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On the Cauchy problem
for Schrodinger type equations
and Fourier integral operators

By

Wataru ICHINOSE

0. Introduction

In this paper we study the L? well-posedness of the Cauchy problem for
Schrodinger type equations

Lu(t, x)E%Gtu-FHz(t, x, De)u+H(t, x, Dr)u=f(¢, x)

(0.1) on [s, TIXR:" (0<s< T),

u(s, x)=uolx) .

Here, we suppose that the symbol %;(¢, x, £)(j=1, 2) of pseudo-differential
operators H,(¢, x, Dx) are continuous functions on [0, 7] X R?*” and C* func-
tions on R** for each t&[0, T]. Moreover, we impose on k¢, x, &) the
assumptions that %.(¢, x, £) is real valued and that

(0.2) if |a+B|22 y |aeaazﬂh2(l‘, xr, r,&)lg Ca,ﬂ

holds, where @ and £ are multi-indices and C,,s are constants independent of
(¢, x, &) [0, T]x R*™.

One of our aims in the present paper is to give a sufficient condition for
the Cauchy probler (0.1) to be L? well posed on [0, T]. Another aim is to
derive the above type of equations from the Maxwell equations. We have
studied the above type of equations as typical equations not kowalewskian
and not parabolic. If Hi(¢, x, D:)— Hi\(¢, x, Dz)* is a uniformally L%bounded
operator on [0, T], the L? well-posedness of (0.1) can be proven easily, where
Hi(t, x, Dz)* denotes the formal adjoint operator in the usual L*inner prod-
uct. So, we are interested about the L? well-posedness in the other cases, for
example, hi(t, x, &)=i27010(x)E+ c(x) (b(x) are real valued functions).
In section 4 this interesting type of equations will be derived.

We have already known some results on the L? well-posedness of (0.1).

Under the situation that %(¢, x, E)=—;—|E|2 and
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(0.3) I(t, x, &)=2310°(2) &+ c(x)
(b(x), c(x)EB=(R™), j=1,2,, n),

S. Mizohata in [14] gave a sufficent condition and a necessary condition
respectively. See also Mizohata [15]. B~(R") denotes the space of all C*
functions on R” whose derivatives of any order are all bounded. We want to
remark that the result obtained in the present paper is more general and
better than his even in his situation (see Remark 1.1). In [5] a necessary
condition was given under the situation that k.(¢, x, &) is given by X7,
9% (x)E£(g%(x)EB=(R™), i, j=1,2, -+, n) and (¢, x, €) is the same symbol
as in [14]. In more general, we gave a necessary condition in [6] under the
situation that Hs(¢, x, D) is replaced by the Laplace-Beltrami operator on the
general Riemannian manifold and Hi(¢, x, Dz) is also done by a complex
valued vector field. In [7] a sufficient condition was given under the above
each situation in [5] and [6], though we had to impose the strong assumption
on H\(t, x, Dz). There was an announcement of a sufficient condition by S.
Tarama in 1988 under the assumptions that 4(¢, x, £) is a homogeneous
polynomial of degree 2 in only x and £ and (¢, x, £) has the form (0.3). The
author does not know the precise statement and its proof, because his paper
has been unpublished. But, our result in the present paper seems to include
his result.

We note that H. Kitada [10] and H. Kitada -H. Kumano-go [11] construct-
ed the fundamental solution of the Cauchy problem (0.1) for Schrédinger
equations where H,(¢, x, D) disappears. In the present paper we use the
Fourier integral operators in [10] and [11] essentially in the proof.

In the forthcoming paper [8] we will give a necessary condition for the L?
well-posedness of (0.1). We shall state it briefly in Remark 1.2 in the present
paper. See the references of [7] for the studies of the other problems for
Schrédinger type equations.

The plan of the present paper is as follows. In section 1 we shall state
the main theorem (Theorem 1.1) and some examples. The proof of the main
theorem will be given in section 2. In section 3 we shall extend the main
theorem by using the Fourier integral operator theory and the Egorov theo-
rem in the modified form (Theorems 3.3 and 3.4). There, the relation between
L? well-posedness and the classical canonical transformations will be studied.
Section 4 will be devoted to the derivation of the Schridinger type equations.

1. Main theorem and examples

Let (x1, .-+, x») denote a point of R” and let @=(a, ***, @») be a multi-index
whose components a; are non-negative integers. Then, we use the usual
notations:

la|l=an++an, x*=x2:""

an

R al=a!lan!,
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Dz= i Ox;

, L>=1+]z[)".

Let ¢o(x) and fi(x) (7=1,2, -+, n) be C> functions on R". Then, we
denote for f(x)=(fi(x), :*-, fx(x))

Qo_(do.. Do) H_(Un,y .. ,),

or ox1’  0xn ox ox;’’
o _ 0 (3_¢>
ox: ox \ox/-

D(f)

D(z) denotes the Jacobian determinant.

Let S =S(R") be the Schwartz space of rapidly decreasing functions on
R™ with semi-norms |f|l=krillz})s(l rzréa}egg{(xylaz"f(x)l}(l:o, 1,:+,). The Fourier

transformation #(€) for u(x)E S is defined by
ﬁ(5)=/e‘“"u(x)d:r, x&=x1&1t Xebot+Tnbn

We shall define the pseudo-differential operator. We determine the
symbol class 7" = T™(R?") by the set of all C* functions p(x, £) satisfying for
all multi-indices @ and 8

02D p(x, E) < Cas(1+] 2l +]EH)™2,

where C.; are constants independent of (x, £)€ R?*". We shall often write
0:°DLp(x, &) as pigi(x, €). The pseudo-differential operator P=p(x, D) with
a symbol p(x, £)€ T™ is defined by

Pu(z)= [e=*plz, )a(£)AE (AE=(21)"de)

for u(x)e S. Also, the double symbol class T™™(R*") are defined by the set
of all C* functions p(x, &, Z, £) on R*" satisfying

|plasi(x, &, &, E) < Cawsnp(1+|zP+]ED™2A+|Z [+ E[D)™"

for all @, @', B and 8, where p&:8)(x, & %, £)=0:2DL0:“ D p(x, &, Z, €) and
Cawpss are constants independent of (x, & Z, £)ER'. The pseudo-
differential operator P=p(x, Dz, Z, D) with a double symbol p(z, & Z, &)E
T™™ is defined by

Puz)= [[[e =D ipz & 7, Ea(E)addzas
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for u(x)€S. We remark that as for the double symbol p(x, &, &, &) we use
the different notation from the usual one in [12] and that symbol classes 7™
and T™™ are different slightly from ones in [5] and [13].

In the present paper we also use the other symbol class B*=(R*") for k=
0,1, --- which was introduced in [11]. We denote by B*>(R*") the set of all
C= functions p(x, &) satisfying that p{§(x, £) are bounded on R** for all
multi-indices @ and B such that |e+8|=k. If plx, &) BI>(R?), it follows
from the mean value theorem that p(x, &) belongs to T'(R?"). Inductively,
we can see that B%=(R?") is included in T*(R*")(k=0,1,::).

Let B be a Fréchet space. Then, we denote by €%[0, T]; B) the space
of all B-valued continuous functions on [0, 7']. In the same way, € [0, T];
B) is defined as the space of all B-valued continuously differentiable functions
on [0, 7]. The space of all B-valued L' functions on [0, T'] is denoted by
LY[0, T1; B).

Definition 1.1. We say that the Caucy problem (0.1) is L? well posed on
[0, '], if for any s (0<s<T), any uo(x)EL* and any f(¢, x)L¥[0, TI;
L*R™)) there exists one and only one solution u(¢, x) of (0.1) in €¥[s, T;

L*(R™)) in a distribution sense (i.e. j:ff(t,x)goit,xidxdtz%f{u(?‘, x)
T P —
o(T, x) — uox) (s, x5}dx+£ fu(t, x)*Lo(t, x)dxdt is valid for any ¢(¢, x)

€ Co™([s, T]XRI”)> and we get the energy inequality

lute, = )l N+ [170, lag) (s<e<T)

for a constant C(7T"). Here, *L is the formally adjoint operator of L, Co*([s,
T1X R.") denotes the space of C functions on [s, 7] X R;” whose supports
are compact and |+|| the L? norm.

Let (q, p)(¢, s; ¥, E)=(aqu, =", an, b1, =+, Px)(¢, 53 ¥, &) be the solution of the
Hamilton canonical equations for %:(¢, x, £) issuing from (y, &) at ¢=s, that
is,

) LGy, L= t0p), @Dl-=00).

Theorem 1.1. Besides the assumptions on hi{t, x, £)j=1,2) in introduc-
tion we suppose that therve exists an m=0 satisfving h(t, x, £)€ T™(R*") for
each t<[0, T]. We also assume that theve exists a subset Z in {1,2,--, n}
satisfying for all multi-indices a and 8
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ai.hli,??(t, x, E)‘scm (j€2),
(1.2) ’
Lt z, O|<Cas (€29,

where Cas are constants independent of (¢, x, £)E[0, T1X R*" and Z° denotes
the complementary set of Z in {1,2, -, n}. We set

(1.3) w(t,s; y, $)=exp{—i/:h1(6, a(0,s; v,8),p(8,s; v, 5))a’0} .

Then, if

(1.4) sup  sup, 10D w(t, s; y, )| <o

0<s<t<T (y,6)ER*”

are valid for all a and B, the Cauchy problem (0.1) is L? well posed on [0, T].

Remark 1.1. We apply the above theorem to the equation which Mizo-
hata studied in [14]. Since 4:(¢, x, S)Z%IEI2 and 4(¢, x, £) is given by the

form (0.3), we have

w(t,s; v, E)=exp{— iEj[b"((ﬁ—S)$+y)§jd«9}

=exp{—i2,~ [Tooe+ y)s,-de} .

We note that a sufficient condition in [14] needed the existence of the inverse
operator of W(t, s; x, D) from L? space onto L? space for each ¢ and s (0<
s<t<T) basides (1.4). So, our result in Theorem 1.1 gives a better result
than his in [14].

Here, we return to Theorem 1.1. We note if we moreover assume the
existence of the inverse operator W(t, s; x, Dx) from L? space onto L? space
(0<s<t<T) in Theorem 1.1, we can easily obtain the same result as in
Theorem 1.1 by modifying the proof in [14]. See [8] for such a proof.

Corollary 1.2. We suppose the same assumption on hst, x,E) as in
Theovem 1.1. On the other hand, we impose on hi(t, x, ) a stronger assump-
tion than (1.2) that

(1.2y if la+Bl1#0, |miE(t, x, &)< Cas

are valid, wherve Cap are constants independent of (t,x, £)E[0, T]X R*".
Then, if w(t,s; v, &) defined by (1.3) is bounded concerning (t,s,y, &) such
that 0<s<t<T and (y, )€ R*", the Cauchy problem (0.1) is L? well posed on
[0, T].
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Proof. Apply Lemma 2.1 which will be given in section 2. Then, we can
easily see from the assumption (1.2)’ that if @+ 8|#0, (1.4) in Theorem 1.1 are
valid automatically. So, if w(¢,s; v, ) is bounded, (1.4) are valid for all @
and 3. Hence, we can complete the proof from Theorem 1.1.

Remark 1.2. In a forthcoming paper [8] we shall prove under the same
conditions as in Corollary 1.2 that if (0.1) is L? well posed on [0, T°], there must
be a ThW(0< T1< T) such that w(¢, s; v, €) defined by (1.3) is bounded concern-
ing (¢,s,y, ) such that 0<s<¢<T) and (y, £)€R?*". Hence, we obtain a
necessary and sufficient condition for (0.1) to be L? well posed on [0, 7] from
this result in [8] and Theorem 1.1, if %;(¢, x, &) (=1, 2) are independent of ¢
€[0, T'] and satisfy the assumptions in Corollary 1.2.

We shall state the proposition before giving examples. Let Z={z, z, ***,
z:} be a subset in {1, 2, ---, n} and set

xZ:(le,'",xz[), |Z|:l'
We define the transformation from L*(R%) space onto L*(R;") by
(1.5) fe"""'“v(x}, xzeo)dxz (dxz=dxz,dxz, - dxz,)
for v(z )€ L*(RY). If Z is empty, we mean the identity by (1.5). Here, we
represented x=(x, -**, ») symbolically by
(1.6) x=(xz, .I‘zc) .

We shall use this symbolic representation (1.6) through the present paper. If
Z={1,2, ---, n}, the above transformation (1.5) becomes a usual Fourier trans-
formation. We denote the transformation (1.5) by & z,-z,v(x). The inverse
operator (% ")z,~z» of & ,-z, can be defined by

(g_l)x,qrzu(x’)Z/e“‘z”"’u(xz, xze)dxz (dxz=Q2n) "¥'dxz)

for u(x)EL¥R.™).
Let define a mapping (x, £)=0@(x’, &) from R%¥. onto R%: by

(1.7) (xz, x2e)=(E7 x20) , (€2, E2e)=(—7 E7c)

and denote by (x’, £)=0 '(x, £) its inverse mapping, where Z is the subset
given in Theorem 1.1. We define the symbols (¢, x’, £)(j=1, 2) from (¢, x,
&)(j=1,2) in Theorem 1.1 by

(1.8) ki(t, x', &)= hy(t, O(z', £))

and denote the solution of the Hamilton canonical equations for kx(¢, x’, &)
issuing from (v', &) at t=s by (¢’, p’) (¢, s; »', &). Then, we obtain
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Proposition 1.3. We suppose the same assumptions as in Theorem 1.1 and
consider L defined in (0.1). Then,

(1'9) (g—l)xz-r’z°L° gz'z—-zzv(f, .IL‘/)
=%«9tv(t, 2)+ Kot &', De)v+ Ki(t, 2", De)v+R(t, &', Dx)v

is valid for any v(t, )€ W0, T); L?), where the symbol r(t, x’, &) of R(t,
x’, D) satisfies for all a and B

(1.10) l¥@&(t, x', E) < Cas

with constants Ca,p independent of (¢, x’, E)E[0, TIX R*". Hevre, +°+ implies
the product of operators. Also, we get for any (y', £ )E R*"

1) expf=i[ (6, 46,5 v, 8), (6.5 v, €)db)

=exr>{— ifhl(ﬁ, q(6,s; 9,8),p(6,s; v, E))dﬁ}

(v, 8)=0(y, £)).

Proof. Let W(t, x, &) be hi(t, x, £) or ha(t, x, £). Then, we can easily see
for v(z)E S

H(t, x, Dz)° ft’zuxv(x)=//e"“'”"h(t, x, é)dydéfe“'y"'v(x’)dx’

=/e"""'h(t, z, —x)v(x)dx’ .
So using the pseudo-differential operator with a double symbol,
(Fe-zoHt, 2, Da)o Farst(x) = [[e=Oht, 2, — 2)0(2)d 5 Az

=H(t, Dy, — 2" )0v(x")
is valid. In the same way, we get for j=1, 2
(1.12) (Fzs-zz°Hi(t, 2, D2)°F 25 z,0(x")
=H{(t, Dzy, 276, — 25, D )0(2)  (0(z)ES).

Let apply the asymptotic expansion formula (Theorem 3.1 in chapter 2 of
[12]) to the right-hand side of (1.12). Then, noting the assumption (0.2) on
ho(t, x, £) and (1.8), we can see

Hy(t, Dzy, X3¢, — X3, Dz'zc)sz(ty Z', Dr)+ Ry(t, x', D)
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is valid, where 7:(¢, x’, £&') satisfies the same inequalities as (1.10) for all @ and
8. For Hi(¢t, Dy, x3e, — T35 D) We also get the similar equality to the above
from the assumption (1.2). Hence, we obtain

(1.13) (F)zz-zzoHi(t, 2, Dz)° F z5-z,0(x")
={Kl(t1 'r,) DI')+Rj(tv‘r,v DI')}U(‘I/) (j__—lv 2)7

where 7;(t, x’, &) satisfies the same inequalities as (1.10) for all ¢ and A.
Hence, we obtain (1.9) and (1.10).

Next, we know well that a mapping ¥ from R%. to R%% is called a
canonical transformation, if

(1.14) U*idx; N dE; =271 dxi N dE;

holds, where ¥* denotes the pull back of differential forms (see section 38 in
[1]). It is easily seen that the mapping @ defined by (1.7) is a canonical
transformation. So, since k(t, x’', &)=h(¢, @(x’, £)), it follows from the
well known classical theory on the canonical transformation that

(1.15) O(q'(t,s; v, &), (¢, 51, &)
=(q(t,s; 9,8),p(t, 5,9, 8) (y,8)=0(y,&))

is valid for any (v’, £&) (see section 45 in [1]), which shows from Ai(¢, x’, €)=

h(t, 0(x’, £))
ki(t, q(t, sy, &), (L, s; ¥, &)
=h(t, q(t,s; 9, 8),0(¢, 5,5, 8) (3,6)=0(,&)).
Hence, we get (1.11). Q.E.D.
Example 1.1. Set #h.(¢, x, S)Z%Lﬂz and (¢, x, £)=2701 x;6°(—€),

where we assume b°(&)€ B*(R™)(j=1,2, -, n). Then, we can easily get (g,
t-s
p)t, s; v, 8)=(y, —(t—s)y+&) and w(t, s; v, E)=exp{—i2j/0 b'(0y—&)y.d

6’}. Apply Proposition 1.3 as Z={1,2, ---, n}. Then, we get
(EZ._I)I_.I'OLO gx’—.rv(t, .Z'/)
z%agv(t‘, x’)—%Av+2$’=1b"(x’)D1gv+R(t, x', Dz)v .

This equation was considered in Remark 1.1. Then, we can easily see that
our sufficient condition obtained in Theorem 1.1 for Lu(¢, x)=F(¢, x) equals
that for (F Y z.roLlo% p.v(t, x')=g(t, x’). This fact is valid for more
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general transformation (see Remark 3.2 for its general proof).

2
Example 1.2. Let 4:(¢, x, ) be 5 I.‘EI2 2(0 |z|?, which is the Hamilton

function of the harmonic osc1llator, where m>0 and w=0 are constants.
Then, the solution of canonical equations (1.1) is given by

(g, p)(t,s; 9, &)

=<yc0sco(t — s)+%sinw(t —s), —mywsinw(t —s)+ Ecosw(t — s)) .

02 (2)&+ 201 b'E; as Inlt, x, €), where 2(x)E B=(R") and b’ are

o0x;
real constants. Then, it follows from p= ng that

Take 227

PHEYA %{,(q(ﬁ, s; v, E)pi(8,s; v, E))d6+25‘=1bffo 018, s; v, £)do

=ml[Q2(q(t, s; ¥, &) —R(y)+21b{as(t, s; v, £)—y}]

is valid. Hence, applying Theorem 1.1, we can see that the Cauchy problem
(0.1) is L? well posed on [0, T'] for any T >0.

Example 1.3. Let %:(¢, x, £) be 51% {(&1—ex2)?+ &2+ &%+ -+ £,.2}, where

m>0and e=>0 are constants. When n=3, h:(¢, x, &) is the Hamilton function
which represents the movement of a charged particle under the constant
magnetic field (chapter 21 in volume 3 of [4]). Then, canonical equations are
given by

dql 1 _ sz 1 dj)] o dp. _ e _

dt m ( 1 eq2) ) dt - mpzy dt _0 ’ dt - m (pl eQZ)y
dg; 1 ap; _

ai = mP023), S r=00G=3).

So, setting w=e/m, we obtain the solution of (1.1)

eqi=&cosw(t—s)+ (& —ey2)sinw(t —s)+(ey— &),
eq2=Esinw(t —s)— (& —eyz)cosw(t —s)+ &,

lIJ':(t—;;‘)”fj'f‘yj (j=3),

pe=Ecosw(t —s)+(&—ev)sinw(t—s), p,=E&(+2).

Example 1.4. Let 4(x, &) be a polynomial of degree 2 in only x and &
with real coefficients satisfying 4.(x, £)=0 on R*". We define /(x, &) by
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hl(‘r) 5): C{l + hz(xy E)}I/Z y

where ¢ is a complex constant. We take these Z;(x, £) in (0.1). It follows
from the assumption on A2(x, £) that for any variable z=x; and £:(1<j, k<
n) ho(x, €) is written in the form

ho(zx, £)=lz— L)+ &2,

where / is a non-negative constant, /; is a polynomial of degree 1 not includ-
ing z variable and / is a polynomial of degree 2 not including z variable

which satisfies /2=>0 on R?". So, it follows that %hzl (z, £) is bounded on R*".

In the same way, we can see that Z(x, &) belongs to the symbol class
B'(R?*). The function w(t,s; y, €) defined by (1.3) becomes

exp| —ic(t —s){1+ ha(y, )],

because of the energy equality %hz((](t, s; v, &), p(t,s; v, E)=0. Hence,

noting that . (x, £)€ B»*(R?*"), we can see from Theorem 1.1 or Corollary 1.2
that the Cauchy problem (0.1) is L* well posed on [0, T'] for any T >0, if the
imaginary part of ¢ is non-positive.

Example 1.5. We write
— 1 1 n j
Liu(t, x)—78¢u _74u+2j=lbj(x)D.r,u
and
_1 1, 1
Lou(t, x)—78tu +7Ix| u+hi(x, Do)u,
where b (x)EB~(R™)(j=1, 2, -+, n) and we set

h(zx, €)= —23‘=1ij5—ffe“'y"’b"(é—ﬁ 0—%y>dyd7z ,

where Os— / /"-dydn denotes the oscillatory integral (see section 6 in chapter

1 of [12]). We assume that every b°(x) are not constant. Then, we remark
that the above (x, &) doesn’t satisfy (1.2) in Theorem 1.1 for any subset Z.
This will be proven below. So, we can not apply Theorem 1.1 to the Cauchy
problem for L.. But, we shall be able to see from Theorem 3.4 and Example
3.3 in section 3 that the L? well-posedness on [0, T°] of the Cauchy problem for
L, is equivalent to that for L.

We can easily get for f(x)e3~(R")
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116) 05— [fe (e -zt n—v)dyare B=(RY
and
(1.17) Os—ffe“"y"’f(—x— 77+%y)dyd77=Z”fe‘”"”e‘z'"""f(277)d71 :

So, since every b’(x) is not constant, it follows that there exist numbers j, &
and a point x“€ R" satifying

(1.18) 0s— [[e -‘”ab ( ‘°’+77—%y>dyd77=#=0.

Take sequences x(m)=(xi(m), ---, z.(m))E R (m=0, 1, ---) such that x;(m)=
m and x(m)=0(/#*7) and define &(m)ER" by &(m)=x(m)+x®. Then,

ah‘ —(z(m), £(m))=mOs— ff T ab (x‘°’+71——y)dyd7/

— Os—/fe"""”b"(x‘o’-*- 7 ——%y)dydv

and
ah‘ ( (m), &(m))=—mOs — _// “”ab < ‘°’+ﬂ—%y>dyd77
are valid. gz; and g?; are not

bounded on R*".

Example 1.6. Let b/(x)€B8=(R") (=1,2, -+, n, k=1,2). When we take
Db’ (x)€; and 27-167(E)x; as h(t, x, £) in (0.1), each (¢, x, &) satisfies the
assumption stated in Theorem 1.1. But, if we set &(¢, x, &)=271b7(x)E&;
+ 227167 (E)x;, this m(t, x, €) doesn’t satisfy the assumption in Theorem 1.1
generally. Moreover, it seems that we can not apply the results in section 3.

2. Proof of Theorem 1.1

At first, we shall introduce some results from [10], [11] and others. Since
we will often use their results in the modified form and make the present paper
self-contained, we shall give the outline of some of their proofs.

Lemma 2.1 (Proposition 3.1 in [10]). Let hi(t, x, &) be a symbol defined
in introduction and (q, p) (¢, s; v, E)=(qu, =**, qn, b1, ***, Dn) the solution of the
Hawmilton canonical equations (1.1). Then, qi(t,s; v, £)E B"(R*™)(j=1, 2, -,
n) and px(t,s; v, )€ B (R*")(k=1,2,, n) are valid for each t and s (0<
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t, s<T). In more detail, we get

(2.1) { 10D {qi(t, s; ¥, &)=yl < Miasalt —s|  (la+B=1),

|0:°D pe(t, s; v, &)= EN < Miasalt —s| (la+B|=1)

for j and k=1,2, - n with constants Ma+s independent of t, s(0<t, s<T)
and (x, &) R*",

Proof. 1t follows from (1.1) that

d 9q _ *he aq h: ‘op
w1y dr oz o200 0) 5t g oz
’ d 0p_ Pk ‘8q _ *h: ‘op
a3z~ dzor 0P 5 o oz
t t
are valid for z=x and &, where gg gg denote the transposed vectors of
0q op

Fye and s respectively. If we take account of the assumption (0.2) on A(¢,

x, £), we can easily get for ¢ and s (0<¢, s<T)

a5+l = el + 1320

and so

0z 82 82

9g |*
0z

62 =G,

where C; and C; are constants independent of ¢, s and (v, £&). Consequently,
we obtain from (1.1)

ldt =5 lalt, s 9,8)— y}‘"L‘dt =5 0t 5,9, 8)—€)|<Cs

with a constants Cs independent of ¢, s and (v, £). Hence, we can prove (2.1)
in the case |@+8|=1. In the same way we can complete the proof. Q.E.D.

In the present paper we will use the lemma below on the global
homeomorphism without its proof, instead of the contraction principle used in
[10] and [11]. Then, we can construct the fundamental solution on the wider
interval in ¢ variable than that obtained in [10] and [11], as will be seen in the
proof of Theorem 1.1. We will also use this lemma for showing the well-
definedness of the canonical transformation determined by generating func-
tion in section 3 of the present paper and [8].

Lemma 2.2. (Theorem 1.22 in [16]). Let f be a C' mapping: R" > x~
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F(2)=(Alz), -, fo(x))ER™ If there exists the inverse matrix %(x)‘1 of %

(x) for each x€R" and we have

supl 3 <o

then f is a homeomorbhism of R™ onto R". Heve, |Q| for a matrix Q indicates
the operator norm of Q as the mapping from R to R”".

Lemma 2.3 (c.f. Proposition 3.3 in [10]). We consider q(t, s; v, £) deter-
mined in Lemma 2.1. Then, we can take a To(0< To< T) such that for each
t, s (0<¢t, s<Th) and EER™" there exists the inverse C* diffeomorphism: R">
x-y=y(t,s; x, E)=(y1, y2, -, Vo) ER" of the mapping: R"Dy—-x=q(t,s; y,
EYeR". Movreover, we get

(2.2) 10:°DAyi(t, s; x, E) = < Masslt —s| (la+8]=21),
with constants Miz+s independent of t, s (0<t, s<To) and (x, £)E R*".

Proof. 1t follows from Lemma 2.1 that we can take a 7p satisfying
det—@i(t s; 9, E)|=0>0
ay ’ ’ ’

for t,s (0<t¢, s< Tp) and y, EER”, where § is a constant. Then, the existence
of the inverse C* diffeomorphism stated in this lemma follows from (2.1) and
Lemma 2.2. Inequalities (2.2) can be derived by differentiating gq(¢, s; ¥(¢, s;
x, &), &)=x. QED.

Lemma 2.4 (c.f. Proposition 3.5 in [10]). Suppose the same assumptions
as in Lemma 2.1 and take a To determined in Lemma 2.3. Then, the solution
O(t,s; x, &) (0<t, s< T, (x, E)ER™) of the eiconal equation

(2.3) a,a>+h2(t, x,—‘;%)=o, Olis=1+&

is determined uniquely and satisfies

g—f(t, s; q(t,s; v, 8),8)=pt,s; 9, 8),

%—?(L s;q(t, s 9,6),8)=y

(2.4)

and

(2.5) %(L s; q(t,s; v, 8), E)Z%;—(t, s; v, E)7L
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Proof. We know well the classical result that setting
t
S(t, 5,9, O)=y-&+ [ S1ap(0, 5 v, £)dai6, 5 v, &)

—ho6,4(8,s; 3, 8), 00, s; v, £)db,
an equality on differential forms
(2.6) dS=X71pidg;— ho(t, q, p)dt on [0, T]1X R,

holds. In fact, it follows from (1.1) and the definition of S(¢, s; v, €) that

%(t, s; ¥, E)=25pi(t, 85 9, 6) %qt" (¢, 859, E)—hat, q, D),

9S (4 ey B)=Sp(t s 945 (4
ayk (ty S, yv é)_zJpJ(ty sy yv E) ayk (tv 57 yv 5)

is valid. Hence, we get (2.6). If we determine @(¢, s; x, £) by @=S(¢, s; y(¢,
s; x, &), &) (0<t,s<Th), we get from (2.6) at once

0D+ ho(t, x, p(t, 53 ¥(¢, s; x, €), £))=0,

%%—(t, s; x, E)=p(t,s; ¥(t,s; x, £), ).
So, we obtain (2.3) and the first equality of (2.4). Using these two equalities
obtained now, we can easily see

ﬁ—%(t s; q(t,s; v, 8),6)=0

for any ¢, s, y and & So, the second equality of (2.4) is derived. (2.5) can be
also yielded from the second equality of (2.4). Q.E.D.

Now, we shall introduce Fourier integral operators. Let ¢(x, £)E B>~
(R?") be a real valued function. Then, the Fourier integral operator Py(z,
D.) with a symbol p(x, £)€ T™(m=0) and a phase function ¢(x, §) is defined
by

@7 Pz, Du(e)= [e*=Op(z, )a(§)as

for u(x)e S.

Lemma 2.5 (c.f. Theovem 3.7 in [11]). For any p(x, )€ T™ (m1=0)
and q(x, £)E T™(m2=0) there exists an r(x, E)E T™*™ such that

P(.r, D:c)oQg)(l', Dx)=R¢(x, Dx)

holds. Concretely, v(t, x, £) is given by



Cauchy problem 597
(2-8) r(t, x, &)

=Os—f/e""y‘”p<x, 77+/:% (x+ 0y, E)dﬁ)q(x-lry, &)dydn
=ﬁ<x,%(x,S))q(x,S)+Z‘.la|=1Dy“{p‘“’<x,[g—i(sﬁ ﬁy,é)dﬁ)
Xa(z+, O] +2 [ (1=0)d0' Dy O5

- e-fy-"Dya{p<“>(x, 0n+ [ 2L (z+ 0y, s)de)q(x+ ’, 5)}

X dydny .

Proof. We can prove in the same way to the proof of Theorem 3.7 in [11].
It follows from the definition of Fourier integral operators that

29)  PeQulx)= [[[e*=rtpa, o, &)a(&)ag dr' A

is valid for u(x)E S, where
p=(x—x) &+, &)—#(x, &).
The well definedness of the right-hand side of (2.9) is assured, if we use the
1
integrals by parts in x” and £&. Changing the variables £ to n=£&— A %%(x’
+6(x—2x"), £)d0, the right-hand side of (2.9) is written as

ff/ei¢<z,e')+i(z—x')-vp(_r, -l;l% (x'+0(x—2x), £)db+ ’7>

X g(x', &)u(&)dédx’'dn .

Once again, make the change of variables x’ to y=x"—x. Then, we get the
first equality of (2.8). The second equality of (2.8) is easily obtained from the
first equality by using the Taylor expansion formula.

As for »(x, )€ T™*™ we can see from (2.8)

¥z, €)=Os— / /e-"y'"‘<y>-“<D,,>“<7;>-“<Dy>2’

Xb(x, 0+[:lg—ﬁ (z+ 6y, é)dﬁ)q(x+y, &)dydy .

Setting /=(n+1+mu+m2)/2 and noting that p€ T™, g€ T™ and ¢= B>,
we get .

|7(z, )| <Const. (1+]|x|>+]|&[F)mitmar2
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In the same way we obtain »(x, £)€ T™*", Q.E.D.

Lemma 2.6 (c.f. Proposition 3.2 in [11]). We assume that a real valued
Sunction ¢(x, &) belongs to the class B**(R*") and satisfies

2
(2.10) detéyﬁ% (2. 8)|>5>0,

where 8 is a constant independent of (x, E)ER*. Then, the Fourier integral
operator Ps(x, D:) with a symbol p(x, EYET™ for an m=0 defines a linear
continuous opevator from S to S.

Proof. Let define Ji and J by
J=<e(1+ie52)
and
]2=[1+{—‘§gi (z, 5)—3—?(0, o |- i{g—? (z, é)—%%(o, 5)}’3_85] .
Here, we note that
\g—? (x, 5)—3—? (0, E)‘ZB'IJCI
follows from (2+10) with a constant 8 >0. We can easily have
Pz, Dou(z)= [[ermt-onoyugioesiss

X)) plx, E)u(x)dx’'d€,
where !/;(j=1, 2) implies the transposed operator of J;. So,

CxY*| Po(x, Dr)u(x)|
<Const. S gz x> f (142 +] &)=<
X (1+|x|+ D™ Du(x)ldx’ d €

is valid. Hence, taking L=Fk+m and i=/L+m+n+1, we have
(xY*|Po(x, Dx)u(x)|<Const. E|alsz,sgp(<x>"+”‘+”“|D;"u(x)l) .

In the same way we can complete the proof. Q.E.D.

We know about the L®bondedness of Fourier integral operators. We
introduce from [2] without its proof.
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Lemma 2.7 (Theorem 1 in [2]). Suppose the same assumptions as in
Lemma 2.6. Then, the Fourier integral operator Po(x, Dz) with a symbol p(x,
&) e TUR?™) is an L*-bounded operator. That is, we have for us L R")

1Po(z, D2)u( I < Cllu(-ll,

where C is a constant determined from max, S;.l})| i)z, &) and Zsrlglggfgsgg)lgb
B(x, &) for an integer [=2.

Proof of Theorem 1.1. We can assume from Proposition 1.3 that the
subset Z in Theorem 1.1 is an empty set. That is, we assume

(2.11) |0e,i8i(t, x, E)<Cap (7=1,2,, n)

for all @ and B with constants Ca,s independent of (¢, x, £)E[0, T]Xx R?*".
Let @(¢, s; x, €) be the solution of eiconal equation (2.3). @(¢,s; x, €) (0

<t, s<T, (x, £)€ R*") is obtained from Lemma 2.4, where T, is a constant

determined in Lemma 2.3. We can see from (2.1), (2.2) and (2.4) that

(2.12) 0t s; 2, E)I<Cas (la+B]=22)

are valid, where C.,s are constants independent of ¢, s (0<¢, s< Ty) and (x, &)
€R?. We remark that Co,s in (2.12) are different from constants in (2.11).
If there is no confusion, we shall use the same symbol Cq,s. We consider the
Fourier integral operator Ao(t,s; x, D:) (0<s<t<Tp). Take account of
assumptions (0.2) and (2.11). Then, if symbol a(¢, s; x, &) belongs to T°(R?"),
it follows from Lemma 2.5 and (2.12) that

LoAo(t, s; x, D:)=Bo(t, s; x, Dx),
b(t,s: x, E)={%(z‘, sz, E)+hz<t, x,g—f(t, s;x, E))}

. 1 (da .,
(2.13) Xa(t,s;x, &)+ 7 {at (t,s;x, &)
n ahz c?d) a(l .
+ige (tr G )i (52,9

+z'h1<t, x, g—f)a(t, $; T, é)}+r(t, $; 2, 8),

where
(2.14) [7(¢, s; 2, E)N< Cas

are valid for all @ and S with constants Cq,s independent of ¢, s (0<s<¢< Ty)
and (z, &) R?",
We determine a(?, s; x, £) as the solution of
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(t s; x, E)+ 2% 13?2( , X, ax (t S; x, E))—(t s; x, €)

+zh(t T, o )a(t s;x, £)=0,
a(s,s; x, &)=1.

Let (g, p)(¢, s; v, €) be the solution of (1.1). Then, since % (t,s; q(t, s; 9, 8),

E)=p(¢t,s; v, £) is valid from (2.4), the above equation becomes
jzra(t, s; a(t, s; v, €), E)+iku(t, q, p)alt,s; q, E)=0.

So, we get
(2.15) a(t,s; q(t, s; 9, 8), &)=w(t,s; v, &),

where w(?, s; y, £) was defined by (1.3). We can easily see from the assump-
tion (1.4) on w(t, s; v, &) and Lemma 2.3 that a(¢, s; x, £) determined by (2.15)
belongs to T°(R*") for ¢t and s (0<s<¢<T,). Therefore, we obtain together
with (2.3)

(2.16) LoAuo(t, s; x, Dr)=Ro(t, s; x, D), Ao(s, s; x, D)=Identity,

where 7(t, s; x, £) satisfies (2.14) for all @ and 8.
Now, we denote by L the set of all linear L*bounded operators and by
2s([0, To); L) the set of all L-valued continuous functions in ¢ and s such
that 0<s<¢< 7T, Following the usual method (see section 4 in chapter 7 of
[12]), we shall construct the fundamental solution E(¢, s)E £€9,s([0, Tol; L) of
(0.1) (i.e. LE(¢, s)=0, E(s, s)=Identity) in the form

(2.17) E(t,s)=Ao(t,s; x, Dz)+£tA¢(t, 7; x, D)o Q2(7, s)dr,

where 2(t, s)€ €95([0, Tol; L£). Then, 2(¢, s) is determined as the solution
of the integral equation of the Volterra type

0=90(¢, s)+iRo(¢, s; x, Dz)-l-z"/:Rqa(t, r; x, Dz)oQ2(z, s)dr .

We see from (2.14), Lemmas 2.4 and 2.7 that Ro(¢, s; x, Dx) belongs to €9%,5([0,
Tol; L£). So, this £2(¢, s) can be obtained succesively in the form

Q(t, s)=27-082:(¢, s),

where
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-QO(tv s):_ZR@(ty S; xv Dx) ’
(¢, s)=—i[Ra>(t, T, x, Dz)eQi-a(r, s)dr (j=1,2,).

Thus, we obtain E(¢, s)e €2,5([0, To]; L).
For data w(x)EL? and f(¢, x)LY[s, Tol; L?) we define u(t, x) (s<t<
To) by

(2.18) u(t, 2)=E(t, $)uolz) +i f ‘E(t, O)f(r, x)dr .

We will show that this «(#, x) satisfies the equation in (0.1) in a distribution
sense. We can see from the proof of Theorem 6.1 in [11] that if 7} is small
(0< h< Ty), (¢, s) in (2.17) is written by a Fourier integral operator as

2(¢t,5)=Do(t,s; x,D:) (0<s<t<T),

where d(t, s; x, £)€ T°(R*"). So, we can see from Lemma 2.6 that if uo(x)E
S and f(t, x)eLU[s, T1; S), u(¢, x) defined by (2.18) is a genuine solution of
(0.1) on [s, T1] X R;". In the same way u(¢, x) becomes a genuine solution on
[T, TVIXR," (TY=min(2 Ty, Tv)). Consequently, this (¢, x) becomes a gen-
uine solution on [s, 7To] X R;". Hence, approximating uo(x)E L? and f(¢, x)E
LY[s, T]; L? by the elements of S and L¥[s, T]; S) respectively, we can see
that u(¢, x) defined by (2.18) is a solution of (0.1) on [s, 7o] X R;" in a distribu-
tion sense, because E(¢, s) belongs to €9%s([0, To]; -L£). Here, we used the
delicate result in [11] to show that «(¢, x) defined by (2.18) where uo(x)E S
and f(¢, x)eL¥[s, T]; S) is a genuine solution of (0.1). But, we can prove
it in a much easier way from a theorem on the boundedness of our Fourier
integral operators. This theorem will be publised eleswhere.

We can easily extend the existence interval [s, 7o] of the solution «(¢, x)
constructed above to [s, T'] as follows. Consider the Cauchy problem

Lu(t, x)=f(¢t, x) on [To, TIXR:", v(to, x)=u(T, x).

Then, we get the solution v(¢, x)€ EU[ Tv, T2]; L?) where To=min(2To, T) in
the same way as in the construction of u(¢, x)& €¥[s, Tvl; L?). Consequent-
ly, we obtain the solution u(¢, )€ E¥[s, T2); L?) of (0.1) for u(x)EL? and
f(t, x)e €Us, T1; L?). Repeating this process, the solution (¢, x) of (0.1) is
obtained on [s, T']. It is easy from (2.18) to show that the energy inequality
stated in Definition 1.1 is valid for the solution «(¢, x) obtained now.

Next, we will show that the solution u(¢, x) €%[s, T]; L?) is only one.
Here, we may suppose s=0 without the loss of generality. The formally
adjoint operator *L for L in (0.1) is given in the form

(2.19) *L=%at+ﬁz(t, Z, Do)+ (¢, &, D)
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from Theorem 1.7 in chapter 2 of [12], where H,(¢, #, D:)(j=1, 2) denotes the
pseudo-differential operator with a double symbol %,(Z, &). h;(x, &) is the
complex conjugate of 4,(x, £). That is,

(2.20) f/{Lq;(t, I x)dxdt=f/¢(t, 2) L4, 2)}dxdt

is valid for any ¢(¢, x) and ¢(¢, x) belonging to Co®((0, T) X R;"*). Apply the
asymptotic expansion formula of double symbols (Theorem 3.1 in chapter 2 of
[12]) to the each term in (2.19). Then, since k(¢ x, £€) is real valued, satisfies
(0.2) and #.(¢, x, &) satisfies (2.11), so *L is written as

(2.19) *L=L 6,4+ Hyt, z. Ds)+ Hi(t. z. De)+ Ri(t, z, D) |

i

where 7(t, x, £) satisfies the same inequalities as (2.14).
Take a g(t, x)€Co((0, T)X R,") and consider the backward Cauchy
problem

(2.21) *Lo(t, x)=g(t,x) on [0, TIXRS, o(T,x)=0.
We take ¢ and s such that 0<¢<s<T and set for any (y, £)€ R*"
(2.22) (v, &)=C(a(t,s; v, 8), p(t, 57 9, £)) .
Then,
(g.0)(0,s;9,8)=(q, )0, t; ¥, &) (t<0<s)

follows from the uniqueness of the solution of ordinary equations (1.1). So,

(229 exp{—i [ T8, (0,5 v, 6, 70, 5 ¥, E)do}

—exp{—i [ (8. a(0,1; ¥, ), 06,15 ¥, £))d0)

=w(s, t; ¥, &)

is valid from (1.3) for all ¢ and s such that 0<¢<s<7T. Hence, we can see
from assumption (1.4) and Lemma 2.1 that

t
(2.24) sup  sup Iae"Dy”exp{—i/s (8, q(6,s; v, &),

0<t<s<T (y, £)ER?"

(8, s; v, E)d5}|<°0

is valid for all @ and 8. From this result we can construct a solution v(¢, x)
e %[0, T1; L?) of (2.21) in the similar form to (2.18).
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Let u(t, x)€ €X[0, T1; L?) be the solution of (0.1) where s=0, uo(x)=0
and f(¢,x)=0. We have already proved about the solution v(¢, x) deter-

mined above that v(¢, x) and % (¢, x) are continuous as an S -valued func-

tion on [0, T]. So, we get

(2.25) oszu(t, 2)*Lo(f, z)dzdt

=£T/u(t, x)g(t, x)dxdt,

because u(f, x) is a solution in a distribution sense. Here, ¢(¢, x) was an
arbitrary function belonging to Co™((0, T)X R,"). Consequently, the above
equality (2.25) shows that (¢, x) vanishes on [0, T]X R;". Therefore, we can
see that the solution of (0.1) belonging to £%[0, T']; L?) is only one. Q.E.D.

3. Canonical transformations and the Egorov theorem

In this section we shall extend the result obtained in Theorem 1.1 to other
equations by applying the Egorov theorem in the revised form. Ju. V. Egorov
in [3] treated real valued functions ¢(x, £) locally defined on an open set U X
R in RY"XR" satisfying ¢(x, A8)=A¢(x, £) for all 1>0. We stated an
example in section 1 (Example 1.5).

Throughout this section we assume that a phase function ¢(x’, ) is a
polynomial of degree 2 in x” and £ with real coefficients. Though we can
relax this assumption on ¢(x’, &) a little more, we limit our phase funtions to
those mentioned above for the simplicity. We denote by Is=Isu.e the
Fourier integral operator with a symbol 1 and a phase function ¢(x’, &), that
is,

(3.1) Lu(z')= f /e“’("‘“‘”"u(x)dxdé (w(z)E S) |

Then, the formally adjoint operator I,* of I, in the L*inner product can be
defined by

(3.2) ];fv(x)=ffe“""“’""”v(x’)dx’dé

for v(z)E S.
We set

Ped(a', 2, = [ 2L (2 +0(x'~2), £)d0,
(3.3) ) '5g
Peb(x', & )= [ 3£ (&', n+6(6=7))do
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as in [11] for 2/, 2/, € and € R". If we assume that

(3.4) det 85 (z', £)*0

is valid, we can see from Lemma 2.2 that the mapping for any fixed x” and 2"
R"SE—E =V ¢(z, 2/, E)ER" makes a diffeomorphism from R¢" onto RZ.
We denote by é=F ¢ x', 2/, &) the inverse mapping. Under the same
assumption (3.4) the mapping for any fixed & and 7: R*"Dx' —x=F:¢(x’, &, 7)
&€ R" makes a diffeomorphism from RZ onto R;". We also denote by x'=
Vep(x, & 7) its inverse mapping. In the same way, we can define a
diffeomorphic mapping @=@(x’, &) from R%¥. onto R%%: by

35 =@, &=L @9,

if we assume (3.4). It is well known that this mapping @ is a canonical
transformation, that is, @ satisfies (1.14) (see section 48 in [1]). Such @ is
called the canonical transformation generated by #(x’, £).

Lemma 3.1. Let ¢(x’, &) be a polynomial of degree 2 in x' and & with
real coefficients such that (3.4) is valid. We suppose that h(x, &) belongs to
T™(R*) for an m=0. Then,

(1) we get
(36) [¢0H(x,Dx)'I$k=P(I,, D, T7),

where double symbol p(x’, &, T') is defined by

(1) pa. & B)=0s— [[e T, & E+ )=y, E+n)dvlin

x|aet22 L (=Pt 7. 6)).
(i) We get
(3.8) I3°K(x', Dr)oIy=S(z, Dz),
if we define s(x, &) by

s(z.£)=0s— ] /e—w-v‘sl<z71¢-l<x+y, & E+1), E)dydly

(3.9 : idet 97 OE ‘

si(z’, £)=O0s —/fe""” Th(x Ved(x, '+, E)+n)dy Ay .
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Proof. We can prove this lemma in the same way to the proof of
Theorem 3.5 in [11].
(i) It follows from the definitions of I, and I§ that setting

(3-10) w(€, z')zOS_//ef¢<z'.e)—i¢<z',v)+iy-(n—e)h(y’ 7)dydz,

then,

IyeH(x, D)o IFv(x")

= f / e O Eqyd / / e "= " n(y, n)dzdn f f e® T y(2)dz dw
://ei¢(x’.e)—iy~edyds/./ez‘y-v—i¢(z',r/)h(y, n)v(z’)dz’dv

=f/efﬂf"f)‘”‘z'-"w(f, Z)v(z)dz' d&

is valid. So, making the change of variables & to &= »¢(z’, 2/, £), we get

-1

IsoH(x, Do) I v(x’)= f/ =2y (€, 2)v(2)dz’ d & .det 92 OF
(E=Vxp7(z', 2, &)).
Consequently, if we set
61D w, & B)=wE, DjeryTbe | (6=Pes7@, 76D,

we obtain
(3.12) IsoH(x, Dy)o I =w(x, Dy, ') .

Now, make the change of variables (v, 7) to (v, 7)=(—y+V (2, &, 7),
7—&) in (3.10). Then, w(€, 2') is written as

Os— [[e " hP (2, &, 6+ 1)~y E+n)dy'dn.
So, we can see that wi(x’, &, ') in (3.11) is equal to p(x’, €&, ') defined by
(3.7). Hence, we can complete the proof of (i).
(ii) IfoK(x', Dy)oIsu(x) for u(x)E€ S is written in the form

(313 [fesremndray [feer ke, )dyag ferroale)as

:/eiznfﬁ(é)déos__ffei{x-r;—x.e+¢(z',e)—¢(x',n))wz(xf’ &dx'dy,
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where
wZ(x” 5): Os _//ei(x'-e'—y’-é’+¢(y’,s)—¢(x',5))k(xf’ é’)dy’dé’ .

If we make the change of variables (v, &) to (3, 7)=(y'—x', & —Vo¢(z', v,
£€)), we have

(3.14) wiz’, €)= Os — f f eI k(' Podla, '+ 5, )+ 7)d5 a7,

which is equal to si(x’, €). Next, change the variables (z, 7) to (¥, 7)=
(Fep(x’, & 7)—x, n—E&) in the right hand side of (3.13). Then, it follows that

I} K(x', Dy)o Lsu(x)

= [e=ta(&)ag0s- / /e-ff~”"s1(171¢-‘(x+ §, 6 E+7), E)ATAT

¢ |!
X ‘det—ax,aé

is valid. Hence, we obtain (ii). Q.E.D.

Lemma 3.2. We suppose the same assumptions on ¢(x’, E) as in Lemma

2
3.1. We set pz’det Bi’gé . We see from the assumption that i is a non-zero

constant. Then, (1)"*1s makes a unitary operator on L? space. That is,
plpoIF = plFoIl,= Identity .

Proof. Apply Lemma 3.1 to IyoIf and If°I,. Then, we can easily prove
this lemma. Q.ED.

Remark 3.1. We can see the following from Lemma 3.2. Operations
Iso-olf and If--°1, in Lemma 3.1 are opposite ones each other in the sense
that

(L, Hz, D,)QI;«}OIF%H(L D),

Lo{IFK(x', De)oI3}o I} =%K(x', D)

are valid where z‘detﬂ’
¥ ox 0 |

Consider a phase function ¢(x’, &) satisfying the properties assumed in
Lemma 3.1 and denote by

(3.15) (x, )=0(x', &N=(x(x', &), &(x’, &)
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the canonical transformation generated by ¢(x’, £), which was defined by
(3.5). Then, we get

Theorem 3.3. Suppose that the assumptions in Theorem 1.1 where Z ={1,
., m} holds. We set

ko(t, 2, E)=ho(t, O(x', £)),
(3.16) ki(t, x', E')=Os—/fe"'y""'h1<t, x(x', &), E(x’, )

+Hr o) e

Then, we can see that the L* well-posedness on [0, T of the Cauchy problem
(0.1) is equivalent to that of the Cauchy problem for the equation

(3.17) Lo(t, x’)z%atv(t, )+ K¢, x', De)v+ Ki(t, x', Dz)v

=g(t,x’) on [0, TIXRE.

Proof. 1t follows from Lemmas 2.7 and 3.2 that the L? well-posedness on
[0, T'] of the Cauchy problem (0.1) is equivalent to that of the Cauchy problem

I¢°L°I¢‘lv(t, x’)zg(t, .I‘,) .

We will write Is°LoI,~! concretely by using Lemmas 3.1 and 3.2.
Since ¢(x’, £) is a polynomial of degree 2,

(3.18) P, & E+n)= O‘g—gw &+n—06n)d6

= 7 ¢
( E)+ 2 DEOE

and

(3.19) Podlz' 2/ +y, £)= f (' 4y — By, £)dO

__0¢ Lf )
ax’( E)+ Y oxox

are valid from (3.3). So, because = ¢ ' (z’, x’+y’ £+ 7’) is determined

2
as the solution of &+’ =P-¢(z’, 2+, E)— %y ai’gx” we

have

2
Vedp™(x', ' +y, &+ 7;’)=$<x’, £+ ’7/_%3/ aﬁgx ) :
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Here, we used the notation (3.15). Hence, noting that

is yielded from (3.5), we obtain

vl -1 ’ ’ ’ ’ ry — ’ ’ /_L ’ 52¢ 62¢ -1
(3200 Fegna 24y, E+n) =8, )+ (v v 52t ) ook

t12 12
where we used %= 6?::’?5'

At first, we consider lsoHx(¢, x, Dz)oI,™'. We can see from Lemma 3.2

1¢°H2(t, x, Dr)°1¢_1=#1¢°H2(f, x, DI)OI;k < |det ox' o0& D

So, applying (i) of Lemma 3.1,
(3.21) I,0oHy(t, x, Dz)o I, '=Py(t, x’, D, ')
is valid, where
(3.22) Pt x', &, &)
=Os—ffe“’y"’hz(t, Vep(Z', € E+1)—y, E+7)dydy
(E=V-¢7(x', %', €)).
We know well that setting
(3.23) Ps(t, x', £)=0s— f / e (b, 2, E+ g 2’ +y)dy'dn’,

we have Pus(¢, x', Dv)=P(t, x’, D, Z') (Theorem 2.5 in chapter 2 of [12]).
The double symbol Py(t, x’, £, Z') is written from (3.18) as

Os—f/e"'"”hz< ( T’ E)+i—3§%—y, &+ n)dydn

(E=Pe¢ (2, 2, &)).

Here, if we use the assumption (0.2) on %(¢, x, £) and the Taylor expansion
formula of the integrand, p(¢, x’, €', ') is rewritten in the form

(B20)  plt, 2 € B)=hal 1, SE (7,6, 6)+ 7lt, 7.9

(=V¢7'(x', 2, 8)),
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where #.(t, Z’, &) satisfies for all multi-indices @ and B
(3.25) 10:2D% 7a(t, 7', £)| < Cas

with constants C.,s independent of (¢, Z’, £)€[0, T]X R*". Consequently,
D2s(t, 2/, &) defined by (3.23) is given from (3.20) by

(3260 paslt, ', €)= 05— [[e (2, %? (x'+',8), &)dv'ar

+ OS—/fe‘”""' 7ot, x'+y', £)dy' dn’

(e=e@.ert(r—7 ,33?:9};’) aizf(gs 4) :

Hence, we can see from the assumptions on 4(¢, x, &) and ¢(x’, &) that pas(¢,
x’, &) is written in the form

G21) gt 2, )=t SE (@, 6z, €0), 6z, €)) + e, 27, €)

:kz(t, x/, E,)+ 72(tl x/, 5/) )
where (¢, x’, ) is the symbol defined by (3.16) and (¢, x’, &) satisfies
(3.28) |72f(t, ', )< Cars

for all @ and £ with constants C.,s independent of (¢, x’, £)<[0, T]x R*".
Therefore,

. oo Ho(t, x, Dz)ols™ =Ko(t, x', Dy)+ Rot, X7, Dy
(3.29) Tyo Hy( D), '=K(t, x', Do)+ Ro(t, x’, Dyr)

is valid because of Pus(¢, x’, D»)=Ps(t, 2, Dr, '), where Ry(t, x, D.) belongs
to £%[0, T]; L) from (3.28) and Lemma 2.7. L denoted the space of all L?
bounded operators.

Next, consider I,cH\(¢, x, Dz)°l,™'. In the same way to the proof of
(3.29)

(3.30) IyoH\(t, x, Dz)oI,"'=Pi(t, 2, Dz, T)
is valid, where

(3.31) n(t, x', &, %)
= Os—ffe"'y"’hl(t, g—? (z, é‘)+—22 ai;%—y, £+ v)dydv

(E=Vz¢7'(x', £, 8)).

It follows from the assumption on Zi(¢, x, €) that pi(¢, x’, &, T') is written in
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the form
h1<tyﬂ(£/v E)y E>+ fl(tv ‘f/y E) )
3
where 7.(¢, £, £) satisfies the same inequalities as (3.25). We set
(3.32) pis(t, x’, &)= Os—f/e"'y"”'pn(t, x, E+n, ' +y)dy'dn .

Then, we have correspondingly to (3.26)

(333)  pult, 2, €)= 05— [[e (1, 5 (2 4y, 6, €)avar

+ Os—f/e'“’""' (L, '+, E)dy'dy

(“5:‘5("”" 5'”(’7'_%’%) af:z'?g_l) :

Using the assumptions on (¢, x, €) and ¢(x’, &),
pls(t, l‘/, El)zkl(t, 1", 5’)+ 71(f, .1", 5/)

is valid, where 7i(¢, x’, &) satisfies the same inequalities as (3.28). Therefore,
we obtain

(334) I¢°H1(t, X, Dx)°1¢_1=K1(t, JC’, Dz')+R1(lf, .Z‘/, Dxr) y

where Ri(t, x’, D)€ EX[0, T]; L).
We can see from (3.29) and (3.34) that
_1

[¢°L°I¢_l— ; az+Kz(t, x’, Dzl)+K1(t, .I'/, Dx')‘|'R(t, .IC/, Dx')

=L'+R(t, x', Dx)

holds, where R(¢, x', D)€ €%[0, T); L). So, we can complete the proof of
Theorem 3.3 from Lemma A.l in the appendix. Q.E.D.

Now, we consider a more general generating function ¢(x’, &z, xz<) than
#(z’, &) in Theorem 3.3, where Z is a subset in {1, 2, -, #n} and we used the
notations &z and xzc in section 1. We assume that ¢ is a polynomial of degree
2 in x’, &7 and xz¢, and that

(3.35) deta—az,%o—#:o (w=(&z, xz¢)) .

X

Then, the canonical transformation from R%'e onto R%% generated by ¢(x’, &z,
xzc) is determined from
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(3.36) g=9¢ xz:%, e 0

ox’’ 0xze
We denote the above canonical transformation by
(3.37) (z,8)=¥(z', &)=(x(x', &), &(x’, §)) .

For the above Z we consider /i(t, x, €) satisfying (1.2). We can state the
following theorem generally. But, we will state only the case where Z is an
empty set, because the representation for the general case becomes much
complicated. We note that the result in the case of Z={1, 2, -+, n} has been
already stated in Theorem 3.3. As will be seen in the proof below, it is easy
to prove the general case.

Theorem 3.4. We consider a generating function ¢(x’, x) stated above.
Suppose the assumptions in Theovem 1.1 wheve Z is an empty set. We set

kt, 2, €)=hat, ¥(x', £)),
(338) kl(t’ xlr E'): OS—//e-iy"”'hl(t’ x(x/, {_.;)

+<77 -3 /aﬁgx ) 5‘2 é}x R $)>dy ar’,

where ¥ is defined by (3.37). Then, the same statement as in Theorem 3.3 is
valid.

Proof. We define a canonical transformation @, from R%¥: onto R%% by
(339)  (z,O)=0(z, E)=(§ —1).
Then, we can see from Proposition 1.3 that setting
(3.40) hit, £, E)=hit, 0:(F, £)),
we have

(341) (g—l)z—nioLOgi-ox
=%at+ﬁz(t .D:)+Hi(t, &, D:)+R(¢t, T, Dz),

where R(t, &, D:)€ %[0, T]; .L).
We define ¢(z’, &) by

(3.42) p(x', E)=9¢(x, &).
3¢
NFY-

contant. So, we can determine a canonical transformatlon O, from R%. onto

Then, we can see from the assumption on ¢(x’, x) that det is a non-zero
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R¥¢ generated by ¢#(x’, £). Thatis, we define @x(z’, £)=(F(z’, &), &(z’, £))
from

b a0, =
(343) x—ag(l',é): é_a /(xvg)-

Consider the product of @:°®y(x’, £') of @ and @.. Then, since we have from
(3.39), (3.42) and (3.43)

¢=2 @), =L 2,

ox’
we obtain
(3.44) ¥(x', €)= 0r° 0oz, &)
and so,

(3.44) (2(x', &), &(x, €N =(&(x, &), — E(x, &)).

Now, it is easy to see that %,(¢, Z, £)(=1, 2) defined by (3.40) and ¢(x’,
£) defined by (3.42) satisfy the assumptions in Theorem 3.3. So, we can apply
Theorem 3.3 to (3.41). Hence, the L? well posedness of the Cauchy problem
(0.1) on [0, T'] is equivalent to that of the Cauchy problem for the equation

—12.—8,1)(1,‘, )+ Ki(t, ', De)v+Ki(t, ', De)v=g(t, x’).

Here, we defined correspondingly to (3.16)

ki(t, x', €)= hat, Oz, &),
Ktz &)=0s— [ e-‘y""’ﬁl(t, iz, &), &z, &)

() GeaE W

Then, we can easily see from (3.40), (3.42), (3.44) and (3.44)’ that ki(t, x’, £)(5
=1, 2) are equal to k;(t, x’, £&') defined by (3.38). Thus, we can complete the
proof. Q.E.D.

Remark 3.2. Suppose the assumptions in Theorem 3.4 and take £;(¢, 2/,
£)(j=1, 2) defined by (3.38). We consider the equation

L'u(t, x)E%.—atv(t, )+ Kot 2. D)o+ Kilt, 7. Da)v

=g(t, x’).

It is easy to see from Examples 1.5 and 3.3 below that we can not apply
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Theorem 1.1 directly to the above equation in general. But, we can see from
Theorems 1.1 and 3.4 that if (1.4) are valid for all @ and 3, the Cauchy problem
for the equation L'v(¢, x)=g(t, x’) is L* well posed on [0, T']. If we use the
Taylor expansion formula for the integrand in the second equality of (3.38),
k(t, x’, &) is written in the form

(3.45) k(t, 2, &)=mh(¥(x’, £))+“a remainder term”
Eklp(t) x,v E’)_I_kls(t, x,r S,) ’

where ¥(x’, &) was defined by (3.37). Denote by (¢'(¢, s; ¥', &), (¢, s; ¥, &)
the solution of the Hamilton canonical equations

dg' _oks (, gy AV Ok, .
dt aél(thvp)y dt ax’(t)q,p)v

(@, P)e=s=(¥", &).

Then, we obtain
h(t, q(t, s; v, 8), 6(t,s; 9, 8)
=kip(t,q'(t,s; v, &), p(t,s; ¥, &) (3 8=¥0H, &),

from the first equality of (3.38) and (3.45) as in the proof of Proposition 1.3.
Consequently, noting that the each component of ¥'(y’, £) is a polynomial of
degree 1, we see that if and only if (1.4) are valid for all @ and 8,

(3.46) sup  sup aé’f'Dﬂfexp{ -1

0<s<{<T (¥, &)ER?"

><[km(¢9, q(0,s5,8),000,s v, 5’))d6H<°°

are valid for all @’ and 8. Hence, if (3.46) are valid for all @' and B’, the
Cauchy problem for L'uv(t, x)=g(t, x’) is L* well posed on [0, T]. We
remark that this sufficient condition stated just above does not depend on
kis(t, ', €) and that kis(¢, 2, £) is not a bounded function on [0, 7] X R?” in
general (see Examples 1.5 and 3.3). When we consider the general generating
functions ¢(x’, &, xzc), we also obtain the similar results as in the above.
Now, we suppose in Theorem 3.4 a stronger assumption that (¢, x, £)
satisfies (1.2)" in Corollary 1.2. Then, we can easily see that Ais(¢, 2, £) in
(3.45) satisfies the same inequalities as (3.28) for all  and 8. Consequently,
it follows that the assumptions in Theorem 1.1 hold for the &;(¢, x’, £)(j=1, 2)
defined by (3.38), because the each component of ¥(x’, &) is a polynomial of
degree 1. Hence, we obtain a sufficient condition from Theorem 1.1 directly
for the Cauchy problem L'v(¢t, x)=g(t, x°), v(s, x)=wvo(x’) to be L* well posed
on [0, T]. We can eaasily see that this condition equals one that (3.46) are
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valid for all @’ and A’, which was equivalent to the condition that (1.4) are
valid for all @ and 5.

Example 3.1. We take %;(¢, x, £)(j=1, 2) stated in Theorem 3.3 and '+ &
-i-%la:’l2 as ¢(x’, £). Then, canonical transformation @ generated by (3.15)
becomes (z, &)= 0(x’, £)=(x’, & —x’). So, symbols defined by (3.16) are

kz(ty x,y é/):hZ(t, x’v E/_‘r,) )
fa(t, x’, E’)=Os—//e“’y"”’h1<t, x, &—x'+ v’—%y’>dy’d77’.

Example 3.2. We also take 4,(¢, x, £)(=1, 2) stated in Theorem 3.3 and
x'-£ +—;—|EI2 as ¢(x’, £). Then, the canonical transformation @ generated by
d(x’, &) is (x, &)= 0(x’, E)=(x'+ &, €). So, the symbols determined by
(3.16) become

kot x', E)=0hs(t, x'+ & &),
kit x', E)=m(t,x'+&, &),

because Os—//e‘iy"”'hl(t, ' +&,E+7)dy'dn is equal to m(t, x'+& ).

Example 3.3. Let #,(f, x, £)(j=1,2) be the symbols satisfying the
assumptions in Theorem 3.4. We take ¢(x’, x)zx’-x-i—%lx’lz. Then, the
canonical transformation generated by ¢ becomes (x, &)= ¥ (x’, £)=(& —x’,
—x'). So, ki(t, x2’, £)F=1,2) in (3.38) are determined by

ko(t, ', E)=ho(t, & —x’', —2'),
ki(t, 2/, S’)=Os—/fe"‘y"”'hl<t, E’—x’+<0’—%y’>, —x’>dy’d77’ .

Here, if we take 2)7216°(x)&; as (¢, x, £), we get the result in Example 1.5.

4. Derivations of Schriodinger type equations

In this section we will derive the Schriédinger type equations from the
Maxwell equations under a special assumption imposed on the polarization P
=(P, Py, P;)ER®. We will follow mainly P. L. Kelly [9] where the cubic
non-linear Schrédinger equations were derived. One derivation will be done
from electromagnetic waves in a dielectric material. Another derivation will
start from the equation treated in [9].

Derivation 1. Consider a dielectric material in which there are no extra
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charges other than those bound in atoms. Then, the Maxwell equations
become

(@ r-E=—Ltrp ) crxB=2(L+E)
(4.1) &o &o
©) 17><E=—%—lf @ 7-B=0,

where ¢ is the velocity of light and o is the permittivity of empty space (see
chapter 32 in volume 2 of R. P. Feynman [4]). E=E(¢, x,y, 2)=(E:, Ey, Ez)
ER® B=B(t, x,v, 2)=(Bx, By, B:)ER® denote the electric field and the
magnetic field, respectively. Also, ’-E and I’ X E denote the divergence and
the rotation of E respectively. It follows from (b) and (c) in (4.1) that

o2 ’E
or?

1 0P

(4.2) ~dE=~V(7-E)~,-c"%5

(4E =(4E, AE,, 4E))

is valid, where 4 denotes the Laplacian in R* and (- E) the gradient of
’-E. Here, we used the formula P X(PXE)=—AE+V (V- E).
We consider a solution E polarized in the x-direction, that is,

(4.3) E=(E.t x,v,2),00).

Here, we assume the following. There exist real valued functions x(y, z) and
bi(y, 2)(j=1, 2) such that if E is given by (4.3), P is determined by

(4.4) P=eo<x(y, 2)E:+bi(y, 2) %—%+ by, 2) aalff ,0, 0) .

Then, we can consider E and P as three dimensional complex valued func-
tions, because their real parts give the actual electric field and polarization.
Now, we will find a solution E of (4.2) under the assumption (4.4) in the form

(4.5) E=(E{y, 2),0,0)e* " (w/k=c)

following [9], where k is assumed to be large. The factor e’**~“? represents
the propagating part of the wave and (Ex(y, z), 0, 0) is the slowly varying part.
We note that E given by (4.5) satisfies the equation (a) in (4.1). Inserting (4.5)
into (4.2) and (4.4),

., OE% , 2< , 0E.'z>_
2
can be derived. Here, we will neglect the term <a—i) E% as in [9], assuming

is smaller than ’k é?aE; .
z4

that Ka—"z)ZE;

Then, we obtain
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4.7 2ik aaE’ { aiz + R x(y, z)}E1+ E2ba(y, z) aE’
The above equation (4.7) is written in the form

, ., 0E% , -
(4.7) 2tk o0z +H2(y, zZ, Dy)Ex+ Hl(y, 2, Dy)Ex—O ,

where ha(y, 2, &)= —&*+E*x(y, 2) and h(y, z, &)=1ik*b(y, 2)& (& denotes
the dual variable of y). Recall that b.(y, z) is real valued. This fact is
important, because we know from [8], [14] and Remark 1.2 in the present
paper that the Cauchy problem for (4.7) is not necessarily L? well posed.

Derivation 2. We start as in [9] from the equation

L OE 1 _, 0P

2 _ —_ = a2
(48) C atz AE EOC atz .
We note that we can get (4.8), if the term —F (- E) is neglected in (4.2). We
also assume as in the first derivation that if E is given by (4.3), P is deter-
mined by

(4.4) P= a;(x(x v, 2)E:+bi(x, v, z) +bz(x Y, 2) 5= aEI .0, 0)

where x, b1 and b, are real valued functions. Find a solution of (4.8) in the
form

(4.9 E=(E{x,y, 2),0,0)ei*-vt (wlk=c).

Insert (4.9) into (4.4) and (4.8). Then, we get

JE; o o OEL . . OE%
(4.10) 2zka—+AEI+k(xE,+b, s p, 0 8y> 0.

2
If we neglect the term <a—‘i> E%in (4.10) under the same consideration as in the

first derivation, we obtain the Schriédinger type equation

(411) 21k afz_,_{ a(?r a(?yg + k2 (1' y, Z)}E.z
+k2{b,(x ¥, z) aE’} 0.

Remark 4.1. Suppose that E is given by the real part of the right hand
side of (4.9) and that

(4.12) P=cx(x, v, 2)E
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is valid, where x(x, v, z) is a complex valued function. (4.12) is a natural
assumption (see chapter 32 in volume 2 of [4]). If we assume that E satisfies
(4.8), we get

20k 2E2 + A+ KxEef e

{ 8;2:

+{ 2L 4 4B+ ey B e 0.
0z

Since we supposed that E; was slowly varying, we consider

(1.13) 2ik%+AE;+ Ky Es=0 —2zk%+AE,+ Ky Er=0.

So, if x is not real valued, the existence of the solution Ez of (4.13) will not be
able to be expected.
Now, assume formally that E is given by the right-hand side of (4.9) and

that (4.12) is valid. Then, we get from (4.8) 2tk—== af’+AEz+ kxE:=0. So, if

we use the same neglect as in Derivations 1 and 2, we obtain the Schrodinger
type equations

0E: n

L.
2ek 0z

2
{ 3‘12 + aayz +£*Re x)}Ex+ B*(Imy)Ez=0

where Rey and Imy denote the real and imaginary parts of x.

Remark 4.2. We will find a solution of (4.8) by the real part of the
right-hand side of (4.9). We assume

P:62|E|2E

in place of the assumption (4.4)’, where ¢ is a real constant. Then, we can
see from the same argument as in Remark 4.1 that Exx, v, z) satisfies the
cubic non-linear Schrodinger equation

o0E:

2ka

2
+{ 31.91'2 + aa > +— €2k2|Ex| }E;

2
neglecting the term 9 E7 and the terms with e3**~99 and e 3i*ke-wt)
0z

This was the derivation done in [9].

Appendix

We shall prove the lemma below for the rigorous proofs of Theorems 3.3
and 3.4.
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Lemma A.1. Let L be a general evolutionary operator. We assume that
the Cauchy problem for the equation

(A1) Lu(t, x)=f(t, x)

is L* well posed on [0, T] in the sense of Definition 1.1. Let R(t)E €0, TI;
L). Then, the Cauchy problem for the equation

(A.2) {(L+R(t)}u(t, x)=g(t, x)
is also L?* well posed on [0, T].

Proof. We have only to prove without the loss of generality that one and
only one solution «(¢, x) in €%[0, T'1; L? of

(A.2) {(L+R()}u(t, x)=9(t, x), u0,x)=udx)

exists on [0, T'] for any w(x)EL? and g(¢, x)=LY[0, T]; L?).
We set

(A.3) M= max IR,

where |R(t)| denotes the operator norm. Let u(¢, )€ EX[0, T1; L?) be a
solution of (A.2) where g(¢, x)=0 and #o(x)=0. Then, it follows from the
energy inequality in the Cauchy problem for (A.1) that

(a8 e, =D 1-RO)u(o, a6}

is valid for t<[0, T]. We take a To(0< To< T) satisfying
(A5) C(THYMTy<1
for C(T) in (A.4). Then, we have from (A.3)

max [lu(¢, )| < C(T)MTomax |u(t, I,
0<t<T, 0<I< Ty

)
(A.6) u(t, x)=0 on [0, TH]XR.
Consequently, we also have for this «(¢, x)

e, M= C(D) [ I-R(O)u(6, do (To<t<T).

So, u(t, x)=0 on [ To, Tv] X RE(Td=min(2T,, T)) also holds in the same way
as in the above. Repeating this process, we can see that this solution u(¢, x)
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vanishes on [0, T]X R:". Thus, we can prove the uniqueness of the solution.

Next, we show the existence of the solution of (A.2)". Since the Cauchy
problem for (A.1) is L? well posed on [0, T'], we can define va(¢, x)€ € X[0,
Tol; L?)(n=1, 2, --+) inductively by the solution of

(A7) Loa(t, x)=—R(t)vni(t, 2)+9(t, 2), va(0, )= uo(x) ,
where we set vo(f, x)=0. We can easily see
L(Un+1_ Un): _R(t)(vn_ Un—l) , (Un+l_ Un)|t=0=0

for n=1, 2, ---. So, it follows from the energy inequality in the Cauchy
problem for (A.1) that

(A.8) max [|va+1(t, ) —va(t, *)

0<t< Ty

< C(T)MTO max "Un(tv '>_ Un—l(ty ')
0<I<T,

are valid for n=1, 2, ---. Consequently, we can see from C(T)MT,<1 that
0a(t, 2)=(Vn— Vn-1)+(Vn_1— Vn_s)+++-+ (1 — 1) converges to an element (¢,
z) in €%[0, To); L?). It is easy to show that (¢, x) obtained now satisfies
(A.2). In the same way as in the proof of the uniquess, we can easily get the
solution u(¢, x)e %[0, T1; L?). QED.
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