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On a necessary condition
for L* well-posedness of the Cauchy problem
for some Schriodinger type equations
with a potential term

By

Wataru ICHINOSE

0. Introduction
In this paper we study a necessary condition in order that the Cauchy
problem for Schridinger type equations with a potential term
Lu(t, l')E%atu'i‘Hz(l‘, x, D)u+Hi(t, x, Dr)u=r(t, x)

on [0, TIX R (¢+>0),
u(0, x)=uo(x)

(0.1)

is L* well posed on [0, T']. Here, we suppose that the symbols %;(¢, x, £) (j=
1, 2) of pseudo-differential operators H;(¢, x, D:) are continuous functions on
[0, T]X R¥: and C> functions on R%%: for each t<[0, T]. Moreover, we
assume that #a(¢, x, £) is real valued and that

(0.2) if la+B81=7, 020 h(t, x, E)| < Cap

holds for ;=1 and 2, where @ and /A are multi-indices and Ca,s are constants
independent of (¢, x, £)€[0, T]X R%.. Our result will be stated in Theorem
1.1.

In the preceding paper [6] we gave a sufficient condition under a weaker
assumption on /. (¢, x, £) than that in the present paper in order that the
Cauchy problem (0.1) is L? well posed on [0, 7). Combining this result in [6]
and Theorem 1.1 in the present paper, we can obtain a necessary and sufficient
condition so that (0.1) is L? well posed on [0, T], if we impose an additional
assumption that %;(¢, x, £) (=1, 2) are independent of ¢+&[0, T'] (Theorem
1.2). We can see from this Theorem 1.2 that the invariance under the canoni-
cal transformations of L? well-posedness is valid in a sense (Corollary 1.3).

Some results on a necessary condition for L? well-posedness have been
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obtained. But, we have not had the informations at all of the case where
equations have an unbounded potential term. The case where k:(¢, x, £)=
|£]2 and 7i(t, x, &)=2716°(x)E; was treated in S. Mizohata [11], where &'(x)(j
=1,2,---, n) are C* functions. This result was generalized by the author [4]
and [5] to the equations on the general Riemannian manifold. We must note
that our assumption in the present paper on %:(¢, x, £) is more general than in
[4], [5] and [11], but one on Zi(¢, x, £) is more limited than in those. But, we
want to emphasize that we can obtain a necessary and sufficient condition for
L? well-posedness under our situation, not only a necessary condition. For it
is difficult so far to obtain a necessary and sufficient condition under the
situations in [4], [5] and [11]. See the introduction in [6] about results on a
sufficient condition obtained already.

We shall state our results and examples in section 1. Section 2 will be
devoted to the proof of Theorem 1.1. In section 3 we shall give another proof
of the sufficient condition, limiting equations to ours. This result has been
proven generally in [6]. But, we can prove it more easily than in [6], if we
limit the equations to ours.

1. Results and examples

We shall use the same notations as in [6] through the present paper. Let
S =S8(R") be the Schwartz space of rapidly decreasing functions on R”".
The Fourier transformation # (&) for u(x)E S is defined by

ﬁ(é)=/e‘“"u(x)dx , :c~5=:c151+.r252+~-+xn5; .

The symbol class T™= T™(R?") for a real m of pseudo-differential operators
is defined by the set of all C* functions p(x, £) such that

102D (1, )| < Cap(14 |22+ E2)™?

are valid for all multi-indices @ and 8 with constants C.,s independent of (z,
&)eR?*, where pigi(x, £)=0:"DLp(x, £). The above constants C.s are
different from the constants in (0.2). If there is no confusion, we shall often
use the same symbol Ca.,s. Another symbol class B**(R?") (k=0,1, ) is
defined by the set of all C* functions p(x, £) suh that

if la+Bl=k, [pE(x, E)|<Cas

are valid, where C.,s are constants independent of (x, £) R?". We can easily
see from [6] that B*=(R?") is included in T*(R*") (=0, 1, :--). The pseudo-
differential operator P=p(x, D;) with a symbol o(P)(x, &)=p(x, E) &€ T™ is
defined by
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Pu(z)= [e=p(z, Ha(O¥E  ME=(2n)"dé).

Let B be a Fréchet space. Then, we denote by €%[0, T]; B) and by
LY[0, T1; B) the space of all B-valued continuous functions on [0, T'] and the
space of all B-valued L'-functions on [0, T'] respectively. Through the
present paper we adopt the following definition of L? well-posedness, which is
weaker than that in [6], because we study a necessary condition in the present
paper.

Definition 1.1. We say that the Caucy problem (0.1) is L* well posed on
[0, T, if for any uo(x)EL? and any f(¢, x)€LY[0, T]; L?) there exists one
and only one solution (¢, x) of (0.1) in €%[0, T]; L?) in a distribution sense
and the energy inequality

@D dute, A=l [ 170, lao) 0<t<7)

holds for a constant C(7)=1. Here, ||-| denotes the L? norm. Also, see
Definition 1.1 in [6] for the meaning of the term “a distribution sense”.

Let (g, p)(¢, 5; 9, £)=(q1, ", gn, D, -, pu)(¢, 5; ¥, £) be the solution of the
Hamilton canonical equations for (¢, x, £) issuing from (y, £) at ¢=s, that
is,

dq ol dr_ o _
(1'2) dt - aE (t) Q! p)» dt - a'r (t) qy p)v (Qy p)lt:s—(y, 5)'

We know that the solution (g, p)(¢, s; v, &) exists on [0, T] X[0, T]1X R%%.. See
Proposition 3.1 in [7] or Lemma 2.1 in [6].

Theorem 1.1. We assume (0.2). Then, if the Cauchy problem (0.1) is L?
well posed on [0, T, there must be a TI(0< T\< T) such that

(13) sup I [ 'hi(6, 4(8,0; 9, &), (6, 0; 5, £))df <o

0<t<T1,(y,8)ER2n
holds. Imc implies the imaginary part of c.
The proof of Theorem 1.1 will be given in section 2.

Remark 1.1. In this remark we will show that the inequality (1.3) is
invariant under the general canonical transformations. Let @ be a canonical
transformation from R%'e onto R%%. Thatis, @*X%1dx;/\d&;= 27 1dx;/\dE;
is valid, where @* denotes the pull back of differential forms. We set for
hi(t, x, &) (=1, 2) in Theorem 1.1

(1.4) ki(t, ', &)=hi(t, 0(z', §)) (=1, 2)
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and denote by (g, p')(¢, s; ¥, &) the solution of the Hamilton canonical equa-
tions for k(¢, x’, &)

v _ Ok ' g
dt_aél(t,q’p)’ dt W(tyQyp),
(qlv pl)|t=3=(y,) E’) .

dq’ _ Ok, ap’
1.2y {

Then, we know well that
(1.5) O(q'(t,s; v, &), p(¢, 5,5, &)
=(q(t,s; 3, 8), p(t, 5,9, 8)) (v, O)=0(y', &))

is yielded from (1.4) with =2 for any (y’, £')€ R*" (see section 45 in [1]). So,
we have from (1.4) with j=1

k(t,q'(¢,s;9, &), 0(t, 55, &)
=h(t, q(t,s;9,8), p(t, 59, &) (v, 6)=0(y", &)).

Hence,

o) [ k(8,4(0,0.5,8).p(0,0, ', £))d0

— [(1(0.4(0,0,5, 9, 20,0:,EDd0 (v, D=0y, &)

is valid for any (v, &) R?*". Thus, (1.3) is invariant under the canonical
transformations.

We can easily get the following theorem from the above Theorem 1.1 and
Corollary 1.2 in [6].

Theorem 1.2. We add in Theovem 1.1 an assumption that hi(t, x, &) (j=
1,2) are independent of t<[0, T). Then, if and only if the Cauchy problem
(0.1) is L? well posed on [0, T, there exists a T\(0< < T') such that (1.3) is
valid.

Proof. We know from Theorem 1.1 that the condition (1.3) for a 71 is
necessary for (0.1) to be L? well posed on [0, T']. So, we have only to prove
its sufficiency. We may express h;(t, x, £) (j=1,2) as hi(x, £). Since ho(zx,
&) is independent of ¢, we have

(g, 0)(0,s;9,6)=(q, p)(0—5,0; 9, &)

and so,

exp{— ifhx(q(é‘, s; v, 6), p(8, 579, E))dﬁ}
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=exp{—i/0t_sh1(q(9, 0; v, &), p(6,0;y, é))dﬁ} (0<s<t<T).

Consequently,

(1.7) sup exp{Imfthn(q(ﬁ, s; v, 8), 000,55, 5))d5}<°°
0<s<t<Ti(y,&)eR?2n s
follows from (1.3). Hence, we can see by Corollary 1.2 in [6] that the Cauchy
problem (0.1) is L? well posed on [0, T1]. So, we get the energy inequality
(1.1) where we replace T by 7i. In the same way it follows that (0.1) is L?
well posed on [Ty, Tz] (T>=min(2Ty, T)), because the equation in (0.1) is
independent of ¢. Let (¢, )€ EX[0, Th]; L*) be the solution of (0.1) and
w(t, 2)€ EU[ Ty, Tz]; L?) the solution of the equation in (0.1) with initial data
u(Th, x)=u:(Th, x). Then, we get

. < Tl T2, 1+ 176, o)

< C(T) (o) + [ 146, )Id6) (Ti<t<To),
noting C(T1)=1. So, if we define the function u(¢, x)e %[0, Tz]; L?) by

(t. 2)= w(t,z) (0<t<T)
b 2= wt, x) (<t<Ty),

we can see that u(¢, x) is the solution of (0.1) and that (0.1) is L? well posed
on [0, 73]. We can complete the proof repeatedly. Q.E.D.

Remark 1.2. Suppose the same assumptions as in Theorem 1.2. Then,
since the equation in (0.1) is independent of ¢, we can easily see that if (0.1) is
L? well posed on [0, T'] in our sense, (0.1) is so in a sense of Definition 1.1 in
[6]. So, the statement in Theorem 1.2 remains valid, even if we adopt the
definition in [6] as that of L? well-posedness instead of ours.

The following theorem shows the invariance under the canonical trans-
formations of L? well-posedness in a sense. We note that we considered only
special canonical transformations in section 3 of [6].

Corollary 1.3. Suppose the same assumptions as in Theorem 1.2 and let
@ be a canonical transformation from R¥e onto RY.. We define ki(x', &) (G
=1,2) by (1.4) and consider the Cauchy poblem

L'o(¢, x’)E%Gw(t, )+ Kx', D)o+ Ki{x', De)v

=g(t, x) on [0, TIX R%
(0, x)=wvo(x’) .

(1.8)
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We assume that each ki(x', &) (j=1, 2) satisfies the same inequalities as (0.2),
that is,

if lat+Bl=7, |k, €< Chs

with constants Ca,s independent of (x', &)ER?*". Then, if and only if (0.1) is
L? well posed on [0, T, (1.8) is L?* well posed on [0, T].

Proof. Corollary 1.3 follows from Theorem 1.2 and (1.6) at once.
QED.

Example 1.1. Let 4.(x, £) be a polynomial of degre 2 in only variables x
and € with real coefficients satisfying %:(x, £)=0 on R?**. We define Z.(x, &)
by

(x, &)=c{1+ hox, E)}?,

where ¢ is a complex constant. We take these k;(x, £) (=1, 2) as k;(¢, x, £)
in (0.1). This example was stated in Example 1.4 in [6]. We can see from [6]
that these %;(x, &) (=1, 2) satisfy the assumptions in Theorem 1.2. We note

from the energy equality %hz(d(t‘, s; v, &), p(t, s; v, £))=0 that

[ 1(a(6,0,3. &), (6, 0; v, E)db—ct{L+ huly, )

is valid. Hence, we can see from Theorem 1.2 that if and only if the Cauchy
problem (0.1) is L? well posed on [0, T] for a T >0, Imc is non-positive.

2
Example 1.2. (c.f. Example 1.2 in [6]). Let h:(¢, x, E)=ﬁ|$l2+ﬂ2w—

X|z[? and (¢, x, £)=2%1c;(t)&;, where m and w are positive constants, and
ci(t) (j=1,2, -+, n) are continuous functions on [0, T] for 7>0. Then, the
solution of (1.2) is given by

(g, 0)(¢,0; v, §)=<ycoswt +m—5wsina)t, —mywsina)t-i-écoswt).

Assume that the Cauchy problem (0.1) is L? well posed on [0, T]. Then, it
follows from Theorem 1.1 that there must be a 77(0< 77 < T') such that

27=1£t( — mywsinwd + &;coswd)Imc;(8)dd < co

0<t<T1,(y,8)ER2n
is valid. Hence, we get
(1.9 Imc(£)=0 on [0, ] G=1,2,--, n).

Conversely, if (1.9) is valid, we can easily see that (0.1) is L2 well posed on [0,
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Th).

2
Example 1.3. Let %:(¢, x, E)Zﬁlé—xlz%“%@—lxlz and n(t, x, £)=27

ci(t)(&—x;), where m, w and c;(¢) (j=1,, -+, n) are the same ones in Example
1.2. It is easy to see that the transformation from R%'. onto R%% defined by
(x, &)=(x’, £ +x’) is canonical. So, it follows from Remark 1.1 and Example
1.2 that if (0.1) is L? well posed on [0, T}, the inequality (1.9) must be valid for
a 71>0 (0< T\<T).

Example 1.4. We take —%—lez and X7-icé; as ho(t, x, &) and h(t, x, €),

where ¢; (=1, 2, ---, ) are constants. Then, the solution of (1.2) is given by

(a(t,0; 9, 8), 6(¢,0;,8)=(y, —ty+&).

So, it follows from Theorem 1.2 that if and only if (0.1) is L? well posed on [0,
T] for a T >0,

2§‘=11mc,-£t(— 0y;+&;)dG <o

up
0<t<Ti,(3,6)eR2

is valid for a Th (0< Th<T). Hence, we get
(1.10) Imc;=0 (=1, 2, -+, n)

as a necessary and sufficient condition for L? well-posedness of (0.1) on [0, T].
This result is not new, because we have known it in [9] as a result for
kowalewskian type of equations to be L? well posed.

Instead of the above %;(¢t, x, £) (=1, 2), let k¢, x, E)=—%—l$+x|2 and h(¢,

x, £)=21c;&. Then, we also get (1.10) as a necessary and sufficient condi-
tion for (0.1) to be L? well posed on [0, T']. For using the canonical transfor-
mations defined by (x', £)=(£+x, &), hat, x, £) and (¢, x, ) are expressed

as %'142 and 2)}-1¢;&; respectively. So, applying Corollary 1.3, we get the

above result.

2. Proof of Theorem 1.1

We first prove the following lemma and proposition. Though we already
had the similar results in [4] and [10], we need more detailed results than
theirs.

Lemma 2.1. Let p(x, ) T"™ for an m, S(x)EB*(R?") for a k=0 be a
real valued function and A=1 a parameter. We set
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- 1
@) PSxy)= [ S+ o—y)ds.

Then, we get for u(x)e S

(2.2) eSO p(x A7 Dy)e™ P y(x)

= 2m.<~%/1"“'0y“{1>“”(x. VS(x, x+y)u(x+y)}y-o

l .
+NA”‘"2|7|=N% [ a-0y-1a0s— [[e-
X Dy {p"(x, On+V S(x 2+ y))ulz+y)}dydn ,
where N=1,2, -+ and Os—f/(--')dy)siv denotes the oscillatory integral in [8)].

Proof. It follows from the definition of pseudo-differential operators and
the change of variables that

Qx)=e D p(x, A7 Dz)e™ P u(x)

= f / @ E N SIS p(p AT E)u(y)dydE

=A”[/eiux—y)-e—M<£‘”"““’”D(£v Eu(y)dydé

is valid. So, changing variables (v, &) to (¢, 7)=(y—x, E-F S(x, ¥)), we get
(2.3) Q(x)=/1"/fe‘“y""'1>(x, 7' +7S(x, x+y)Nu(z+y)dydn .

The term p(z, 7'+ S(x, x+y')) is expansioned as

Z‘.|a|<~%!7i’“p(“’(x, VS(x, x+y))

1 ~
+N2m=~%o”£ A=) 1p"(x, 7' +V S(x, x+y'))d6 .
Hence, using

At [ f e ™ 7g(y)dyln=g(0) for g(x)ES

and the integral by parts, we obtain

(2.4) Q(x)=2|a|<N%!/1" f / e @ (x FS(x, x+y)



Schrodinger type equations with a potential term 655

1
X u(z+3)dy U + NSewy [ (1= 0)"'dox"
X Os—f/e‘“y"”'n”p"’(x, 07’ +0S(x, x+v))u(x+y)dydy
= SarwapA “DHP Nz, PS(x, 24y Nz +3 =0

1 N
+NA"-N2|,.=N% l (1— 0)¥-1d60s — f fe”” y

X D3 (x, 09’ +V S(x, x+y)u(x+y)}dydn .
This completes the proof. Q.E.D.

Proposition 2.2. Let S(x)E B>*(R?*") be a real valued function and A=
1 a parameter. We assume that p(x, )€ T™ satisfies

if lel=N, p“(zx, &)€B~(R™)

for an integer N=1, where B=(R*") denotes the space of all C™ functions on
R?*" whose derivatives of any order are bounded. Then, we get for u(x)e S

(2.5) eSO p(x, A7 Dr)e™ P u(x)
= 2|a|<N%A"“‘Dy"{p‘“’(x, VS(x, x+y)u(x+y)}y-o
+ A "Ryu(x)
and
(2.6) | Rt ()< Cul{Zesiarsins sup | DS () H D s nl D)}

with a constant Cn independent of 2121, S(x) and u(x), where In=2[n/2+1]
+N and [+] denotes the Gauss symbol.

Proof. Since we have had (2.2), we have only to prove (2.6). Ryu(x) is
expressed as

N2|7|=N%’/;1(1— G)N_ldﬁli"Os—//e—“y'”

X Dy{p"(x, On+7 S(x, x+y))u(x+y)}dyd7 .

Integrating the above each term by parts, we get from the assumptions on
S(x) and p(x, &)
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(2.7)

/1”03—ffe““y'”Dy’{p‘”(x, 07+ S(x, x+y))u(x+y)}dy&77‘
=‘Os—f/e"'y'”Dy’{p‘”(x, O '+ S(x, x+y))u(x+y)}dyél77‘
—| 05— [femorreyr-py ey o,y

x Dy {p"(x, 627 7+ 7 S(z, x+y))u(x+y)}dy&77l

< Cﬁr{zzs|a|sz~+1SUBIDraS(I)|}E|a|sz~/ yymte

X (>~ D u(x+ y)|dyd 7y ,

where Lh=2[#/2+1] and <x>=(1+|x|*)"”%2. Hence, we can complete the proof
from the Hausdorff-Young inequality. Q.E.D.

The following lemma is fundamental in the proof of Theorem 1.1.

Lemma 2.3. Suppose the same assumptions as in Theorem 1.1 and let (q,
)¢, sy, E) be the solution of (1.2). We set

(28)  Qt,y, &=—i[ 1(0.4(0,0;3,8), 0,0, , £))d6 .

Then,
(2.9) if lel=1, |DyR2(t, v, )| <Cat on [0, T]X R
are valid, wheve Ca ave constants independent of (t,y, €).

Proof. We have known in Proposition 3.1 of [7] or Lemma 2.1 of [6] that
(2.10) if lal=1, |Dy*{qi(t, s; v, &)= v}|<Celt—s) and
' |Dy*ps(¢, s; v, E)<Ct—s) on [0, T]X[0, T]X R}

with constants C: independent of (¢,s,y, £) are valid for j=1,2, -, .
Hence, we can easily prove (2.9) from (2.10) and the assumption on (¢, x, £).
Q.E.D.

Proof of Theorem 1.1. Assume that (1.3) is not valid for any 73(0< T}
< T). Then, we will show that we can construct the solution of (0.1) which
contradicts the energy inequality (1.1). Thus, we will prove this theorem.

Since (1.3) is assumed not to be valid for any T1(0< T:< T), we can take
points (tn, y™, £™)&[0, T]X R2%(m=1, 2, ---) such that
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tn—0 o,
(2.11) { as m=

ReQ(tn, y'™, £€™)>00 as m— 0 |

where Q(¢, v, £) was determined by (2.8). Rec denotes the real part of c.
Then, we can suppose that these points satisfy

(2.12) ReQ(¢, y™, EM)<ReQ(tm, y™, £™) (0<t <tn).
Let S»(t, x) (m=1,2, ---) be the solution of the eiconal equation

aéi’”(t,x)>=0, Sleco=1+ £M .

(2.13) 9:Sn(t, 1)+ hz(f, 2,

Then, we know from Lemmas 2.1, 2.3 and 2.4 in [6] (or see [7]) that Sx(¢, x)
for all m=1, 2, .-+ exist on commom region [0, To] X R” for a To(0< To< T)
and that

(2.14) if |@|>2, |DSn(t, x)|<Cq on [0, To] X R™

are valid, where C. are constants independent of (¢, x) and m=1, 2, ---. Let
v(t, x) be a C* function on [0, To] X R” with compact support. Then, we can
apply Proposition 2.2 as A=1 to each term e “™*®H,(¢, x, D:){e“™ " v(t,
z)}(j=1,2) because of the assumption (0.2) and (2.14). Hence, we get
together with (2.13)

(2.15) e—iSm(t,.r)L{eiSm(t.I)U(t, x)}

=%[8tv(t,x)+2j j?(t z,Bn (s, x>) g” (. 2)

+—{Tr aag {2, Bn, x))a Sm(y. x)}v(z‘ )

8Sm

+ih1(t, >n (7, x))v(t x)]+Rv(t 2) on [0, To] X R”
and

(2.16) IRv(¢, ) <M Ziai<ol| D0 (E, I,

where Tr(+) denotes the trace of matrix and M is a constant independent of
m=1,2, --- and v(¢, x).
Take a C> function ¢(x) such that

(2.17) ¢(0)#0, supp¢(+)C{x;|x|<1} and ﬂ(//(x)lzd:c:l.

supp¢(+) denotes the support of ¢(x). We define vn(¢, x)(m=1, 2, ---) as the
solution of
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oho 0Sn 0Um
dnlt, 1)+ TG 1, 2, 21, 2) )81, )
Pha ( 3Sm \ 3*S m(
(218) + {T 852 \ll (t )/ oz 3 )}Um(t,x)
+ i (t z, aas’" (¢, x))vm(t x)=0,
Unlico=¢(x—y'™) .

We can assume detg—z(t, 0; v, E&™)>00n [0, To]X R} (m=1, 2, ---) from (2.10).
Then, we know well (c.f. [2] or [10]) that these solution vx(t, x) are given by

(2.19) un(t, q(2,0; 3, &™)
={det 3Lt 0;3, &™)} gy -y ™)

xexp| i [ (0, 4(0,0; v, &™), (0, 0; v, £™))do

43 [T TR0, 400, 0,3, €7), 46,0, v, £7))de ]

n [0, To]xRE  (yv=y(¢,0; z, &™)).

Here, y=y(¢, s; x, E™)=((¢, 5; 2, &™), -+, yalt, s; 2, £™)) on [0, To] X [0, To)
X R% is defined as the inverse of the mapping: R"2y—-x=¢q(t, s; y, E™)ER",
whose well-definedness on [0, 7o] %[0, 7o] X R% and properties were studied in
Lemma 2.3 in [6] (or see [7]). We shall prove (2.19), because the situation in
[2] and [10] is some different from ours. We know well that

Dom( 4(1,0; 3, €™ =p(1,0; 3, &™) on [0, To] X R

are valid. For example, see Lemma 2.4 in [6]. So, we can see from (1.2) that
(2.18) can be written as

%vm(t. q(t,0;y, E™))

iy | {0 DR ot @)

+il(t, q, p)oa(t, @)=0  (p=p(¢,0; v, E™)),
om(t, q(£,0; y, E™)]izo=¢(y—y™) .

Also, since

(t 0; v, E™)= ah2<t q, aS"’(t q))
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is valid, we have

4 90(1,0,y, 6= Lt 0. )+ S 0, 032G L

Consequently, we obtain by the Liouville formula

d

(2.20) 2

——log det—(t 0; v, &™)

~Te{ 2,4, 0)+ Gt 0, 58 0))

on [0, L] X R}

Hence, we obtain (2.19) from (2.18)" and (2.20).
We define un(t, )€ €%[0, T); L?) (m=1,2, ) by

{expiSn(t, x)}vnlt, x) 0<t<T)
{expiSn(To, x)}vn(To, ) (To<t<T).

Recall from Lemmma 2.3 in [6] that
(2.21) if |e|>1, | D yi(t, s; x, &)— x| < Ca(t—s)
on [0, To]X[0, To] X R%%

are valid with constants Cs independent of (¢, s, x, £). Let’s insert u=(¢, x)
into the energy inequality (1.1). Then, it follows from (2.15) and (2.16) that
we have

(2.22) lon(t, )< C( T)(||¢(')||+M1t2|a|s12g28§]||Dxavm(9, )

0<t<Ty).

M, is the constant in (2.16). We shall first estimate |vn(¢, +)| from below.
We can easily see from Lemma 2.3 in the present paper that

(2.23) |ReQ(t, y', £)—ReL(t, v,

are valid for all (¢, v, &), (¢, v, £)€[0, To] X R*", where K is a constant in-
dependent of (¢, v, &) and (¢, ¥, £). Hence, noting (0.2) and (2.17), we obtain
from (2.19)

(2.24) loa(t, )I?

=ﬂ¢(y—y‘m’)|2[exp2Re{— ifhl(ﬁ, q(6,0; v, &™),
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t 2
#0,0,3, £)a6+ [ T30, 4, p1ao} |ay

> 62ﬂ¢(y—y"”’)lzexp{ZReQ(t, y™, EM)—2Kt|y—y™|}dy

> 8%exp{2Re (¢, y™, £™)—2K¢} 0<t< Ty

for a constant 6 >0 independent of ¢ and m=1, 2, ---. The above first equality
was derived by changing x variables to y=y(¢, 0; x, £&™). Similarly, taking
account of (0.2), (2.10) and (2.21), we can easily see from (2.19) and (2.23)

(2.25) sthmax ||Dxavm(0y ')"
6€(0,¢]
SM2£%§]exp{ReQ(0, Yy Em) 4+ Kt) (0<¢t<Ty)

for a constant M. independent of ¢ and m=1, 2, -:-, where we also used (2.17).
Insert (2.24) and (2.25) into (2.22) and set t=t» (m=1,2,--+), which can be
assumed to be less than 7y because of (2.11). Then, we get together with
(2.12)

(2.26) (80— C(T) My Matne? im)eRedttm> ™™ < C(T ) e*im

for m=1,2,---. It follows from the choice (2.11) of (¢n, '™, &™) that the
above (2.26) is not valid, when m is much large. Thus, we can complete the
proof. Q.E.D.

3. On a sufficient condition

In this section we will prove the following theorem, whose similar result
has been obtained generally in [6]. Our method is easier than in [6], because
we study only the limited equations.

Theorem 3.1. Suppose the same assumptions as in Theovem 1.1. Then if
(1.3) is valid for a TW(0< Th< T), there exists a TV (0< TY< Ty) in order that
the Cauchy problem (0.1) is L* well posed on [0, TY].

Proof. We can prove this theorem in the similar way as in [11]. We
determine a symbol (¢, x, £) on [0, T1] X R** as the solution of

- {%(t, 2, &) +{halt, . &), (¢, z, O+ il(t, x, E)k(E, x, £)=0,
k0, x, £)=1,

where {4, £} denotes the Poisson bracket Z‘.}’:n{ ggj(t, x, &) gfj(t, x, 5)—%

(¢, x, é)g—g(t, x, £)}. We can easily see from (1.2) that (3.1) is written as
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{%/e(;, a(t,0; 9, 1), 88, 0; 3, W)+ ila(1, 4, PIR(E, 0. D=0,
k(t, a(t,0;9, 7), p(¢,0; 3, 7)le=0=1.

So, we obtain
. t
(3.2) k(t, x, 5)=exp{— ’A hi(8, q(6,0; v, 7), p(6,0; v, v))dé'}

on [0, I]xR¥: (v, »=(q(0, t; x, &), p(0, t; x, £)),

because (g, p)(¢,0; v, n)=(x, £) is equivalent to (v, 7)=(q, p)O, ¢ x, ).
Hence, noting (0.2) with j=1 and (2.10), we can see from the assumption (1.3)
that

(3.3) |8 (¢, x, E)|< Cas on [0, TH] X R?*"

are valid for all @ and B with constants Ca,s independent of (¢, x, £). Also,
noting the assumption (0.2), we can prove from (3.1) and (3.3)

R (1,2, e T(R™ (0<t<T)).

Now, we will find a solution #(¢, x) of (0.1) in the form
(3.4) ult, x)=K(t, x, Dx)v(t, x)=Kuv(t, x) .

Then, we have
L{K(t, x, Dz)v(t, x)}:Ko[—ll.—atv(t, x)+Hot, x, Dz)v]

+{1 oK

Lz, D,)+(H20K—K0Hz)+H,oK}v ,

where %[ti(t, xz, D:) denotes the pseudo-differential operator with symbol %

(t, x, &) and -~ the product of operators. Applying the expansion formula of
pseudo-differential operators in section 3 of chapter 2 in [8], it follows from
the assumption (0.2) and (3.3) that

5 {U(HzoK—Kon)(t, z, O)={ht, 2, &), k1, z, O+ nlt, 2, ).
o(HiK)(t, 2, €)=t z, k(t, 2, &)+ rlt, x, &)

and estimates

(3.6) 7388t x, £)|<Cias on [0, TIXR*" (j=1,2)

with constants Ci,s independent of (¢, x, £€) are obtained. Consequently,
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L{K(t, 2. D)o(t, x>}=KoHa,v(t, x>+sz]+<Rl+RZ>v

is valid, because (¢, x, ) is the solution of (3.1). Hence, setting R=R\(¢, x,
D:)+ Ry(t, x, D), the Cauchy problem (0.1) can be expressed as

1
(3.7) {K°[781v(t,x)+Hz(t,x,D;)v]+Rv=f(t,x),

(0, x)=uo(x).

The existence of the inverse operator K '=K(¢, x, Dz)"! of K(¢, x, Dz) as
the mapping from L? space onto L? space can be proven as follows. Set

(3.8) E(t, x, &)=1/k(¢, x, &)

and consider the product K(¢, x, Dz)°K(t, x, Dz). Then, applying the expan-
sion formula of pseudo-differential operators again, we can prove from (3.2)
and (2.10) in the same way as in the proof of (3.3) that

(3.9) o(K-K)t, x, &)=1+1ts(t, x, &)

is valid, where s(¢, x, £) has the same estimates with another constants as
(3.6). We see from the Calderdn-Vaillancourt theorem in [3]

sup [|S(¢, z, Do) <o,
0<t<T:

where |S(¢, x, D:)| denotes the operator norm as the mapping from L? space
into L*space. If 7Y (0< 7Y < T1) is small, we can construct the inverse as the
mapping from L? space onto L? space of I+tS(¢, x, Dz) by the Neumann
series for each t€[0, 7Y]. Thus, we can see the existence of K~ for each ¢
€[0, 7Y], because K(¢, x, D:) also becomes an L? bounded operator from the
Calderdn-Vaillancourt theorem.

If we operate K(¢, x, Dz)™" on both sides of equations in (3.7), we obtain
the Cauchy problem

(3.10) %&v(z‘, )+ Hov+ K Vo Ro=K"'f(¢t, x), v(0, x)=uo(x).

Applying the Calderén-Vaillancourt theorem to R=R\(¢, x, D)+ R(¢, x, Dx)
again, we can see that (3.10) is L* well posed on [0, 7] in a sense of Definition
1.1. Also, we can prove from this fact that (0.1) is also L? well posed on [0,
TY], because the solution «(¢, x) of (0.1) is determined by (3.4). Q.E.D.

Remark 3.1. We note that we can also complete the proof of Theorem
1.2 from this Theorem 3.1 in place of Corollary 1.2 in [6].
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