
J. Math. Kyoto Univ. (JMKYAZ) 647
33-3 (1993) 647-663

On a necessary condition
for 12 well-posedness of the Cauchy problem

for some Schriidinger type equations
with a potential term

By

Wataru ICHINOSE

O. Introduction

In this paper we study a  necessary condition in order that the Cauchy
problem for SchrOdinger type equations with a potential term

Lu(t, atu+ H2(t , x, Ds)u+ x, Dx)u = f (t , x)

on [0, T ] (t >0),
u(0, x)= u0(x)

is L 2 well posed on [0, T ] .  Here, we suppose that the symbols hi ( t, x, E) (1=
1, 2) of pseudo-differential operators x, Dx) are continuous functions on
[0, T] x R171,e a n d  C -  functions on I? 1.1 e fo r  each t E[O, T ] .  Moreover, we
assume that h2(t, x, C) is real valued and that

(0.2) if Ia + i9 i ,  aeW hA t, x , E )1 Ca,s

holds for j= 1  and 2, where a and ,3 are multi-indices and C a ,f i  are constants
independent of (t, x, $)E[0, T]x Idn,e . Our result will be stated in Theorem
1.1.

In the preceding paper [6] we gave a sufficient condition under a weaker
assumption on hi(t, x, E) than that in the present paper in  order that the
Cauchy problem (0.1) is L 2 well posed on [0, T ] .  Combining this result in [6]
and Theorem 1.1 in the present paper, we can obtain a necessary and sufficient
condition so that (0.1) is L 2 well posed on [0, T], if we impose an additional
assumption that h,(t, x, C) (j=1, 2) are independent of t [0, T ] (Theorem
1.2). We can see from this Theorem 1.2 that the invariance under the canoni-
cal transformations of L2  well-posedness is valid in a sense (Corollary 1.3).

Some results on a necessary condition for L 2 well-posedness have been
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o b ta in ed . But, we have not had the informations a t  a ll of the case where
equations have an unbounded potential term. The case where h2(t, x , e)=
1E12 and hi(t, x, E)= =ib'(x)e., was treated in S. Mizohata [11], where fr (x )(j
= 1, 2, •, n) are C°' fu nc tio ns. This result was generalized by the author [4]
and [5] to the equations on the general Riemannian manifold. We must note
that our assumption in the present paper on h2(t, x, E) is more general than in
[4], [5] and [11], but one on hi(t, x, E) is more limited than in th o s e . But, we
want to emphasize that we can obtain a necessary and sufficient condition for
1,2  well-posedness under our situation, not only a necessary condition. For it
is difficult so far to  o b ta in  a  necessary and sufficient condition under the
situations in [4], [5] and [11]. See the introduction in [6] about results on a
sufficient condition obtained already.

W e shall state our results and examples in section 1. Section 2 will be
devoted to the proof of Theorem 1.1. In section 3 we shall give another proof
of the sufficient condition, limiting equations to ours. This result has been
proven generally in [6]. But, we can prove it more easily than in [6], if we
limit the equations to ours.

1. Results and examples

We shall use the same notations as in [6] through the present paper. Let
= S (R e ) b e  the Schwartz space of rapidly decreasing functions on R '.

The Fourier transformation  û ( E )  for u ( x )  S  is defined by

[2(e)= fe 'u(x )dx  , x  • e=x ii+ x 2E2+ ••• + x nen .

The symbol class T =  Tm(R 2 n) for a real m of pseudo-differential operators
is defined by the set of a ll C°' functions p(x , E) such that

lataiolp(x, E)I ca,,,(1+1x12 +1$12 )""2

are valid for all multi-indices a and g with constants Ca,p independent of (x,
E )E R " , w h ere  AV(x, $)= ae aD2P(x, a  T h e a b o v e  constants C a , f l  are
different from the constants in (0.2). If there is no confusion, we shall often
use the same symbol Ca d ,. A nother sym bol c lass

k , c ° ( R 2 n) (k=0,1, ••-) is
defined by the set of a ll C -  functions P(x, E) suh that

if la+ k , 110(x , e)1 C,,, f i

are valid, where Ca, f i are constants independent of (x, E) R ' .  We can easily
see from [6] that 2 k .00 (R 2 n) is included in T k (R ' )  (k =0, 1, •••). The pseudo-
differential operator P=p(x, Dx) w ith a  symbol a(P)(x , E)=P(x , E)ETm  is
defined by
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Pu(x )= f  e 'p (x , e )ii(e )4e (sle --(2z) - nde) .

Let B  be  a  Fréchet s p a c e . Then, w e denote  by  61([0, T ]; B ) and by
/2t([0, T]; B) the space of all B-valued continuous functions on [0, T ] and the
space  of a l l  B-valued /2-functions on [0, T ] respectively . T hrough the
present paper we adopt the following definition of 12 well-posedness, which is
weaker than that in [6], because we study a necessary condition in the present
paper.

Definition 1 . 1 .  W e say that the Caucy problem (0.1) is L 2  w ell posed on
[0, T ], if for any uo(x)EL 2 and any f ( t, x)E L it([0, T]; L 2 ) there exists one
and only one solution u(t, x ) of (0.1) in e7([0, T]; L 2 ) in a distribution sense
and the energy inequality

(1.1) .)11 c(T)(11u0(•)11-Ffotivo, •Hde) T)

holds for a constant C( T ) 1 .  Here, H denotes the 1,2 n o rm . Also, see
Definition 1.1 in [6] for the meaning of the term  "a distribution sense".

Let (q, p ) ( t ,  s; y, e)-=(qi,•••,qn, pl, •••, pn)(t, s; y, e) be the solution of the
Hamilton canonical equations for h2(t, x, C) issuing from (y, e) a t  t =s, that
is,

(1.2) dq _  3112  f td p   _ 3 h2 
dt ax` 

tq ,  p ) i ,  s _ ( y ,  e )
dt ae 

We know that the solution (q, p ) ( t ,  s; y, C) exists on [0, T] x [0, T] x  / ? .  See
Proposition 3.1 in [7] or Lemma 2.1 in [6].

Theorem 1.1. We assume (0.2). Then, i f  the Cauchy problem (0.1) is 1.2

well posed on [0, 1 ], th ere  m ust be a  T1(0<T1 T ) such that

(1.3) sup Im f  hi(0 , q(0, 0; y, C), p(o , 0; y, e))d0 <co0

holds. Im c implies the imaginary part of  c.

The proof of Theorem 1.1 will be given in section 2.

Remark 1 . 1 .  In th is rem ark w e w ill show th a t the inequality (1.3) is
invariant under the general canonical transformations. Let 0 be a canonical
transformation from R17,1,e, onto RIn,e. That is, 0*E7-,Idx,A de.,=E2--idx.,A de,
is valid, w here 0* denotes the pull back of differential form s. W e set for
k (t, x , e)  ( j =1, 2) in Theorem 1.1

(1.4) k j(t, x ', e')=h,(t,  0 (x ', C')) ( 1 = 1 ,  2)
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and denote by (q ' p ')(t, s; y', C') the solution of the Hamilton canonical equa-
tions for k2(t, x', E')

{dq'a k 2  t d p ' a k 2  ( t , '(1.2)' dt 3E' P dt ax '`
(q% P')Ii=s=(Y", C")

Then, we know well that

(1.5) 0 (a '(t, s ; y', s; y',

=(q(t , s; y, C), p(t , s; y, e)) ((y, E)= 0 (y ', E'))

is yielded from (1.4) with 1=2 for any (y', E')ER 2 n (see section 45 in [11). So,
we have from (1.4) with j=1

lei(t , q'(t , s; y', p'(t , s; y', C'))

=110 , q(t , s; y, C), p (t, s; y, C)) ((y, C)= ( y ' ,  C')).

Hence,

(1.6)
t 
ki(61 , q'(61 , 0; y', p'(0, 0; y', E'))c10

= h i(0  , q (0 , 0; y, a  p(0, 0; y, $))de ((y, $)= 0(y% E'))

is valid  for any (y', $') R 2 . Thus, (1.3) is invariant under the canonical
transformations.

We can easily get the following theorem from the above Theorem 1.1 and
Corollary 1.2 in [6].

Theorem  1.2. W e add in Theorem 1.1 an assumption that h.,(t , x, C) (1=
1, 2) are independent of t E[O, 7 ]. Then, if  and only  if  the Cauchy problem
(0.1) is L 2 well posed on [0, 7 ], there exists a T 1(0< T 1 T ) such that (1.3) is
valid.

P ro o f  We know from Theorem 1.1 that the condition (1.3) for a T1 is
necessary for (0.1) to be .L2 well posed on [0, 7 ]. So, we have only to prove
its sufficiency. We may express h.,(t, x, E) ( j 1, 2) as h.,(x, e ) .  Since h2(x,
C) is independent of t , we have

(q, P)(0, s; y, E)= (a, P)(e—s, 0; y,

and so,

expl — t hi(q( 0, s; y, C), p(0, s; y, E))dO}
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=exp.( — if
t - s

 hi(q(I 9, 0; y,p o  ,  0; y, EN O }  ( 0  s < t  T ) .0

Consequently,

(1.7) sup ex p tIm f hi(q(e, s; Y, e), P09, S ; Y, ENO} < co
osssrsTI,cv,e)ER27,

follows from (1.3). Hence, we can see by Corollary 1.2 in [6] that the Cauchy
problem (0.1) is L 2 well posed on [0 , T 1]. So, we get the  energy inequality
(1.1) where we replace T  by T 1 . In the same way it follows that (0.1) is L 2

well posed o n  [ T1, T2] ( T2=min(2 T )), because th e  equation in  (0.1) is
independent o f  t. L et ui(t, x)E  e7([0, T i]; L 2 )  be the solution of (0.1) and
u2(t, x)E  e?([ T 2 ] ;  L 2 ) the solution of the equation in (0.1) with initial data
u2( x )= u1( T1, x ) .  Then, we get

112(1- , *)11 ‹  C( T1)(1lui(T1, •)11+ .)lide)

c(T02 (11u0(.)11+ ftilf co ,  . ) 11d0) (7-1‹t_‹ T2),

noting C( So, if we define the function u(t, x)E C7([0, T2]; L2 ) by

u ( t ,  x ) —
{ u t(t , x ) (0 ‹ t T 1 )

u2( t, x )  ( Tr< t < T2) ,

we can see that u(t, x ) is the solution of (0.1) and that (0.1) is L 2 well posed
on [0 , T 2]. We can complete the proof repeatedly. Q.E.D.

Remark 1 . 2 .  Suppose the same assumptions as in Theorem 1.2. Then,
since the equation in (0.1) is independent of t, we can easily see that if (0.1) is
I 2 well posed on [0, T ] in our sense, (0.1) is so in a sense of Definition 1.1 in
[6]. So, the statement in  Theorem 1.2 remains valid, even if  we adopt the
definition in  [6] as that of L 2 well-posedness instead of ours.

The following theorem shows the invariance under the canonical trans-
formations of L 2 well-posedness in  a  sense . We note that we considered only
special canonical transformations in section 3 of [6].

Corollary 1 .3 .  Suppose the same assumptions as in  Theorem 1.2 and let
a, be a canonical transformation from R.P, t

, onto R1n,e . W e def ine k i (x', E') (J
=1, 2) by (1.4) and consider the Cauchy poblem

{ L' v(t , x')—=1:1 atv(t , x')+ K2(x', DAv+ Ki(x', DAv
(1.8) = g(t , x')

v(0, x')= vo(x') .
on [0, T ]x ,
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We assume that each ki (x', E') (j=1, 2) satisfies the same inequalities as (0.2),
that is,

i f  la+fil>/, E')I<Ca,fl

with constants C a d 3  independent of  (x ', e ')ER 2 n. Then, if  and only if  (0.1) is
L 2 well Posed on [0, T ],  (1.8) is L 2 well posed on [0, T ].

Proof. C o ro lla ry  1.3 follows from Theorem 1.2 and (1.6) at once.
Q.E.D.

Example 1.1. Let h2(x, $) be a polynomial of degre 2 in only variables x
and $ with real coefficients satisfying h2(x, $) 0 on R 2 '. We define hi(x,
by

hi(x, E)=cf l+h2(x , E)11 2
,

where c is a complex constant. We take these hi (x, $) (j=1, 2) as h,(t, x, e)
in (0.1). This example was stated in Example 1.4 in [6]. We can see from [6]
that these h,(x, $) (j=1, 2) satisfy the assumptions in Theorem 1.2. We note

d from the energy equality h2(q(t, s; y, $), p(t, s; y, $))=0 thatdt

hi(q(0 , 0; y, $), p(0, 0; y, EN O = ct{1+ h2(y, E)1 1 '2

is v a l id . Hence, we can see from Theorem 1.2 that if and only if the Cauchy
problem (0.1) is L2  well posed on [0, T ] for a T >0, Imc is non-positive.

Example 1.2. (c.f. Example 1.2 in  [6]). L et h2(t, x, E)= 2
1
m 1E12 + m

2
w 2

X 1.x12 and hi(t, x, $)= =,c(t)E, where m and a, are positive constants, and
c(t) (1=1, 2, •••, n) are continuous functions on [0, T ]  for T > 0 . Then, the
solution of (1.2) is given by

(q, p )(t, 0; y, $)=(ycoscot +
m  c o

sinwt, — mycosincot +$coscot) .

Assume that the Cauchy problem (0.1) is  L 2 well posed on [0, T ] .  Then, it
follows from Theorem 1.1 that there must be a  TI(0< Ti< T ) such that

sup ( —  my,cosin + e,cosco0)1mc.,(0)d0 <cc
O

is v a l id . Hence, we get

(1.9) Imc,(t)=0 on [0, T1] (j=1, 2, •••, n) .

Conversely, if (1.9) is valid, we can easily see that (0.1) is L 2 well posed on [0,
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Td.

Example 1.3. Let h2(t, x, e) —
2

1
m  le  x12 + m

2
c °2 1x12 and hi (t, x , e )=E 1f=i

c,(t)($,— x,), where m, co and c(t) (j=1„ • •-, n) are the same ones in Example
1.2. It is easy to see that the transformation from R.P,E onto e  defined by
(x, E)=(x', $' + x') is canonical. So, it follows from Remark 1.1 and Example
1.2 that if (0.1) is L2 well posed on [0, T], the inequality (1.9) must be valid for
a Ti >0 (0< Tr< T).

1Example 1.4. We take -yI 2x1 and E.7=1ciE; as h2(t, x, E) and h i ( t ,  x, E),

where c, (j=1, 2, ••., n) are constants. Then, the solution of (1.2) is given by

(q(t, 0; y, E), p(t , 0; y, e))=(y, — ty+E) .

So, it follows from Theorem 1.2 that if and only if (0.1) is L2 well posed on [0,
T ] for a T >0,

sup ( -0y i +V(10<co
7-0 ,,(y,e) R2n 0

is valid for a T1 (0< Tl< T ) .  Hence, we get

(1.10) Imci=0 ( j=1 , 2, •--, n)

as a necessary and sufficient condition for L 2 well-posedness of (0.1) on [0, T].
This result is not new, because we have known it in  [9 ] as  a  result for
kowalewskian type of equations to be L 2 well posed.

Instead of the above h.,(t, x, e) =1, 2), let h2(t, x, e)=+ie + x1 2 and hi(t,

x ,$ )= E 71 = ic ,,. Then, we also get (1.10) as a necessary and sufficient condi-
tion for (0.1) to be 1..2 well posed on [0, T ] .  For using the canonical transfor-
mations defined by (x', e')=(E+ x, e), h2(t, x, E) and hi(t, x, are expressed

as —
1 IX12  and E 11.--ic.,e.; respectively . So, applying Corollary 1.3, w e get the2

above result.

2. Proof of Theorem 1.1

We first prove the following lemma and proposition. Though we already
had the similar results in [4] and [10], we need more detailed results than
theirs.

Lemma 2.1. L et p(x, $)E Tm f o r an  m, S(x) •'(R 2 ) f o r a k>0 be a
real valued function and  A>1 a param eter. W e set
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(2.1) S(x, ) = f 1
a
a x

S  (y+ O(x — y))dt9 .

Then, we get f or u (x ) E S

(2.2) e's(x)p(x, /1 -1 D.r)e' s( x) u(x)

a! A- Ialpy a{ Pnx , "s(x , x + y ))u(x  +

NÂn- N E 17 1=N 7
1

!  fo
1(1— O r  dOOs — ffe''"

X Dy Y{p( 7 ) (x, 07/ 7S(x x+ y))u(x + y)}dy2s17) ,

where N=1, 2, ••• an d  Os — ff(--)dyiPi denotes the oscillatory integral in  [8].

P ro o f  It follows from the definition of pseudo-differential operators and
the change of variables that

Q ( x ) — e -iA S(x)p( x ,  A -1 D x ) e iLS(x) u ( x )

=ffe 
i(x - y)• f i-iA S (y )-biS (x )p(X , A-1.E)u(AdAsie

_  An ffei,l(x-y)•e-igx-Y)•G'S(X,Y)p(x, e ) u ( y ) d y è l e

is valid . So , changing variables (y, E) to (y ', 77' ) x, S(x, y)), we get

(2.3) Q(x)= An p(x, 72'+ff s(x , x  + yl)u(x + y')cly'077' .

The term P(x, + r'S(x, x+ y ') )  is expansioned as

Elai<N—

a
1

!
7l aP(a ) (x, S (x, x + y '))

+NE171=N -12,  77'71 .
0 1 (1 —  (9)N - 1 P( 7 ) (x , 6,77'+ -VS(x, x + y'))d0

Hence, using

An f fe - g(y)dA72=g(0) for g(x)E S

and the integral by parts, we obtain

(2.4) Q(x)— E al <NaT/Inffe - 7 / a p ( a ) ( x ,  f f s(x , x + 31)
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X u(x  +y')dy'sl7i-E-NE1 71=N-1 -.!7 fo
l (1— O r - i dt9An

X Os— f f (97I +ff S(x, x+ y'))u(x + OdY "077"

1
a! rscx, x  + .3i)u(x  + 0113 , --0

+NA n - N E171=NM 1(1 —  6)" -  dO0s—  f f

X D , {p( 7 ) (x, t97r +ff S(x, x + y'))u(x + yr)}dy'02)' .

This completes the proof. Q.E.D.

Proposition 2.2. Let S (x ) B2 '°°(R 2 )  be a real valued function and /1
1 a param eter. W e assume that P(x , e)E Tni satisfies

i f  I al = N  ,  P w (x , $)E29°'(R 2 n)

f or an integer where g - (R 272 ) denotes the space o f  all Ce° functions on
R 'n  whose derivatives of any  order are bounded. Then, we get f or u(x )E  S

(2.5)x ,  A- 1D1)ez" ( x) u(x)

tp—  l., < N  a! , F'S(x, x + y))11(x + .011y=0E 1  /1-1al D y a  •  (a ) ,

+/I - N RNu (x)

and

(2.6) RNu( • )11 CN 1)-1...-2 1 a ls IN + 1 S U P  1 D x a s ( x)1}{Eial,,„0.au(.)11}

with a constant CN independent of  A--• 1, S (x ) and u(x ), where 1N=2[n12+1]
+N  and [•1 denotes the Gauss symbol.

Proo f . Since we have had (2.2), we have only to prove (2.6). RNu(x) is
expressed as

N E171=N  fo 1 (1— 0)" - 1  car Os — ff e - "Y""
7.

X Dy
7 {p( 7 ) (x, 07) +ffS(x , x + y ))u(x + y)Idy07) .

Integrating the above each term by parts, we get from the assumptions on
S (x ) and P(x, E)
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(2.7) A nOs— ffe'Y 'Dy7{ P(7)(x , Or, +177  S(x , x + y))u(x + y)}dyèjd

=0s—  f f e'Y D y
7 [P( 7 ) (x , 0/1- 1  +17 S(x , x + y))u(x + y)}dy071

=Os— ffe-iY. "<y>- 1 °<Dq>10 <i)>- 1 °<Dy >1°

X{ p ( 7 ) (x , 0/1- 1  + S(x , x + y))u(x +y)}dyèiid

<C'N[E210,1/,,,+isup Dxa S(x)1} ElaliN ff<Y > - 1 °
xeR ,

x <0 - 1°I.D.rau(x + y)IdY07) ,

where /0=2[n/2+1] and <x>=(1+1x12 ) 1 12 . Hence, we can complete the proof
from the Hausdorff-Young inequality. Q.E.D.

The following lemma is fundamental in the proof of Theorem 1.1.

Lemma 2 .3 .  Suppose the same assumptions as in Theorem 1.1 and let (q,
p)(t, s; y, e )  be the solution of (1.2). We set

(2.8). Q ( t ,  y , E)--= — if  1h1(0, q(0, 0; y, E), p(0, 0; y, e))c/O .

Then,

(2.9) if , 1Dya S2(t, Y, a Cat on [0, T]x 1?;,:ze

are valid, where Ca are constants independent of  (t, y, e).

P ro o f We have known in Proposition 3.1 of [7] or Lemma 2.1 of [6] that

(2.10)
{if jail >1, 1Dya{qi(t, s; Y, e) — y } l<ca(t — s) and

IDya ltv(t, s; y ,  )i <C'a(t — s) on [0, T] x [0, T ] x f?;/,ze

w ith  constants Ca independent o f (t, s, y, E ) are v a lid  fo r  j=1, 2, •-•, n.
Hence, we can easily prove (2.9) from (2.10) and the assumption on hi(t, x, e).
Q.E.D.

Proof o f  Theorem 1.1. Assume that (1.3) is not valid for any T1(0<
< T ) .  Then, we will show that we can construct the solution of (0.1) which
contradicts the energy inequality (1.1). Thus, we will prove this theorem.

Since (1.3) is assumed not to be valid for any T1(0< Ti< T ), we can take
points (t„„ y ( m) , e ( m) )E [0 , T ] x R (m = 1 ,  2, ) such that
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(2.11)
tm -> 0 as m -> 00 ,
ReS2(tm, Y( m )  e m ) ) - 4  œ as m-> 00 ,

where ,S2(t, y, e) was determined by (2.8). R e c  denotes the real part of c.
Then, we can suppose that these points satisfy

(2.12) ReD(t, y ( m) , em) ) <ReS2(tm, Y ( m ) , e( m ) ) (0 t < t.)

Let Sm(t, x) (m=1, 2, •-•) be the solution of the eiconal equation

(2.13) ats.(t, x)+ ih(t, x,  aasxm (t, x ) ) 0 , smit=o= x. eon) .

Then, we know from Lemmas 2.1, 2.3 and 2.4 in [6] (or see [7]) that Sm(t, x)
for a ll m=1, 2, » exist on commom region [0, To] x Rn fo r a T0(0< To< T )
and that

(2.14) if >2, ID .r a S.(t, x)1‹ Ca on [0, To] ><Rn

are valid, where Ca are constants independent of (t, x ) and m=1, 2, •••. Let
v(t, x) be a  C" function on [0, To] x I ?  with compact support. Then, we can
apply Proposition 2.2 as A=1 to each term e - ' ' ' 'H , ( t  x ,  D x ){ e ' s m( ' ) v(t,
x)}(j=1, 2 ) because o f the assumption (0.2) and (2.14). Hence, we get
together with (2.13)

(2.15) C'sm(t'x)Lfe's""-r)v(t, x)}

= + [a t v ( t  x )  +  - a h 2 ( X
  'as;  (t, x))  aaxvi (t, x)

a2h2( asm )a2sm +  y  Tr av t , ax ( t ,  x )  ax2 (t, x)}v(t, x)

asm+ ih,(t, x (t x ))v(t, x )1+ R v(t, x ) on [0, To]x R n

and

(2.16) 11Rv(t, -)11<MIE lal‹/211Dx"v(t, *)11,

where Tr(•) denotes the trace of matrix and M1 is a constant independent of
m=1, 2, ••• and v(t, x).

Take a  C" function 0(x) such that

(2.17) sb(0)*0 , suppsb(•)c{x; and fib(x)1 2dx =1 .

supp0(-) denotes the support of 0 (x ) .  We define v.(t, x)(m=1, 2, •••) as the
solution of
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atv.(t, x)+E i,"=, a
a

he2 (t, a
a
s
xm(t, x)) a

avxm(t, ,x)

+— Tr (ta2h2(a s . ) a 2 s .  
2 t X 2  (t x)}vm(t , x)2 ae "  a x  x) ax

+ x,  aa
s
xm (t, x))v.(t, x)=0 ,

v.1,=0=o(x— y(m)) .

We can assume det 
aq 

 "  '( t  0- y  em) ) > 0 on [0, To] x 1?;,i (m =1, 2, ---) from (2.10).

Then, we know well (c.f. [2] or [10]) that these solution v .(t, x ) are given by

(2.19) vm(t, q(t , 0; y, e ( m) ))

-1/2
fdet 

aq 
 (t  0-$ ( 7n) )} 0(y - y ( m) )a y  "  y '

x exp[ - if  1/1(0, q(0, 0; y, E ( m) ), p(0, 0; y, E( m) ))d0

+ + f  ' Tr 2
x

h
a  ( 0, q(0, 0; y, e ( m) ), p(0, 0; y, e ( m) ))(101

on [0, To] x R( y = y ( t ,  0; x , e ( m) )) .

Here, y=y(t, s; x, E ( m) ) =(yi(t, s; x, e ( m) ), ••., yn(t, s; x, e m) )) on [0, To] x [0, To]
x R!,,i is defined as the inverse of the mapping: RnDy-> x= q(t , s; y ,  E-( m ) ) E  ,
whose well-definedness on [0, To] x [0, To] x R.'ri and properties were studied in
Lemma 2.3 in [6] (or see [7]). We shall prove (2.19), because the situation in
[2] and [10] is some different from ours. We know well that

aSm ( t  q ( t  0- Y )=P(t, 0; y , e m ) ) on [0, To]xax "  '  $ n

are valid. For example, see Lemma 2.4 in [6]. So, we can see from (1.2) that
(2.18) can be written as

d  
 v m ( t  ,  q ( t ,  0 ;  y ,  E ( m ) ) )dt

(2.18)' + I [ T r 3 2 h
2
2 (t, q

'
 p)a2saxr ae (t, q)}vm(t, q)2 

+ ih,,(t , q, P)v.(t , q)=0 (p= p(t , 0; y, e ( m) ))
vm(t, q(t , 0; y, e ( m) ))1t=o= 0(y -  Yn  .

Also, since

ah2 aSm d q
(t , O. y  e ( ni) ) = ( t  q ax ( t  q ) )dt " a e  "  

(2.18)
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is valid, we have

d t ay ( t  Y ' $(m))— i
qaxa$ " ae ax

d  Oara 2 h 2 ( t p ) +   a2h: (t, q, p)  a2s2m (t,

Consequently, we obtain by the Liouville formula

(2.20)
d  

 log det 
aq 

 (t  0. y, e( "z) )dt '

=Trf a2h2 (t ,\+  a2h22, t , , a 2 s m , t
axae '4'Pi ae 'g'Pi ax2\

on [0, To] x /?;,' .

Hence, we obtain (2.19) from (2.18)' and (2. 20).
We define um(t, x) C7([0, 7 ]; L 2) (m = 1, 2, by

{ {expiSm(t, x)}vm(t, x)
um(t, x).=

{expiSm( To, x)Iv.( To, x)
( 0  t To)
( T0

Recall from Lemmma 2.3 in [6] that

(2.21) if lad 1 , 1 D x " { Y .( t ,  s; x, E)— x3}1 C;(t — s)

o n  [0, To] x [0, To] x

are valid with constants C'a', independent of ( t s , x , E ). Let's insert u,n(t, x)
into the energy inequality (1.1). Then, it follows from (2.15) and (2.16) that
we have

(2.22) 11 vm(t, • )11 -< C( T)(110( • )11+ tEial maxIlDxavm( 0, • )11)

(0<_ To).

M1 is the constant in (2.16). We shall first estimatem (t, •)1 1  from below.
We can easily see from Lemma 2.3 in the present paper that

(2.23) iReD(t, y', E) — ReQ(t, Y, E)I<KIHY'

are valid for all (t, y, e), ( t ,  y ' $)e[0, T o]x , where K  is a constant in-
dependent of (t, y, E) and (t, y ', e). Hence, noting (0.2) and (2.17), we obtain
from (2.19)

(2.24) Ilvm(t, . )112

=f ig Y  — Y( m ) )12 [exp2Ref — ifo t h1(0, q(0 0; y, e ( m) ),
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a (p(0,0; y , e ( m)))d 0 + i f  T2 r  
2 1 1 2

axae‘,
a, q, P)clOficly

a2 ji gy — yun'Vexpt2Res2(t , y(m), e(m))— 2KtlY Y ( m )

.82 expl2ReS2(t, en))-2K t} (0 t To)

for a constant 8> 0 independent of t and m=1, 2, •••. The above first equality
was derived by changing x  variables to y =y ( t, 0; x , en ) ). Similarly, taking
account of (0.2), (2.10) and (2.21), we can easily see from (2.19) and (2.23)

(2.25) Eal,i2max 11Dxavni( 0, •
) 11Oe[0,i1

_<_M2max explReS2( 6 ,  ( m) , en ) ) + Kt} ( 0  t  T o )6Eio,ti

for a constant M2 independent of t  and m=1, 2, •••, where we also used (2.17).
Insert (2.24) and (2.25) into (2.22) and set t =  (m=1, 2, •••), which can be
assumed to be less than To because of (2 .11 ). Then, we get together with
(2.12)

(2.26) (8— C(T)M11112tme'"`)e
Res a (tm,y,m ,,e (m ,) s-  C (T )e 'm

for m=1, 2, •••. It follows from the choice (2.11) of (tm, y ( m) , •('')) that the
above (2.26) is not valid, when m is much large. Thus, we can complete the
proof. Q . E . D .

3. On a sufficient condition

In this section we will prove the following theorem, whose similar result
has been obtained generally in [6]. Our method is easier than in [6], because
we study only the limited equations.

Theorem 3 . 1 .  Suppose the same assumptions as in Theorem 1.1. Then if
(1.3) is valid f o r a T1(0< T ) ,  there exists a  T1' (0< T 1 )  in order that
the Cauchy problem (0.1) is 12 well posed on [0, T1'].

Proof . We can prove this theorem in the similar way as in [1 1 ] . We
determine a symbol k (t, x , E) on [0, Ti] x R 2 n as the solution of

[ -f -
(3.1)

; (t, x , e)+{ h2(t, x , E), k(t, x , E))+ ihi(t , x , E)k(t , x , e)= 0 ,

k(0, x ,  ) =1 ,

ak( 9 h 2where Ih2, Id. denotes the Poisson bracket ni=if  aahE2(t, x, E)  ?

( t ,
 x, E)

ak (t, x  E) (t
"
x }. We can easily see from (1.2) that (3.1) is written as
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{

c
cit  k(t, q(t , 0; y, 71), p(t , 0; y, 2)))+ ihi(t, q, p)k(t, q, p)=0 ,

k(t , q(t , 0; y, 7)), P(t , 0; y ,
 7 ) ) ) 1 t = o = 1  .

So, we obtain

(3.2) k(t, x , e)=expf — i f  t hi(O , q(0, 0; y, 7)), p(0, 0; y, 2)))d0}

on [0, T1] x R1',2( ( y ,  2))=(q(0, t; x , p(0, t; x , e)),

b ecau se  (q, p)(t, 0; y, 7))=(x, i s  e q u iv a le n t  t o  (y, 7))—(q, 00, t; x, C).
Hence, noting (0.2) with j =1 and (2.10), we can see from the assumption (1.3)
that

(3.3) 1MV(t, x, C)1- Ca, 19 on [0, T1] x R "

are valid for a ll a  and )3 with constants C ad 3  independent of ( t , x , e ) . Also,
noting the assumption (0.2), we can prove from (3.1) and (3.3)

at
(t  X,  C )E T i(R 2n) (0 t T1) .

Now, we will find a solution u(t, x ) of (0.1) in the form

(3.4) u(t, x )=K (t, x ,Dx )v (t, x )=-K v (t, x ).

Then, we have

LIK(t, x, Dx)v(t, x)}=K°E 1---,-z atv(t, x)+H2(t, x, Dx)vi

+1
1
.  

aK
( t  x  D  )+ (H

2 
0K—K.H2)+ HioKly ,z at "  x  

ak w here 
aK  

 (t Dx) denotes the pseudo-differential operator with symbolat "x at
(t, x, C) and • • the product of operators. Applying the expansion formula of
pseudo-differential operators in section 3 of chapter 2 in [8], it follows from
the assumption (0.2) and (3.3) that

(3.5)
1({a(H2. — K. H2)(t , x, x, E), k(t , x, C)}+ ri(t , x, e)

a(111. K)(t, x, e)= hi(t, x E)k(t , x, e)+ r2(t , x,

and estimates

(3.6) iria))(t, x , C)1 Ca,s on [0, Ti] x R 2 n (j=1, 2)

with constants C a , f l  independent of (t, x , E) are obtained. Consequently,

ak
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L{ K(t, x , Dx)v(t, x)} =Ko[liatv(t, x)+ H2v]+(Ri+ R2)v

is valid, because k(t, x , e) is the solution of (3.1). Hence, setting R =R i(t, x ,
Dx)+ R2(t , x, Di), the Cauchy problem (0.1) can be expressed as

(3.7)
1{K.[--,-atv(t, x)+ H2(t , x, Dx )v1+ Rv --- f i t ,  x) ,1

v(0, x)=u0(x).

The existence of the inverse operator K - 1 =K (t, x , D O ' of K(t, x, Dx) as
the mapping from 1,2 space onto L 2 space can be proven as fo llow s. Set

(3.8) k (t, x , $)=ilk (t, x , C)

and consider the product I?(t, x ,Dx).K (t, x , D r) .  Then, applying the expan-
sion formula of pseudo-differential operators again, we can prove from (3.2)
and (2.10) in the same way as in the proof of (3.3) that

(3.9) a(goK )(t, x , E)=1-Fts(t, x , C)

is valid, where s(t, x , C) has the same estimates with another constants as
(3.6). We see from the Calderón-Vaillancourt theorem in [3]

sup11S(t' 'x  Dx)11<oe ,c, i- T, 

where 11S(t, x , D)11 denotes the operator norm as the mapping from 1,2 space
into 1,2 sp ace . If T1' (0< T1' T 1 )  is small, we can construct the inverse as the
mapping from I 2 space onto L 2 space of 1+ tS(t, x , Dx) by the Neumann
series for each tE [0, Tn. Thus, we can see the existence of K - 1  for each t
E [0, Td, because k (t, x , Dx ) also becomes an .12 bounded operator from the
Calderôn-Vaillancourt theorem.

If we operate K(t, x, Dx) - 1  on both sides of equations in (3.7), we obtain
the Cauchy problem

(3.10) 1 atv(t, x )+H2v+ K - 1 . Rv = K - 1  f(t, x) , v (0, x )= uo(x ).z

Applying the Calder6n-Vaillancourt theorem to R=Ri(t, x , Dx)+R2(t, x , Dx)
again, we can see that (3.10) is L 2 well posed on [0, T1'] in a sense of Definition
1.1. Also, we can prove from this fact that (0.1) is also L 2 well posed on [0,
T a  because the solution u(t, x ) of (0.1) is determined by (3.4). Q . E . D .

Remark 3 .1 .  We note that we can also complete the proof of Theorem
1.2 from this Theorem 3.1 in place of Corollary 1.2 in [6].
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