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On the Cauchy problem
for Schredinger type equations
and Fourier integral operators

By

Wataru ICHINOSE

O. Introduction

In this paper we study the L 2 well-posedness of the Cauchy problem for
SchrOdinger type equations

Lu( t, +H2(t, x, Dx)u+111(t , x, Dx)u= f(t , x)

on [s, x Rxn (O s<  T ),
u(s, x)= uo(x) .

Here, we suppose that the symbol hi (t, x , e)(j=1, 2) of pseudo-differential
operators Hi (t, x, Dx) are continuous functions on [0, T ]x  R "  and C-  func-
tions on R 2 n for each  t E[O, T ] .  Moreover, we impose on h2(t, x , e) the
assumptions that h2(t, x, e) is real valued and that

(0.2) if la+ ,(31 2 , la,aaxflh2(t, x, E)1 Ca, i9

holds, where a and i3 are multi-indices and C a d 3  are constants independent of
(t, x , E ) [ 0 , T ]

x  R 2 n .

One of our aims in the present paper is to give a sufficient condition for
the Cauchy probler (0.1) to be L 2 well posed on [0, T ] .  Another aim is to
derive the above type of equations from the Maxwell equations. W e have
studied the above type of equations as typical equations not kowalewskian
and not parabolic. If x, D ) -111(t, x, Dx)* is a uniformally L 2 -bounded
operator on [0, T ], the L 2 well-posedness of (0.1) can be proven easily, where

x, Dx)* denotes the formal adjoint operator in the usual L 2 -inner prod-
u c t .  So, we are interested about the L 2 well-posedness in the other cases, for
example, hi(t, x , E)= iE 'l=if r(x )e,±c(x ) (b)(x ) are  real valued functions).
In section 4 this interesting type of equations will be derived.

We have already known some results on the L 2 well-posedness of (0.1).

Under the situation that h2(t, x, E)=÷1E1 2 and
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(0.3) hi(t, x, E)=E;z=ibJ(x)E.,+c(x)

(b i(x ),  c (x )E g - (Rn), 1 =1, 2, —, n)

S . M izohata in  [14] gave a  sufficent condition and a necessary condition
respectively. See also M izo h ata  [15 ]. g - (Rn) denotes the space of a ll C -

functions on Rn whose derivatives of any order are all bounded. We want to
remark that the result obtained in the present paper is more general and
better than his even in his situation (see Remark 1.1). In [5 ] a  necessary
condition was given under the situation that h2(t, x, E ) is given by Eizi,,=1
g'(x)e,e.,(e(x)E_B - (R x n), j= 1, 2, n ) and hi( t, x, E) is the same symbol
as in [14]. In more general, we gave a necessary condition in [6] under the
situation that H2(t, x, Dx) is replaced by the Laplace-Beltrami operator on the
general Riemannian manifold and Hi(t, x, Dx) is also done by a  complex
valued vector field. I n  [7] a sufficient condition was given under the above
each situation in [5] and [6], though we had to impose the strong assumption
on Hi( t, x, D i ) .  There was an announcement of a sufficient condition by S.
Tarama in 1988 under the assumptions that h2(t, x, E ) is  a  homogeneous
polynomial of degree 2 in only x and E and hi( t, x, E) has the form (0.3). The
author does not know the precise statement and its proof, because his paper
has been unpublished. But, our result in the present paper seems to include
his result.

We note that H. Kitada [10] and H. Kitada -H. Kumano-go [11] construct-
ed the fundamental solution of the Cauchy problem (0.1) for Schreidinger
equations where Hi(t, x, Dx) disappears. In the present paper we use the
Fourier integral operators in [10] and [11] essentially in the proof.

In the forthcoming paper [8] we will give a necessary condition for the L 2

well-posedness of (0 .1 ) . We shall state it briefly in Remark 1.2 in the present
paper. See the references of [7] for the studies of the other problems for
SchrOdinger type equations.

The plan of the present paper is as follows. In section 1 we shall state
the main theorem (Theorem 1.1) and some examples. The proof of the main
theorem will be given in section 2. In section 3 we shall extend the main
theorem by using the Fourier integral operator theory and the Egorov theo-
rem in the modified form (Theorems 3.3 and 3.4). There, the relation between
L 2 well-posedness and the classical canonical transformations will be studied.
Section 4 will be devoted to the derivation of the Schrbdinger type equations.

1. Main theorem and examples

Let ( x i ,  •, xn) denote a point of Rn and let a —(ai, •-•, an) be a multi-index
whose components a, are non-negative integers. Then, we use the usual
notations:

= + a„ , x a  = •-• xna" , a!= ad• • • an! ,
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a ara = ap • • • a , D ia  = D ,  aX.1= ax i

D ,=
1

.  <x>=0.+Ix12)"2

Let ço(x) and f i ( x )  (j=1, 2, ••., n ) b e  C "  functions on R '.  T h e n , we
denote for f(x )= V i(x ), •••, i ( x ) )

ago  _(aço ag9 af   =(al .' •  " 1  2 n)ax a x i " ax a x , '  "  '  '

a2„ a /  aço\

ax2 a x )

D (f)  
D ( x )  denotes the Jacobian determinant.

Let S = S (Ra) be the Schwartz space of rapidly decreasing functions on
Rn with semi-norms 1111= max maxt<x> k laxa f (x)i}(/ =0, 1, ). The Fourier

k +la151 xERn

transformation û (E )  for u (x )E  S is defined by

fe - ix'eu(x)dx, x • E= xiei+ x2E2+ • • • + xnEn .

W e shall define  the pseudo-differential operator. W e determ ine the
symbol class Tm =Tm(R 2 ) by the set of all C" functions p (x , E) satisfying for
all multi-indices a and de

aeD/P( X I  e)I Ca,fi(1 X + $12)M 1 2

where Ca, f i are constants independent of (x, e )E R 2 n. W e shall often write
as aDxflp(x, E) as PW(x, E ) .  The pseudo-differential operator P = p (x , Dx) with
a symbol P(x, E) Tm is defined by

P u (x )--  f e 'x qp(x , )77i(e)4E  (d$=(27r) - nd$)

for u (x )E  S . A ls o ,  the double symbol class Tm'm'(R 4 n) are defined by the set
of all Ce° functions P(x, E, on R "  satisfying

E, - )1‹ Ca,ar,fldr(l+lx1 2 +1$12 )"(1+1Y1 2 + I - 12 )ne/2

for all a, a ',  1 3 and g', where Ail:P(x, E, ,  - )=as a Dxf lase D23'P(x, E  I , ,f) and
Ca,e,fl,fl• are constants independent o f  (x, E, ' -. ) 1?̀ l n. T h e  pseudo-
differential operator P = P (x , D x , , D i) with a double symbol p (x , E, i ,  E )E
Tm•m" is defined by

Pu(x)= f f f e'cr - x) *e+ix• e P(x, E, ,  )
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for u (x )E S . W e rem ark that as for the double symbol p(x, E, , we use
the different notation from the usual one in [12] and that symbol classes Tm
and Trn' w  are different slightly from ones in [5] and [13].

In the present paper we also use the other symbol class 2 k •- (R 2 n) for k=
0, 1, ••• which was introduced in [1 1 ]. We denote by g k '- (R ' )  the set of all
C-  functions P(x, e) satisfying that AZ(x, E) are bounded on R 2n for all
multi-indices a  and i3 such that la+31>k . If P(x, e )Eg l '0 (1?2 n), it follows
from the mean value theorem that P(x, e) belongs to T i (R '). Inductively ,
we can see that gh•- (R " )  is included in  T k (R 2 )(k=0,

Let B be a Fréchet sp ace . Then, we denote by 67([0, T ]; B ) the space
of all B-valued continuous functions on [0, T ] .  In the same w a y ,  it([0, T];
B) is defined as the space of all B-valued continuously differentiable functions
on [0, 7 ]. The space of all B-valued L 1 functions on [0, T ]  is denoted by
L ([0 , T]; B).

Definition 1.1. We say that the Caucy problem (0.1) is .1,2 well posed on
[0, T ],  if for an y s (0 s< T ), a n y  uo(x)EL 2 an d  any f (t , x )E L ([0 , T ]:
LARn)) there exists one and only one solution u(t, x ) of (0.1) in  C7([s, T];

1.2 (R ) )  in a distribution sense (i.e. f  f f ( t ,  x)ço(t, x) d x d t= 11. f {u(T , x)

( T, u o (x ) ç o (S ,  X )} d X  f T  f U(t , x)* Lço(t, x)dxdt is valid for a n y  (t, x)

E C o ( [ S ,  T]x Rxn)) and we get the energy inequality

muct,.)11 07-)(mitiol+ftwe, .Hde) (s t T )

for a constant C ( T ).  Here, * L  is the formally adjoint operator of L, Ccr([s,
T ] X Rxn )  denotes the space of C-  functions on [s, T]x krn whose supports
are compact and 11*1 the L 2 norm.

Let (q, p)(t, s; y ,  ) =(qi., •• • qn, pi, • • • , Pn)(t s; y, e )  be the solution of the
Hamilton canonical equations for h2(t, X , C) issuing from (y, e) a t t =s, that
is,

dq a h 2  t  d p  a h 2  t  s  ( y , e ) .
dt ae 'q '  dt a x

Theorem 1.1. Besides the assumptions on h,(t , x, E)(j =1, 2) in  introduc-
tion w e suppose that there ex ists an  m 0  satisfying hi(t , x, e) T m (R ') f or
each t [0 , T ] .  W e also assum e that there ex ists a  subset Z  in  (1, 2, •••, n)
satisfying f o r all m ulti-indices a and g
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ax j hl n t ,  X , e ) < C c r , f l  ( jE Z ) ,

h a ( t  X  O < C a d 3  (kEzc),a 
aE„ "

where C a , f l  are constants independent of  (t, x , e)E[0,7]x  R 272 and Z c denotes
the complementary set of  Z  in  {1, 2, •••, nl. We set

(1.3) w(t, s; y , $)= expl—  f s
t 111(0 , q(t9 , s; y, $), p(0, s; y, $))c10}

Then, if

(1.4) sup su p  laeaDy'w( t, S ;  Y, E)1<c°
Os,stsT (y, V e e n

are valid f or all a and 3, the Cauchy problem (0.1) is L 2 well posed on [0, 7 ] .

Remark 1.1. We apply the above theorem to the equation which Mizo-

hata studied in [14]. Since h2(t, x, E)= - 1
2HE12 and hi (t, x , $) is given by the

form (0.3), we have

w(t , s; y, $)=expf— f  bl ((0 — s)$ + y)$40}

=exp{— iE f f
t - s

 bi (O$-F y)$; c10}

We note that a sufficient condition in [14] needed the existence of the inverse
operator of W (t, s; x, Dx) from L 2 space onto L 2 space for each t  and s (0<
s t < T ) basides (1.4). So, our result in Theorem 1.1 gives a better result
than his in [14].

Here, we return to Theorem 1.1. We note if we moreover assume the
existence of the inverse operator W (t, s; x, Dx) from L 2 space onto L2 space
(0 <s<t< T )  in  Theorem 1.1, we can easily obtain the same result as in
Theorem 1.1 by modifying the proof in [14]. See [8] for such a proof.

Corollary 1.2. W e suppose the same assumption on  h2(t x , $ ) as in
Theorem  1.1. On the other hand, we impose on hi(t, x, $) a stronger assump-
tion than (1.2) that

(1.2)' i f  la+ 13 1 * 0  , lh a(t, x ,

are v alid, where Ca, f i are  constants independent of  (t, x , e)E[O, 7]> <R 2 n.
T hen, if  w (t, s; y , $) defined by (1.3) is bounded concerning (t, s, y , $) such
that 0<s<t <T  and (y , $)ER 2 n, the Cauchy problem (0.1) is L 2 well posed on
[0, 7 ].

(1.2)

a
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P ro o f  Apply Lemma 2.1 which will be given in section 2. Then, we can
easily see from the assumption (1.2)' that if la+ gl*O, (1.4) in Theorem 1.1 are
valid automatically. So, if w(t, s; y, e ) is bounded, (1.4) are valid for all a
and 8 .  Hence, we can complete the proof from Theorem 1.1.

Remark 1 .2 .  In a forthcoming paper [8] we shall prove under the same
conditions as in Corollary 1.2 that if (0.1) is L 2 well posed on [0, T], there must
be a T 1(0< T1 T ) such that w(t, s; y , e) defined by (1.3) is bounded concern-
ing (t, s, y, e )  such that 0  s t  T1 and (y, E)ER 2 n. Hence, we obtain a
necessary and sufficient condition for (0.1) to be L 2 well posed on [0, T ] from
this result in [8] and Theorem 1.1, if h,(t, x, E) (j =1, 2) are independent of t
E [0, T ] and satisfy the assumptions in Corollary 1.2.

We shall state the proposition before giving examples. Let Z = 22,
z il be a subset in {1, 2, •••, n1 and set

xz =(xz „  • • •, xzt) ,Z 1 1  .

We define the transformation from L 2 (R )  space onto L 2 (R 2 ) by

(1.5) f e ' x z  v ( 4  xz.)dx

for v (x ')E L 2 (/?1, ). If Z  is empty, we mean the identity by (1.5). Here, we
represented x ( x ,  ,  x n )  symbolically by

(1.6) x=(xz, xz.) •

We shall use this symbolic representation (1.6) through the present paper. If
Z={1, 2, •••, n} , the above transformation (1.5) becomes a usual Fourier trans-
formation. We denote the transformation (1.5) by g v z -x z v (x ).  The inverse
operator ( g -  1I ,xz-x2 of gx•z-xz can be defined by

( g - ') , , r f,u(x ') = feixz-vzu(xz, 4 .)4 x z  (4 xz—(27r)HzIdxz)

for u (x )E L 2 ( Rxn).
Let define a mapping (x, E)= ( x ' ,  E') from R11%,t , onto Re by

(1.7) (xz, , (ez, Ez.)=( — x"z, ec )

and denote by (x', 0-'(x, e) its inverse mapping, where Z  is the subset
given in Theorem 1.1. We define the symbols k,(t, x', E')(j =1, 2) from h,(t, x,
e)(j =1, 2) in Theorem 1.1 by

(1.8) ki(t, x', e')= h.,(t, 0(x', E'))

and denote the solution of the Hamilton canonical equations for k2(t, x', e')
issuing from (y ', e ') at t =s by (q', p') (t, s; y', e'). Then, we obtain
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Proposition 1.3. We suppose the same assumptions as in Theorem 1.1 and
consider L  defined in  (0.1). Then,

(1.9) ( g-1)xx-vz.Lo gx ,x-xxv(t, x')

1=atv(t, x ')+ K2(t , x ', Dv)v+ Ki(t , x ', Dx , )v+ R(t , x ', Dx, )v

is valid f o r any  v (t  , x ')E  lt([0, T ]; L 2 ), where the symbol r(t , x ', E') o f  R (t
x', Dv) satisfies f o r all a and

(1.10) Ira))(t, x' E")1 C".,i3

with constants independentindependent of  (t, x ', e')E [0, x R 2  n . Here, • 0 • implies
the product o f  operators. A lso, we get f o r any  (y ', e')ER 2 n

expt — if  k1(0, q'(0 , s; y ', E'), p'(0, s; y ', E'))clOf

=expl— if  h1(19, q(0 s; y, p(0, s; y , e))clOf

((y, E)= 0(.31 ' , E'))

P ro o f  Let h(t, x, e) be hi(t, x, e) or h2(t, x, e). Then, we can easily see
for v(x')E S

H(t, x, Dx).gx , - x v (x )= f f e " - Y ) ''h(t, x, $)dyd,Efe - ' ' 'v (x ')d x '

=  f h(t , x, x lv (x ')d x ' .

So using the pseudo-differential operator with a double symbol,

( 9 - 1 )x-x, 0H(t, x, Dx).gx , -x v (x ')= ffe h(t, x, —

= H(t , —

is valid. In the same way, we get for j=1 , 2

(1.12) ( g . 1 )xz-*°H.,(t , x, Dx)°9- *-,xz v(x')

=H,(t , D*, x ,  — Dx 0 v ( x ' )  (v(x')E  S) .

Let apply the asymptotic expansion formula (Theorem 3.1 in chapter 2 of
[12]) to the right-hand side of (1.12). Then, noting the assumption (0.2) on
h2(t, x, e) and (1.8), we can see

H2(t , Xc, — Dx0 =K2( t, x ', DA + R2(t , x ', Dx,)
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is valid, where r2(t, x', e') satisfies the same inequalities as (1.10) for all a and
)5) . For 1- 11(t , Dvz, x , —  D z z c )  we also get the similar equality to the above
from the assumption (1.2). Hence, we obtain

(1.13) x , D x ). x 2-x ,v (x l

={K,(t, x', D ) - F R.,(t , ,  D x , )} v (x )  ( j =1 , 2) ,

where r,(t, x ', E ') satisfies the same inequalities as (1.10) for all a  and R.
Hence, we obtain (1.9) and (1.10).

Next, we know well that a mapping P from to R r2e is called a
canonical transformation, if

(1.14) T.* E 7.1=i dx; A clEi=E.7=idx; A dE;

holds, where denotes the pull back of differential forms (see section 38 in
[1]). It is easily seen that the mapping 0  defined by (1.7) is a canonical
transformation. So, since k2(t, x', h2(t, 0(x ', El), it follows from the
well known classical theory on the canonical transformation that

(1.15) 0(q'(t, s; y ', p '(t, s; y ' ,  El)

=(q(t, s; y ,  E), p (t, s; y ,  E ) )  ( ( y ,  E)= 0(y', El)

is valid for any (y', e') (see section 45 in [1]), which shows from ki(t, x', e')=
hi(t, 0(x ',

k i(t, q'(t, s; y ' ,  El, p '(t, s; y ' ,  El)

= hi(t , q(t , s; y ,  E), p (t, s ; y, e ) )  ( ( y ,  E)= 0(y ', E')).

Hence, we get (1.11). Q.E.D.

Example 1.1. S e t  h2(t, x, e) — ÷1x12 a n d  hi(t, x, e )= E ;1=1 xi bi(—E),

where we assume bi(e)E2 - (Rn)(j=1, 2, ••-, n ) .  Then, we can easily get (q,

p )(t, s; y ,  E)=(y, —(t — s)y + E) and w(t, s; y ,  E)=ex pf  — sbi(Oy—E)y;c1

Of. Apply Proposition 1.3 as Z=11, 2, •••, Then, we get

x')

1 1=— atv(t, x ' ) - -
2

Jv+ E ; 1=1Y(x')Dxf,v+R(t, , Dx)v .

This equation was considered in Remark 1.1. Then, we can easily see that
our sufficient condition obtained in Theorem 1.1 for Lu(t, x)=/(t, x ) equals
that fo r (9 - 1 )x-x , . L og , g ( t  ,  x ' ) .  This fact is valid for more
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general transformation (see Remark 3.2 for its general proof).

1v o t , } 2
Example 1 . 2 .  Let h2(t, x, E) be 

2 m
1E12 + 1x12, which is the Hamilton2

function of the harmonic oscillator, where m >0 and co are constants.
Then, the solution of canonical equations (1.1) is given by

(q, p)(t, s; y,

=(ycoso)(t —  s)+— se  in a) ( t  — s), — mycosinco(t— s)+$cosw(t— s)) .ma)

aQ Take E 71=i a x i  (x)Ei+E.7=Ib l e; as hi(t, x, E), where S2(x)E.B - (Rn) and b' are

real constants. Then, it follows from p= m c i
d

q
t th at

r ; = , f

t

( q ( 0  ,  s; y, e))p,;(0, s; y, e))dO +E 7.1-.1b1  P ; (0 , s; y, e)dt90 ox i 0

= m[S2(q(t , s; y, E))— S2(y)+E'l=ib i {qi (t, s; y, e)— y}]

is v a lid . Hence, applying Theorem 1.1, we can see that the Cauchy problem
(0.1) is 1,2 well posed on [0, T ] for any T >O.

Example 1 . 3 .  Let h2(t, x, e) be 21m «E  ex2)2 + e22 + e32 + ••• + VI, where

m>0 and e> 0 are constants. When n=3, h2(t, x, E) is the Hamilton function
which represents the movement of a  charged particle under the constant
magnetic field (chapter 21 in volume 3 of [4]). Then, canonical equations are
given by

 

dqi1  dq2 1  p dPi 
dt (pi eq2) dt m- 2 dtm

_ 0( j 3 )chi — 1 3) ,dt m

c1P2  _ e
dt m  ( P 1 —  e q 2 )  '

So, setting w =e/m , we obtain the solution of (1.1)

 

eqi= E2cosw(t — s)+(Ei — ey2)sinw(t — s)+ (eyi - - - E2),
eq2= e2sinco(t — s) —  (ei —  ey2)cosco(t — s ) +  ,

(t S ) e3+ Yi 3)

P2
=  $ 2 C O S W (t S )+ ey2)sinco(t — s) , pi = $.,(j 2) .

Example 1 . 4 .  Let h2(x, E) be a polynomial of degree 2 in only x  and E
with real coefficients satisfying h2(x, E)>0 on R 2n. We define hi(x, E) by
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hi(x , E)=c { i+h2 ( x,

where c is a complex constant. We take these hi (x, C) in (0.1). It follows
from the assumption on h2(x, e) that for any variable z=x ;  and ek(1- j,
n) h2(x, e) is written in the form

h2(x, e)— 10(z —  11)2 + 12,

where /3 is a non-negative constant, /1 is a polynomial of degree 1 not includ-
ing z  variable and /2 is a polynomial of degree 2 not including z  variable

ahwhich satisfies 12>0 on l e li. So, it follows that (x  C) is bounded on R 2 72 .az
In the same way, w e can see that hi(x, e ) belongs to the symbol class
g 1,m(R2n) .

exp[- ic(t -s){1+ h2(y, C)1" 2 ]

d because of the energy equality h2(q(t, s; y ,  e), p(t, s; y, C ))=0 . Hence,dt
noting that hi(x, e)Eg l '- (R 2 7 2 ), we can see from Theorem 1.1 or Corollary 1.2
that the Cauchy problem (0.1) is L 2  well posed on [0, T ] for any T >0, if the
imaginary part of c is non-positive.

Example 1.5. We write

L iu ( t , x )=I i3 tu - Id u +E 71=ibi(x)D,u

and

L2u(t, x )=-1-Tatu++1.1.12 u+hi(x, Dx)u ,

where bi(x)Eg 0 0 (Rn)(j=1, 2, •••, n) and we set

hi(x, C)= f f e bi(E-x+ 2) - +.0dY 47 .1 ,

where Os- f f  • •dy dji denotes the oscillatory integral (see section 6 in chapter

1 of [12]). We assume that every b (x ) are not constant. Then, we remark
that the above h1(x, e) doesn't satisfy (1.2) in Theorem 1.1 for any subset Z.
This will be proven below. So, we can not apply Theorem 1.1 to the Cauchy
problem for L 2 .  But, we shall be able to see from Theorem 3.4 and Example
3.3 in section 3 that the L 2 well-posedness on [0, T] of the Cauchy problem for
L2 is equivalent to that for LI.

We can easily get for f(x)E.19°(R)

The function w(t, s; y ,  e) defined by (1.3) becomes
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(1.16) Os— ff e f(e— x + 27—+y)dy g - (RZ)

and

(1.17) Os— f(— x— ri+
1

y)dy d7/ =2 n f  e -2ix•7 e -2iIv1 2 ( 2
)
4 77

So, since every bi (x ) is not constant, it follows that there exist numbers j, k
and a point x (°)

ERn satifying

(1.18) Os— f f Lbik(x(°)+ —+y)cly 477*o .

Take sequences x(m)—(xi(m), •••, xn(m))ERn(m=0, 1, •••) such that x i(m )=
m and x i(m )= 0 (/ */ ) and define e(m)ER n by e(m )=x(m )+x (°) . Then,

ah, (x(m), e(m)>=m0s f f e ' "  aa xb:  (xm+ 71 -4-y)cly477
OXk

OS— f f e - "*"b k (x (°) +7)— --12--y)dy 47)

and

aek (x (m ), e (m ))=  mOs ff e - "*" 81?( ° ) 1 \
axk + 7 )- -Y ) " 2 72

ah,are valid . It follows from (1.16) and (1.18) that both n and
OXk aEk

bounded on R 2 .

are not

Example 1 . 6 .  Let bk.i(x)E.B - (Rn) (j=1, 2, •••, n, k =1, 2). When we take
E;=i1V(x)e3 and =ib23 (E)x, as hi(t, x, e) in (0.1), each hi(t, x, satisfies the
assumption stated in Theorem 1.1. But, if we set hi(t, x, E)=E 11=ibii(x)e,
+E.7=1b2J(e)x,, this hi(t, x, E) doesn't satisfy the assumption in Theorem 1.1
generally. Moreover, it seems that we can not apply the results in section 3.

2. Proof of Theorem 1.1

At first, we shall introduce some results from [10], [11] and others. Since
we will often use their results in the modified form and make the present paper
self-contained, we shall give the outline of some of their proofs.

Lemma 2 . 1  (Proposition 3.1 in  [1 0 ]) . L e t  h2(t, x, e) be a symbol defined
in introduction and (q, p) (t, s; y, e)=(qi, • • • , qn, pn) the solution of the
Hamilton canonical equations (1.1). Then, q,(t, s; y, e)E.B" - (R ")(j=1 , 2, •••,
n) and pk(t, s; y, E)E.0 1•"(R 2 )(k=1, 2, •••, n) are valid fo r  each t and s (0<



are valid for z =x  and $,

dq and
a

 respectively.az az
x, e), we can easily get for t  and s (0 < t, s<T )

ta, tah
where and denote the transposed vectors ofaz az

If we take account of the assumption (0.2) on h2(t,

2+
dz 2

}

c', {

aq
dzddt {
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t ,  s < T ) .  In m ore detail, we get

IdeaDysfq;(t,
(2.1) s ; y, E) — YA<Mia+Alt (la'+)31 1),

laeaDyfi{Pk(t, s; y, --/1/10, +,911t 
—

SI ( la +  1_.1)

f or j  and k=1, 2, n with constants 114- - la + f l l  independent o f  t, s(0<t, s< T )
and (x , e)ER '.

P ro o f  It follows from (1.1) that

d  t ag  _  a 2 h2
tag a2h2 

( t ,  q , P) az a $ a $  a zdt axae
d taq a2h2  taP 
dt axax

tap a2h2  ( t ,  q , p)  az a E a x  a z
(1.1)'

aq
a2

2 ap
dz

and so

     

aq
az

2+

 

a
az

     

where CI and C 2  are constants independent of t, s and (y, E ). Consequently,
we obtain from (1.1)'

d  a 
d t az  f q ( 1 .  ' s ;  y

' 3/1

d  a 
d t  d "  '{p (t s. y  $ )— E}

with a constants C 3 independent of t, s and (y, E). Hence, we can prove (2.1)
in the case la + /31=1. In the same way we can complete the proof. Q.E.D.

In the present paper w e w ill use the lem m a below on the global
homeomorphism without its proof, instead of the contraction principle used in
[10] and [11]. Then, we can construct the fundamental solution on the wider
interval in t variable than that obtained in [10] and [11], as will be seen in the
proof of Theorem 1.1. W e will also use this lemma for showing the well-
definedness of the canonical transformation determined by generating func-
tion in section 3 of the present paper and [8].

Lemma 2.2. ( Theorem 1.22 in  [16]). L et f  be a  C1 mapping: I?  x—>



(2.4)
ao
a$ (t, s; q(t , s; y, E), y

and

{ ao 
ax "(t "s. q (t "s. y  E) e)= p(t , s; y, E)
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f(x)=(fi(x),•••, .f.(x ))ER n . I f  there exists the inverse matrix a f a f
ax ( x ) 1-  o f  ax

(x) f o r each xE l e  and we have

af 
 ( x ) -ax

then f  is a homeomorphism of  le  o n to  le .  Here, 11 QII f or a matrix Q indicates
the operator norm  of  Q as the m apping f rom  le to le.

Lem m a 2.3 (c.f. Proposition 3.3 in [10]). We consider q(t , s; y, E) deter-
mined in Lemma 2.1. Then, we can take a  T0(0< To T ) such that f o r each
t, s (0< t, To) and EER " there exists the inverse C-  di ffeomorphism: R n 3

y= y(t , s; x, y2, •-• , yn)E fe of  the mapping: lepy-> x=q(t , s; y,
$ )E R n . Moreover, we get

(2.2) laeaRvily(t, s; x, e) -  x.,}1‹ M(a+al t (l a+ del 1) ,

with constants M independent of t , s (0 , To) and (x, E)ER 2

P ro o f  It follows from Lemma 2.1 that we can take a  To satisfying

det 
aq 

 "(t s . y , >8>0

  

for t,s (0 t , s< To) and y, EER", where 8 is a constant. Then, the existence
of the inverse C" diffeomorphism stated in this lemma follows from (2.1) and
Lemma 2.2. Inequalities (2.2) can be derived by differentiating q(t , s; y(t , s;
x, E), e)= x. Q.E.D.

Lem m a 2.4 (c .f Proposition 3.5 in  [101). Suppose the same assumptions
as in Lemma 2.1 and take a To determined in Lemma 2.3. Then, the solution
0(t, s; x, E) (0<t, s< To, (x , E )E R ') o f  the eiconal equation

ao (2.3) at0+h2(t, x
'

,  Olt-s=x•$ ax

is determined uniquely and satisfies

sup
xeR ,

< co  ,

a20 aq (2.5)   (t, s; q(t , s; y, E), (I, s; y, E r .axae
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P ro o f  We know well the classical result that setting

S(t, s; y, • •- f-  LE P;=1P.7(0 , s; Y , e)dq;(0, s; y, E)

— h2(0, q(0, s; y ,  $), P(O, s; y ,  $))dt9 ,

an equality on differential forms

(2.6) dS=E;=ipialq,— h2(t , q, P )d t  on [0, T] x R y n

h o ld s . In fact, it follows from (1.1) and the definition of S(t, s ; y ,  $) that

asa q ,  
at (t, s ; y ,  $ )= E ,P ,(t, s; y , $ )  at ( t ,  s ; y ,  $)— h2(t , a, ,

OSa q ,  (t, s ; y ,  $)= E ,p,(t , s; y ,  $)( t ,  s ;  y , $)oryk oyk

is v a lid . Hence, we get (2.6). If we determine 0(t, s; x , $ ) by 0=S(t, s ; y ( t ,
s; x , $ ), $ ) (0  t , s  To), we get from (2.6) a t once

{

a,0+h2(t,x, P(t , s; y(t, s; x , $), $))= 0
80 
a x  ( t , s ; x , $ )= P (t, s ; y (t , s ; x , a E ) .

So, we obtain (2.3) and the first equality of (2.4). Using these two equalities
obtained now, we can easily see

d 00 
d t  a$ (t, s; q(t , s; y ,  $), $)=0

for any t, s, y  and E .  So, the second equality of (2.4) is  de rived . (2.5) can be
also yielded from the second equality of (2.4). Q.E.D.

Now, we shall introduce Fourier in tegra l opera to rs. Let 0(x, e)E g3 2 '0 0

(R 2 n) be a  real valued function. Then, the Fourier integral operator Po(x,
Dx) with a symbol P(x, E )  

T m ( m 0 )  and a phase function çb(x, E) is defined
by

(2.7) P0(x, Dx)u(x)= f e ( x 's )P(x, E)ii(e)4E

for u (x )E S .

Lemma 2 .5  ( c . f  Theorem 3 .7  i n  [11]). F o r  any  p (x ,  $ )E  T '  (m i0 )
a n d  q (x , e)E rnz (m 2 > 0 ) there exists a n  r (x , $ )E  7 ' 1 +7"  such that

P(x, Dx)° QØ(x, Dx)=R0(x, Dx)

holds. Concretely , r(t , x , $ ) is given by
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(2-8) r(t, x, E)

= Os— f fe (x, 27+ f ' a
a x

g5 (x + By, E)c10)q(x+ y, E)dy$7i

=p ( x  3
315 (x  E))q(x  E)+E. ,D y a { p (a ) (x

0
 a çb (x+ Oy, e)dO)ax

1 ,-,x q(x+y, e))] +2f (1— OUOTIal=2 —

a !
us

y = 0 0

ad,
ff e—Y-Dyalp(a)(x, (9'72+ f  a;  ( + By, $)(10)q(x+ y, E)}

x dy$77

Pro o f . We can prove in the same way to the proof of Theorem 3.7 in [11].
It follows from the definition of Fourier integral operators that

(2.9) P. Qo u(x)= e)q(x', E')U- (E') e'dx'aE

is valid for u(x)E S, where

0=(x—x')•$+ 0(x', $')— 0(x, $').

The well definedness of the right-hand side of (2.9) is assured, if we use the
a o

integrals by parts in x' and E. Changing the variables $ to 72=E ax
e(x—x'), $')dO, the right-hand side of (2.9) is written as

fffezocx,e)+i(x-x,)•7p(x a
n r4 (x'+19(x— e)do + 22)ax

x q(x', e')ii(E')tE'dx'47) .

Once again, make the change of variables x' to y=x'—  x. Then, we get the
first equality of (2.8). The second equality of (2.8) is easily obtained from the
first equality by using the Taylor expansion formula.

As for r (x ,  e )E  7 'J ' we can see from (2.8)

r(x, E)= Os —  ffe-i 77.Y• <y >-21<11:0 2 1 < 77 > -21<p y >21

x p(x, 77+ f' 
aaxçb

 (x + By, e)a10)q(x+ y, $)dyas2) .

Setting 1 .>.(n+1 + mi+ m2) / 2 and noting that pE  7"n' , qE7' 7"  and q5E 2 2•- ,
we get

1r(x, E)1 Const. (1 +1x12+1e12)('+'"2
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In the same way we obtain r(x, e )E7""m 2 . Q.E.D.

Lemma 2 .6  (c.f. Proposition 3.2 in [11]). We assume that a real valued
function q5(x, e) belongs to the class g 2 ' 0 (R 2 n) and satisfies

det (x' e)axae 

w h ere  is  a constant independent of  (x ,  ) R 271 . Then, the Fourier integral
operator .13 0 (x, Dx) with a symbol p(x, e)ETm f o r an  m 0  defines a  linear
continuous operator from S  to S .

Proo f . Let define Ji and 12 by

.1,=<E>-2(1-FiE dax,)

and
'1 -1  r 1a .   4h=[1+{ (x, e) da;  (o, El2i [ (x, E) (0, E )}]t  a;  

Here, we note that

( x ,  E )  34 (0, e)->-alxi

follows from (2.10) with a constant 8' >O. We can easily have

Po(x, Dx)u(x)=ffe i io com t t
J 2 )

)t2 ix, • e
\  

x (71) 11 p(x, E)u(x')dx'ae ,

where tii (j=1, 2) implies the transposed operator of I i .  S o ,

<x>k 1P0(x, Dx)u(x)1

- Const.Eali,<x> k - 1 2 ff(1+1x1+1$1)"<e> - "

x(1+1x1+1$1)1Dxa u(x')Idx'4E

is v a lid . Hence, taking 12=k+ m and 11= /2+m+ n+1, we have

<x>k IP0 (x, Dx)u(x)I <c,o n s t . Elals t i SUP(<X>k
-Fm+n+ 1 1D xau (x )1 ).

In the same way we can complete the proof. Q.E.D.

We know about the L 2 -bondedness of Fourier integral operators. W e
introduce from [2] without its proof.

(2.10) 8>0 ,
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Lemma 2 .7  (Theorem  1 in  [2]). Suppose the same assumptions as in
Lemma 2.6. Then, the Fourier integral operator Po (x, DO with a symbol p(x,

)G T °(R ')  is  an L 2 -bounded operator. That is, we hav e for uEL 2(Rn)

IIP0(x, Dx)u( • )II< cllu(•)11

where C is a constant determined from max s u o l i a ( x , a n d  m ax  supi0
la+oalsi 2sky+81s/

f o r an integer

Proof  o f  T heorem  1.1. We can assume from Proposition 1.3 that the
subset Z  in Theorem 1.1 is an empty set. That is, we assume

(2.11) x , E>1.< Ca,13 ( j= 1, 2, •••, n)

for all a and 8 with constants C a , f l  independent of (t, x , e)E[0, T ]x  R 2 n
Let ( t, s; x , E ) be the solution of eiconal equation (2.3). Oft s; x , (0

< t, s< To, (x , E)ER 2n) is obtained from Lemma 2.4, where To is a constant
determined in Lemma 2.3. We can see from (2.1), (2.2) and (2.4) that

(212) 10 0 t ,  S , X ,  EA Ca,fi (lœ-FRI >2)

are valid, where Ca,R  are constants independent of t, s (0 < t , s< To) and (x, E)
E R 2 n .  We remark that Ca, fi in  (2.12) are different from constants in (2.11).
If there is no confusion, we shall use the same symbol C a,f l .  We consider the
Fourier integral operator Ao(t, s; x , D x ) (0<s<t<T 0 ). Take account of
assumptions (0.2) and (2 .1 1 ). Then, if symbol a(t , s; x, E) belongs to r ( R 2 n ) ,

it follows from Lemma 2.5 and (2.12) that

LoA 0(t, s; x ,Dx)=Bo(t,s; x , Dx)

b(t, s; x , E)=t a
t: ( t  s ; x ,  E )+  h2  , x,

a
ax
(D

 (t, s; x , E))}

(2.13)J x a(t, s; x , e)+ 1-
j. { 13

,97 (t , s; x, E)

 (t, x, a
a x

° ) (3
a
x
c l

i ( t,s;x ,E )

+ihi(t, x ,
a
ax
°

)a(t,s; x , $)} ±r(t, s; x , $),

where

(2.14) Ir(%)(t , s; x, E)i< Ca,fi

are valid for all a and ,3 with constants C a ,f l  independent of t, s (0 < s < t < To)
and (x, $) R 2 .

We determine a(t , s; x, E) as the solution of
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aaat  ( t ,  s ;  x ,  e )+ z „,, ,aahe : ( t, x , aa!  (t, s ; x, e))  (t, s;

+thl(t,x,_at)a(t , s; x, e)=0

a(s, s; x , e)=1

au) Let (q, p)(t , s; y , C) be the solution of (1.1). Then, since a x  (t, s; q(t , s; y, a
p(t , s; y , e) is valid from (2.4), the above equation becomes

d a(t a(t s . y  C) E)+ ihi(t q P)a(t q  C)=0.

So, we get

(2.15) a(t, s; q(t s; y, C), e)=w (t, s; y, e ),

where w(t, s; y, C) was defined by (1.3). We can easily see from the assump-
tion (1.4) on w(t, s; y, E) and Lemma 2.3 that a(t , s; x, e) determined by (2.15)
belongs to r ( R ')  for t  and s (0 < s < t < T o ).  Therefore, we obtain together
with (2.3)

(2.16) L. A o(t, s; x , Dx)=Ro(t, s; x , Ds), A 0(s, s; x, Dx)= Identity,

where r(t , s; x, C) satisfies (2.14) for all a  and 8.
Now, we denote by L the set of all linear L 2 -bounded operators and by

C7,8([0, To]; 2 )  the set of all 2-valued continuous functions in t  and s such
that 0.<s <t < T o . Following the usual method (see section 4 in chapter 7 of
[12]), we shall construct the fundamental solution E(t, s)E 61,s([0, To]; -C) of
(0.1) (i.e. L E(t , s)=0, E(s, s)=Identity) in the form

(2.17) E(t, s)=A 0(t , s; x , Dx)+ f  A o(t , r; x , Dx).S2(r, s)dr , ,

where S2(t, s)E 6"t,s([0, To]; 2 ) .  Then, S2(t, s) is determined as the solution
of the integral equation of the Volterra type

0= S2(t , s)+ s; x , Dx)+ i Ro(t, r; x , Dx)- S2(r, s)dr .

We see from (2.14), Lemmas 2.4 and 2.7 that Ro(t, s; x, Ds) belongs to 61,s([0,
To]; 2 ) .  So, this S2(t, s) can be obtained succesively in the form

s2(t, s)=Z7=os2, (t, s),

where
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{ S20(t, s)= — iRo(t , s; x, Dx)

S2; (t, s)— — i f t Ro(t, r; x, Dx).S2; _1(r, s)dr (j = 1, 2, •••).s

Thus, we obtain E(t, s)E 61,0([0, To]; - C).
For data  uo(x)EL 2 and  At , x)E L i ([s, To]; L 2 ) we define u (t, x ) (s  t

To) by

(2.18) u(t , x)= E(t, s)uo(x)-F if  E (t, r)f(r, x )d r.

We will show that this u(t, x) satisfies the equation in (0.1) in a distribution
se n se . We can see from the proof of Theorem 6.1 in [11] that if  T1 is small
(0< To), S2(t, s) in  (2.17) is written by a Fourier integral operator as

S2(t, s)=Dtp(t, s; x, Dx) T1),

where d(t, s; x, e)ET ° (R 2n). So, we can see from Lemma 2.6 that if uo(x)E
S  and f (t , x)ELKs, T]; S), u(t , x) defined by (2.18) is a genuine solution of
(0.1) on [s, Tdx Rxn. In the same way u(t, x) becomes a genuine solution on
[ T1, T1'] x Rxn ( Ti'=min(2 T1, T o ) ) .  Consequently, this u(t, x) becomes a gen-
uine solution on [s, To]X Rxn . Hence, approximating uo(x)EL 2 and f (t , x )E
Pt([s, T]; L 2) by the elements of S and L it([s, T]; S ) respectively, we can see
that u(t, x) defined by (2.18) is a solution of (0.1) on [s, To]x Rxn in a distribu-
tion sense, because E(t, s) belongs to 61,3([O, Tot -C). H ere, we used the
delicate result in  [11] to show that u(t, x) defined by (2.18) where uo(x)E S
and f(t , x )E LM s, T ]; S ) is a  genuine solution of (O. 1). But, we can prove
it in  a  much easier way from a  theorem on the boundedness of our Fourier
integral operators. This theorem will be publised eleswhere.

We can easily extend the existence interval [s, To] of the solution u(t, x)
constructed above to [s , T ] as follows. Consider the Cauchy problem

Lv(t , x)=- f (t , x) on [ To, T] x Rxn, v(to, x)=u(To, x).

Then, we get the solution v(t, x)E EM T°, T2]; L2) where T2=min(2 To, T ) in
the same way as in the construction of u(t, x)E ell([s, To]; L 2). Consequent-
ly, we obtain the solution u(t, x)E 61([5, T2]; L 2 ) of (0.1) fo r  uo(x)EL 2 and
f(t , x)E e T ] ;  L 2). Repeating this process, the solution u(t, x) of (0.1) is
obtained on [s ,  T ].  It is easy from (2.18) to show that the energy inequality
stated in Definition 1.1 is valid for the solution u(t, x) obtained now.

Next, we will show that the solution u(t, x)E 61([5, T]; L 2) is only one.
Here, we may suppose s =0 without th e  loss of generality . T he  formally
adjoint operator *L fo r  L  in  (0.1) is given in the form

(2.19) *L = 1:at+112(t, , Dx)+H i(t, , Dx)
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from Theorem 1.7 in chapter 2 of [12], where Hi (t, 1, Dx)(j=1, 2) denotes the
pseudo-differential operator with a double symbol hi Ci, C). hi (x, e )  is the
complex conjugate of hi (x, e). That is,

(2.20) f{1.9(t , X )}0(t , X )CIXdt = fo

T

i

r

çO(t, X){ * LO(t , X)}1:1Xdt

is valid for any ço(t, x) and Oft x) belonging to C0- ((0, T)x Rxn). Apply the
asymptotic expansion formula of double symbols (Theorem 3.1 in chapter 2 of
[12]) to the each term in (2.19). Then, since h2(t, x, e) is real valued, satisfies
(0.2) and hi(t, x, C) satisfies (2.11), so 

* L
 is written as

(2.19)' 1 x, + 1-1,(t , x, D )+ R o , x , Do ,

where ri(t, x, C) satisfies the same inequalities as (2.14).
Take a  g(t , x)EC0 - ((0, T)x Rxn) and consider the backward Cauchy

problem

(2.21) * Lv(t, x)— g(t , x) o n  [0 , T ]x  R xn , v (T  , x) =0 .

We take t and s such that 0< t s< T  and set for any (y, E)ER 2 n

(2.22)( y ' ,  E')=(q(t , s; y , e), p(t , s; y, V .

Then,

(q, , s; y, e)=(q, p)(0 , t; y', e') (t< 0 <s)

follows from the uniqueness of the solution of ordinary equations (1.1). So,

(2.23) expf — i f  1/1(0 , q(0, s; y , a  p(0 , s; y, $))d Of

—expf —if s hi(O, q(e9 , t; y',p ( 0 ,  t ;  y', e'))cle9}

= w(s, t; y', C')

is valid from (1.3) for all t and s such that 0 ‹  t  < s ‹ T. Hence, we can see
from assumption (1.4) and Lemma 2.1 that

(2.24) sup sup la$ aDy
fiexp-{ — i fs hi( 0, q(0 s; y, e),

0515s5T (y, e) '

p(0, s; y, e)dOli<oe

is valid for all a and From this result we can construct a solution v(t, x )
E C7([0, 7 ]; L 2 ) of (2.21) in the similar form to (2.18).
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L et u(t, x)E 61([0, T ]; L 2) be the solution of (0.1) where s=0, u(x)=0
and f (t, x ) = 0 . We have already proved about the solution v( t, x )  deter-

mined above that v( t, x ) a n d  a
a

v
t (t, x )  are continuous a s  a n  S -valued func-

tion on [0, T ] .  So, we get

(2.25) o=frfu (t, x )*Lv(t, x)dxdt

ET E
= I I u ( t ,x )g ( t ,x )d x d t ,

because u (t, x )  is a solution  in  a  d istribution sense. H ere, g(t, x ) was an
arbitrary function belonging to C0- ((0, T )X  R x n). Consequently, the  above
equality (2.25) shows that u(t, x ) vanishes on [0, T ]X  k rn . Therefore, we can
see that the solution of (0.1) belonging to C7([0, T ]; L 2) is only o n e .  Q.E.D.

3. Canonical transformations and the Egorov theorem

In this section we shall extend the result obtained in Theorem 1.1 to other
equations by applying the Egorov theorem in the revised f o r m . Ju. V. Egorov
in [3] treated real valued functions 0(x, E) locally defined on an open set U x
R en in  Ri.11 > R e n satisfying 0(x, /1E)= 45(x, E) fo r  a ll A > 0 . We stated an
example in section 1 (Example 1.5).

Throughout this section we assume that a  phase  function q5(x' E) is  a
polynomial of degree 2 in  x ' and  e with real coefficients. Though we can
relax this assumption on 0(x ', e) a little more, we limit our phase funtions to
those mentioned above fo r  th e  simplicity. W e denote by /0= I o (x'a )  the
Fourier integral operator with a symbol 1 and a phase function 0(x', E), that
is,

( 3.1) I0u(x ')= ffe 1" ' u(x)dx (u(x )E  S) .

Then, the formally adjoint operator / 0 * of 10 in  the  L2-inner product can be
defined by

(3.2) v (x )= f f e ix' - i ° ( " ) v (x ')dx '

for v (x ')E S
We set

F7 x 4(x ', z ', e )= f l t b
x ,(z , ±0(x , — E)c10 ,

est,(x' , E ) =  f o a,4 (x', 7)+0(e—))de
(3.3)
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as in  [11] for x', z', $ and 7/ R .  If we assume that

(3.4) det aax2,L $)*o

is valid, we can see from Lemma 2.2 that the mapping for any fixed x' and
R n D e — >$'=ffx, 0(X', e)E  R n makes a  diffeomorphism from R e " onto R .
We denote by $=ffx , 0- 1 (x', z', $') the  inverse  mapping. Under th e  same
assumption (3.4) the mapping for any fixed $ and 77: Rn x' --÷ x , E, 71)
E R  makes a  diffeomorphism from R.;', onto R in . We also denote by x '=

0- '(x, $, 7)) it s  inverse  mapping. I n  th e  same w a y , we can define a
diffeomorphic mapping 0= Ø(x' , $') from R11v  onto R.2z.n,e by

ao (3.5) x=
ao

 (.1•' $) , $ '= (x ' E),a$ ax

if  we assume (3.4). It is well known that this mapping 0  is  a  canonical
transformation, that is , 0  satisfies (1.14) (see section 48 in  [1]). Such i s
called the canonical transformation generated by q5(x', e).

Lemma 3 .1 .  L et q5(x', $) be a Polynomial of  degree 2  in  x ' and $ with
real coefficients such that (3.4) is  valid. W e suppose that h(x, $) belongs to
Tm(R 2 ) f or an  m - 0 .  Then,

(0  we get

(3.6) /0oH(x, Dx)•/:=- P(x', ,

where double symbol P(x', $', 'Y') is defined by

(3.7) p(x', $', ,"i')= Os— f f e ' " h ( l i e0(. -x- ', $, E+ 72)— y, $+71)dA7)

a 2A
det a.T'a$

( i i )  We get

(3.8) L*50K(x', Dx , )./0=S(x, Di) ,

zf we define s( $ )  by

-1

($=0---x4 ' (xr,

s(x , $)= Os — ff .91(0 7  4 - 1 (x + y , E, + 7)), $)dA7)

a2d, _1
X det ax' 8$

$)= Os— f f e — Y •"'k(x',P7 x15(x' , x' + y' , $)+71)dy'?;l71' .

(3.9)
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Proof We can prove this lemma in the sam e w ay to the proof of
Theorem 3.5 in [111

(i) It follows from the definitions of / 0 and 1 that setting

(3.10) w(E, z ')= Os— 77)dy47/

then,

100H(x , Dx ).I:v (x ')

=ffe icx , ,e)-iy•edy 4- f f  e 'h(y, 71)dz47) ffeiz.w-ice,w) v ( z
,
)d z ' 4 6 0

=ffe i0(x',E)-iY•e dy f f  e iY
"

7 - i 9 5 ( z '
' '

1 ) h(y, 71)11(21dZ '  4 77

=ffe w (e , z lv (z )dz 'ae

is valid . So, making the change of variables $ to $'=ffxriP(x', z', E), we get

l o o H(x , Dx).I I*) v(f)= if  e i ( e - zl'e" w(E, 21v(z)clz'

(e=0" xqb - 1 (x', z', E')) .

det
a20 1_1

ax'a$1

Consequently, if we set

(3.11) E', F)=w(E,

we obtain

02A
det ae

 

(E= 17x4 - '(x', ,f•' , E')),

 

(3.12) H(x , D )° I,?  wi(x, Dxr, .

Now, make the change of variables (y, 77) to (y', 77')=(—y-1-0-74(z', $, 71),
71— E) in (3.10). Then, w(E, z ') is written as

Os— h(I7 eq5(z', e, e+7)')— y', E+ 71')dy' 471 .

So, we can see that w i(x ', $', .f. ') in (3.11) is equal to P(x ', $', .F) defined by
(3.7). Hence, we can complete the proof of (i).

(ii) htoK (x ', Dx )0/04(x ) for u(x )E  S  is written in the form

(3.13) f f e '* "('''')c lx 'a,f f ei(x "-Y 1' k (x ', e ldy ' feicY 'm  ii(e)ae

= f e i - " i i ( E ) 4 E o s  f f e i lx • v - x • E +0 ( x ',$ ) - 0 ( x ',"  W 2 ( 4  E ) C 1 X
'  477
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where

w2(x', $)--- Os— e')dy'4E' .

If we make the change of variables (y', $') to (53', $'— r7q5(x ', y',
a ,  w e  have

(3.14) w2(x', E)= Os— if k(x' , P7 x, 0(x' , x '+  ,  $ ) + -7j ' ) d ' ,

which is equal to si(x', $). Next, change the variables (x', 77) to (53. , )=
(ffgb(x', $, 7)) —  x, e) in the right hand side of (3.13). Then, it follows that

D r).I 0 u(x)

= fez ."  ($) 4$0s —  ff e - zY • "si(ff eq5- 1 ( x  +  ,  $  ,  + e)d

Then, we can easily prove

a 2d,
det a x a E

is v a l id . Hence, we obtain (ii). Q.E.D.

Lemma 3.2. We suppose the same assumptions on çb(x ', $) as in Lemma
a 20

3.1. We set p =  det • We see from the assumption that II is a non-zeroax 'a$  
constant. T h e n , .1(p) 1

/2 makes a unitary operator on 1,2 space. T h a t is,r o

/do = P i: ° =  Identity .

P ro o f Apply Lemma 3.1 to /0./: and 11°1-0.
this lemma. Q.E.D.

Remark 3 .1 .  W e can see the following from Lemma 3.2. Operations
/ 0. • 0/0" and / :. • . / 0 in  Lemma 3.1 are opposite ones each other in the sense
that

o{Io.H(x, Dx)0.0}.I0= -
21. H (x ,  D r) ,

Dx,)01:10Igt = p
l 2K(x', Dr ,)

are valid where ft =
a 2A

det ax'a

  

Consider a phase function q5(x', E) satisfying the properties assumed in
Lemma 3.1 and denote by

(3.15) (x , E)= 0(x ', $ ') —=(x (x ', E'), e(x r, E'))
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the canonical transformation generated by 0(x', $), which was defined by
(3.5). Then, we get

Theorem 3.3. Suppose that the assumptions in  Theorem 1.1 where Z = {1,
2, n} holds. W e  set

k2(t, C') h2(t, 4DGC, 41)

ki(t, x ', e')— Os— f  f hi(t, x(x' , e'), e(x' E')

(  
71 Y aXa2L  ax0 1 -1 )d Y '̀47)

Then, we can see that the .L2 well-posedness on [0, T ] of the Cauchy problem
(0.1) is equivalent to that of the Cauchy problem f or the equation

(3.17) L' v(t , x')=-1
7. atv(t , x')+ K2(t x', Dv)v + Ki(t , x ', DA v

= g(t , x') o n  [0, T]x .

P ro o f  It follows from Lemmas 2.7 and 3.2 that the L 2 well-posedness on
[0, T] of the Cauchy problem (0.1) is equivalent to that of the Cauchy problem

10 . Lol 0 -1  v(t , x')=g(t , x') .

We will write ./.
0 .L.L6 - 1  concretely by using Lemmas 3.1 and 3.2.

Since 0(x', $) is a polynomial of degree 2,

(3.18) ffe0(±-', $, e+ 7i) - - fo
l a

a ( F, E+ 71—  07l)de

= 19'b , e)+ a2 çba$ 2  aEae

and

ad ,

(3.19) , x' + y' , f  (x' + y' — By', e)d00 ax

ao, 1 ,  32
"

0  = (x  C )+  yax 2 ax'ax'

are valid from (3.3). So, because E=rx , q5- 1 (x', x' + y' , e' + n') is determined
aq5 as the so lution of $'+77'=,z , q5(x', x' + y' , " (x ' e )+ 

1  

y '  d2q5

ax 2 ax'ax"
have

ffx, 0 - 1 (x', x'+ y', $'+72')= $(x', e'+22 1 ,  a20 
2 dx'ax' 1

(3.16)
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Here, we used the notation (3.15). Hence, noting that

nn 2 -1
u ‘s  (X ' = u  Waeax'

is yielded from (3.5), we obtain

(3.20) 7 X4-1 (x', x' + y' , $'+ 77')=E(x', $')+(72' 1 y' a2q53 2 ° -1

2 a x 'a x ' ax'ae •
t 2 a2

where we used
a

aeax' ax'aE•
At first, we consider /00H2(t, x, D)° I0

- '. We can see from Lemma 3.2

10° H2(t , X, DX) ° 4 - 1 =  tiI0 0 H2(t X, DX) °( I-1=

So, applying (i) of Lemma 3.1,

(3.21) /00H2(t, x, Dx). = P2(t , x', 2 ')

is valid, where

a2 •

det ax ,5E .

(3.22) P2(t , x', $',

=Os— ffe '* *h 2 (t,P7 4(2' e, e +  71)—  y, + )dy 47)

($ 1 (2 ', 2 ', el).
We know well that setting

(3.23) P2s(t, x', $')= Os— ffe ''"P 2 (t , x ', $ '+ x'+y')dy'47)' ,

we have P2s(t, x', x', 2 ')  (Theorem 2.5 in chapter 2 of [121).
The double symbol P2(t, x', $', :2') is written from (3.18) as

Os— f f e It2(t, a
a

ç: (2 ',  $ ) +  LI y ,  $+72)dy477

(E=17 x,0-1 (x', E')).

Here, if we use the assumption (0.2) on h2(t, x, $) and the Taylor expansion
formula of the integrand, p2(t, x', $', 21 is rewritten in the form

(3.24) P2( t, x', $', ')=  h2( t, ( $), $)+ T2(t, $)

x'95-1 (x', E')),
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where T2(t, E) satisfies for all multi-indices a and g

(3.25) laeaD.1-, T2( t E)1 Ca,p

with constants Ca independent o f (t, e)E[0, T]x R 2 n . Consequently,
P28(t, x', e l  defined by (3.23) is given from (3.20) by

(3.26) P28(t, x", el= Os—  f fe ' ' h 2 (t , (x'+ y', e), e)dy'47ra$

+os— 2(t, +31', E)d.Y'a2)'

(E = E ( x  E  )+ ( 7) 2  Y aX3 2 : X  ax
a
X a82 q5$  1)

Hence, we can see from the assumptions on h2(t, x, E) and 95(x', e) that p2s(t,
x', e') is written in the form

(3.27) p2s(t, x', E')=h2(t, (x', e(x', E')), e(x', e'))+ r2(t , x', E')

= k2(t, x', e')+ r2(t , x', E')

where k2(t, x', E') is the symbol defined by (3.16) and r2(t, x', E') satisfies

(3.28) ra(t , x', E')I Ca,13

for a ll a  and fi w ith constants C a , f l  independent of (t, x', Elek), x R2 ' .

Therefore,

(3.29) x, Dx)./,»=K2(t, x', D ) + R2(t, x',

is valid because of P28(t, x', D )= P2(t , x', 20, where R2(t, x, Dx) belongs
to e7([0, 7 ]; _C) from (3.28) and Lemma 2.7. _C denoted the space of all L 2

bounded operators.
Next, consider 1 0 0H i(t ,  x , D )°/ ».  In the same way to the proof of

(3.29)

(3.30) LboHl(t, x,Ds)./0
- 1 =Pi(t, x',

is valid, where

(3.31) x', e',

= Os— f fe ' h i ( t  a g5 (2- E)+ 7)  a2çb v  E + 71)ciy a71ae 2  a$a$

($=ffx4 - 1 (x% E')).
It follows from the assumption on 1/0, x, E) that pi(t x', E', 2 ') is written in
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the form

hi(t , 

a
t4 e)+ ,

where T1(t, e) satisfies the same inequalities as (3.25). We set

(3.32) pi,s(t, x', E')=0s—ffe — *" . "'pi(t, C'+ x' + y')cly' 6,71 .

Then, we have correspondingly to (3.26)

(3.33) Pis(t, x', e')= Os— f fe —Y"17' hi(t, a
a

°
$  (x'+ y', $), $)cly' 472'

+ Os— 1(t, x' + y', e)dy' as71

(e=e(X ', C ')+(72' 1 y  d2q5a 2 0  
2 ax'ax' )  ax'ae

Using the assumptions on hi(t. x, $) and 0(x', $),

Pis(t, x', $')=ki(t, x', $')+ ri(t, x', $')

is valid, where rif t  x', $') satisfies the same inequalities as (3.28). Therefore,
we obtain

(3.34) /00Hi(t, x, D )° .4- ' = x', Dx , )+ Ri(t, x', D.e)

where Ri(t, x', De)e 61([0, 7 ] ;
We can see from (3.29) and (3.34) that

at + K2(t, x', D )+ Ko, x', DA+ R(t, x',

= L'+ R(t , x', Dx , )

holds, where R(t, x', D A E  e 7([o, 71; ±). So, we can complete the proof of
Theorem 3.3 from Lemma A.1 in the appendix. Q.E.D.

Now, we consider a more general generating function 0(x', ez, xze) than
q5(x', $) in  Theorem 3.3, where Z  is a  subset in  (1, 2, n) and we used the
notations Ez and xzc in section 1. We assume that 0 is a polynomial of degree
2 in x', Ez and xze, and that

a2
(3.35) det * 0  (co—(Ez, xzc)) •ax'aw

Then, the canonical transformation from n , onto R.1.5 generated by 0(x', ez,
xz,) is determined from
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(3 .36 ) C ,=
ao ao ao 
ax, , xz—  aez , szc —  a x z c  •

We denote the above canonical transformation by

(3.37) (x , C)= W (x', e')=(x(x ', E(x', C')).

For the above Z  we consider hi(t, x, C) satisfying (1.2). We can state the
following theorem generally. But, we will state only the case where Z  is an
empty set, because the representation for the general case becomes much
complicated. We note that the result in the case of Z={1, 2, ••., n} has been
already stated in Theorem 3.3. As will be seen in the proof below, it is easy
to prove the general case.

Theorem 3.4. W e consider a generating function 0(x', x) stated above.
Suppose the assumptions in  Theorem 1.1 w here Z  is an emPty set. W e  set

(3.38)

k2(t, x', E')= h2(t , T . (x' C')) ,

k1( t, x', C')= Os— f f hi(t x(x' , Œ')

(
' 

1 ,  32o a20 
\72  2  Y  ax 'ax ') Ox 'Ox

   

where P is defined by (3.37). Then, the same statement as in Theorem 3.3 is
valid.

P ro o f  We define a canonical transformation 01 from R j  onto R;74 by

(3.39) (x , $)= 01(X, -É.) = ( —

Then, we can see from Proposition 1.3 that setting

(3.40) , - )=1/ ; (t, ,

we have

(3.41) ( g-1) .L.gi-x

=J-a, + ,D)+Fmt, î ,  D1)+ (t,

where P(t, î , D i)E  61({0, T ];
We define q5(x', by

(3.42) 0 (x ', )=0(x', ).
2d,

Then, we can see from the assumption on Ø
a

--(x ', x) that det a x  ,
Y(3" is a non-zero

contant. So, we can determine a canonical transformation 02 from onto
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ffe,zi generated by 0(x', That is, we define 02(x", C ')= (î (x', C'), $1)
from

(3.43) =
a°

 (x ',,  C '= ag5,(x 'Dx '

Consider the product of Oio 02(x', C') of 01 and 0 2 .  Then, since we have from
(3.39), (3.42) and (3.43)

ao aoC ' =  "(x' x), C= (x,  x ),ax dx

we obtain

(3.44) V(x', C')= 01 0 02(x%

and so,

(3.44)' (x(x', e'), e(x% C'))=( E'), C')) .

Now, it is easy to see that h. ,  , =1, 2) defined by (3.40) and '( x ',
defined by (3.42) satisfy the assumptions in Theorem 3.3. So, we can apply

Theorem 3.3 to (3.41). Hence, the L 2 well posedness of the Cauchy problem
(0.1) on [0, T ] is equivalent to that of the Cauchy problem for the equation

1 x', D v)v+ x', Dx, ) v= g(t , x') .

Here, we defined correspondingly to (3.16)

k2(t , x', E')= rz2(t, 02(x', ,

X', C')— Os— ffe — Y"' C'), e')

± (77' 2 1  y ' axal ' ) -1)dY'.477'

  

Then, we can easily see from (3.40), (3.42), (3.44) and (3.44)'
=1,2) are equal to ki (t, x ', C') defined by (3 .38). Thus, we
proof.

Remark 3 .2 .  Suppose the assumptions in Theorem 3.4
Ç')(j=1, 2) defined by (3 .38). We consider the equation

that k(t, x ', $')(j
can complete the

Q.E.D.

and take le,(t, x ',

L'v( t, x)
1

=—

i
Dtv(t, K2(t, x', Dv)v+ Ki(t , x', D.v)v

=g(t, x') .

It is easy to see from Examples 1.5 and 3.3 below that we can not apply



Cauchy problem 613

Theorem 1.1 directly to the above equation in general. But, we can see from
Theorems 1.1 and 3.4 that if (1.4) are valid for all a and fi, the Cauchy problem
for the equation L 'v (t, x l=g(t, x ') is 1,2 well posed on [0, 7 ] . If we use the
Taylor expansion formula for the integrand in the second equality of (3.38),
k1( t, x ', e') is written in the form

(3.45) ki(t, x', e')=1,1(w(.e, Er))+"a remainder term"

x', e')+ leis(t, x', C')

where yr(x', el was defined by (3 .37). Denote by (q'(t, s; y', e'), p'(t , s; y ', e'))
the solution of the Hamilton canonical equations

dq' _  ak2 , t ,,,, ,,, , diy ak2 , , t _,,,,,,{

dt aE' \ Li 9 ' dla x '  '  '  '
(q% 11)it=s=(.3, ", C') .

Then, we obtain

hi(t, q(t , s; y , a  p(t , s; y, C))

=kip(t, q'(t, s; y ', C'), p'(t , s; y', e')) ((y , e)= W(y', C')),

from the first equality of (3.38) and (3.45) as in the proof of Proposition 1.3.
Consequently, noting that the each component of gr(y' , C') is a polynomial of
degree 1, we see that if and only if (1.4) are valid for all a and g,

(3.46) sup sup
O s s 5  t  T f e n

aVDexpl — i

 

x  f q'(0, s; y ', e'), p'(‘ 9, s; y ', e'))(10}

are valid for all a ' and /3'. Hence, if (3.46) are valid for all a ' and f i', the
Cauchy problem for L 'v (t, x ')=g(t, x ') is  .1.2 well posed on [0, 7 ] .  W e
remark that this sufficient condition stated just above does not depend on
kis(t, x ', e') and that kis(t, x ', e') is not a bounded function on [0, T ]x  R'n in
general (see Examples 1.5 and 3.3). When we consider the general generating
functions 0(x', ez, xz.), we also obtain the similar results as in the above.

Now, we suppose in Theorem 3.4 a stronger assumption that hi(t, x, e)
satisfies (1.2)' in Corollary 1.2. Then, we can easily see that kis(t, x ', e') in
(3.45) satisfies the same inequalities as (3.28) for all a and 8 .  Consequently,
it follows that the assumptions in Theorem 1.1 hold for the k,(t, x', e')(j =1, 2)
defined by (3.38), because the each component of gf(x', C') is a polynomial of
degree 1. Hence, we obtain a sufficient condition from Theorem 1.1 directly
for the Cauchy problem L'v(t, x ')=g(t, x '), v(s, x ')= vo(x') to be .L2 well posed
on [0, T ].  We can eaasily see that this condition equals one that (3.46) are

< co
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valid for a ll a' and g', which was equivalent to the condition tha t (1.4) are
valid for all a and R.

Example 3 . 1 .  W e take hf (t, x, $)(j=1, 2) stated in Theorem 3.3 and x' • $
1

+ -

2
1112 a s  .75(x', $). Then, canonical transformation 0 generated by (3.15)

becomes (x, $)=-- 0(x', $')=(x' , $' – x'). So, symbols defined by (3.16) are

{

k2( t , X ' ,  el= h2(t , x', $' — x') ,

ki(t, x', $')= Os– f fe – ""hi(t, x', $' – x'+ 77' – 4Y')dY'4 77' •

Example 3 .2 .  W e also take hAt , x, $)(j=1, 2) stated in Theorem 3.3 and
1x'• e + -
2

1$12 as 0(x ', C ). Then, the canonical transformation 0 generated by

0(x', C ) i s  (x, $)= 0(x', $')=(x' + $', $'). So, the sym bols determ ined by
(3.16) become

Jk2( t, x', E')= h2(t, x'+ E', ,
ki(t, x', E')= hi(t, x'+ e', ,

because Os– ffe '" ' h i(t , x ' + $', $' + 72')dy'47/' is equal to hi(t, x'-1- C').

Example 3 .3 .  L e t h.,(t, x, $)(j=1, 2 )  b e  th e  sym bols satisfying the

assumptions in  Theorem  3.4. W e  ta k e  0(x', x)=x'•x +-1
2=Ix'1 2 . Then, the

canonical transformation generated by 0 becomes (x, $)-= V(x', $')=($'– x',
–x ').S o ,  k,(t, x', $')(j =1, 2) in (3.38) are determined by

t, x', El= h2(t , $' – x', –x ')

{

k2(

ki(t, x', $')= Os– ffe '''' h i(t, $ ' –  x '+ (71  --12-y'), – x')dy' 477' .

Here, if we take E.;'=ib'(x)e, as hi(t, x, $), we get the result in Example 1.5.

4. Derivations of Schrtidinger type equations

In this section we will derive the Schrbdinger type equations from the
Maxwell equations under a special assumption imposed on the polarization P
=(Px, Py , Pz)E R3 . W e will follow mainly P. L . Kelly [9] where the cubic
non-linear SchrOdinger equations were derived. One derivation will be done
from electromagnetic waves in a dielectric material. Another derivation will
start from the equation treated in [9].

Derivation 1. Consider a dielectric material in which there are no extra
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charges other than  those  bound in  a to m s . Then, the Maxwell equations
become

(4.1)
{  ( a )  17 • E = - -

1
F. P ( b )  c2F X B = aat  ( -1

6:+ E )
Eo

aB ( c )  17xE= ( d )  F • B=0 ,at
where c is the velocity of light and Eo is the permittivity of empty space (see
chapter 32 in volume 2 of R. P. Feynman [4]). E = E (t, x , y , z)=(Ex, E y , Ez)
E fe, B = B(t , x, y , z)=(Bx, B y , W E I ? '  denote  the elec tric  field and the
magnetic field, respectively. Also, V • E  and 17 x E  denote the divergence and
the rotation of E  respectively. It follows from  (b) and (c) in (4.1) that

(4.2) C  a2 E1
at2

2 a2 p =  F (F  •  E )  
e o

c -

 9 t 2
 (L IE  =  (JEx, zJE ,  J E ) )

is valid, where J  denotes the Laplacian in fe  and 17(17 • E ) the gradient of
• E .  Here, we used the form ula x (17 x E)= —JE +17(F • E).

We consider a solution E  polarized in the x-direction, tha t is,

(4.3) E =(Ex(t, x, y , z), 0, O).

Here, we assume the following. There exist real valued functions x(y, z) and
bi (y, z)(j=1, 2) such that if E  is given by (4.3), P  is determined by

(4.4) a E ,  . 3) z \  aEx  P= eo(x(y, z)Ex+ bi(Y, z) a x 0 2 l  , a y ,  0 ,  o).

Then, we can consider E  and P  as three dimensional complex valued func-
tions, because their real parts give the actual electric field and polarization.
Now, we will find a solution E  of (4.2) under the assumption (4.4) in the form

(4.5) E (E.'x(y, z), 0, 0)ez (' - ' ) (co/k= c)

following [9], where k is assumed to be large. The factor e  ( ' - ' )  represents
the propagating part of the wave and (E(y, z), 0, 0) is the slowly varying part.
We note that E given by (4.5) satisfies the equation (a) in (4.1). Inserting (4.5)
into (4.2) and (4.4),

(4.6) 2 ik +JE:r+ k 2(xE'x+ b2 BE 'x ) =0az By

2
can  be  derived . Here, we will neglect the t e r m   E.'x as in [9], assumingaaz

th a t  (  a  
2

 E'z is smaller than a E •'r . Then, we obtainOz
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(4.7) 2 ik
aE ;r {   a2

2  
±k2x (y , 4 }E :r+ k 2 b 2 (

.E
az y , 2) 

a

ay .aY

The above equation (4.7) is written in the form

(4.7)' 2ik + H2(y , z, Dy)E'r+ Hi(Y  , z, Dy)E 0 ,

where h2(y, z, $y )= —ey
2 + k2x(y , z ) and hi(y, , z, Ey)=ik 2b2(Y, z)Ey denotes

the dual variab le o f y). Recall that b2(y, z )  is real valued . This fact is
important, because we know from [8], [14] and Remark 1.2 in the present
paper that the Cauchy problem fo,r (4.7) is not necessarily L2 well posed.

D erivation 2. We start as in [9] from the equation

(4.8) _2  a2 E E 1  c 2  a2 p c at2
E . at2 •

We note that we can get (4.8), if the term —17(17•E) is neglected in (4.2). We
also assume as in the first derivation that if E  is given by (4.3), P  is deter-
mined by

(4.4)' P =- e 0(x(x , y , z)Ex + bi(x, y, z) a
a
E;  + b2(x, y, z) a

a
E
yx ,o,o)

where X, b1 and b2 are real valued functions. Find a solution of (4.8) in the
form

(4.9) E  = (E (x , y ,  z), 0, 0)e i ' " (o)lk= c) .

Insert (4.9) into (4.4)' and (4.8). Then, we get

(4.10) 2 ik a
 a
E
z ,:r + Z1E.'r+ k2(xE:r+ bl a

a
E
x

:r + b2 a
d
E
y

x' )= 0 .

If we neglect the term ( I  )2 Ex' in (4.10) under the same consideration as in the

first derivation, we obtain the Schrbdinger type equation

(4.11) 2ik
a E :

ax
r

+  
 a 2

2

a 2
2 + k 2 x(x, y, z)}Ez.

+ k2{bi(x, y ,  z ) t E
x  + b2( X , Y, z) a

a
E
y 'xf = 0 .

R em ark 4.1. Suppose that E  is given by the real part of the right hand
side of (4.9) and that

(4.12) P  E o 2 C ( X ,
 y ,

 2 )E
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is valid, where 26 (x, y , z ) is a complex valued function. (4.12) is a natural
assumption (see chapter 32 in volume 2 of [4]). If we assume that E satisfies
(4.8), we get

2ik
az

x  +LIE.'r+ k 2 x E X } e " '" )

3E' + { 2  ik x  + JE' + k 2 xE4e " ) =0 .dz x

Since we supposed that E was slowly varying, we consider

, a E —(4.13) 2ik aE:  + k2zE, 0 , 2ik :2 + JE[r+ x Er=0 .dz

So, if x  is not real valued, the existence of the solution E.'r of (4.13) will not be
able to be expected.

Now, assume formally that E is given by the right-hand side of (4.9) and

that (4.12) is valid. Then, we get from (4.8) 2 ik a
 aEz :r + k 2 x E 'x = 0 .  So, if

we use the same neglect as in Derivations 1 and 2, we obtain the Schrtidinger
type equations

aEra 2 a 2  2ik +
2
 +  2 k

2  (Re x)}E'x+ ik 2 (Im x)E=0 ,ax

where Rex and Imx denote the real and imaginary parts of x.

Remark 4 .2 .  We will find a solution of (4.8) by the real part of the
right-hand side of (4 .9 ) . We assume

P= E21E12 E

in place of the assumption (4.4)', where 62 is a real constant. Then, we can
see from the same argument as in Remark 4.1 that Ex'(x , y, z ) satisfies the
cubic non-linear Schrbdinger equation

aEr a2 a2 32 ik + 2 2+ +
4
 E2k 2 Z 1 2 }E[r=0 ,ax aY

neglecting the term (a d
2z )  Ex'  and the terms with 3

e
3 i ( k z - c o t )

 a n d  e
- i(kz-cot)

This was the derivation done in [9].

Appendix

We shall prove the lemma below for the rigorous proofs of Theorems 3.3
and 3.4.
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Lemma A.1. L et L  be a general evolutionary operator.  W e  assume that
the Cauchy Problem for the equation

(A.1) Lu(t , x)= f(t , x)

is 1,2 well posed on [0, T ] in the sense of  Definition 1.1. L et R (t)E T];
4 .  Then, the Cauchy Problem for the equation

(A.2) { L + R (t)} u(t , x )= g(t, x )

is  also L 2 well posed on [0, T].

P ro o f  We have only to prove without the loss of generality that one and
only one solution u(t, x) in  M O , 71; L 2 ) of

(A.2)' {L-F R(t)} u(t , x)=g(t , x) , u(0, X )— U0(X )

exists on [0, T ] for any uo(x)EL 2 and  g(t, x)EL it([0, T];
We set

(A.3) M = max IIR(t)11,
OStsT

where MR(t)11 denotes the  operator n o rm . L e t  u(t, x)E 61([0, T]; 1,2) be a
solution of (A.2)' where g(t, x)=0 and u (x )=O . Then, it follows from the
energy inequality in the Cauchy problem for (A.1) that

(A.4) .)11_ c(T){ftii—R(o)u(0, •)Mdef

is valid for tE[0, T ] .  We take a  T0(0< T o  T ) satisfying

(A.5) C( T)MTo< 1

for C( T) in (A.4). Then, we have from (A.3)

max Mu( t, • C( T)MT0 max II u( t, • )11
OstsTo OstsTo

so

(A.6) u(t, x )= 0  o n  [0, To] x Rxn .

Consequently, we also have for this u(t, x)

liu(t , •)11-<C(T) f to ii—Rcouce, •Hde T) .

So, u(t, x)=0 on [ To, x ( T0' =min(2 To, T )) also holds in the same way
as in the above. Repeating this process, we can see that this solution u(t, x)
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vanishes on [0, T] X R.vn. Thus, we can prove the uniqueness of the solution.
Next, we show the existence of the solution of (A .2 ) ' .  Since the Cauchy

problem for (A .1) is L 2 well posed on [0, T ], we can define vn(t, x) e 7 ( [ 0 ,
To]; L 2 )(n=1, 2, --.) inductively by the solution of

(A.7) Lvn(t , x)= R(t)vn-i(t, x)+ g(t , x), v(0, x)= uo(x) ,

where we set v o (t , x )= 0 . We can easily see

L(vn+i— v n ) —  — R ( t ) ( V n —  V n -1 ) (V n + 1  V O lt= 0 - 0

for n = 1 , 2 , • • • . So, it follows from the energy inequality in the Cauchy
problem for (A.1) that

(A.8) max 11 vn+1(t, •)— vn(t, •)11 < C( T)MTomaxMvn(t, • )— vn-1(t, • )11
Cl tsTo Ost5T0

are valid for n=1, 2, Consequently, we can see from C( T)MTo< 1 that
vn(t, x)=(vn— vn-i)+(vn-i —  vn-2)+••• +(vi — Vo) converges to an element u(t,
x ) in  e7([0, To] ; L 2 ). It is easy to show that u(t, x ) obtained now satisfies
(A .2 ) ' .  In the same way as in the proof of the uniquess, we can easily get the
solution u ( t ,  x )  e([o, T ]; L 2 ). Q.E.D.

Department of Applied Mathematics
Ehime University
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