 3.

This, together with (4.2), makes (4.1) into the following form:
4.1 mo =16 —5r —4m,.

On the other hand, by Lemma 1.2, we have:

W(V,D+2K,)=c—1— (K} —(D,Ky) =
2c—12+r+#MD) —(D. Ky) =

20mg + my +my) — 12 +7r

+ (mg + 2mg + my) — (3my + mg + 8m,) =
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— 124 r+3mi—5m =—=3+r+m.

Hence we obtain
(4.3) 0<h'(V,D+2K,)=—3+r+m.

Since m, > 1, the equality (4.1) implies that 5r=16 — 4m, —my <12 and
r < 2. By making use of (4.1), (4.2) and (4.3), we shall show:

(r, my, mg, my) =(0,4,9, 3), (0,0, 11, 4), (1,3,7.2) or (2, 2,5, 1).

So, either the following case (5) occurs or V and U are described in one of the
rows of the Table 2 (cf. the proof of Theorem 3.1).

Case (3) p(V)=c — 1= 14, p(V) =40, Sing (U) =44, and

15

11
D=3 (4;,+4;,)+ Y 4.
i=1

k=12

Here 4, is an isolated (— 10)-curve of D. The curves 4;, and 4;, are respectively
(—2)-curve and (—3)-curve, 4;, +4;, is a linear chain and 4;, +4;, is a
connected component of D.

Actually, the above case (5) does not occur by the following Lemma 4.2.  The
second assertion of Theorem 4.1 follows from Lemma 1.2 and the Table 2. This

proves Theorem 4.1.
Lemma 4.2. The above case (5) does not occur.

Proof. Assume, on the contrary, that V is a log Enriques surface satisfying
the conditions of Theorem 4.1 and fitting the above case (5). We use the above
notations for D. We can write
1 15

(4,1 +24;,) +§ Y 4,.

k=12

—

p !
5,

1

Set V{:=V, D,:= D. Suppose there is a (—1)-curve E; on V| such that E; meets
a coefficient ¥ component of Dy, say 4,,. Then E, meets a coefficient }
component of D*, say 4, |, because K, = — D*. Moreover, (E,, 4,,)=(E,, 4, ;)
=1 and E, meets no components of D, other than 4,, and 4, ,. Let o,:
1, = ¥, be the smooth contraction of the (—1)-curve E, and the (—2)-curve 4, ;.

Set Diyy:=0,,(Dy), D¥yi=0a,,(Df). Note that 5(K,, + D¥)) ~ 0. Continue

Tn

this process. We obtain a composite of smooth contraction ¥ i |4 5.3 Vet
such that the following claim holds, where ¢ =0,---0,, Wi=V, .|, B:== D, 4+,, =

o,.(D), B*:= Dk, = 0,(D¥).
CramM (1). No (—1)-curve on W meets any coefficient ¥ component of B*.

Note that 5(K, + B*) ~0. A connected component of B is either a chain

I+ 7T;, (1<j<11—n)of one (=2)-curve I;; and one (—3)-curve [ ,, or
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atree [yo+ -+ Iy, (12<k<15) of one (2r, — 10)-curve I, as the central
component and r; (r, = 0) (—2)-curves [} ,....01, . as twigs. Let us write

B = Z(rm + 1)) + 3o+ + )
7 P

Then we have

W N

1 .
B*:'S'z(rj‘l+2rj.2)+ YR o+ Ly + -+ 1)
j P
By the construction of o, we find that ¥} ,r,=n <11, (K2) = (K2) + 2n < — 30
+2x11=-28

The fact K, + B* =0 implies:

Cramm (2). Suppose C, is a (—m)-curve on W with m > 2. Then either C,
is a component of B or C, is a (—2)-curve disjoint from B.

Let @: W— P! be a P!-fibration. Since (K32)< 8, there is at least one
singular fiber §,.

Cramvm (3). We can write Supp S, =) E;+ 3 .C;+ ) By such that E; is
a (—1)-curve not contained in B, B, is a component of B and C; is a (—2)-curve
not contained in B. Moreover, Y E;+ Y, B, is a connected tree.

Proof. The first assertion follows from the claim (2) and the fact
2r, — 10 # — 1. For the second assertion, we use the negative semi-definiteness
of the intersection matrix of S;. This proves the claim (3).

CLAM (4). There is a singular fiber of @, say S,, such that S, contains a
coefficient £ component of B*.

Proof. Suppose the claim is false. Then all four coefficient ¥ components
of B* are transversal to the fibration @. This leads to 2 = (S,, — Ky) =(S,. B¥)
>4 x 4. This is a contradiction. So, Claim (4) is true.

CrLaM (5). Let S, be a singular fiber containing a coefficient ¥ component
o of B*. Let I g+ -+ I, be the connected component of B* containing
I in the above notations. After relabelling the indices of I, ,’s, we have one
of the following cases:

Case (5-1) r, <5 and there are (—1)-curves E (1 <s < 10— 2r,) such that
(E. I) =1 and that S, = I o + Y./2 ™ (E, + ).

Case (5-2) r, <4 and there are (—1)-curves E (1 <s5<9 — 2r,) such that
(E,, Iy =1 and that S, =20, 0 + 2 22 (E,+ T ) + Tivo-2n + Tir1— 20,

s=1

Proof. 1f S| contains no components of B except for some I ’s, then the
case (5-1) or (5-2) takes place by the claims (1) and (3). Suppose S, contains
a component of B other than I, ’s. We shall show that this will leads to a
contradiction and hence the claim is true.



378 De-Qi Zhang

By the claims (1) and (3), S, contains a (—l)-curve E,, a component B, of
B other than I J’s and a component of B among I, /’s. say I, , such that
(E,.I.,)=(E,, Bj)=1. Then (B}) < — 3. By the claim (1), B, is a (—3)-curve
with coefficient 2 in B* and B,, together with a (—2)-curve B, forms a connected
component of B. The fact (E,, B¥) =1 implies that E, meets a coefficient
component B, of B. Set f,:=2E;,+ I, +B,. Let ¥:W->P!' be the
P!-fibration with f; as its singular fiber. Then I, is a cross-section of ¥.

Case (5-3). B, # By. Then there is a (—3)-curve B such that B, + Bj is
a chain and a connected component of B. We see that B, is a 2-section of ¥
and B; is a cross-section of ¥. All components of B — (B, + B3 + I ,) are
contained in fibers. Let f; be the singular fiber of ¥ containing B,. By the
claims (1) and (2), f; contains a twig, say [ , sprouting from the cross-section
I o. By the claim (3), f, contains a (—1)-curve E, and a component B, (# B,)
of B such that (E,, By) = (E,, By)=1. If (B3)= —2 then f, =2E, + B, + B,.
This leads to (Bs, f;) = (B3, 2E,) # 1, a contradiction. So, (B) = —3 and B,
has coefficient % in B* by the claim (1). This leads to that (E,, B,)=1 or
(E,, By) = 1 because (E,, B*) = 1. Hence (B, f;) > 3 or (Bj, f;) = 2 because E,
has multiplicity > 2 in f;. We reach a contradiction. So, the case (5-3) is
impossible.

Case (5-4). B, = B,. Then B, is a 3-section of ¥. All components of
B — (B, + I o) are contained in fibers. Since p(W)= 10 — (K#) > 18 > 4, there
is an another singular fiber f; of ¥. By the claims (1) and (2), f; contains some
twig, say I, sprouting from the 3-section I, ,. By the claim (3), f; contains
a (—I)-curve E, such that (E,. I, ,) = 1. Since (E,, B*) = 1, the fiber f, contains
a coefficient 1 component B; of B* such that (E,, B;) = (E,, B;) = 1. Then B,
a (—2)curve and f; =2E, + By + I, ,. This leads to (B, f;) = (B;, 2E,) = 2.
We reach a contradiction. So, the case (5-4) is impossible.

This proves the claim (5).

Now we can finish the proof of Lemma 4.2. By making use of the claims
(4) and (5), we can imply the assertion that all four coefficient ¥ components I o
(12 <k < 15) of B* are contained in fibers of &. Indeed, if a coefficient %
component [, , of B* is transversal to the fibration, then I , meets a (— I)-curve
of the fiber S, which is described in the claim (5). However, this contradicts
the claim (1). Thus the assertion is proved. So, I', o (12 < k < 15) are contained
in four distinct fibers, say S;. and S,. like S, fits the case (5-1) or (5-2) of the
claim (5). By counting the number of twigs sprouting from the central component
[0, we see that 10 —2r, <r,, 24 (9 —2r) <r, if S, fits the case (5-1), (5-2).
respectively. So, we obtain r, >4. This leads to 11>n=Y," r>4x4.
We reach a contradiction. So, the case (5) shown in the proof of Theorem 4.1
is impossible. This proves Lemma 4.2.

The existence of the case No.1 (resp. No.4) in Table 2 of Theorem 4.1 was
given in Example 6.12 (resp. Example 5.4) of [2]. We shall give below several
examples of cases No.1, No.2 and No.3.
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Examples 4.3. We can find a nonsingular rational surface V' and a
P!-fibration @: V' — P! such that the following two conditions are satisfied.

(1) All singular fibers of @ are vertically shown in Figure m (6 <m < 15).
We set F = F, + F, in the case Figure 14. In particular, in the case Figure m
for m = 15 (resp. m # 15), F + D{ + D} (resp. F + D{ + D, + Dj) is the support
of a singular fiber of &. For the case Figure m (m=6,...,15), we have
respectively p(V') = 12, 13, 12, 12, 14, 14, 12, 12, 13, 12.

(2) Denote by D’ the reduced effective divisor consisting of all irreducible
components in Figure m with self intersection number < — 2. Let f,: V' >V’
be the contraction of D’. Then V' is a log Enriques surface of index 5.

Let 7,: U' - V' be the canonical covering. Then n;! (Sing V') consists of
several smooth points and isolated singular points. We have Sing(U’)<
n; 1(Sing ¥’). More precisely, the Dynkin types of Sing (U’) for the cases Figure
m (6 <m < 15) are respectively given as follows:

A, + D6, Ay + Dy, Ay7, Do+ E;, Dy + Eq + Eq,
Ds+ Ds+ Eq, A, + Dy, Ay, Ds + E¢, E4

Figure 8 Figure 9
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Figure 11

Figure 12 .
Figure 13

Figure 15

Figure 14
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Let 7: V- V' be a composite morphism of combining morphisms such that
V satisfies the condition (1) of Corollary 2.12. For the cases Figure m with
m=6,..., 15, we have, in the notations of Theorem 2.11, V=1V with
n =14, 14, 14, 14, 13. 13, 10, 10, 9. 5, respectively.

Finally, V is a log Enriques surface of index 5 fitting respectively the cases
No.1, 1,1, 1,1, 1,2, 2,2,3 of the Table 2. For the concrete constructions of
(V', D) and (V, D), we refer to Examples 7.3 and 3.2.

§5. Index 7 case

We shall prove the following Theorem 5.1 in the present section. In the
Tables 3 and 4 below, by Sing (U) = mA,, we mean that U consists of exactly
m singularities of Dynkin type A,. By Sing(V)= (7, 1)\ (7, 2, (7, 3)*. (14, 1Y,
we mean that ¥V has exactly i+j+ k +r singularities, and i (resp. j, k, r)
singularities of them are isomorphic to (C?/C,,;0) with (a, b) = (7, 1) (resp.
(7,2), (7, 3), (14, 1)).  We also use the notations (V. D, f) in §1 for V.

Theorem 5.1. Let V be a log Enriques surface of index 7 and let n: U — V

Table 3
No. Sing (V) p(V) pV) Sing (D)
1 (7, D2,(7,2)%, (7, 3)°, (14, 1)? 14 46 24,
2 (7, D). (7, 2%, (7, 3%, (14, 1) 9 29 A,
3 (7.2),(7,3)? 4 12 ¢
4 (7, D*,(7, 2%, (7, 3%, (14, 1)? 14 47 24,
5 (7, 1), (7, 2)%, (7, 3)*, (14, 1)? 14 45 24,
Table 4
No. Sing (V) p(V) p(V) Sing (0)
6 (7.2)%. (7, 3)°. (14, 1) 13 47 34,
7 (7.2)", (7, 3)%, (14, 1)? 14 44 24,
8 (7, 2)%,(7, 3)°, (14, 1) 9 30 A,

9 (7.2°(7, 3%, (14, 1) 9 28 A,
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be the canonical covering. Assume V satisfies the condition (1) of Corollary
2.12. Then V and U are described in one of five rows of the Table 3. In
particular, H*(V, D + 2K,) = 0.

Proof. 1f U is smooth, then ¥ and U are described in the third row of the
Table 3 by [2, Theorem 5.1]. So. we shall assume that U admits at least one
singular point.

Let y, for 1 <i<ny,yjforn, +1<j<n, +n,and y,forn +n, +1<k<
n, + n, + n; be respectively all singularities of ¥ isomorphic to (C?/C: 0) with
s=12and 3. Set my:=n, +n, +ny. Lety, formy+1<r<my+m; be all
singularities of V isomorphic to (C?*/C.4.;0). As in Theorem 3.1, we have
c:=#(Sing V) = my + m,. We have also p(U) — p(U) = m, and Sing U = m, 4,.
Here U is a minimal resolution of U. Set 4,:=f"'(y,) =V and D:=)"'_ 4,.
Then we have:

(1) 4;(1 <i<n,;)is a single (—7)-curve.

(2) 4j(n,+1<j<n,+n,) is a chain of one (—2)-curve 4; and one
(—4)-curve 4;,.

(3) 4dy(n; +n, + 1 <k <mg) is a chain of two (—2)-curves 4,,. 4,,, and
one (—3)-curve 4,5 with (4,,, 4y .+1) = 1la=1,2).

4) 4,mg+1<r<c)is a single (—14)-curve.

We can check that f*(Ky) = K, + D* with D* =
5 2 1 6
N A AN My + 240) + Y (A + 245, + 34,5) + =) 4,
75 75 7% 715
As in Theorem 3.1, we have

1
- ;(25;11 + 81y + 3ny + 72m,) = (D*)? =
(K2) =10 — p(V) — (n, + 2n, + 3ny + m,), and
(5.1 T(p(V) — 10) — 18n, + 6n, + 1815 — 65m, = 0.

This, together with Proposition 1.3, implies

2 =c+pU) —p0)+T(p(V)—c+2)=
(ny + ns + ny +my) +my + (18n;, — 6n, — 18n3 + 65m,)
+ 712 — ny — ny — ny — my).

Hence we have:

(5.2) n,=n, +2ny—5m =5

By the same proposition, we can write

pWVy=c—1+r=m +ny+ny+m)—1+r for r=0,10r 2.
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This, together with (5.2), makes (5.1) into the following form:
(5.1) 2n, =22 —T7r — 3n; + 3m;.
Using (5.1'), we make (5.2) into the following
(5.2) 2n, =12 = Tr + ny — Tm,.
By (5.2), we eliminate n; in (5.1') and obtain:
(5.3) 0<2n,=58—28r—18m,; — 6n,.

This and the fact m; > 1 imply r < 1.

By making use of (5.1), (5.2') and (5.3), we can show that V and U are
described in one of the rows of the Table 3 or 4 (cf. the proof of Theorem
4.1). Then Theorem 5.1 follows from Proposition 5.2 below (cf. the proof of
Theorem 3.1).

Proposition 5.2. The cases of Table 4 are impossible.
Proof. This can be proved by the same fashion as in the proof of Lemma 4.2.

The existence of the case No.1 (resp. No.3) in Table 3 of Theorem 5.1 was
given in Example 6.13 (resp. Example 5.5) of [2]. We shall give below an example
of the case No.2. We do not know yet whether or not the cases No.4 and
No. 5 exist.

Example 5.3, We can find a nonsingular rational surface V' and a
P!-fibration @: V' - P! such that the following two conditions are satisfied.

(1) All singular fibers of @ are vertically shown in Figure 16. In particular,
F 4+ D{ + --- + D5 is the support of a singular fiber of @. We have p(V') = 13.

(2) Denote by D’ the reduced effective divisor consisting of all irreducible
components in Figure 16 with self intersection number < — 2. Let f,: V' =V’
be the contraction of D'. Then V' is a log Enriques surface of index 7.

Let 7,: U'— V' be the canonical covering. Then n; !(f,(D')) consists of a
smooth point and a singular point P of Dynkin type A4,. We have
Sing (U') = {P}.

Figure 16
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Let 7: ¥— V' be a composite morphism of combining morphisms such that
V satisfies the condition (1) of Corollary 2.12. In the notations of Theorem 2.11,
we have, V=¥’ with n = 7.

Finally. V is a log Enriques surface of index 7 fitting the case No.2 of the
Table 3. For the concrete constructions of (V', D) and (V. D). we refer to

Example 7.3 and 3.2.

Table 5

No. Sing (V) p(V)y p(v) Sing(0)

1 (11, ), (11, 2)3, (11, 3)2, (11, 53, (11, 73,22, 1) 1 48 A,

20 (1L D, (1, 2), (1, 33, (1L 52, (1L D220 1) 1 47 A,

3 (11,23, (11, 3%, (11, 5), (1L, D%, (22, 1) 11 45 A,
4 (11, 12, (11, 3)2, (11, 5, (11, 73, (22. 1) 11 50 A,
5 (11, 2%, (11, 32, (11, 52, (11, 7)%, (22, 1) I 46 A,
6 (11, 1)3, (11, 2), (11, 3), (11, 9%, (11, %, (22, 1) 11 51 A,
7 (LD, (1L 23 (1L 3), (1L 5%, (11, 72,22, 1) 1] 49 A,
8 (11,25, (11, 3), (11, 53, (11, 1%, (22, 1) 1 47 A,
9 (1L D3 (1L, 57, (11,7, (22, 1) 11 54 A,
10 (11, D2, (11, 22, (11, 50, (11, 7), (22, 1) 1 s2 A,
11 (11, 1), (11, 2%, (11, 5, (11, 7), (22, 1) I 50 A,
12 (11, 13, (L1, 2%, (1L, 7)° 12 47 ¢
13 (11, DY (11,2, (11, 3), (11, 7Y 12 48 ¢
14 (11, D3, (11, 2)2, (11, 5), (11, 7)° 12 49 ¢
15 (11, D, (11, 52, (11, 7)° 12 51 ¢

16 (11, 5), (11, 7)

139
<
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§6. Index 11 case

We shall prove the following Theorem 6.1 in the present section. In the
Tables 5 and 6 below, by Sing (U) = mA,, we mean that U consists of exactly
m singularities of Dynkin type 4,. By Sing (V)= (11, 1), (11, 2), (11, 3%, (11, 5,
(11, 7%, (22, 1), we mean that V has exactly i +j + k + r + s + t singularities, and
i (resp. j, k,r. s, t) singularities of them are isomorphic to (C?/C,,;0) with
(a, by=(11,1) (resp. (11,2), (11, 3),(11,5),(11,7),(22, 1)). We also wuse the
notations (V. D, f) in §1 for V.

Theorem 6.1. Let V be a log Enriques surfuce of index 11 and let m: U -V
be the canonical covering. Assume V satisfies the condition (1) of Corollary
2.12. Then V and U are described in one of 16 rows of the Table 5. In particular,
HY(V,D + 2K,) = 0.

Proof. 1f U is smooth, then V and U are described in n-th row (n = 12,....16)
of the Table 5 by [2, Theorem 5.1]. So, we shall assume that U admits at least
_one singular point.

Let y, for 1 <i<ny, y;forn, + 1 <j<n +ny, yforn +n, +1<k<n
+n,+ny, y forn +n,+ny+1<r<n +--+4+n4and y, for ny +-- +n, + 1

Table 6
No. Sing (V) p(V) pV) Sing(U)
17 (11, 1), (11, 3%, (11, 5), (11, 7)5, (22, 1) 11 46 A,
18 (11, 2)%, (11, 3)*, (11, 7)%, (22, 1) 11 44 A,
19 (11,20, (1, 9% (11, 7), (22, 1) 11 48 A,
20 (11, 1)3, (11, 3), (11, 5), (11, )7, (22, 1) 11 49 A,
21 (11, 1), (11, 2)%, (11, 3), (11, 77, (22, 1) 11 47 A,
22 (11, )2, (11,2), (11, 52, (11, 7)®, (22, 1) 11 50 A,
23 (11, 1), (11, 2%, (11, 5), (11, 7y, (22, 1) 11 48 A,
24 (11,2)%, (11, 7)%, (22, 1) 11 46 A,
25 (11, 3), (11, 5)°, (11, 72, (22, 1)? 10 52 24,
26 (11, 5)%, (11, 7)°, (22, 1)? 10 51 24,

27 (11, 2), (11, 5), (11, 7), (22, 1)? 10 53 24,
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<s<n; + -+ ns be respectively all singularities of ¥ isomorphic to (C*/Cy1.: 0)
with v=1,2.3,5 and 7. Set my:=n, + -+ ns. Let y, for my+ 1 <1t <m,
+ m, be all singularities of V isomorphic to (C?/C,, ,;0). As in Theorem 3.1,
we have c:=#(Sing V)=mg+ m;. We have also p(U)— p(U)=m, and
Sing U = m; A,. Here U is a minimal resolution of U. Set 4,:=f"'(y,) SV
and D:=)"'_ 4,  Then we have:

() 4,1 <i<ny) is a single (—11)-curve.

(2) 4in, +1<j<n; +n,) is a chain of one (—2)-curve 4;, and one
(—6)-curve 4;,.

(3) 4y(ny +n,+1<k<n; +n,+ nj)is a chain of one (— 3)-curve 4,, and
one (—4)-curve 4,,.

4 4,ny+n,+n3+1<r<n +--+4+n, is a chain of four (—2)-curves
4,4,....,4,, and one (—3)-curve 4,5 with (4,,, 4, ,+1)=1(1 <a<4).

(5) 4dyn,+---+n,+1<s<mg)is a chain of three (—2)-curves 4,,, 4,,, 4,4
and one (—3)-curve 4,3 with (4. 4, ,.,) = 1(1 <a<3).

(6) Ad,(my+1<t<c)is a single (—22)-curve.

We can check that f*(Ky) = K, + D* with D* =
9 4 1
HZA,. + ﬁZ(Aj1 +24;,) + ﬁZ(M“ + 74,,) +
i J k

1
ﬁZ(A” +24,, + 34,5 +44,, 4 54,5) +

1

10
112(24151 + 44, + 64,4+ 34,) + HZA,.

t

By Proposition 1.3, we have p(V) =c — 1. As in Theorem 3.1, we have

1
— ﬁ(81 ny +32n, +20n3 + Sn, + 605 + 200m,) =

(D*)? = (Kj) =11 —c—#(D) =
11 —(ny +ny+ny+n4+ns+my)
—(ny 4+ 2n, + 2n3 + Sny + 4ns + my), and
6.1) 121 +59n; — ny, — 13ny — 61n, —49n5 + 178m, = 0.

By Proposition 1.3, we have
24 =c+pU) —pU)+ 11 x1=c+m+ 11

Hence we have:

5
6.2) c= Y n4+m =13 —m,.

i=1
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Eliminating n, by (6.2), we deduce the following (6.1) from (6.1).
(6.1 74 — 5n, — 6ny — 10n, — 9ns + Smy; = 0.
On the other hand, as in Theorem 4.1, we have

WV, D +2K,) =2c — 12 + #(D) — (D, K,) =

5
2Y m+2my — 12+ (ny 4 2ny + 203 + 5ny + 4ng + my)

i=1
—OOny+4n,+3ny+ng+ ns +20m,), and
—h'(V,D+2Ky,)=12+6n, — ny — 6n, — 5ns + 17m;.
This and the above equalities (6.1') and (6.2) imply:
—Sh'(V. D + 2K,) =
5(12 + 6n; — ny — 6n, — Sng + 17my)
—30(n, + ny +ny+n, +ns+2m; —13)
—6(74 — 5ny, — 6ny — 10ny — 9ns + Smy), and
(6.3) 0<5h'(V,D+2K,)=ns—ny—1—=5(1 —m,).
Note that (6.1") and (6.2) imply
0=>74+5Sm; — 10(n, + ny + ny + ng) =
74 + 5my — 10(13 — 2my) + 10n, = — 56 + 25m, + 10n,.

Hence m, <2. So, m; =1, 2.

By making use of (6.1'), (6.2) and (6.3), we can show that V and U are
described in one of the rows of the Table 5 or 6 (cf. the proof of Theorem
4.1). Then Theorem 6.1 follows from Proposition 6.2 below (cf. the proof of
Theorem 3.1).

Proposition 6.2. The cases of Table 6 are impossible.
Proof. This can be proved by the same fashion as in the proof of Lemma 4.2.

The existence of the case No.16 in Table 5 of Theorem 6.1 was given in
[2, Example 5.6]. We shall give below an example of the case No.1 in Table
5. We do not know yet whether or not the other cases of Table 5 occur.

Example 6.3. We can find a nonsingular rational surface V' and a
P!-fibration @: V' — P! such that the following two conditions are satisfied.

(1) All singular fibers of & are vertically shown in Figure 17. In particular,
F + Di + -+ Dj is the support of a singular fiber of @. We have p(V') = 14.

(2) Denote by D’ the reduced effective divisor consisting of all irreducible
components in Figure m with self intersection number < —2. Let f,: V' =V’
be the contraction of D’. Then V' is a log Enriques surface of index 11.
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Figure 17

Let n,: U' = V' be the canonical covering. Then 7] '(f,(D’)) consists of a
smooth point and a singular point P of Dynkin type A,,. We have
Sing (U") = {P}.

Let 7: V— V' be a composite morphism of combining morphisms such that
V satisfies the condition (1) of Corollary 2.12. 1In the notations of Theorem 2.11,
we have, V=¥’ with n = 10.

Finally, V is a log Enriques surface of index 11 fitting the case No. 1 of the
Table 5. For the concrete constructions of (V', D) and (V, D). we refer to

Examples 7.3 and 3.2.

§7. Index 13 case

We shall prove the following Theorem 7.1 in the present section. In the
Tables 7 and 8 below, by Sing (U) = mA4,, we mean that U consists of exactly
m singularities of Dynkin type 4,. By Sing (V) = (13, 1), (13, 2, (13, 3)*, (13, 4y,
(13, 5, (13, 6), (26, 1) we mean that V has exactly i+j+k+r+s+t+u
singularities, and i (resp. j, k, r, s, t, u) singularities of them are isomorphic to
(C?/C,4: 0) with (a, b) = (13, 1) (resp. (13, 2), (13, 3), (13, 4), (13, 5), (13, 6), (26, 1)).

We also use the notations (V, D, f) in §1 for V.

Theorem 7.1. Let V be a log Enrigues surface of index 13 and let n: U -V
be the canonical covering. Assume V satisfies the condition (1) of Corollary
2.12. Then V and U are described in one of nine rows of the Table 7. In
particular, H'(V, D + 2K,) = 0.

Proof. By [2, Theorem 5.1], we know that U admits at least one singular
point. Let y;, for 1 <i<n,. y;for ny +1<j<n; +n,, y for ny +n, + 1 <k
<ng+n,+ny, y for ny+n,+ny+1<r<n +--+n,, y, for n, +--+n,
+1<s<n +--+ns and y, for n, +--+ns+1<s<n; +--+ng be res-
pectively all singularities of V isomorphic to (C?/C,;,:0) with v=1,2,3,4,5
and 6. Set mg:=n, +---+n,. Let y, for my+1<u<myg+m; be all
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- Table 7

No. Sing (V) p(V) p(V) Sing(0)
1 (13, 2), (13, 3)%, (13, 5)3, (13, 6)*, (26, 1) 9 45 A,

2 (13, 1)%, (13, 6)*, (26, 1) 9 54 A,

3 (13, 1), (13, 4), (13, 5)%, (13, 6)*, (26, 1) 9 48 A,

4 (13,1),(13,3),(13,4)% (13,5, (13, 6)*,(26, 1) 9 49 A,
5 (13.1).(13,2),(13,4), (13,5, (13,65, (26, 1) 9 50 A,
6 (13,2),(13,3), (13, 4),(13,52,(13, 6)%,(26, 1) 9 45 A,
7 (13,2),(13,3)%, (13, 4), (13,5, (13,6)°, (26, 1) 9 46 A,
8 (13, 2)2, (13, 42, (13, 5)2, (13, 6)3, (26, 1) 9 46 A,

9 (13, 2)2, (13, 3)%, (13, 5), (13, 6)*, (26, 1) 9 47 A,

singularities of ¥ isomorphic to (C?/C,6 ,;0). As in Theorem 3.1. we have
c:=#(Sing V) = my + m,. We have also p(U) — p(U) = m, and Sing U = m, A4,.
Here U is a minimal resolution of U. Set 4,:=f"'(y,) <V and D:=Y¢_ 4,.
Then we have:

(1) 4,1 <i<mny)is a single (— 13)-curve.

(2) 4;;n, + 1 <j<n, +ny) is a chain of one (—2)-curve 4; and one
(—=T7)-curve 4;,.

3) 4amy+n,+1<k<n +n,+n;) is a chain of two (—2)-curves
Ayy. di> and one (—S5)-curve 4,5 with (4,,. 4, ,41) =1(a =1, 2).

4) 4.mn,+n,+ny+1<r<n +--+n, is a chain of three (—2)-curves
4., 4,,, 4,5 and one (—4)-curve 4,, with (4,,. 4, ,+,)=1(1 <a<3).

(5) 4d4n;+--+ng+1<s<n +--+ng) is a chain of one (—2)-curve 4,
and two (—3)-curves 4,,, 4,3 with (4,,, 4, ,.,)=1(a=1,2).

(6) A,(n; +-+ns+1<t<mgy) is a chain of five (—2)-curves 4,,,...,4,5
and one (—3)-curve 4,, with (4,,, 4, ,+,)=1(1 <a<5).

(7) 4,mg+1<u<c)is a single (—26)-curve.

We can check that f*(Ky) = K, + D* with D* =

11 5 3
=Y A+ =Y (A +245) + Y (A + 24,5 + 34,5) +
135 135 13%

2 1
EZ(A,1 +24,, +34,, +44,,) + EZ(M“ + 84, +74,,) +
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Table 8
No. Sing (V) p(V) p(V) Sing(0)
10 (13, 1), (13, 4)°, (13, 6)3, (26, 1) 9 49 A,
11 (13, 1), (13, 3)%, (13, 6)%, (26, 1) 9 50 A,
12 (13, 4)%, (13, 5)°, (13, 6), (26, 1) 9 42 A,
13 (13, 4)°, (13, 5)3, (26, 1) 9 43 A,
14 (13, 3), (13, 4)%, (13, 5)%, (13, 6), (26, 1) 9 43 A,
15 (13, 3), (13, 4)7, (13, 5), (26, 1) 9 44 A,
16 (13, 3)2, (13, 5)°, (13, 6)%, (26, 1) 9 43 A,
17 (13, 3)2, (13, 4)*, (13, 5)2, (13, 6), (26, 1) 9 44 A,
18 (13, 3)3, (13, 4), (13, 5)3, (13, 6)%,(26,1) 9 44 A,
19 (13, 3)%, (13, 4)%, (13, 6), (26, 1) 9 45 A,
20 (13, 3)%, (13, 4)2, (13, 5), (13, 6)%, (26, 1) 9 45 A,
21 (13, 3)°, (13, 6)*, (26, 1) 9 46 A,
22 (13,2), (13, 4)%, (13, 5)*, (13, 6)%, (26, 1) 9 44 A,
23 (13, 2), (13, 4)°, (13,°5), (13, 6), (26, 1) 9 45 A,
24 (13,2), (13, 3)%, (13, 4)*, (13, 6)%, (26, 1) 9 46 A,
25 (13, 2)%, (13, 3), (13, 4)%, (13, 6)%, (26, 1) 9 47 A,
26 (13, 2)3, (13, 4)%, (13, 6)*, (26, 1) 9 48 A,

1 12
EZ(AM + 24, 4+ 343+ 44, + 54,5+ 64,6) + —324’-

By Proposition 1.3, we have p(V)=c¢— 1 and

24 =c+p(U) —

So, we obtain:

p(O)+ 13 x 1 =c+m + 13.

1
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6
(7.1) Il=c+m =2m + Y n.

i=1

On the other hand, as in Theorem 3.1, we can compute as follows:

1
— B(121n1 + 50n, + 27n3 + 16n, + 1505 + 6ng + 288m,) =

(D*)? = (K}) =

11 —c—(n,+2n,+3n3+4n, + 3ns + 6ng + my),
1
12
1
12

(13(11 —¢) + 275my) + 9n, + 2n, — ny — 3n, —2ng — 6ng =0, and

(13(11 —¢) + 287my) — ¢ + 10n, + 3n, — 2ny — ng — Sng = 0.

The latter equality and the equality (7.1) imply:

(7.2) — 11 4+26m,; + 10n, + 3n, —2n, — nsg — Sng = 0.

By (7.1), we eliminate m, in (7.2) and obtain 0 = — 11 + 13 x 11 — 3n, — 10n,
—13ny — 15n, — 14ns — 18ng > 12 x 11 — 18Y.°_ ;. Hence Y ¢  n;>8 On
the other hand, (7.1) implies that f’=1 n; is an odd integer satisfying

Yo m=11-2m; <9. So, Y° n;=9. Thus, we have proved:
(7.1) mo=1 3% n=9 c¢=10
In particular, we have p(V)=c —1=9 and Sing U = 4,. Using (7.2) again, we
obtain 0= — 11 +26 x 1 +10Y.°_ n, — 7ny, — 10n; — 12n, — 11n5 — 150, and
(7.2) Tny + 10n3 + 12n, + 1lns + 150, = 105.
As in Theorem 4.1, by (7.2'), we have:

h'(V.D +2K,) =8 + #(D) — (D, K,) =

8+ (n; +2ny,+ 3ny +4n, + 3ng + 6ng + my)

—(1ny +5n, +3n3 4+ 2n, + 205 + ng + 24m,) =

—15—10n; —3n, + 2n4 4+ ns + Sng = 0.

Note that (7.2') implies 105<15Y 7 ,mand Y7 ,n;>7. So. ¥ ° ,n;=7.8,9
and n, = 2, 1, 0, respectively.

By making use of (7.1) and (7.2'), we can show that ¥V and U are described
in one of the rows of the Table 7 or 8 (cf. the proof of Theorem 4.1). Then
Theorem 7.1 follows from Proposition 7.2 below (cf. the proof of Theorem 3.1).

Proposition 7.2. The cases of Table 8 are impossible.

Proof. This can be proved by the same fashion as in the proof of Lemma 4.2.
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We shall give below an example of the case No.1 in Table 7 of Theorem
7.1. We do not know yet whether or not the other cases of Table 7 occus.

Example 7.3 (Case No.! of Table 7). Let n: X, - P! be a P'-fibration on
the Hirzebruch surface 2, and let M be the (—2)-curve on 2,. Let L be a
fiber of n. Take two nonsingular irreducible members C,. C,€|M + 2L| such
that C, and C, share exactly one comon point, say P,. Let L; be the fiber of
7 containing P,;. Let L, and L, be two fibers of 7 other than L;. Denote by
P, (resp. P4, P,) the unique intersection point of L, (resp. L,. L,) with C, (resp.
C,.C,). Leto:V' -2, be the blowing-up of four points P;’s and ten infinitely
near points of them such that o*(L;) (i =1, 2, 3) is vertically given in Figure
18. Here we denote by M', C/(i =1, 2), L')(j =1, 2, 3) the proper transforms on
V' of the curves M, C;, L;, respectively. To be precise, o*(L,) = L', + F' + E},
+Ey+Eg+E;+E;+E;. Set D':=M'+C;+C,+L,+L,+E +-+Ej,.
We shall show that (V', D’) is a log Enriques surface of index 13. Set 4:=
3ES+ 6L, +9M' + 121, + 10C; + SEq + E{g + 2E5 + 3Eg + 4E; + SE5 + 6E)
+7C;, +8E, +4E,. Note that 10C, + 7C, + 9M + 12L, + 6L, + 13K;, ~ 0.
We can check easily that 4 + 13K, ~0. Let f,: V' = V' be the contraction of
D'. Then 13K; ~0. Hence V' is a log Enriques surface of index 13. Moreover,
D'* =4 in the notations of Lemma 1.1. Let n,: U' — V' be the canonical
covering. Then =;'(f,(IN) for I"=E3+ L, + M+ L', + C; + E¢ (resp. I':=
o+ Es+ Eg+ES+ Es+ Ey+ Cy+ E, + EY) is a singularity of Dynkin type
Ag (resp. A,) and there are no other singular points on U’ (cf. Lemma 1.4).
Let t: V— V' be the blowing-up of several intersection points of D’ and their
infinitely near points such that ™ '(D’) has Figure 19 as its weighted dual graph.
In Figure 19, M, C.(i=12), Z,j(j= 1,2), E;(k=1,...,10) are the proper
transforms on V of the curves M’, C;. L, E;, respectively. We denote by D the
reduced effective divisor consisting of all components of t~'(D’) of self intersection

E,o, Bs Bs Bs Bs B g, Es E

Figure 18 Figure 19
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number < —2. Then t '(D)— D consists of 8 disjoint (—1)-curves. Let
f: V=V be the contraction of D. We see that ¥ is a log Enriques surface of
index 13. Indeed. by the fact that 13(K,. + D'*)~0, we can check that
13(Ky, + D*) ~ 0 in the notations of Lemma 1.1. We have also D:= f~!(Sing V).
Note that p(V')=2+14=16 and p(V)=16+29 =45 So, p(V)=p(V)—
# {irreducible component of D} =9. Let n: U— V be the canonical covering.
Then n~'(f(L,)) is a rational double singularity of Dynkin type A, and there
are no other singular points on U. Since the weighted dual graph of f~!(Sing V)
is precisely given as a subgraph of t~'(D’). the singular locus of V is as described
in the first row of Table 7 (cf. Brieskorn [1]). So, Sing(V), p(V). p(V) and
Sing (U) are as described in the first row of Table 7. Since Sing(U) # ¢, the
surface U is not an abelian surface. Thus, we see that V satisfies the condition
(1) of Corollary 2.12 and fits the case No.1 of Table 7.

There is a composite morphism 7: V— V' of 8 combining morphisms such
that 7-f =f,-7. In the notations of Theorem 2.11, we have V=1V' U= U,
and 7 =h,---h, with n = 8.

§8. Index 17 case
We shall prove the following Theorem 8.1 in the present section.

Theorem 8.1. Let V or synonymously (V, D, f) be a log Enriques surface of
index 17 and let n: U —V be the canonical covering. Assume V satisfies the
condition (1) of Corollary 2.12. Then U is nonsingular. Hence possible
distributions of singular points of V are given in [2, Theorem 5.1]. (See also
[ibid., Example 5.71.) In particular, H'(V, D + 2K) = 0.

Proof. Suppose, on the contrary, that U admit at least one singular
point. Let y; for | <i<wny, y; for ny + 1 <j<n, +ny, y for ny +n, + 1 <k
<ny+n,+ny, y for ny+n,+ny+1<r<n +--+n, y for ny+--+ny
+1<s<n +-+ns,yforn +--+ns+1<t<n +--+ngy, forn +--+
ng+!<wu<n +--+n; and y, for n +---+n,+1<v<n +--+ng be
respectively all singularities of V isomorphic to (C?/C,,.: 0) with z =1, 2,3, 4, 5.
8,10 and 11. Set my:=n,; +---+ ng. Let y, for my+ 1 <w<mg+ m; be all
singularities of V isomorphic to (C?/Cs,,:0). As in Theorem 3.1. we have
c:=#(Sing V) = my + m;. We have also p(U) — p(U) = m, and Sing U =m, 4,.
Here U is a minimal resolution of U. Set 4,:=f"'(y)< V and D:=)'_ 4,.
Then we have:

(1) 4,1 <i<ny)is a single (—17)-curve.

(2) 4;iny +1<j<n;+ny) is a chain of one (—2)-curve 4; and one
(—9)-curve 4;,.

(3) 4,(ny +ny,+ 1 <k <n, + n,+ ny)is a chain of one (—3)-curve 4,, and
one (—6)-curve 4,,.

4 4a.n, +n,+ny+1<r<n +--+n, is a chain of three (—2)-curves
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4,1, 4,5, 4,5 and one (—5)-curve 4,, with (4,,. 4, ,+,)=1(1 <a <3).

(5) 44n;+--+n,+1<s<ng+--+ ns) is a chain of one (—3)-curve 4,
one (—2)-curve 4,, and one (—4)-curve 4y with (4. 4, ,+,)=l{a=1,2).

6) A,ny+--+ns+1<t<n +--+ng) is a chain of seven (—2)-curves
A,1,....4,7 and one (—3)-curve 4,53 with (4,,, 4, ,+,)=1(1<a<7).

(7 d,n ++ng+1<u<n +--+n,) is a chain of three (—2)-curves
Aurs 4uz. 4,4 and one (—4)-curve 4,5 with (4,,, 4,.,+1) =1(1 <a <3).

ul»

8) 4. (ny+--+n,+1<v<myg)is a chain of five (—2)-curves 4,,,...,4,4,
4,6 and one (—3)-curve 4,5 with (4,,, 4, ,+,)=1(1 <a<5).
9) 4,mg+ 1 <w<c)is a single (—34)-curve.

We can check that f*(Ky) = K, + D* with D* =

15 7 1
YA+ = (A5 + 245) + =Y (104, + 134,,) +
17 i 17 j 17 k

3 1
WZ(A,l + 24, + 34,5 +44,,) + ﬁZ(MX1 + 104, + 114;) +

1
ﬁZ(A,l + 24, + 34,5 +44,, + 54,5+ 64, + T4, + 8A4,5) +
t

2

172(2Au1 + 4A112 + 6Au3 + 3Au4) +

1 16
ﬁZ(ZA,,l +44,,+ 64,5+ 84,4+ 1045+ 54,¢) + EZAW.

By Proposition 1.3, we have p(V)=c — 1 and

2 =c+pU)—pU)+1Tx 1 =c+m +17.
So, we obtain:

8
(8.1) T=c+m =2m + Y n.

i=1

On the other hand, as in Theorem 3.1, we can compute as follows:
1
— ﬁ(225nl +98n, + 62n3 + 36n, + 31ns + 8ng + 24n, + 10ng + 512m,) =

(D*? =(K§) =11 —¢
—(ny +2ny, + 203+ 4n, + 3ns + 8ng + 4n, + 6ng + my), and

1
0= 4—1(17(]1 —¢)+495m,)
+ 52n; + 16n, + Tny — 8ny — Sng — 32ng — 1ln, — 23ng =

1
Z(17(11 —¢)+ 515my) — Sc+ 57Tn, + 21n, + 120y — 3ny, — 27ng — 6n5 — 18ny.
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Dividing the latter equality by 3 and using (8.1), the following equality can be
obtained:

(8.2) —6+46m,; + 19n, + Tn, + 4ny — ny, — 9ng — 2n; — 6ng = 0.

The equalities (8.1) and (8.2) imply

8
0>—6+46m, —9 > n;=—6+46m, —9(7 —2m,) = — 69 + 64m,.
=

1

Hence m; = 1. So, ¢ =6 and ) ,n; =5 by (8.1). Using (8.2) again, we obtain
0=8Yn+19n, + Tn, +4ny — ny — 9ng — 2n, — 60y and

(8.3) neg =27n; + 15n, + 12n3 + Tny + 8ns + 61, + 2ng.

This equality implies
ne = 2(Y.n; — ng) = 2(5 — ny).

So, ng=4.5and ), n =5—ns=1,0. respectively. This contradicts (8.3).

Therefore U is nonsingular. Then V is described in [2, Theorem 5.1]. With
the help of Lemma 1.2, the second assertion of Theorem 8.1 is proved there. This
proves Theorem 8.1.

In [2, Example 5.7], we gave an example of log Enriques surface (V', D)
of index 17 whose canonical covering admits at least one singularity of multiplicity
>3

§9. Index 19 case
We shall prove the following Theorem 9.1 in the present section.

Theorem 9.1. Let V or synonymously (V. D, f) be a log Enriques surface of
index 19 and let n: U —>V be the canonical covering. Assume V satisfies the
condition (1) of Corollary 2.12. Then U is nonsingular. Hence possible
distributions of singular points of V are given in [2, Theorem 5.1]. (See also
[ibid., Example 5.8].) In particular, H*(V, D + 2K,) = 0.

Proof. Suppose, on the contrary, that U admit at least one singular
point. Let y;, for 1 <i<ny, y;forny +1<j<n +n,, y forn, +n,+ 1<k
<n +n,+ny.y for np+n,+ny+1<r<n +--+n,, y, for ny +--4+ny
+1<s<n, +--+ng, yforn +-+ns+1<t<n +-+ng,y, forn +--+
ng+1<u<n +--+ny y forn +-+n,+1<v<n +--+ng and y, for
n,+--+ng+ 1<w<n, + -+ ny be respectively all singularities of V isomorphic
to (C?/Cyq..;0) with z=1,2,3,4,6,7.8,9 and 14. Set my:=n; +--- + ny. Let
y, for my + 1 < b < my + m, be all singularities of V isomorphic to (C?*/Cy4.,; 0).
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As in Theorem 3.1, we have ¢:= #(Sing V) = m, + m,. We have also p(U) — p(U)

=m, and SingU =m,;A,. Here U is a minimal resolution of U. Set
A,:=f"'(y)<=Vand D:=Y'_ 4, Then we have:

(1) 4,1 <i<n;)is a single (—19)-curve.

(2) 4iny +1<j<n,+mny) is a chain of one (—2)-curve 4; and one
(—10)-curve 4;,.

(3) 4y +ny+1<k<n +n,+n;) is a chain of two (—2)-curves
Ay, 4y, and one (—7)-curve 4,5 with (4,,, 4, ,4+,) =1(a=1,2).

4 4,0n, +n,+ny+1<r<n +--+n, is a chain of one (—4)-curve 4,
and one (—5)-curve 4,,.

(5 4, +--+ng+1<s<n;+--+ns is a chain of five (—2)-curves
Ag....4,5 and one (—4)-curve A, with (4. 4, ,+,)=1(1 <a<5).

6) 4,ny+--+ns+1<t<n +--+ng) is a chain of one (—2)-curve 4,,.
one (—4)-curve 4,, and one (—3)-curve 4,3 with (4,,, 4, ,+,)=1(a=1,2).

(7) 4,00, +-+ng+1<u<n, +--+mn,) is a chain of two (—2)-curves
4,1, 4,5 and two (—3)-curves 4,,, 4,4, with (4,,. 4, ,+{) = 1(l <a<3).

8 4d,n,+--+n,+1<v<n +--+ng) is a chain of eight (—2)-curves
Auys.... 4,5 and one (—3)-curve 4,4 with (4,,, 4, ..+ = 1(1 <a <38).

9 4., +--+ng+1<w<mgy) is a chain of five (—2)-curves 4, 4,,.
Ay, Ays, 4,6 and one (—3)-curve 4,,, with (4,,, 4, .+,)=1(1 <a<53).

(10) 4,(mg+ 1 <b <c¢)is a single (—38)-curve.

We can check that f*(Ky) = K, + D* with D* =
17 8 S
EZA,. + BZ(AJ.1 +24;,) + ]—9-2(41“ + 24, + 34,3) +
i J k
1 2
BZ(I3AH + 14Ar2)+]§z(d\l +2As2+3A,\’3+4AS4+5A55+6As6)+
1 1
BZ(7AH + ]4Ar2 + IIA,3) + 62(64'111 + ]2A112 + 11A!l3 + IOAu4) +
t u

|
EZ(A"‘ +24, +34,3+44,4 + 54,5+ 64,6 +TA,7 + 84,5 +94.4) +

1 18
—1—92(34'“'1 + 6AWZ + 9Aw3 + 12Aw4 + 8Aw5 + 4Aw6) + EZA’J

b

By Proposition 1.3, we have p(V)=c — 1 and

2d=c+pU)—pU)+19x1=c+m + 19

So, we obtain:

9
9.1 S=c+m =2m + Y n.
i=1
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On the other hand, as in Theorem 3.1, we can compute as follows:
1
— 6(289’“ + 128n, + 75n3 + 68n, + 24n;

+ 390y + 2205 + 9ng + 120y + 648m,;) =
(D*)?* =(K2)=11 —¢
—(ny +2ny + 30y 4+ 2ng + 605+ 3ng + 4n; + 9ng + 6ng + my)  and

1
0= 6“9(” —¢)+ 629m,)
+45n, + 150, + 3ny + Sny — 1505 — 3ng — 9nq — 27ng — 170y =
|
6“9(11 —¢)+ 647m,) — 3¢

+48n, + 18n, + 613 + 8ny — 12n5 — 61, — 24ng — 14n,.

Dividing the latter equality by 2 and using (9.1), the following equality can be
obtained:

(9.2) 24 5Tm, +24n, +9ny + 3ny 4+ 4n, — 6ns — 30, — 12ng — Tng = 0.

This equality and the equality (9.1) imply

9
0>2+5Tm; —12Y ny=2+5Tm —12(5—2m,) = — 58 4+ 8Im, > 0.
i=1
This is a contradiction.
Therefore, U is nonsingular. Then V is described in [2, Theorem 5.17. With
the help of Lemma 1.2, the second assertion of Theorem 9.1 is proved there. This
proves Theorem 9.1.

In [2. Example 5.8], we gave an example of log Enriques surface (V', D')
of index 19 whose canonical covering admits at least one singularity of multiplicity
>3
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