Failure of analytic hypoellipticity for some operators of $X^2 + Y^2$ type

Dedicated to Professor Tosinobu Muramatu on his 60th birthday

By

Toshihiko Hoshiro

0. Introduction and result

A differential operator P is said to be hypoelliptic, if for any C^{∞} function f in some open set U all solutions u to Pu = f belong to $C^{\infty}(U)$. Also P is said to be analytic hypoelliptic, if $f \in C^{\infty}(U)$ implies $u \in C^{\infty}(U)$. Let Ω be an open set in \mathbb{R}^n and X_1, \ldots, X_r be real vector fields with analytic coefficients. It is well known that, if X_1, \ldots, X_r and their commutators $[X_{j_1}, X_{j_2}], \ldots, [X_{j_1}[X_{j_2}, \ldots, [X_{j_{k-1}}, X_{j_k}] \cdots]$... generate the tangent space $T_x \mathbb{R}^n$ for all $x \in \Omega$ then the operator

$$P = \sum_{j=1}^{r} X_j^2$$

is hypoelliptic in Ω (L. Hörmander [7]).

Note that such an assumption as above is not sufficient for analytic hypoellipticity (cf. F. Treves [12], D. S. Tartakoff [11] and A. Grigis-J. Sjöstrand [4]). Indeed, there are some negative results. Some hypoelliptic operators of type (1) were shown to be not analytic hypoelliptic. Such operators can be seen, for example, in the following papers: M. S. Baouendi- C. Goulaouic [1], G. Métivier [8], B. Helffer [6], Pham The Lai-D. Robert [9], N. Hanges-A. A. Himonas [5] and M. Christ [2]. The purpose of the present paper is to give new examples of hypoelliptic operators which fail to be analytic hypoelliptic.

Here, we consider the operator

(2)
$$P = \frac{\partial^2}{\partial x^2} + \left(x^k \frac{\partial}{\partial y} - x^l \frac{\partial}{\partial t}\right)^2$$

in \mathbb{R}^3 . If the non negative integers k, l satisfy k < l, then Hörmander's theorem can be applied, hence the operator P is hypoelliptic. With this hypothesis the result of the present paper is following

Theorem. The operator P in (2) is not analytic hypoelliptic, if either of the following assumptions is satisfied:

Communicated by Prof. N. Iwasaki, July 23, 1993

(i)
$$\frac{l+1}{l-k}$$
 is not a positive integer.

(ii) The both
$$l-k$$
 and $\frac{l+1}{l-k}$ are odd integers.

The operator P in (2) with k = 0 was considered by M. Christ [2] (see also N. Hanges-A. A. Himonas [5]). He proved that such operators are not analytic hypoelliptic except the case l = 1 (see the assumption (i) in Theorem). Our proof of Theorem is based on his method, so Theorem is an extension of his result.

The present paper is organized as follows: First, we shall explain the outline of a proof of Theorem in Section 1. A lemma, which is essential to a proof of our Theorem, will be proven in Section 2. Section 3 will be devoted to a proof of Proposition 2 which is also necessary for a proof of the lemma.

1. Outline of Proof

Theorem will be proved, if we construct a non real analytic solution u to $Pu \equiv 0$. To do so, for $\zeta \in \mathbb{C}$, set

(3)
$$P_{\zeta} = -\frac{d^2}{dx^2} + (x^k \zeta - x^l)^2.$$

The argument as in the following lemma is standard (cf. [1], [2], [5] and [8]).

Lemma 1. If there exist $\zeta \in \mathbb{C}$ and $f \in L^{\infty}(\mathbb{R})$ not identically equal to zero satisfying $P_{\zeta}f \equiv 0$, then the operator P in (2) is not analytic hypoelliptic.

Proof. Let F be defined by

$$F(x, y, t) = \int_0^\infty e^{i\tau t + i\tau^{\frac{k+1}{l+1}}\zeta y - \tau^{\frac{k+1}{l+1}}} f(\tau^{\frac{1}{l+1}}x) d\tau.$$

Since the function f is of class $L^{\infty}(\mathbf{R})$, the above integral converges in a region $|y| < \varepsilon$ for some $\varepsilon > 0$. Also it is easy to see that $PF \equiv 0$, since we have $P_{\zeta}f \equiv 0$. On the other hand, one can show that F is not real analytic at (x, y, z) = (0, 0, 0). In fact, observe that

$$\left| \frac{\partial^m F}{\partial t^m}(0, 0, 0) \right| = |f(0)| \int_0^\infty \tau^m e^{-\tau^{\frac{k+1}{l+1}}} d\tau$$
$$= |f(0)| \cdot \frac{l+1}{k+1} \cdot \Gamma\left(\frac{l+1}{k+1}(m+1)\right)$$

The last relation obviously yields that, if $f(0) \neq 0$, then there is no constant C such that $\left| \frac{\partial^m F}{\partial t^m}(0, 0, 0) \right| \le C^{m+1} m!$, because $\frac{l+1}{k+1} > 1$. In case f(0) = 0, $f \neq 0$

and the uniqueness of the solution imply that $f'(0) \neq 0$. In this case, we have

$$\left|\frac{\partial^{m+1}F}{\partial t^m \partial x}(0, 0, 0)\right| = |f'(0)| \cdot \frac{l+1}{k+1} \cdot \Gamma\left(\frac{l+1}{k+1}(m+1) + \frac{1}{k+1}\right)$$

Thus F is not real analytic also in this case.

By virtue of Lemma 1, it suffices to show the existence of $\zeta \in \mathbb{C}$ and $f \in L^{\infty}(\mathbb{R})$ as in Lemma 1 from one of the hypotheses in our Theorem. To show this, we use M. Christ's procedure.

The next result is well known in much greater generality (cf. E. A. Coddington-N. Levinson [3] or Y. Sibuya [10]).

Proposition 1. For each $\zeta \in \mathbb{C}$, there exist unique solutions f_{ζ}^+, f_{ζ}^- to $P_{\zeta}f_{\zeta}^+ \equiv 0, P_{\zeta}f_{\zeta}^- \equiv 0$, respectively, having the following asymptotic behaviors:

(i)
$$f_{\zeta}^{+}(x) = |x|^{-\frac{1}{2}} e^{-\phi_{\zeta}(x)} (1 + O(|x|^{-1}))$$
 as $x \to \infty$,

(ii)
$$f_{\zeta}^{-}(x) = |x|^{-\frac{1}{2}} e^{(-1)^{l} \phi_{\zeta}(x)} (1 + O(|x|^{-1}))$$
 as $x \to -\infty$,

where $\phi_{\zeta}(x) = \frac{x^{l+1}}{l+1} - \zeta \frac{x^{k+1}}{k+1}$. Moreover, for each $x \in \mathbf{R}$, these functions are holomorphic with respect to $\zeta \in \mathbf{C}$ and also real valued for $\zeta \in \mathbf{R}$.

Y. Sibuya called f_{ζ}^+ (resp. f_{ζ}^-) a subdominant solution on positive (resp. negative) real axis in his book [10]. For our purpose, it suffices to show the existence of $\zeta \in \mathbb{C}$ where f_{ζ}^+ and f_{ζ}^- are linearly dependent. Because, for such $\zeta \in \mathbb{C}$, the both subdominant solutions decay exponentially as $x \to \pm \infty$, hence remain bounded. Next consider the wronskian

$$W(\zeta) = f_{\zeta}^{+}(x)(f_{\zeta}^{-})'(x) - (f_{\zeta}^{+})'(x)f_{\zeta}^{-}(x).$$

Then it is also obvious that the existence of $\zeta \in \mathbb{C}$ mentioned above is equivalent to that of $\zeta \in \mathbb{C}$ with $W(\zeta) = 0$.

The following lemma is essential to the proof of our Theorem. It gives some information concerning zeros of $W(\zeta)$.

Lemma 2. The Wronskian $W(\zeta)$ is an entire function of order $\frac{l+1}{l-k}$. More precisely, there exist positive constants C and ε such that

(i)
$$|W(\zeta)| \le C \exp(C |\zeta|^{\frac{l+1}{l-k}}), \quad \text{for all } \zeta \in \mathbb{C},$$

(ii)
$$|W(\zeta)| \ge \varepsilon \exp(\varepsilon |\zeta|^{\frac{l+1}{l-k}}), \quad for \ all \ \zeta \in \mathbf{R}_+.$$

Moreover, if l - k is an odd integer, then the inequality (ii) holds for all $\zeta \in \mathbf{R}$.

A proof of Lemma 2 will be given in the next section. Taking Lemma 2 for granted, let us prove our Theorem.

First we consider the case (i), i.e., the case in which $\frac{l+1}{l-k}$ is not a positive integer. Suppose that $W(\zeta) \neq 0$ for arbitrary $\zeta \in \mathbb{C}$. Then, the function

$$w(\zeta) = \log W(\zeta) = \log |W(\zeta)| + i \arg W(\zeta)$$

is defined as an entire function with respect to ζ . By Lemma 2, it satisfies

$$|\operatorname{Re} w(\zeta)| \le \log C + C |\zeta|^{\frac{l+1}{l-k}}, \quad \zeta \in \mathbb{C}.$$

Hence, $w(\zeta)$ must be a polynomial of at most degree $\left[\frac{l+1}{l-k}\right]$. On the other hand, it follows also from Lemma 2 that

$$|\operatorname{Re} w(\zeta)| \ge \log \varepsilon + \varepsilon |\zeta|^{\frac{l+1}{l-k}}, \quad \zeta \in \mathbf{R}_+.$$

However, note that, if $\frac{l+1}{l-k} \notin \mathbb{N}$ then $\left[\frac{l+1}{l-k}\right]$ is smaller than $\frac{l+1}{l-k}$. This contradicts to Lemma 2, so the function $W(\zeta)$ has zeros.

An argument of a proof in the case (ii) is similar. The above argument gives that, if $W(\zeta) \neq 0$ for any $\zeta \in \mathbb{C}$, then $W(\zeta) = e^{P(\zeta)}$ with polynomial $P(\zeta)$ of degree $N = \frac{l+1}{l-k}$ (which is a positive odd integer in this case). Put

$$P(\zeta) = A_N \zeta^N + A_{N-1} \zeta^{N-1} + \dots + A_0.$$

Since $W(\zeta)$ is real valued for $\zeta \in \mathbf{R}$, all A_i are real. Let us now observe that

$$|W(\zeta)| \ge \varepsilon \exp{(\varepsilon |\zeta|^N)}, \qquad \zeta \in \mathbf{R}_+$$

implies $A_N > 0$. On the other hand,

$$|W(\zeta)| \ge \varepsilon \exp{(\varepsilon |\zeta|^N)}, \qquad \zeta \in \mathbf{R}_-$$

and the hypothesis that N is an odd integer imply $A_N < 0$. Thus, there is a contradiction, therefore $W(\zeta)$ has zeros. This completes the proof.

2. The estimates of the wronskian

In this section, we show the estimates of the wronskian in Lemma 2. First we give a proposition, which is related to Proposition 1 in the preceding section. From the proposition below, we can get an information concerning dependence of $f_{\zeta}^{\pm}(x)$ on $\zeta \in \mathbb{C}$. Its proof will be given in the next section.

Proposition 2. Put $A = C_0(1 + |\zeta|)^{\frac{1}{1-k}}$. If we take the positive constant C_0 sufficiently large, then the following inequalities hold with a constant C (independent of ζ) satisfying 0 < C < 1.

(i)
$$|f_{\zeta}^{+}(x) - |x|^{-\frac{1}{2}}e^{-\phi_{\zeta}(x)}| \le C|x|^{-\frac{1}{2}}|e^{-\phi_{\zeta}(x)}|,$$

(ii)

$$|(f_{\zeta}^{+})'(x) + |x|^{\frac{1}{2}}e^{-\phi_{\zeta}(x)}| \leq C |x|^{\frac{1}{2}}|e^{-\phi_{\zeta}(x)}|,$$

$$for \ x \geq A.$$

$$|f_{\zeta}^{-}(x) - |x|^{-\frac{1}{2}}e^{(-1)^{l}\phi_{\zeta}(x)}| \leq C |x|^{-\frac{1}{2}}|e^{(-1)^{l}\phi_{\zeta}(x)}|.$$

$$|(f_{\zeta}^{-})'(x) - |x|^{\frac{1}{2}}e^{(-1)^{l}\phi_{\zeta}(x)}| \leq C |x|^{\frac{1}{2}}|e^{(-1)^{l}\phi_{\zeta}(x)}|,$$

$$for \ x \leq -A.$$

Let us start the proof of Lemma 2. Suppose $\zeta \in \mathbf{R}$. Then $f_{\zeta}^+(x)$ and $f_{\zeta}^-(x)$ are real valued. Moreover, it follows from Proposition 2 that $f_{\zeta}^+(x) > 0$, $(f_{\zeta}^+)'(x) < 0$ for $x \ge A$ and $f_{\zeta}^-(x) > 0$, $(f_{\zeta}^-)'(x) > 0$ for $x \le -A$. Note that the equation $(f_{\zeta}^+)''(x) = (x^k\zeta - x^l)^2 f_{\zeta}^+(x)$ forces $f_{\zeta}^+(x)(f_{\zeta}^+)''(x) \ge 0$ for all $x \in \mathbf{R}$. Furthermore, observe that $f_{\zeta}^+(x)(f_{\zeta}^+)''(x) \ge 0$ and the boundary condition $f_{\zeta}^+(A) > 0$, $(f_{\zeta}^+)'(A) < 0$ imply $f_{\zeta}^+(x) > 0$, $(f_{\zeta}^+)'(x) < 0$ for $x \le A$. Thus one can see that $f_{\zeta}^+(x) > 0$, $(f_{\zeta}^+)'(x) < 0$ for all $x \in \mathbf{R}$, and similarly that $f_{\zeta}^-(x) > 0$, $(f_{\zeta}^-)'(x) > 0$ for all $x \in \mathbf{R}$.

We are going to estimate a lower bound on the wronskian $W(\zeta)$ for $\zeta \in \mathbf{R}$. Firstly, the preceding observation yields that

$$W(\zeta) = f_{\zeta}^{+}(0)(f_{\zeta}^{-})'(0) - (f_{\zeta}^{+})'(0)f_{\zeta}^{-}(0)$$

$$\geq f_{\zeta}^{+}(0)(f_{\zeta}^{-})'(0).$$

So our remaining task is to estimate $f_{\zeta}^+(0)$ and $(f_{\zeta}^-)'(0)$ from below. Set

$$\begin{cases} g_{\zeta}(x) = \varepsilon A^{-\frac{l}{2}} e^{-\phi_{\zeta}(x)} \\ u(x) = f_{\zeta}(x) - g_{\zeta}(x). \end{cases}$$

Notice that Proposition 2 implies $f_{\zeta}^{+}(A) \ge \delta A^{-\frac{1}{2}} e^{-\phi_{\zeta}(A)}$ and $-(f_{\zeta}^{+})'(A) \ge \delta A^{\frac{1}{2}} e^{-\phi_{\zeta}(A)}$ for some positive constant δ . Hence, if we take $\varepsilon > 0$ sufficiently small, it holds that u(A) > 0 and u'(A) < 0.

Observe next

(4)
$$P_{\zeta}g_{\zeta} = \{x^{k-1}(lx^{l-k} - k\zeta)\}g_{\zeta},$$

whence $P_{\zeta}g_{\zeta}(x) > 0$ for $x \ge |\zeta|^{\frac{1}{l-k}}$. Thus it holds that

$$\frac{d^2 u}{dx^2} = -P_{\zeta} u + (x^k \zeta - x^l)^2 u$$
$$= P_{\zeta} g_{\zeta} + (x^k \zeta - x^l)^2 u$$
$$\ge (x^k \zeta - x^l)^2 u, \quad \text{for } |\zeta|^{\frac{1}{l-k}} \le x \le A$$

Therefore, u(x) satisfies $u''(x) \ge 0$ for $|\zeta|^{\frac{1}{l-k}} \le x \le A$ and u(A) > 0, u'(A) < 0,

whence u(x) > 0 and u'(x) < 0 for $|\zeta|^{\frac{1}{l-k}} \le x \le A$. As a consequence, by setting $x_{\zeta} = |\zeta|^{\frac{1}{l-k}}$, $y_{\zeta} = \left|\frac{l+1}{k+1}\zeta\right|^{\frac{1}{l-k}}$, the following inequalities are valid for $\zeta > 0$:

$$f_{\zeta}^{+}(x_{\zeta}) \ge g_{\zeta}(x_{\zeta})$$

$$= \varepsilon A^{-\frac{l}{2}} \exp\left\{\left(\frac{1}{k+1} - \frac{1}{l+1}\right) |\zeta|^{\frac{l+1}{l-k}}\right\},$$

$$- (f_{\zeta}^{+})'(y_{\zeta}) \ge - g_{\zeta}'(y_{\zeta})$$

$$= \varepsilon \cdot \left(\frac{l+1}{k+1}\right)^{k/(l-k)} \cdot \frac{l-k}{k+1} \cdot |\zeta|^{\frac{l}{l-k}} \cdot A^{-\frac{l}{2}}.$$

Observe that the uniqueness of f_{ζ}^+ , f_{ζ}^- implies

$$f_{\zeta}^{-}(x) = \begin{cases} f_{-\zeta}^{+}(-x) & , l-k = \text{odd}, \\ f_{\zeta}^{+}(-x) & , l-k = \text{even}. \end{cases}$$

Moreover, the argument at the begining of the present section gives that $f_{\zeta}^+(0) \ge f_{\zeta}^+(x_{\zeta})$ and $-(f_{\zeta}^+)'(0) \ge -(f_{\zeta}^+)'(y_{\zeta})$. Thus, if l-k is an even integer and $\zeta > 0$, it holds that

$$W(\zeta) \ge -f_{\zeta}^{+}(0)(f_{\zeta}^{+})'(0)$$

$$\ge -f_{\zeta}^{+}(x_{\zeta})(f_{\zeta}^{+})'(y_{\zeta})$$

$$\ge -g_{\zeta}(x_{\zeta})g_{\zeta}'(y_{\zeta})$$

$$\ge C \exp\left\{\left(\frac{1}{k+1} - \frac{1}{l+1}\right)|\zeta|^{\frac{l+1}{l-k}}\right\},$$

where C is a positive constant independent of ζ . Since we have $\frac{1}{k+1} - \frac{1}{l+1} > 0$,

we have established the estimate (ii) of Lemma 2 in case l - k is an even integer.

Next let us consider the case in which l-k is an odd integer. If $\zeta > 0$, the relation (4) implies that $P_{-\zeta}g_{-\zeta}(x) > 0$ for $1 \le x \le A$. Hence the above argument also gives

$$-(f_{-\zeta}^{+})'(1) \ge -g_{-\zeta}'(1)$$
$$= \varepsilon A^{-\frac{1}{2}}(1+\zeta)e^{-\phi-\zeta(1)}.$$

Thus if l - k is an odd integer and $\zeta > 0$, we have

$$W(\zeta) \ge f_{\zeta}^{+}(0)(f_{\zeta}^{-})'(0)$$

= $-f_{\zeta}^{+}(0)(f_{-\zeta}^{+})'(0)$
 $\ge -f_{\zeta}^{+}(x_{\zeta})(f_{-\zeta}^{+})'(1)$
 $\ge -g_{\zeta}(x_{\zeta})(g_{-\zeta})'(1)$

$$=\varepsilon^2 A^{-l}(1+\zeta)e^{-\phi_{\zeta}(x_{\zeta})-\phi_{-\zeta}(1)}.$$

Observe that

$$-\phi_{\zeta}(x_{\zeta})-\phi_{-\zeta}(1)=\left(\frac{1}{k+1}-\frac{1}{l+1}\right)\zeta^{\frac{l+1}{l-k}}-\left(\frac{1}{l+1}+\frac{\zeta}{k+1}\right)$$

where $\frac{1}{k+1} - \frac{1}{l+1} > 0$ and $\frac{l+1}{l-k} > 1$. So, the estimate (ii) of Lemma 2 holds

also in the case l-k is odd and $\zeta > 0$.

The case in which l - k is an odd integer and $\zeta < 0$ can be treated in a similar way. Indeed, in this case, it holds that

$$W(\zeta) \ge - (f_{\zeta}^{+})'(0)f_{\zeta}^{-}(0)$$

= - (f_{\zeta}^{+})'(0)f_{-\zeta}^{+}(0)
$$\ge - g_{\zeta}'(1)g_{-\zeta}(x_{-\zeta})$$

= $\varepsilon^{2}A^{-l}(1-\zeta)e^{-\phi-\zeta(x-\zeta)-\phi\zeta(1)}$.

Hence, observing

$$-\phi_{-\zeta}(x_{-\zeta})-\phi_{\zeta}(1)=\left(\frac{1}{k+1}-\frac{1}{l+1}\right)|\zeta|^{\frac{l+1}{l-k}}-\left(\frac{1}{l+1}-\frac{\zeta}{k+1}\right),$$

one can see that the estimate (ii) in Lemma 2 holds in this case. This finishes the proof of the lower bound.

Now we turn to estimate an upper bound on $W(\zeta)$ for arbitrary $\zeta \in \mathbb{C}$. First notice that Proposition 2 yields

(5)
$$\begin{cases} |f_{\zeta}^{+}(A)| \leq CA^{-\frac{l}{2}} |e^{-\phi_{\zeta}(A)}|, \\ |(f_{\zeta}^{+})'(A)| \leq CA^{\frac{l}{2}} |e^{-\phi_{\zeta}(A)}|, \end{cases}$$

where C is a positive constant independent of $\zeta \in \mathbb{C}$. On the other hand, observe that

$$\left| \frac{d^2}{dx^2} f_{\zeta}^+(x) \right| = |x^k \zeta - x^l|^2 |f_{\zeta}^+(x)|$$
$$\leq C |\zeta|^{\frac{2l}{l-k}} |f_{\zeta}^+(x)|,$$

for $0 \le x \le A$, whence

$$\begin{aligned} &\frac{d}{dx} \left\{ |\zeta|^{\frac{2l}{l-k}} |f_{\zeta}^{+}(x)|^{2} + |(f_{\zeta}^{+})'(x)|^{2} \right\} \\ &\leq C |\zeta|^{\frac{l}{l-k}} \left\{ |\zeta|^{\frac{2l}{l-k}} |f_{\zeta}^{+}(x)|^{2} + |(f_{\zeta}^{+})'(x)|^{2} \right\}, \end{aligned}$$

for $0 \le x \le A$. Furthermore, by Gronwall's inequality, it follows

(6)
$$|\zeta|^{\frac{2l}{l-k}} |f_{\zeta}^{+}(0)|^{2} + |(f_{\zeta}^{+})'(0)|^{2}$$

$$\leq C\left\{|\zeta|^{\frac{2l}{l-k}}|f_{\zeta}^{+}(A)|^{2}+|(f_{\zeta}^{+})'(A)|^{2}\right\}e^{C|\zeta|^{\frac{l}{l-k}}A}.$$

As a consequence of (5) and (6), one can see that, for large $|\zeta|$,

$$\begin{cases} |f_{\zeta}^{+}(0)| \leq C |\zeta|^{-\frac{l}{2(l-k)}} e^{C|\zeta|^{\frac{l+1}{l-k}}}, \\ |(f_{\zeta}^{+})'(0)| \leq C |\zeta|^{\frac{l}{2(l-k)}} e^{C|\zeta|^{\frac{l+1}{l-k}}}. \end{cases}$$

Since the above argument can also be applied to the estimates for $f_{\zeta}^{-}(0)$ and $(f_{\zeta}^{-})'(0)$, we finally see that the wronskian have the upper bound

$$|W(\zeta)| \le C \exp{(C|\zeta|^{\frac{l+1}{l-k}})}.$$

This completes the proof of Lemma 2.

3. Proof of Proposition 2

Proposition 2 asserts that, in some sense, $|x|^{-\frac{1}{2}}e^{-\phi_{\zeta}(x)}$ approximates to $f_{\zeta}^{+}(x)$ in the region $x \ge A$, and $|x|^{-\frac{1}{2}}e^{(-1)^{l}\phi_{\zeta}(x)}$ approximates to $f_{\zeta}^{-}(x)$ in the region $x \le -A$. In the present section, we show this for $f_{\zeta}^{+}(x)$, since the proof for $f_{\zeta}^{-}(x)$ will be completely parallel.

Set $A = C_0 (1 + |\zeta|)^{\frac{1}{l-k}}$,

(7)
$$G(x) = \frac{1}{\sqrt{\phi'(x)}} e^{-\phi(x)}$$

and

(8)
$$w(x) = G(x) - f_{\zeta}^{+}(x).$$

Here, we abbreviate $\phi_{\zeta}(x)$ as $\phi(x)$. It will be shown that, if we take C_0 sufficiently large, then we have

(9)
$$\sup_{x \ge A} \frac{|w(x)|}{|x|^{-l-1} |G(x)|} \le C_1 < \infty$$

with a positive constant C_1 independent of $\zeta \in \mathbb{C}$. Observe now that, by taking C_0 sufficiently large, the inequality

$$\left|x^{-\frac{1}{2}} - \frac{1}{\sqrt{\phi'(x)}}\right| \le C_2 x^{-\frac{1}{2}} \quad \text{for } x \ge A$$

holds with a constant C_2 satisfying $0 < C_2 < 1$. Hence, from (7), (8) and (9) one can get

$$|f_{\zeta}^{+}(x) - |x|^{-\frac{1}{2}}e^{-\phi(x)}| \le C|x|^{-\frac{1}{2}}|e^{-\phi(x)}| \quad \text{for } x \ge A$$

with a constant C satisfying 0 < C < 1.

Now, denote by $u_y = u_y(x)$ the solution in the interval [A, y] of the initial value problem:

$$\begin{cases} P_{\zeta} u_{y}(x) = P_{\zeta} G(x), & A < x < y, \\ u_{y}(y) = u_{y}'(y) = 0. \end{cases}$$

We shall prove that the inequality

(10)
$$|u_y(x)| \le C |x|^{-l-1} |G(x)|, \quad A \le x \le y$$

holds with a constant C independent of y and ζ . Also we shall prove that, for y_1, y_2 satisfying $A \le x \le y_1 \le y_2$, the inequality

(11)
$$|u_{y_1}(x) - u_{y_2}(x)| \le C |y_1|^{-l-1} |G(x)|$$

holds with a constant C independent of y_1 , y_2 and ζ . This granted, u_y converges uniformly on arbitrary compact set of $[A, \infty)$ as y tends to ∞ . It is also clear that the limit function w(x) satisfies $P_{\zeta}w \equiv P_{\zeta}G$ and

$$|w(x)| \le C |x|^{-l-1} |G(x)|$$
 for $A \le x < \infty$.

Thus, one can see that the function G(x) - w(x) is a solution to $P_{\zeta}(G - w) \equiv 0$ having the same asymptotic behavior as $f_{\zeta}^+(x)$. Hence, we have $f_{\zeta}^+ \equiv G - w$ and w satisfies (9).

Now let us prove (10). Set

$$\psi = \log G = -\phi(x) - \frac{1}{2}\log \phi'(x)$$

and

$$D=rac{d}{dx}+\psi',\qquad ilde{D}=-rac{d}{dx}+\psi'.$$

Then, we have

$$D \circ \tilde{D} = -\frac{d^2}{dx^2} + (\psi')^2 + \psi''$$
$$= P_{\zeta} + E,$$

where

$$E = -\frac{1}{2} \left(\frac{\phi''}{\phi'} \right)' + \frac{1}{4} \left(\frac{\phi''}{\phi'} \right)^2.$$

Notice that the inequality

$$|E(x)| \le C |x|^{-2}, \qquad x \ge A$$

holds with a constant C independent of ζ . Also observe that $P_{\zeta}G(x) = -\left(\frac{1}{\sqrt{\phi'(x)}}\right)'' e^{-\phi(x)}$, whence

$$|P_{\zeta}G(x)| \le C |x|^{-2} |G(x)|, \qquad x \ge A$$

holds with a constant C independent of ζ .

With y fixed and abbreviating u_y as u, put

$$B = \sup_{A \le x \le y} \frac{|u(x)|}{|x|^{-l-1} |G(x)|} < \infty.$$

We shall show that B has a bound independent of y and ζ . Put $v = \tilde{D}u$. Then, we have

$$e^{-\psi}\frac{d}{dx}e^{\psi}v = Dv = D \circ \tilde{D}u$$
$$= P_{\zeta}u + Eu = P_{\zeta}G + Eu.$$

Since we have v(y) = 0, one has for $A \le s \le y$

$$e^{\psi(s)}v(s) = \int_{y}^{s} e^{\psi(t)} \left[P_{\zeta}G(t) + (Eu)(t)\right] dt,$$

whence we have

$$|v(s)| \le |e^{-\psi(s)}| \int_{s}^{y} |e^{\psi(t)}| [C|t|^{-2} |G(t)| + C|t|^{-2} |u(t)|] dt$$

$$\le C|s|^{\frac{1}{2}} |e^{\phi(s)}| \int_{s}^{y} |t|^{-\frac{1}{2}} |e^{-\phi(t)}| [|t|^{-\frac{1}{2}-2} |e^{-\phi(t)}| + |t|^{-2} |u(t)|] dt$$

$$\le C|s|^{\frac{1}{2}} |e^{\phi(s)}| \cdot |s|^{-2l-2} |e^{-2\phi(s)}| + C|s|^{\frac{1}{2}} |e^{\phi(s)}| \int_{s}^{y} |t|^{-\frac{1}{2}-2} |e^{-\phi(t)}u(t)| dt$$

(12)
$$= C|s|^{-\frac{3}{2}l-2} |e^{-\phi(s)}| + C|s|^{\frac{1}{2}} |e^{\phi(s)}| \int_{s}^{y} |t|^{-\frac{1}{2}-2} |e^{-\phi(t)}u(t)| dt.$$

Furthermore, from the equalities, $v = \tilde{D}u = -e^{\psi}\frac{d}{dx}e^{-\psi}u$ it follows that, for $A \le x \le y$, we have

$$|u(x)| \le |e^{\psi(x)}| \int_{x}^{y} |e^{-\psi(s)}v(s)| ds$$
$$\le C |x|^{-\frac{l}{2}} |e^{-\phi(x)}| \int_{x}^{y} |s|^{-l-2} ds$$

Analytic hypoellipticity

$$\begin{split} &+ C |x|^{-\frac{l}{2}} |e^{-\phi(x)}| \int_{s=x}^{y} |s|^{l} |e^{2\phi(s)}| \int_{t=s}^{y} |t|^{-\frac{l}{2}-2} |e^{-\phi(t)}u(t)| dt ds \\ &\leq C |x|^{-l-1} |G(x)| + C |G(x)| \int_{t=x}^{y} |t|^{-\frac{l}{2}-2} |e^{-\phi(t)}u(t)| \int_{s=x}^{t} |s|^{l} |e^{2\phi(s)}| ds dt \\ &\leq C |x|^{-l-1} |G(x)| + C |G(x)| \int_{x}^{y} |t|^{-\frac{l}{2}-2} |e^{-\phi(t)}u(t)| \cdot |e^{2\phi(t)}| dt \\ &\leq C |x|^{-l-1} |G(x)| + C |G(x)| \int_{x}^{y} |t|^{-2l-3} B dt \\ &\leq C |x|^{-l-1} |G(x)| [1 + B |x|^{-l-1}]. \end{split}$$

Take the positive constant C_0 large enough such that $C|x|^{-l-1} \le \frac{1}{2}$ holds for $x \ge C_0$. Then, from the last inequality, we obtain $B \le 2C$. All constants denoted by C are independent of y and ζ , so the inequality (10) is established.

We turn to show (11) for $A \le x \le y_1 \le y_2$. By the above argument, already we have

$$u_{y_2}(y_1) \le C |y_1|^{-l-1} |G(y_1)|.$$

Also it follows from (12) that, for $A \le s \le y_2$, we have

$$\begin{split} \tilde{D}u_{y_2}(s) &\leq C \left|s\right|^{-\frac{3}{2}l-2} \left|e^{-\phi(x)}\right| + C \left|s\right|^{\frac{1}{2}} \left|e^{\phi(s)}\right| \int_{s}^{y_2} \left|t\right|^{-\frac{1}{2}-2} \left|e^{-\phi(t)}u_{y_2}(t)\right| dt \\ &\leq C \left|s\right|^{-l-2} \left|G(s)\right| + C \left|s\right|^{\frac{1}{2}} \left|e^{\phi(s)}\right| \int_{s}^{y_2} \left|t\right|^{-2l-3} \left|e^{-2\phi(t)}\right| dt \\ &\leq C \left|s\right|^{-l-2} \left|G(s)\right| + C \left|s\right|^{-\frac{5}{2}l-3} \left|e^{-\phi(x)}\right| \\ &\leq C \left|s\right|^{-l-2} \left|G(s)\right|. \end{split}$$

Set $w_1 = u_{y_1} - u_{y_2}$ and $v = \tilde{D}w_1$. Recall that $u_{y_1}(y_1) = u'_{y_1}(y_1) = 0$. Thus by the above observation, we have

$$|w_1(y_1)| \le C |y_1|^{-l-1} |G(y_1)| \le C |y_1|^{-\frac{3}{2}l-1} |e^{-\phi(y_1)}|$$

and

$$|v(y_1)| \le C |y_1|^{-l-2} |G(y_1)| \le C |y_1|^{-\frac{3}{2}l-2} |e^{-\phi(y_1)}|.$$

Let us estimate $w_1(x)$ for $A \le x \le y_1$. Since we have

$$e^{-\psi} \frac{d}{ds} e^{\psi} v = Dv = D \circ \tilde{D}w_1$$
$$= P_{\zeta}w_1 + Ew_1 = Ew_1,$$

it holds that for $A \le s \le y_1$

$$\begin{aligned} |e^{\psi(s)}v(s)| &\leq |e^{\psi(y_1)}v(y_1)| + \int_s^{y_1} |e^{\psi(t)}(Ew_1)(t)| \, dt \\ &\leq C |y_1|^{-2l-2} |e^{-2\phi(y_1)}| + \int_s^{y_1} |t|^{-\frac{l}{2}-2} |w_1(t)| \, dt. \end{aligned}$$

Moreover, since we have $-e^{\psi} \frac{d}{dx} e^{-\psi} w_1 = v$, the argument to get (10) also gives that, for $A \le x \le y_1$, we have

$$\begin{aligned} |e^{-\psi(x)}w_{1}(x)| &\leq |e^{\psi(y_{1})}w_{1}(y_{1})| + \int_{x}^{y_{1}} |e^{-\psi(s)}v(s)| \, ds \\ &\leq C |y_{1}|^{-l-1} + C |y_{1}|^{-2l-2} |e^{-2\phi(y_{1})}| \cdot |e^{2\phi(y_{1})}| \\ &+ \int_{x}^{y_{1}} |t|^{-\frac{l}{2}-2} |e^{-\phi(t)}w_{1}(t)| \int_{x}^{t} |e^{-2\psi(s)}| \, ds dt \\ &\leq C |y_{1}|^{-l-1} + C \int_{x}^{y_{1}} |t|^{-\frac{l}{2}-2} |e^{-\phi(t)}w_{1}(t)| \cdot |e^{2\phi(t)}| \, dt. \end{aligned}$$

Setting now

$$B_1 = \sup_{A \le x \le y_1} \frac{|w_1(x)|}{|G(x)|} < \infty,$$

we consequently obtain that

$$B_{1} \leq C |y_{1}|^{-l-1} + C \int_{x}^{y_{1}} B_{1} |t|^{-l-2} dt$$

$$\leq C |y_{1}|^{-l-1} + B_{1} \cdot C \cdot |x|^{-l-1}$$

$$\leq C |y_{1}|^{-l-1} + \frac{B_{1}}{2}.$$

Thus, the inequality $B_1 \leq 2C |y_1|^{-l-1}$ holds, so (11) is established.

Finally we give a proof of the inequality:

(13)
$$|(f_{\zeta}^{+})'(x) + |x|^{\frac{1}{2}}e^{-\phi(x)}| \le C |x|^{\frac{1}{2}}|e^{-\phi(x)}|, \quad \text{for } x \ge A,$$

with a constant C satisfying 0 < C < 1. First observe that

$$(f_{\zeta}^{+})' = (G - w)' = G' + Dw - \psi'w.$$

Concerning the first term on the right hand side, by taking the constant C_0 sufficiently large, the inequality

Analytic hypoellipticity

$$|G'(x) + |x|^{\frac{l}{2}}e^{-\phi(x)}| \le C |x|^{\frac{l}{2}}|e^{-\phi(x)}|, \qquad x \ge A$$

holds with a constant C with 0 < C < 1. Also observe that

$$|\tilde{D}w(x)| \le C |x|^{-\frac{3}{2}l-2} |e^{-\phi(x)}|, \qquad x \ge A$$

and

$$|\psi'(x)w(x)| \le C |x|^{-\frac{l}{2}-1} |e^{-\phi(x)}|, \quad x \ge A.$$

They are consequences of (12) and (10) respectively, by taking the limits as y tends to ∞ . Thus, combining these inequalities, we obtain (13). The proof of Proposition 2 is now complete.

INSTITUTE OF MATHEMATICS University of Tsukuba

References

- M. S. Baouendi and C. Goulaouic, Nonanalytic-hypoellipticity for some degenerate elliptic operators, Bull. Amer. Math. Soc., 78 (1972), 483-486.
- [2] M. Christ, Certain sums of squares of vector fields fail to be analytic hypoelliptic, Comm. in P.D.E., 16 (1991), 1695-1707.
- [3] E. A. Coddington and N. Levinson, Theory of ordinary differential operators, McGraw-Hill, New York, 1955.
- [4] A. Grigis and J. Sjöstrand, Front d'onde analitique et sommes de carrés de champs de vecteurs, Duke Math. J., 52 (1985), 35-51.
- [5] N. Hanges and A. A. Himonas, Singular solutions for sums of squares of vector fields, Comm. in P.D.E., 16 (1991), 1503-1511.
- [6] B. Helffer, Conditions nécessaires d'hypoanalicité pour des opératuers invariant à gauche homogènes sur un groupe nilpotent gradué, J. Diff. Eq., 44 (1982), 460–481.
- [7] L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171.
- [8] G. Métivier, Une class d'operateurs non hypoélliptiques analytiques, Indiana Univ. Math. J., 29 (1980), 823-860.
- [9] Pham The Lai and D. Robert, Sur un problème aux valuers propres non linéaire, Israel J. Math., 36 (1980), 169–186.
- [10] Y. Sibuya, Global theory of a second order linear differential equation with a polynomial coefficient, North-Holland, New York, 1975.
- [11] D. S. Tartakoff, On the local real analyticity of solutions to \Box_b and $\bar{\partial}$ -Neumann problem, Acta Math., 145 (1980), 117–204.
- [12] F. Treves, Analytic hypo-ellipticity of a class of pseudodifferential operators with double characteristics and applications to the ∂-Neumann problem, Comm. in P.D.E., 3 (1978), 475-642.