Failure of analytic hypoellipticity for some operators of $X^{2}+Y^{\mathbf{2}}$ type

Dedicated to Professor Tosinobu Muramatu on his 60 th birthday

By

Toshihiko Hoshiro

0. Introduction and result

A differential operator P is said to be hypoelliptic, if for any C^{∞} function f in some open set U all solutions u to $P u=f$ belong to $C^{\infty}(U)$. Also P is said to be analytic hypoelliptic, if $f \in C^{\omega}(U)$ implies $u \in C^{\omega}(U)$. Let Ω be an open set in \mathbf{R}^{n} and X_{1}, \ldots, X_{r} be real vector fields with analytic coefficients. It is well known that, if X_{1}, \ldots, X_{r} and their commutators $\left[X_{j_{1}}, X_{j_{2}}\right], \ldots,\left[X_{j_{1}}\left[X_{j_{2}}, \ldots\right.\right.$, $\left.\left[X_{j_{k-1}}, X_{j_{k}}\right] \cdots\right] \ldots$ generate the tangent space $T_{x} \mathbf{R}^{n}$ for all $x \in \Omega$ then the operator

$$
\begin{equation*}
P=\sum_{j=1}^{r} X_{j}^{2} \tag{1}
\end{equation*}
$$

is hypoelliptic in Ω (L. Hörmander [7]).
Note that such an assumption as above is not sufficient for analytic hypoellipticity (cf. F. Treves [12], D. S. Tartakoff [11] and A. Grigis-J. Sjöstrand [4]). Indeed, there are some negative results. Some hypoelliptic operators of type (1) were shown to be not analytic hypoelliptic. Such operators can be seen, for example, in the following papers: M. S. Baouendi- C. Goulaouic [1], G. Métivier [8], B. Helffer [6], Pham The Lai-D. Robert [9], N. Hanges-A. A. Himonas [5] and M. Christ [2]. The purpose of the present paper is to give new examples of hypoelliptic operators which fail to be analytic hypoelliptic.

Here, we consider the operator

$$
\begin{equation*}
P=\frac{\partial^{2}}{\partial x^{2}}+\left(x^{k} \frac{\partial}{\partial y}-x^{l} \frac{\partial}{\partial t}\right)^{2} \tag{2}
\end{equation*}
$$

in \mathbf{R}^{3}. If the non negative integers k, l satisfy $k<l$, then Hörmander's theorem can be applied, hence the operator P is hypoelliptic. With this hypothesis the result of the present paper is following

Theorem. The operator P in (2) is not analytic hypoelliptic, if either of the following assumptions is satisfied:
(i) $\quad \frac{l+1}{l-k}$ is not a positive integer.
(ii) The both $l-k$ and $\frac{l+1}{l-k}$ are odd integers.

The operator P in (2) with $k=0$ was considered by M. Christ [2] (see also N. Hanges-A. A. Himonas [5]). He proved that such operators are not analytic hypoelliptic except the case $l=1$ (see the assumption (i) in Theorem). Our proof of Theorem is based on his method, so Theorem is an extension of his result.

The present paper is organized as follows: First, we shall explain the outline of a proof of Theorem in Section 1. A lemma, which is essential to a proof of our Theorem, will be proven in Section 2. Section 3 will be devoted to a proof of Proposition 2 which is also necessary for a proof of the lemma.

1. Outline of Proof

Theorem will be proved, if we construct a non real analytic solution u to $P u \equiv 0$. To do so, for $\zeta \in \mathbf{C}$, set

$$
\begin{equation*}
P_{\zeta}=-\frac{d^{2}}{d x^{2}}+\left(x^{k} \zeta-x^{l}\right)^{2} \tag{3}
\end{equation*}
$$

The argument as in the following lemma is standard (cf. [1], [2], [5] and [8]).
Lemma 1. If there exist $\zeta \in \mathbf{C}$ and $f \in L^{\infty}(\mathbf{R})$ not identically equal to zero satisfying $P_{\zeta} f \equiv 0$, then the operator P in (2) is not analytic hypoelliptic.

Proof. Let F be defined by

$$
F(x, y, t)=\int_{0}^{\infty} e^{i t t+i \tau^{\frac{k+1}{1+1}} \zeta y-\tau^{\frac{k+1}{1+1}}} f\left(\tau^{\frac{1}{1+1}} x\right) d \tau
$$

Since the function f is of class $L^{\infty}(\mathbf{R})$, the above integral converges in a region $|y|<\varepsilon$ for some $\varepsilon>0$. Also it is easy to see that $P F \equiv 0$, since we have $P_{\zeta} f \equiv 0$. On the other hand, one can show that F is not real analytic at $(x, y, z)=(0,0,0)$. In fact, observe that

$$
\begin{aligned}
\left|\frac{\partial^{m} F}{\partial t^{m}}(0,0,0)\right| & =|f(0)| \int_{0}^{\infty} \tau^{m} e^{-\tau^{k+1}} d \tau \\
& =|f(0)| \cdot \frac{l+1}{k+1} \cdot \Gamma\left(\frac{l+1}{k+1}(m+1)\right)
\end{aligned}
$$

The last relation obviously yields that, if $f(0) \neq 0$, then there is no constant C such that $\left|\frac{\partial^{m} F}{\partial t^{m}}(0,0,0)\right| \leq C^{m+1} m!$, because $\frac{l+1}{k+1}>1$. In case $f(0)=0, f \not \equiv 0$
and the uniqueness of the solution imply that $f^{\prime}(0) \neq 0$. In this case, we have

$$
\left|\frac{\partial^{m+1} F}{\partial t^{m} \partial x}(0,0,0)\right|=\left|f^{\prime}(0)\right| \cdot \frac{l+1}{k+1} \cdot \Gamma\left(\frac{l+1}{k+1}(m+1)+\frac{1}{k+1}\right) .
$$

Thus F is not real analytic also in this case.
By virtue of Lemma 1, it suffices to show the existence of $\zeta \in \mathbf{C}$ and $f \in L^{\infty}(\mathbf{R})$ as in Lemma 1 from one of the hypotheses in our Theorem. To show this, we use M. Christ's procedure.

The next result is well known in much greater generality ($c f$. E. A. CoddingtonN. Levinson [3] or Y. Sibuya [10]).

Proposition 1. For each $\zeta \in \mathbf{C}$, there exist unique solutions $f_{\zeta}{ }^{+}, f_{\zeta}{ }^{-}$to $P_{\zeta} f_{\zeta}^{+} \equiv 0, P_{\zeta} f_{\zeta}^{-} \equiv 0$, respectively, having the following asymptotic behaviors:

$$
\begin{array}{ll}
f_{\zeta}^{+}(x)=|x|^{-\frac{l}{2}} e^{-\phi_{\zeta}(x)}\left(1+O\left(|x|^{-1}\right)\right) & \text { as } x \rightarrow \infty, \\
f_{\zeta}^{-}(x)=|x|^{-\frac{1}{2}} e^{(-1)^{\prime} \phi_{\zeta}(x)}\left(1+O\left(|x|^{-1}\right)\right) & \text { as } x \rightarrow-\infty, \tag{ii}
\end{array}
$$

where $\phi_{\zeta}(x)=\frac{x^{l+1}}{l+1}-\zeta \frac{x^{k+1}}{k+1}$. Moreover, for each $x \in \mathbf{R}$, these functions are holomorphic with respect to $\zeta \in \mathbf{C}$ and also real valued for $\zeta \in \mathbf{R}$.
Y. Sibuya called f_{ζ}^{+}(resp. f_{ζ}^{-}) a subdominant solution on positive (resp. negative) real axis in his book [10]. For our purpose, it suffices to show the existence of $\zeta \in \mathbf{C}$ where f_{ζ}^{+}and f_{ζ}^{-}are linearly dependent. Because, for such $\zeta \in \mathbf{C}$, the both subdominant solutions decay exponentially as $x \rightarrow \pm \infty$, hence remain bounded. Next consider the wronskian

$$
W(\zeta)=f_{\zeta}^{+}(x)\left(f_{\zeta}^{-}\right)^{\prime}(x)-\left(f_{\zeta}^{+}\right)^{\prime}(x) f_{\zeta}^{-}(x) .
$$

Then it is also obvious that the existence of $\zeta \in \mathbf{C}$ mentioned above is equivalent to that of $\zeta \in \mathbf{C}$ with $W(\zeta)=0$.

The following lemma is essential to the proof of our Theorem. It gives some information concerning zeros of $W(\zeta)$.

Lemma 2. The Wronskian $W(\zeta)$ is an entire function of order $\frac{l+1}{l-k}$. More precisely, there exist positive constants C and ε such that

$$
\begin{equation*}
|W(\zeta)| \leq C \exp \left(C|\zeta|^{\frac{1+1}{-k}}\right), \quad \text { for all } \zeta \in \mathbf{C}, \tag{i}
\end{equation*}
$$

$$
\begin{equation*}
|W(\zeta)| \geq \varepsilon \exp \left(\varepsilon|\zeta|^{\frac{l+1}{I-k}}\right), \quad \text { for all } \zeta \in \mathbf{R}_{+} . \tag{ii}
\end{equation*}
$$

Moreover, if $l-k$ is an odd integer, then the inequality (ii) holds for all $\zeta \in \mathbf{R}$.
A proof of Lemma 2 will be given in the next section. Taking Lemma 2 for granted, let us prove our Theorem.

First we consider the case (i), i.e., the case in which $\frac{l+1}{l-k}$ is not a positive integer. Suppose that $W(\zeta) \neq 0$ for arbitrary $\zeta \in \mathbf{C}$. Then, the function

$$
w(\zeta)=\log W(\zeta)=\log |W(\zeta)|+i \arg W(\zeta)
$$

is defined as an entire function with respect to ζ. By Lemma 2, it satisfies

$$
|\operatorname{Re} w(\zeta)| \leq \log C+C|\zeta|^{\frac{l+1}{1-k}}, \quad \zeta \in \mathbf{C} .
$$

Hence, $w(\zeta)$ must be a polynomial of at most degree $\left[\frac{l+1}{l-k}\right]$. On the other
hand, it follows also from Lemma 2 that

$$
|\operatorname{Re} w(\zeta)| \geq \log \varepsilon+\varepsilon|\zeta|^{\frac{l+1}{1-k}}, \quad \zeta \in \mathbf{R}_{+}
$$

However, note that, if $\frac{l+1}{l-k} \notin \mathbf{N}$ then $\left[\frac{l+1}{l-k}\right]$ is smaller than $\frac{l+1}{l-k}$. This contradicts to Lemma 2, so the function $W(\zeta)$ has zeros.

An argument of a proof in the case (ii) is similar. The above argument gives that, if $W(\zeta) \neq 0$ for any $\zeta \in \mathbf{C}$, then $W(\zeta)=e^{P(\zeta)}$ with polynomial $P(\zeta)$ of degree $N=\frac{l+1}{l-k}$ (which is a positive odd integer in this case). Put

$$
P(\zeta)=A_{N} \zeta^{N}+A_{N-1} \zeta^{N-1}+\cdots+A_{0} .
$$

Since $W(\zeta)$ is real valued for $\zeta \in \mathbf{R}$, all A_{j} are real. Let us now observe that

$$
|W(\zeta)| \geq \varepsilon \exp \left(\varepsilon|\zeta|^{N}\right), \quad \zeta \in \mathbf{R}_{+}
$$

implies $A_{N}>0$. On the other hand,

$$
|W(\zeta)| \geq \varepsilon \exp \left(\varepsilon|\zeta|^{N}\right), \quad \zeta \in \mathbf{R}_{-}
$$

and the hypothesis that N is an odd integer imply $A_{N}<0$. Thus, there is a contradiction, therefore $W(\zeta)$ has zeros. This completes the proof.

2. The estimates of the wronskian

In this section, we show the estimates of the wronskian in Lemma 2. First we give a proposition, which is related to Proposition 1 in the preceding section. From the proposition below, we can get an information concerning dependence of $f_{\zeta}^{ \pm}(x)$ on $\zeta \in \mathbf{C}$. Its proof will be given in the next section.

Proposition 2. Put $A=C_{0}(1+|\zeta|)^{\frac{1}{1-k}}$. If we take the positive constant C_{0} sufficiently large, then the following inequalities hold with a constant C (independent of ζ) satisfying $0<C<1$.

$$
\begin{equation*}
\left|f_{\zeta}^{+}(x)-|x|^{-\frac{1}{2}} e^{-\phi_{\xi}(x)}\right| \leq C|x|^{-\frac{1}{2}}\left|e^{-\phi_{\xi}(x)}\right|, \tag{i}
\end{equation*}
$$

$$
\begin{aligned}
\left|\left(f_{\zeta}^{+}\right)^{\prime}(x)+|x|^{\frac{1}{2}} e^{-\phi_{\xi}(x)}\right| \leq & C|x|^{\frac{1}{2}}\left|e^{-\phi_{5}(x)}\right| \\
& \text { for } \quad x \geq A .
\end{aligned}
$$

(ii)

$$
\begin{gathered}
\left|f_{\zeta}^{-}(x)-|x|^{-\frac{1}{2}} e^{(-1)^{\prime} \phi_{5}(x)}\right| \leq C|x|^{-\frac{1}{2}}\left|e^{(-1)^{l_{\phi}}(x)}\right|, \\
\left.\left|\left(f_{\zeta}^{-}\right)^{\prime}(x)-|x|^{\frac{1}{2}} e^{(-1)^{\prime} \phi_{5}(x)}\right| \leq C|x|^{\frac{1}{2}} \right\rvert\, e^{(-1)^{d_{\delta}(x)} \mid,} \\
\text { for } x \leq-A .
\end{gathered}
$$

Let us start the proof of Lemma 2. Suppose $\zeta \in \mathbf{R}$. Then $f_{\zeta}{ }^{+}(x)$ and $f_{\zeta}{ }^{-}(x)$ are real valued. Moreover, it follows from Proposition 2 that $f_{\zeta}^{+}(x)>0$, $\left(f_{\zeta}^{+}\right)^{\prime}(x)<0$ for $x \geq A$ and $f_{\zeta}^{-}(x)>0,\left(f_{\zeta}^{-}\right)^{\prime}(x)>0$ for $x \leq-A$. Note that the equation $\left(f_{\zeta}^{+}\right)^{\prime \prime}(x)=\left(x^{k} \zeta-x^{l}\right)^{2} f_{\zeta}^{+}(x)$ forces $f_{\zeta}^{+}(x)\left(f_{\zeta}^{+}\right)^{\prime \prime}(x) \geq 0$ for all $x \in \mathbf{R}$. Furthermore, observe that $f_{\zeta}^{+}(x)\left(f_{\zeta}{ }^{+}\right)^{\prime \prime}(x) \geq 0$ and the boundary condition $f_{\zeta}^{+}(A)>0,\left(f_{\zeta}^{+}\right)^{\prime}(A)<0$ imply $f_{\zeta}^{+}(x)>0,\left(f_{\zeta}^{+}\right)^{\prime}(x)<0$ for $x \leq A$. Thus one can see that $f_{\zeta}^{+}(x)>0,\left(f_{\zeta}^{+}\right)^{\prime}(x)<0$ for all $x \in \mathbf{R}$, and similarly that $f_{\zeta}^{-}(x)>0$, $\left(f_{5}^{-}\right)^{\prime}(x)>0$ for all $x \in \mathbf{R}$.

We are going to estimate a lower bound on the wronskian $W(\zeta)$ for $\zeta \in \mathbf{R}$. Firstly, the preceding observation yields that

$$
\begin{aligned}
W(\zeta) & =f_{\zeta}^{+}(0)\left(f_{\zeta}^{-}\right)^{\prime}(0)-\left(f_{\zeta}^{+}\right)^{\prime}(0) f_{\zeta}^{-}(0) \\
& \geq f_{\zeta}^{+}(0)\left(f_{\zeta}^{-}\right)^{\prime}(0) .
\end{aligned}
$$

So our remaining task is to estimate $f_{\zeta}{ }^{+}(0)$ and $\left(f_{\zeta}{ }^{-}\right)^{\prime}(0)$ from below.
Set

$$
\left\{\begin{array}{l}
g_{\zeta}(x)=\varepsilon A^{-\frac{l}{2}} e^{-\phi_{\zeta}(x)} \\
u(x)=f_{\zeta}(x)-g_{\zeta}(x) .
\end{array}\right.
$$

Notice that Proposition 2 implies $f_{\zeta}^{+}(A) \geq \delta A^{-\frac{1}{2}} e^{-\phi_{\zeta}(A)}$ and $-\left(f_{\zeta}^{+}\right)^{\prime}(A) \geq \delta A^{\frac{1}{2}} e^{-\phi_{\zeta}(A)}$ for some positive constant δ. Hence, if we take $\varepsilon>0$ sufficiently small, it holds that $u(A)>0$ and $u^{\prime}(A)<0$.

Observe next

$$
\begin{equation*}
P_{\zeta} g_{\zeta}=\left\{x^{k-1}\left(l x^{l-k}-k \zeta\right)\right\} g_{\zeta} \tag{4}
\end{equation*}
$$

whence $P_{\zeta} g_{\zeta}(x)>0$ for $x \geq|\zeta|^{\left\lvert\, \frac{1}{1-\hat{k}}\right.}$. Thus it holds that

$$
\begin{aligned}
\frac{d^{2} u}{d x^{2}} & =-P_{\zeta} u+\left(x^{k} \zeta-x^{l}\right)^{2} u \\
& =P_{\zeta} g_{\zeta}+\left(x^{k} \zeta-x^{l}\right)^{2} u \\
& \geq\left(x^{k} \zeta-x^{l}\right)^{2} u, \quad \text { for }|\zeta|^{\frac{1}{1-k}} \leq x \leq A .
\end{aligned}
$$

Therefore, $u(x)$ satisfies $u^{\prime \prime}(x) \geq 0$ for $|\zeta|^{\frac{1}{\mid-k}} \leq x \leq A$ and $u(A)>0, u^{\prime}(A)<0$,
whence $u(x)>0$ and $u^{\prime}(x)<0$ for $|\zeta|^{\frac{1}{-k}} \leq x \leq A$. As a consequence, by setting $x_{\zeta}=|\zeta|^{\frac{1}{\mid-k}}, y_{\zeta}=\left|\frac{l+1}{k+1} \zeta\right|^{\frac{1}{1-k}}$, the following inequalities are valid for $\zeta>0$:

$$
\begin{aligned}
f_{\zeta}^{+}\left(x_{\zeta}\right) & \geq g_{\zeta}\left(x_{\zeta}\right) \\
& =\varepsilon A^{-\frac{l}{2}} \exp \left\{\left(\frac{1}{k+1}-\frac{1}{l+1}\right)|\zeta|^{\frac{l+1}{l-k}}\right\}, \\
-\left(f_{\zeta}^{+}\right)^{\prime}\left(y_{\zeta}\right) & \geq-g_{\zeta}^{\prime}\left(y_{\zeta}\right) \\
& =\varepsilon \cdot\left(\frac{l+1}{k+1}\right)^{k / l-k)} \cdot \frac{l-k}{k+1} \cdot|\zeta|^{\frac{l}{l-k}} \cdot A^{-\frac{l}{2}} .
\end{aligned}
$$

Observe that the uniqueness of ${f_{\zeta}}^{+}, f_{\zeta}^{-}$implies

$$
f_{\zeta}^{-}(x)= \begin{cases}f_{-\zeta}^{+}(-x) & , l-k=\text { odd } \\ f_{\zeta}^{+}(-x) & , l-k=\text { even } .\end{cases}
$$

Moreover, the argument at the begining of the present section gives that $f_{\zeta}^{+}(0) \geq f_{\zeta}^{+}\left(x_{\zeta}\right)$ and $-\left(f_{\zeta}^{+}\right)^{\prime}(0) \geq-\left(f_{\zeta}^{+}\right)^{\prime}\left(y_{\zeta}\right)$. Thus, if $l-k$ is an even integer and $\zeta>0$, it holds that

$$
\begin{aligned}
W(\zeta) & \geq-f_{\zeta}^{+}(0)\left(f_{\zeta}^{+}\right)^{\prime}(0) \\
& \geq-f_{\zeta}^{+}\left(x_{\zeta}\right)\left(f_{\zeta}^{+}\right)^{\prime}\left(y_{\zeta}\right) \\
& \geq-g_{\zeta}\left(x_{\zeta}\right) g_{\zeta}^{(}\left(y_{\zeta}\right) \\
& \geq C \exp \left\{\left(\frac{1}{k+1}-\frac{1}{l+1}\right)|\zeta|^{\frac{l+1}{1-k}}\right\},
\end{aligned}
$$

where C is a positive constant independent of ζ. Since we have $\frac{1}{k+1}-\frac{1}{l+1}>0$, we have established the estimate (ii) of Lemma 2 in case $l-k$ is an even integer.

Next let us consider the case in which $l-k$ is an odd integer. If $\zeta>0$, the relation (4) implies that $P_{-\zeta} g_{-\zeta}(x)>0$ for $1 \leq x \leq A$. Hence the above argument also gives

$$
\begin{aligned}
-\left(f_{-\zeta}^{+}\right)^{\prime}(1) & \geq-g_{-\zeta}^{\prime}(1) \\
& =\varepsilon A^{-\frac{1}{2}}(1+\zeta) e^{-\phi-\zeta(1)} .
\end{aligned}
$$

Thus if $l-k$ is an odd integer and $\zeta>0$, we have

$$
\begin{aligned}
W(\zeta) & \geq f_{\zeta}^{+}(0)\left(f_{\zeta}^{-}\right)^{\prime}(0) \\
& =-f_{\zeta}^{+}(0)\left(f_{-\zeta}^{+}\right)^{\prime}(0) \\
& \geq-f_{\zeta}^{+}\left(x_{\zeta}\right)\left(f_{-\zeta}^{+}\right)^{\prime}(1) \\
& \geq-g_{\zeta}\left(x_{\zeta}\right)\left(g_{-\zeta}\right)^{\prime}(1)
\end{aligned}
$$

$$
=\varepsilon^{2} A^{-1}(1+\zeta) e^{-\phi_{\zeta}\left(x_{\zeta}\right)-\phi-\zeta(1)} .
$$

Observe that

$$
-\phi_{\zeta}\left(x_{\zeta}\right)-\phi_{-\zeta}(1)=\left(\frac{1}{k+1}-\frac{1}{l+1}\right) \zeta^{\frac{l+1}{l-k}}-\left(\frac{1}{l+1}+\frac{\zeta}{k+1}\right)
$$

where $\frac{1}{k+1}-\frac{1}{l+1}>0$ and $\frac{l+1}{l-k}>1$. So, the estimate (ii) of Lemma 2 holds also in the case $l-k$ is odd and $\zeta>0$.

The case in which $l-k$ is an odd integer and $\zeta<0$ can be treated in a similar way. Indeed, in this case, it holds that

$$
\begin{aligned}
W(\zeta) & \geq-\left(f_{\zeta}^{+}\right)^{\prime}(0) f_{\zeta}^{-}(0) \\
& =-\left(f_{\zeta}^{+}\right)^{\prime}(0) f_{-\zeta}^{+}(0) \\
& \geq-g_{\zeta}^{\prime}(1) g_{-\zeta}\left(x_{-\zeta}\right) \\
& =\varepsilon^{2} A^{-1}(1-\zeta) e^{-\phi-\zeta(x-\zeta)-\phi_{\zeta}(1)} .
\end{aligned}
$$

Hence, observing

$$
-\phi_{-\zeta}\left(x_{-\zeta}\right)-\phi_{\zeta}(1)=\left(\frac{1}{k+1}-\frac{1}{l+1}\right)|\zeta|^{\frac{l+1}{1-k}}-\left(\frac{1}{l+1}-\frac{\zeta}{k+1}\right),
$$

one can see that the estimate (ii) in Lemma 2 holds in this case. This finishes the proof of the lower bound.

Now we turn to estimate an upper bound on $W(\zeta)$ for arbitrary $\zeta \in \mathbf{C}$. First notice that Proposition 2 yields

$$
\left\{\begin{align*}
\left|f_{\zeta}^{+}(A)\right| & \leq C A^{-\frac{l}{2}}\left|e^{-\phi_{\zeta}(A)}\right|, \tag{5}\\
\left|\left(f_{\zeta}^{+}\right)^{\prime}(A)\right| & \leq C A^{\frac{1}{2}}\left|e^{-\phi_{\zeta}(A)}\right|,
\end{align*}\right.
$$

where C is a positive constant independent of $\zeta \in \mathbf{C}$. On the other hand, observe that

$$
\begin{aligned}
\left|\frac{d^{2}}{d x^{2}} f_{\zeta}^{+}(x)\right| & =\left|x^{k} \zeta-x^{l}\right|^{2}\left|f_{\zeta}^{+}(x)\right| \\
& \leq C|\zeta|^{\frac{2 l}{1-k}}\left|f_{\zeta}^{+}(x)\right|,
\end{aligned}
$$

for $0 \leq x \leq A$, whence

$$
\begin{aligned}
& \frac{d}{d x}\left\{|\zeta|^{\frac{2 l}{1-k}}\left|f_{\zeta}^{+}(x)\right|^{2}+\left|\left(f_{\zeta}^{+}\right)^{\prime}(x)\right|^{2}\right\} \\
\leq & C|\zeta|^{\frac{1}{1-k}}\left\{|\zeta|^{\frac{2 l}{1-k}}\left|f_{\zeta}^{+}(x)\right|^{2}+\left|\left(f_{\zeta}^{+}\right)^{\prime}(x)\right|^{2}\right\},
\end{aligned}
$$

for $0 \leq x \leq A$. Furthermore, by Gronwall's inequality, it follows

$$
\begin{align*}
& |\zeta|^{\frac{2 l}{1-k}}\left|f_{\zeta}^{+}(0)\right|^{2}+\left|\left(f_{\zeta}^{+}\right)^{\prime}(0)\right|^{2} \tag{6}\\
\leq & C\left\{|\zeta|^{\frac{2 l}{1-k}}\left|f_{\zeta}^{+}(A)\right|^{2}+\left|\left(f_{\zeta}^{+}\right)^{\prime}(A)\right|^{2}\right\} e^{C|\zeta|^{\frac{1}{1-k}} A} .
\end{align*}
$$

As a consequence of (5) and (6), one can see that, for large $|\zeta|$,

$$
\left\{\begin{array}{c}
\left|f_{\zeta}^{+}(0)\right| \leq C|\zeta|^{-\frac{1}{2(l-k)}} e^{c|\zeta|^{\frac{l+1}{1-k}}}, \\
\left|\left(f_{\zeta}^{+}\right)^{\prime}(0)\right| \leq C|\zeta|^{\frac{l}{2(l-k)}} e^{c|\zeta|^{1-k}}
\end{array}\right.
$$

Since the above argument can also be applied to the estimates for $f_{\zeta}^{-}(0)$ and $\left(f_{\zeta}^{-}\right)^{\prime}(0)$, we finally see that the wronskian have the upper bound

$$
|W(\zeta)| \leq C \exp \left(C|\zeta|^{\frac{l+1}{1-k}}\right) .
$$

This completes the proof of Lemma 2.

3. Proof of Proposition 2

Proposition 2 asserts that, in some sense, $|x|^{-\frac{l}{2}} e^{-\phi \phi_{\zeta}(x)}$ approximates to $f_{\zeta}{ }^{+}(x)$ in the region $x \geq A$, and $|x|^{-\frac{1}{2}} e^{(-1)^{l} \phi_{\zeta}(x)}$ approximates to $f_{\zeta}^{-}(x)$ in the region $x \leq-A$. In the present section, we show this for $f_{\zeta}{ }^{+}(x)$, since the proof for $f_{\zeta}^{-}(x)$ will be completely parallel.

$$
\text { Set } A=C_{0}(1+|\zeta|)^{\frac{1}{1-k}}
$$

$$
\begin{equation*}
G(x)=\frac{1}{\sqrt{\phi^{\prime}(x)}} e^{-\phi(x)} \tag{7}
\end{equation*}
$$

and

$$
\begin{equation*}
w(x)=G(x)-f_{\zeta}^{+}(x) . \tag{8}
\end{equation*}
$$

Here, we abbreviate $\phi_{\zeta}(x)$ as $\phi(x)$. It will be shown that, if we take C_{0} sufficiently large, then we have

$$
\begin{equation*}
\sup _{x \geq A} \frac{|w(x)|}{|x|^{-l-1}|G(x)|} \leq C_{1}<\infty \tag{9}
\end{equation*}
$$

with a positive constant C_{1} independent of $\zeta \in \mathbf{C}$. Observe now that, by taking C_{0} sufficiently large, the inequality

$$
\left|x^{-\frac{1}{2}}-\frac{1}{\sqrt{\phi^{\prime}(x)}}\right| \leq C_{2} x^{-\frac{1}{2}} \quad \text { for } x \geq A
$$

holds with a constant C_{2} satisfying $0<C_{2}<1$. Hence, from (7), (8) and (9) one can get

$$
\left|f_{\zeta}^{+}(x)-|x|^{-\frac{1}{2}} e^{-\phi(x)}\right| \leq C|x|^{-\frac{1}{2}}\left|e^{-\phi(x)}\right| \quad \text { for } \quad x \geq A
$$

with a constant C satisfying $0<C<1$.
Now, denote by $u_{y}=u_{y}(x)$ the solution in the interval $[A, y]$ of the initial value problem:

$$
\left\{\begin{array}{l}
P_{\zeta} u_{y}(x)=P_{\zeta} G(x), \quad A<x<y, \\
u_{y}(y)=u_{y}^{\prime}(y)=0 .
\end{array}\right.
$$

We shall prove that the inequality

$$
\begin{equation*}
\left|u_{y}(x)\right| \leq C|x|^{-l-1}|G(x)|, \quad A \leq x \leq y \tag{10}
\end{equation*}
$$

holds with a constant C independent of y and ζ. Also we shall prove that, for y_{1}, y_{2} satisfying $A \leq x \leq y_{1} \leq y_{2}$, the inequality

$$
\begin{equation*}
\left|u_{y_{1}}(x)-u_{y_{2}}(x)\right| \leq C\left|y_{1}\right|^{-l-1}|G(x)| \tag{11}
\end{equation*}
$$

holds with a constant C independent of y_{1}, y_{2} and ζ. This granted, u_{y} converges uniformly on arbitrary compact set of $[A, \infty)$ as y tends to ∞. It is also clear that the limit function $w(x)$ satisfies $P_{\zeta} w \equiv P_{\zeta} G$ and

$$
|w(x)| \leq C|x|^{-1-1}|G(x)| \quad \text { for } A \leq x<\infty .
$$

Thus, one can see that the function $G(x)-w(x)$ is a solution to $P_{\zeta}(G-w) \equiv 0$ having the same asymptotic behavior as $f_{\zeta}{ }^{+}(x)$. Hence, we have $f_{\zeta}{ }^{+} \equiv G-w$ and w satisfies (9).

Now let us prove (10). Set

$$
\psi=\log G=-\phi(x)-\frac{1}{2} \log \phi^{\prime}(x)
$$

and

$$
D=\frac{d}{d x}+\psi^{\prime}, \quad \tilde{D}=-\frac{d}{d x}+\psi^{\prime}
$$

Then, we have

$$
\begin{aligned}
D \circ \tilde{D} & =-\frac{d^{2}}{d x^{2}}+\left(\psi^{\prime}\right)^{2}+\psi^{\prime \prime} \\
& =P_{\zeta}+E
\end{aligned}
$$

where

$$
E=-\frac{1}{2}\left(\frac{\phi^{\prime \prime}}{\phi^{\prime}}\right)^{\prime}+\frac{1}{4}\left(\frac{\phi^{\prime \prime}}{\phi^{\prime}}\right)^{2} .
$$

Notice that the inequality

$$
|E(x)| \leq C|x|^{-2}, \quad x \geq A
$$

holds with a constant C independent of ζ. Also observe that $P_{\zeta} G(x)=$ $-\left(\frac{1}{\sqrt{\phi^{\prime}(x)}}\right)^{\prime \prime} e^{-\phi(x)}$, whence

$$
\left|P_{\zeta} G(x)\right| \leq C|x|^{-2}|G(x)|, \quad x \geq A
$$

holds with a constant C independent of ζ.
With y fixed and abbreviating u_{y} as u, put

$$
B=\sup _{A \leq x \leq y} \frac{|u(x)|}{|x|^{-l-1}|G(x)|}<\infty .
$$

We shall show that B has a bound independent of y and ζ. Put $v=\tilde{D} u$. Then, we have

$$
\begin{aligned}
e^{-\psi} \frac{d}{d x} e^{\psi} v & =D v=D \circ \tilde{D} u \\
& =P_{\zeta} u+E u=P_{\zeta} G+E u .
\end{aligned}
$$

Since we have $v(y)=0$, one has for $A \leq s \leq y$

$$
e^{\psi(s)} v(s)=\int_{y}^{s} e^{\psi(t)}\left[P_{\zeta} G(t)+(E u)(t)\right] d t,
$$

whence we have

$$
\begin{aligned}
|v(s)| & \leq\left|e^{-\psi(s)}\right| \int_{s}^{y}\left|e^{\psi(t)}\right|\left[C|t|^{-2}|G(t)|+C|t|^{-2}|u(t)|\right] d t \\
& \leq C|s|^{\frac{1}{2}}\left|e^{\phi(s)}\right| \int_{s}^{y}|t|^{-\frac{1}{2}}\left|e^{-\phi(t)}\right|\left[|t|^{-\frac{1}{2}-2}\left|e^{-\phi(t)}\right|+|t|^{-2}|u(t)|\right] d t \\
& \leq C|s|^{\frac{1}{2}}\left|e^{\phi(s)}\right| \cdot|s|^{-2 l-2}\left|e^{-2 \phi(s)}\right|+C|s|^{\frac{1}{2}}\left|e^{\phi(s)}\right| \int_{s}^{y}|t|^{-\frac{1}{2}-2}\left|e^{-\phi(t)} u(t)\right| d t \\
& =C|s|^{-\frac{3}{2} l-2}\left|e^{-\phi(s)}\right|+C|s|^{\frac{1}{2}}\left|e^{\phi(s)}\right| \int_{s}^{y}|t|^{-\frac{1}{2}-2}\left|e^{-\phi(t)} u(t)\right| d t .
\end{aligned}
$$

Furthermore, from the equalities, $v=\tilde{D} u=-e^{\psi} \frac{d}{d x} e^{-\psi} u$ it follows that, for $A \leq x \leq y$, we have

$$
\begin{aligned}
|u(x)| & \leq\left|e^{\psi(x)}\right| \int_{x}^{y}\left|e^{-\psi(s)} v(s)\right| d s \\
& \leq C|x|^{-\frac{1}{2}}\left|e^{-\phi(x)}\right| \int_{x}^{y}|s|^{-l-2} d s
\end{aligned}
$$

$$
\begin{aligned}
& +C|x|^{-\frac{l}{2}}\left|e^{-\phi(x)}\right| \int_{s=x}^{y}|s|^{l}\left|e^{2 \phi(s)}\right| \int_{t=s}^{y}|t|^{-\frac{l}{2}-2}\left|e^{-\phi(t)} u(t)\right| d t d s \\
\leq & C|x|^{-l-1}|G(x)|+C|G(x)| \int_{t=x}^{y}|t|^{-\frac{l}{2}-2}\left|e^{-\phi(t)} u(t)\right| \int_{s=x}^{t}|s|^{l}\left|e^{2 \phi(s)}\right| d s d t \\
\leq & C|x|^{-l-1}|G(x)|+C|G(x)| \int_{x}^{y}|t|^{-\frac{l}{2}-2}\left|e^{-\phi(t)} u(t)\right| \cdot\left|e^{2 \phi(t)}\right| d t \\
\leq & C|x|^{-l-1}|G(x)|+C|G(x)| \int_{x}^{y}|t|^{-2 l-3} B d t \\
\leq & C|x|^{-l-1}|G(x)|\left[1+B|x|^{-l-1}\right] .
\end{aligned}
$$

Take the positive constant C_{0} large enough such that $C|x|^{-l-1} \leq \frac{1}{2}$ holds for $x \geq C_{0}$. Then, from the last inequality, we obtain $B \leq 2 C$. All constants denoted by C are independent of y and ζ, so the inequality (10) is established.

We turn to show (11) for $A \leq x \leq y_{1} \leq y_{2}$. By the above argument, already we have

$$
u_{y_{2}}\left(y_{1}\right) \leq C\left|y_{1}\right|^{-l-1}\left|G\left(y_{1}\right)\right| .
$$

Also it follows from (12) that, for $A \leq s \leq y_{2}$, we have

$$
\begin{aligned}
\tilde{D} u_{y_{2}}(s) & \leq C|s|^{-\frac{3}{2} l-2}\left|e^{-\phi(x)}\right|+C|s|^{\frac{1}{2}}\left|e^{\phi(s)}\right| \int_{s}^{y_{2}}|t|^{-\frac{l}{2}-2}\left|e^{-\phi(t)} u_{y_{2}}(t)\right| d t \\
& \leq C|s|^{-l-2}|G(s)|+C|s|^{\frac{l}{2}}\left|e^{\phi(s)}\right| \int_{s}^{y_{2}}|t|^{-2 l-3}\left|e^{-2 \phi(t)}\right| d t \\
& \leq C|s|^{-l-2}|G(s)|+C|s|^{-\frac{5}{2} l-3}\left|e^{-\phi(x)}\right| \\
& \leq C|s|^{-l-2}|G(s)| .
\end{aligned}
$$

Set $w_{1}=u_{y_{1}}-u_{y_{2}}$ and $v=\tilde{D} w_{1}$. Recall that $u_{y_{1}}\left(y_{1}\right)=u_{y_{1}}^{\prime}\left(y_{1}\right)=0$. Thus by the above observation, we have

$$
\left|w_{1}\left(y_{1}\right)\right| \leq C\left|y_{1}\right|^{-l-1}\left|G\left(y_{1}\right)\right| \leq C\left|y_{1}\right|^{-\frac{3}{2} l-1}\left|e^{-\phi\left(y_{1}\right)}\right|
$$

and

$$
\left|v\left(y_{1}\right)\right| \leq C\left|y_{1}\right|^{-l-2}\left|G\left(y_{1}\right)\right| \leq C\left|y_{1}\right|^{-\frac{3}{2} l-2}\left|e^{-\phi\left(y_{1}\right)}\right| .
$$

Let us estimate $w_{1}(x)$ for $A \leq x \leq y_{1}$. Since we have

$$
\begin{aligned}
e^{-\psi} \frac{d}{d s} e^{\psi} v & =D v=D \circ \tilde{D} w_{1} \\
& =P_{\zeta} w_{1}+E w_{1}=E w_{1}
\end{aligned}
$$

it holds that for $A \leq s \leq y_{1}$

$$
\begin{aligned}
\left|e^{\psi(s)} v(s)\right| & \leq\left|e^{\psi\left(y_{1}\right)} v\left(y_{1}\right)\right|+\int_{s}^{y_{1}}\left|e^{\psi(t)}\left(E w_{1}\right)(t)\right| d t \\
& \leq C\left|y_{1}\right|^{-2 l-2}\left|e^{-2 \phi\left(y_{1}\right)}\right|+\int_{s}^{y_{1}}|t|^{-\frac{1}{2}-2}\left|w_{1}(t)\right| d t .
\end{aligned}
$$

Moreover, since we have $-e^{\psi} \frac{d}{d x} e^{-\psi} w_{1}=v$, the argument to get (10) also gives that, for $A \leq x \leq y_{1}$, we have

$$
\begin{aligned}
\left|e^{-\psi(x)} w_{1}(x)\right| \leq & \left|e^{\psi\left(y_{1}\right)} w_{1}\left(y_{1}\right)\right|+\int_{x}^{y_{1}}\left|e^{-\psi(s)} v(s)\right| d s \\
\leq & C\left|y_{1}\right|^{-l-1}+C\left|y_{1}\right|^{-2 l-2}\left|e^{-2 \phi\left(y_{1}\right)}\right| \cdot\left|e^{2 \phi\left(y_{1}\right)}\right| \\
& +\int_{x}^{y_{1}}|t|^{-\frac{1}{2}-2}\left|e^{-\phi(t)} w_{1}(t)\right| \int_{x}^{t}\left|e^{-2 \psi(s)}\right| d s d t \\
\leq & C\left|y_{1}\right|^{-l-1}+C \int_{x}^{y_{1}}|t|^{-\frac{l}{2}-2}\left|e^{-\phi(t)} w_{1}(t)\right| \cdot\left|e^{2 \phi(t)}\right| d t .
\end{aligned}
$$

Setting now

$$
B_{1}=\sup _{A \leq x \leq y_{1}} \frac{\left|w_{1}(x)\right|}{|G(x)|}<\infty,
$$

we consequently obtain that

$$
\begin{aligned}
B_{1} & \leq C\left|y_{1}\right|^{-l-1}+C \int_{x}^{y_{1}} B_{1}|t|^{-l-2} d t \\
& \leq C\left|y_{1}\right|^{-l-1}+B_{1} \cdot C \cdot|x|^{-l-1} \\
& \leq C\left|y_{1}\right|^{-l-1}+\frac{B_{1}}{2} .
\end{aligned}
$$

Thus, the inequality $B_{1} \leq 2 C\left|y_{1}\right|^{-l-1}$ holds, so (11) is established.
Finally we give a proof of the inequality:

$$
\begin{equation*}
\left|\left(f_{\zeta}^{+}\right)^{\prime}(x)+|x|^{\frac{1}{2}} e^{-\phi(x)}\right| \leq C|x|^{\frac{1}{2}}\left|e^{-\phi(x)}\right|, \quad \text { for } \quad x \geq A, \tag{13}
\end{equation*}
$$

with a constant C satisfying $0<C<1$. First observe that

$$
\left(f_{\zeta}^{+}\right)^{\prime}=(G-w)^{\prime}=G^{\prime}+\tilde{D} w-\psi^{\prime} w .
$$

Concerning the first term on the right hand side, by taking the constant C_{0} sufficiently large, the inequality

$$
\left|G^{\prime}(x)+|x|^{\frac{1}{2}} e^{-\phi(x)}\right| \leq C|x|^{\frac{1}{2}}\left|e^{-\phi(x)}\right|, \quad x \geq A
$$

holds with a constant C with $0<C<1$. Also observe that

$$
|\tilde{D} w(x)| \leq C|x|^{-\frac{3}{2} l-2}\left|e^{-\phi(x)}\right|, \quad x \geq A
$$

and

$$
\left|\psi^{\prime}(x) w(x)\right| \leq C|x|^{-\frac{1}{2}-1}\left|e^{-\phi(x)}\right|, \quad x \geq A .
$$

They are consequences of (12) and (10) respectively, by taking the limits as y tends to ∞. Thus, combining these inequalities, we obtain (13). The proof of Proposition 2 is now complete.

Institute of Mathematics University of Tsukuba

References

[1] M. S. Baouendi and C. Goulaouic, Nonanalytic-hypoellipticity for some degenerate elliptic operators, Bull. Amer. Math. Soc., 78 (1972), 483486.
[2] M. Christ, Certain sums of squares of vector fields fail to be analytic hypoelliptic, Comm. in P.D.E., 16 (1991), 1695-1707.
[3] E. A. Coddington and N. Levinson, Theory of ordinary differential operators, McGraw-Hill, New York, 1955.
[4] A. Grigis and J. Sjöstrand, Front d'onde analitique et sommes de carrés de champs de vecteurs, Duke Math. J., 52 (1985), 35-51.
[5] N. Hanges and A. A. Himonas, Singular solutions for sums of squares of vector fields, Comm. in P.D.E., 16 (1991), 1503-1511.
[6] B. Helffer, Conditions nécessaires d'hypoanalicité pour des opératuers invariant à gauche homogènes sur un groupe nilpotent gradué, J. Diff. Eq., 44 (1982), 460-481.
[7] L. Hörmander, Hypoelliptic second order differential equations, Acta Math., 119 (1967), 147-171.
[8] G. Métivier, Une class d'operateurs non hypoélliptiques analytiques, Indiana Univ. Math. J., 29 (1980), $823-860$.
[9] Pham The Lai and D. Robert, Sur un problème aux valuers propres non linéaire, Israel J. Math., 36 (1980), 169-186.
[10] Y. Sibuya, Global theory of a second order linear differential equation with a polynomial coefficient, North-Holland, New York, 1975.
[11] D. S. Tartakoff, On the local real analyticity of solutions to \square_{b} and $\bar{\delta}$-Neumann problem, Acta Math., 145 (1980), 117-204.
[12] F. Treves, Analytic hypo-ellipticity of a class of pseudodifferential operators with double characteristics and applications to the $\bar{\delta}$-Neumann problem, Comm. in P.D.E., 3 (1978), 475-642.

