The embeddings of discrete series into principal series for an exceptional real simple Lie group of type G_{2}

Dedicated to Professor Takeshi Hirai on his 60th birthday

By

Tetsumi Yoshinaga and Hiroshi Yamashita*

Introduction

Discrete series representations of a semisimple Lie group have been studied for a long time. In [1], Harish-Chandra gave their parametrization by means of the theory of characters. For realization of discrete series, R. Hotta and R. Parthasarathy [4], W. Schmid [7] and others gave geometric construction of those representations. Let G be a connected semisimple Lie group with finite center, K its maximal compact subgroup, π_{A} the discrete series representation of G with Harish-Chandra parameter Λ and $\left(\tau_{\lambda}, V_{\lambda}\right)$ the lowest K-type of π_{A}. A differential operator \mathscr{D} on the space $C_{\tau_{\lambda}}^{\infty}(G)$ of V_{λ}-valued smooth functions f on G satisfying $f(k g)=\tau_{\lambda}(k) f(g)$ for all $k \in K$ and for all $g \in G$, denoted by \mathscr{D}_{λ} in this paper, is introduced in [7] by Schmid. He showed, also in [7], that the discrete series π_{Λ} is realized as the space of L_{2}-kernel of \mathscr{D}. This result was shown in a simpler way in the paper [4] of Hotta and Parthasarathy. By means of \mathscr{D} and "Szegö kernel", A. W. Knapp and N. R. Wallach [5] found that each discrete series is expressed as a quotient of some principal series representations, determined relative to the discrete series. Considering duality, one can obtain certain principal series into which a given discrete series can be embedded.

Modifying and extending the idea in [5], the second-named author of the present paper gave, in [9], a method to determine the embeddings of discrete series into various induced representations, as (\mathfrak{g}, K)-modules. Here \mathfrak{g} denotes the complexified Lie algebra of G.

For a closed subgroup P of G and its representation η on a Fréchet space F, define $C_{\tau_{\lambda}}^{\infty}(G ; \eta)$ to be the space of $V_{\lambda} \otimes F$-valued smooth functions f on G with the condition $f(k g p)=\delta_{P}(p)^{1 / 2}\left(\tau_{\lambda}(k) \otimes \eta(p)^{-1}\right) f(g)$ for $k \in K, g \in G$ and $p \in P$, where δ_{P} is a modular function of P. Since $C_{\tau_{1}}^{\infty}(G ; \eta)$ is canonically embedded in $C_{\tau_{\lambda}}^{\infty}(G) \otimes F$, a differential operator $\mathscr{D}_{\lambda, \eta}$ on $C_{\tau_{\lambda}}^{\infty}(G ; \eta)$ is defined as $\mathscr{D}_{\lambda, \eta}=$ $\mathscr{D}_{\lambda} \otimes \mathrm{id}_{F}$, where id_{F} is the identity map on F. Under these notations, one of the important results given there is the isomorphism

[^0]$$
\operatorname{Hom}_{(\mathrm{g}, \mathrm{~K})}\left(\pi_{A}^{*}, \operatorname{Ind}_{P}^{G}(\eta)\right) \simeq \operatorname{Ker} \mathscr{D}_{\lambda, \eta},
$$
as linear spaces, provided η is weakly cyclic and the Blattner parameter λ of π_{A} is "far from the walls".

In the case where P is a parabolic subgroup of G, the above result gives that

$$
\begin{equation*}
\operatorname{Hom}_{(\mathrm{g}, \mathrm{~K})}\left(\pi_{A}^{*}, \operatorname{Ind}_{P}^{G}\left(\xi \otimes 1_{N}\right)\right) \simeq \operatorname{Hom}_{\left(l, K_{L}\right)}\left(\tilde{\xi}^{*}, \operatorname{Ker} \mathscr{D}_{\lambda, 1_{N}}\right) \tag{*}
\end{equation*}
$$

as linear spaces, provided λ is "far from the walls". Here ξ is an irreducible, admissible representation of the Levi part L of $P, I=\operatorname{Lie}(L) \otimes \mathbf{C}, \tilde{\xi}=\xi \otimes e^{\rho}$ with $\rho(H)=\frac{1}{2} \operatorname{tr}$ ad $\left.(H)\right|_{n}, \mathrm{n}=\operatorname{Lie}(N) \otimes \mathbf{C}, N$ is the nilpotent radical of $P, K_{L}=$ $K \cap L$, and 1_{N} is the trivial character of N. In order to obtain the embeddings for discrete series whose Blattner parameter is not far from the walls, the "translation functor" introduced by G. J. Zukerman in [10] can be used.

For the problem of determining all the embeddings of discrete series into principal series, W. B. Silva investigated in her paper [8], the case of real rank one groups. For the groups with higher real rank, the second-named author studied the case of $S U(2,2)$ in [9]. Our main aim in this paper is to determine the embeddings of discrete series into principal series induced from a minimal parabolic subgroup for the normal real form of a comlex Lie group of type G_{2}. Our method is elementary one, which is the same as that in [9, Part A].

We are now going to explain the contents of each section.
In §1, we summarize general theory: parametrization of discrete series, differential operators \mathscr{D}_{λ} and $\mathscr{D}_{\lambda, \eta}$, the results in [9] and Zuckerman's translation functor.

We specialize G and K as the normal real form of a complex Lie group of type G_{2} and a maximal compact subgroup of G respectively. Then the structure of G and that of $\mathfrak{g}_{0}=\operatorname{Lie}(G)$ are explicitly described in $\S 2$. The parametrization and structures of irreducible K-modules are also given in §2. According to the standard facts in $\S 1$, one sees that it may be assumed that the HarishChandra parameter Λ of a given discrete series of G is dominant with respect to one of the following three different $\Delta_{J}^{+}(J=I, I I, I I I)$ of positive systems of the root system Δ.

$$
\begin{aligned}
\Delta_{I}^{+} & =\left\{\alpha_{1}, \alpha_{2}, \alpha_{1}+\alpha_{2}, 2 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+2 \alpha_{2}\right\} \\
\Delta_{I I}^{+} & =\left\{\alpha_{1}+\alpha_{2},-\alpha_{2}, \alpha_{1}, 2 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+2 \alpha_{2}, 3 \alpha_{1}+\alpha_{2}\right\}, \\
\Delta_{I I I}^{+} & =\left\{-\alpha_{1}-\alpha_{2}, 3 \alpha_{1}+2 \alpha_{2}, 2 \alpha_{1}+\alpha_{2}, \alpha_{1}-\alpha_{2}, 3 \alpha_{1}+\alpha_{2}\right\} .
\end{aligned}
$$

Here α_{1} is short compact root and α_{2} is long noncompact root, which are both simple in Δ_{I}^{+}.

For a function f of $C_{\tau_{\lambda}}^{\infty}(G), f$ is expressed uniquely in the form $f(g)=$ $\sum_{p, q} c_{p q}(g) e_{p q}^{(r s)}$ with a certain basis $\left\{e_{p q}^{(r s)}\right\}$ of V_{λ} and smooth functions $c_{p q}$ on G. In $\S 3$, we write $\mathscr{D}_{\lambda} f$ explicitly in terms of $c_{p q}$.

Subsequently we solve the differential equation $\mathscr{D}_{\lambda, 1_{N}} f=0$ in $\S 4$. There the explicit form of Ker $\mathscr{D}_{\lambda, 1_{N}}$ and its (I, K_{L})-module structure are given.

In $\S 5$ we rewrite the results in $\S 4$ by means of $(*)$ and obtain the main result:

Theorem (see Theorem 5.1). For $J=I, I I, I I I$, let Ξ_{J} be the totality of linear forms $\Lambda \in \mathrm{t}^{*}$ which are Δ_{J}^{+}-dominant, regular and K-integral. If $\Lambda \in \Xi_{I}$ (resp. $\Xi_{I I}, \Xi_{I I I}$), there exist three (resp. thirteen, four) distinct principal series representations $W=\operatorname{Ind}_{P}^{G}\left(\xi \otimes 1_{N}\right)$ satisfying

$$
\operatorname{dim} \operatorname{Hom}_{(\mathrm{g}, K)}\left(\pi_{A}, W\right)=1,
$$

and for other principal series $W^{\prime}, \operatorname{dim} \operatorname{Hom}_{(\mathrm{g}, \mathrm{K})}\left(\pi_{A}, W^{\prime}\right)=0$.
In this theorem, we can determine W explicitly according to Λ.
Finally in §6, we compare our results with those in [5]. The method in [5] gives two embeddings out of three, thirteen or four embeddings described in the above theorem.

1. General theory

In this section, we summarize the results on which the later calculations rely. The arguments in $\S \S 3-5$ are based on the results in $\S 1.4$.
1.1. Notations. We explain some notations. Let G be a connected semisimple Lie group with finite center and \mathfrak{g}_{0} its Lie algebra. Denote by $\mathfrak{g}_{0}=$ $\mathfrak{f}_{0}+\mathfrak{p}_{0}$ a Cartan decomposition of \mathfrak{g}_{0}, and θ stands for the corresponding Cartan involution, where $\mathfrak{f}_{0}=\left\{X \in \mathfrak{g}_{0} \mid \theta X=X\right\}, \mathfrak{p}_{0}=\left\{X \in \mathfrak{g}_{0} \mid \theta X=-X\right\}$. We denote the complexifications of $\mathfrak{g}_{0}, \mathfrak{f}_{0}$ etc. by \mathfrak{g}, \mathfrak{f} etc., omitting the subscript ${ }_{0}$. For a maximal abelian subspace \mathfrak{a}_{0} of \mathfrak{p}_{0}, let Ψ be the restricted root system for $\left(g_{0}, a_{0}\right)$ and Ψ^{+}the set of all positive roots in Ψ. Then we have an Iwasawa decomposition of \mathfrak{g}_{0} as $\mathfrak{g}_{0}=\mathfrak{f}_{0} \oplus \mathfrak{a}_{0} \oplus \mathfrak{n}_{0}$. Here, $\mathfrak{n}_{0}=\sum_{\lambda \in \Psi^{+}}\left(\mathfrak{g}_{0}\right)_{\lambda}, \quad\left(\mathfrak{g}_{0}\right)_{\lambda}=$ $\left\{X \in \mathfrak{g}_{0} \mid[H, X]=\lambda(H) X\left(\forall H \in \mathfrak{a}_{0}\right)\right\}$. Let $G=K A N$ be the Iwasawa decomposition of G corresponding to the decomposition of \mathfrak{g}_{0}.

From now on, we assume that $\operatorname{rank} G=\operatorname{rank} K$. It is known that this condition is necessary and sufficient for G to have discrete series representations (cf. [1, Theorem 13]). By virtue of this assumption, there is a compact Cartan subalgebra $t_{0}\left(\subset \mathfrak{f}_{0}\right)$ of \mathfrak{g}_{0}. We denote the root system of \mathfrak{g} with respect to t by Δ, and let $\mathfrak{g}=\mathrm{t}+\sum_{\alpha \in \Delta} \mathfrak{g}_{\alpha}$ be the root space decomposition of \mathfrak{g}, where $\mathfrak{g}_{\alpha}=$ $\{X \in \mathfrak{g} \mid[H, X]=\alpha(H) X(\forall H \in \mathrm{t})\}$. Define $\Delta_{c}\left(\right.$ resp. $\left.\Delta_{n}\right)$ as the set of compact (resp. noncompact) roots, and we denote the Weyl groups of Δ and Δ_{c} by W and W_{c} respectively. Let $U(\mathfrak{g})$ be the universal enveloping algebra of $\mathfrak{g}, Z(\mathfrak{g})$ the center of $U(\mathrm{~g}), U(\mathrm{t})^{W}$ the set of the elements in $U(\mathrm{t})$ invariant under the action of the Weyl group W. The Harish-Chandra isomorphism of $Z(\mathrm{~g})$ onto $U(\mathrm{t})^{W}$ is denoted by γ. As usual, \mathbf{R} and \mathbf{C} stand for the field of real numbers and the field of complex numbers respectively.
1.2. Parameterization of discrete series representations. Let t_{0} be a compact Cartan subalgebra of \mathfrak{g}_{0} as above, and T the maximal torus of K corresponding to t_{0}.

Definition 1.1. For a linear form λ on t, we say that λ is K-integral if the following assignment gives a unitary character of T :

$$
T \ni \exp H \mapsto e^{\lambda(H)} \in \mathbf{C}^{\times} \quad\left(H \in \mathrm{t}_{0}\right) .
$$

Let Ξ be the totality of linear forms Λ on t satisfying the following two conditions:
(i) $\Lambda+\rho$ is K-integral,
(ii) Λ is regular.

Here, $\rho=\frac{1}{2} \sum_{\alpha \in \Delta^{+}} \alpha$ for some fixed positive system Δ^{+}of Δ. Note that condition (i) is independent of the choice of a positive system Δ^{+}. By Harish-Chandra, there exists a tempered invariant distribution Θ_{A} on G, which is in fact a locally integrable function on G, satisfying the following conditions:
(i) Choose a positive system Δ^{+}so that Λ is Δ^{+}-dominant, then

$$
\Theta_{\Lambda}(\exp H) \cdot\left(\sum_{w \in \boldsymbol{W}}(\operatorname{det} w) e^{w \cdot \rho(H)}\right)=(-1)^{(1 / 2) \operatorname{dim} p_{0}} \sum_{w \in W_{c}}(\operatorname{det} w) e^{w \cdot \Lambda(H)}\left(H \in \mathrm{t}_{0}\right) .
$$

(ii) Let l be the rank of \mathfrak{g}, D_{l} the coefficient of x^{l} in $\operatorname{det}(x-1-\operatorname{Ad}(g))$, $G^{\prime}=\left\{g \in G \mid D_{l}(g) \neq 0\right\}$, then

$$
\sup _{g \in G^{\prime}}\left|\Theta_{A}(g)\right| \cdot\left|D_{l}(g)\right|^{1 / 2}<\infty .
$$

(iii) Put $\chi_{A}(Z)=\Lambda(\gamma(Z))$, then

$$
Z \cdot \Theta_{A}=\chi_{A}(Z) \cdot \Theta_{A} \quad(Z \in Z(\mathfrak{g}))
$$

Distribution Θ_{A} is uniquely determined under the above conditions.
The following facts give the parametrization of discrete series. For the case where G is acceptable (i.e. ρ is K-integral), see [1, Theorem 16].
(i) For any $\Lambda \in \Xi$, there exists a unique, up to isomorphisms, discrete series representation π_{A} of G with character Θ_{Λ}.
(ii) For any discrete series representation π of G, there exists an element Λ of Ξ such that π is unitarily equivalent to π_{A}.
(iii) For two elements Λ_{1} and Λ_{2} of $\Xi, \pi_{\Lambda_{1}}$ is unitarily equivalent to $\pi_{\Lambda_{2}}$ if and only if $W_{c} \cdot \Lambda_{1}=W_{c} \cdot \Lambda_{2}$.
The linear form Λ in (i) is called the Harish-Chandra parameter of π_{Λ}.
Now, define an equivalence relation \sim on Ξ as follows:

$$
\Lambda_{1} \sim \Lambda_{2} \quad \text { if and only if } W_{c} \cdot \Lambda_{1}=W_{c} \cdot \Lambda_{2} .
$$

Then discrete series representations of G are parametrized by Ξ / \sim.
1.3. Gradient type differential operators. Let τ be a finite-dimensional unitary representation of K on a Hilbert space H. Take a closed subgroup P of G, and a continuous representation (η, F) of P on a Fréchet space F. We define three function spaces $C_{\tau}^{\infty}(G), C^{\infty}(G ; \eta)$ and $C_{\tau}^{\infty}(G ; \eta)$ as follows:

$$
\begin{aligned}
C_{\tau}^{\infty}(G)= & \left\{f: G \xrightarrow{C^{\infty}} H \mid f(k g)=\tau(k) f(g)(\forall(k, g) \in K \times G)\right\}, \\
C^{\infty}(G ; \eta)= & \left\{f: G \xrightarrow{c^{\infty}} F \mid f(g p)=\delta_{P}(p)^{1 / 2} \eta(p)^{-1} f(g)(\forall(g, p) \in G \times P)\right\}, \\
C_{\tau}^{\infty}(G ; \eta)= & \left\{f: G \xrightarrow{c^{\infty}} H \otimes F \mid\right. \\
& \left.f(k g p)=\delta_{P}^{1 / 2}\left(\tau(k) \otimes \eta(p)^{-1}\right) f(g)(\forall(k, g, p) \in k \times G \times P)\right\} .
\end{aligned}
$$

Here, δ_{P} stands for the modular function of P with respect to the left Haar measure of P.

Equip these spaces with the topology of uniform convergence of functions and their partial derivatives on any compact subset of G. Now G acts on the space $C^{\infty}(G ; \eta)$ as follows:

$$
(g \cdot f)(x)=f\left(g^{-1} x\right) \quad\left(f \in C^{\infty}(G ; \eta), g, x \in G\right),
$$

and we have a smooth representation of G on $C^{\infty}(G ; \eta)$. We call it the representation of G induced from (η, F) in C^{∞}-context and denote it by $\left(C^{\infty}-\right) \operatorname{Ind}_{P}^{G}(\eta)$. By differentiating the action of G, we can introduce a (\mathfrak{g}, K)-module structure on $C^{\infty}(G ; \eta)$. This (\mathfrak{g}, K)-module is also denoted by $\left(C^{\infty}-\right) \operatorname{Ind}_{P}^{G}(\eta)$.

Next, for a fixed positive system Δ^{+}of Δ, put $\Delta_{c}^{+}=\Delta_{c} \cap \Delta^{+}$, and $\Delta_{n}^{+}=$ $\Delta_{n} \cap \Delta^{+}$. For a Δ_{c}^{+}-dominant, K-integral linear form λ on \mathfrak{t}, let $\left(\tau_{\lambda}, V_{\lambda}\right)$ be the finite-dimensional irreducible representation of K with highest weight λ. Consider the adjoint representation ($\left.\mathrm{Ad}\right|_{\mathfrak{p}}, \mathfrak{p}$) of K on \mathfrak{p}. Then the tensor product representation $\left.\tau_{\lambda} \otimes \mathrm{Ad}\right|_{p}$ is decomposed into irreducible as

$$
\begin{equation*}
\left.\tau_{\lambda} \otimes \operatorname{Ad}\right|_{\mathfrak{p}} \simeq \bigoplus_{\beta \in \Delta_{n}} m(\beta) \tau_{\lambda+\beta} \tag{1.1}
\end{equation*}
$$

Here, $m(\beta)$ is the multiplicity of $\tau_{\lambda+\beta}$ in $\left.\tau_{\lambda} \otimes \mathrm{Ad}\right|_{p}$, and is 0 or 1 for any β in Δ_{n}. By using decomposition (1.1), we define a subrepresentation ($\tau_{\lambda}^{-}, V_{\lambda}^{-}$) (resp. $\tau_{\lambda}^{+}, V_{\lambda}^{+}$)) of $\left.\tau_{\lambda} \otimes \operatorname{Ad}\right|_{p}$ by $\tau_{\lambda}^{-}=\otimes_{\beta \in \Delta_{n}^{+}} m(-\beta) \tau_{\lambda-\beta} \quad$ (resp. $\tau_{\lambda}^{+}=\oplus_{\beta \in \Delta_{n}^{+}} m(\beta) \tau_{\lambda+\beta}$). Then, $V_{\lambda} \otimes \mathfrak{p}$ is decomposed as

$$
\begin{equation*}
V_{\lambda} \otimes \mathfrak{p}=V_{\lambda}^{+} \oplus V_{\lambda}^{-} . \tag{1.2}
\end{equation*}
$$

Let P_{λ} be the projection onto V_{λ}^{-}along decomposition (1.2).
We are now ready to define certain differential operators playing an important role in the determination of embeddings of discrete series representations into principal series. Let $L_{X}(X \in \mathfrak{g})$ be the differentiation with respect to the right invariant vector field defined by X. The Killing form of g is denoted by $B(\cdot, \cdot)$, and (\cdot, \cdot) stands for the inner product on \mathfrak{g} defined by $(X, Y)=-B(X, \bar{Y})$. Here, \bar{Y} denotes the complex conjugate of Y relative to the compact real form $\mathfrak{f}_{0}+\sqrt{-1} p_{0}$ of \mathfrak{g}. Then we can define first order differential operators $\nabla: C_{\tau_{\lambda}}^{\infty}(G) \rightarrow C_{\left.\tau_{\lambda} \otimes A d\right|_{\rho}}^{\infty}(G)$ and $\mathscr{D}_{\lambda}: C_{\tau_{\lambda}}^{\infty}(G) \rightarrow C_{\tau_{\lambda}}^{\infty}(G)$ as follows:

$$
\begin{aligned}
\nabla f(g) & =\sum_{j=1}^{2 n} L_{X_{j}} f(g) \otimes \bar{X}_{j}, \\
\mathscr{D}_{\lambda} f(g) & =P_{\lambda}(\nabla f(g)) .
\end{aligned}
$$

Here, $\left\{X_{j} \mid j=1,2, \ldots, 2 n\right\}$ is an orthonormal basis of \mathfrak{p} relative to the inner product (\cdot, \cdot). Note that ∇ and \mathscr{D}_{λ} are independent of a choice of $\left\{X_{j}\right\}$. Since the space $C_{\tau_{\lambda}}^{\infty}(G ; \eta)$ is canonically embedded into $C_{\tau_{\lambda}}^{\infty}(G) \otimes F$, we can define an operator $\mathscr{D}_{\lambda, \eta}: C_{\tau_{\lambda}}^{\infty}(G ; \eta) \rightarrow C_{\tau_{\bar{\lambda}}}^{\infty}(G ; \eta)$ by $\mathscr{D}_{\lambda, \eta}=\mathscr{D}_{\lambda} \otimes \mathrm{id}_{F}$.
1.4. Description of embeddings. For $\Lambda \in \Xi$, we take a positive system Δ^{+} of Δ so that Λ is Δ^{+}-dominant. For such Δ^{+}, put $\rho_{c}=\frac{1}{2} \sum_{\alpha \in \Delta_{c}^{+}} \alpha, \rho_{n}=\frac{1}{2} \sum_{\alpha \in \Delta_{n}^{+}} \alpha$, and $\lambda=\Lambda-\rho_{c}+\rho_{n}$. Note that λ is also K-integral and Δ_{c}^{+}-dominant.

Definition 1.2. For a Δ_{c}^{+}-dominant, integral linear form λ on t, λ is said to be far from the walls if the following condition holds:

$$
\lambda-\sum_{\beta \in Q} \beta \text { is } \Delta_{c}^{+} \text {-dominant for any subset } Q \text { of } \Delta_{n}^{+} .
$$

Definition 1.3. Let P be a closed subgroup of G. A continuous representation (η, F) of P on a Fréchet space F, is said to be weakly cyclic if there exists a continuous linear functional T on F such that for an element v of $F, T(\eta(p) v)=$ $0(\forall p \in P)$ implies $v=0$.

For instance, every irreducible unitary representation is weakly cyclic.
For an element Λ of Ξ, take $\rho_{c}, \rho_{n}, \lambda$ as above. For a linear form μ on t , define an integer $N_{\lambda}(\mu)$ by

$$
N_{\lambda}(\mu)=\sum_{w \in W_{c}} \operatorname{det}(w) Q\left(w \cdot\left(\mu+\rho_{c}\right)-\left(\lambda+\rho_{c}\right)\right) .
$$

Here, $Q(v)\left(v \in \mathfrak{t}^{*}\right)$ is the number of distinct ways that v can be written as a sum of elements of Δ_{n}^{+}. Then next theorem gives the K-multiplicity formula for discrete series.

Theorem 1.1 (cf. [2, Theorem (1.3)]). The discrete series π_{A} is decomposed as a K-module in the following way:

$$
\left.\pi_{A}\right|_{K}=\sum_{\mu} N_{\lambda}(\mu) \tau_{\mu} .
$$

Here, μ runs through the set of linear forms v on t for which $v-\lambda$ can be expressed as a sum of (not necessarily distinct) positive roots.

Note that $N_{\lambda}(\lambda)=1$, and that τ_{λ} is the lowest K-type of π_{λ}. The linear form λ is called the Blattner parameter of π_{A}. For a discrete series π_{A} of G, the contragredient representation π_{A}^{*} of π_{A} is also a discrete series. Therefore we may consider the embeddings of π_{A}^{*} instead of those of π_{A}, and they are described as in the following theorem.

Theorem 1.2 (cf. [9, Theorem 2.4]). Let Λ be in Ξ and (η, F) a weakly cyclic representation of a closed subgroup P of G. Then there exists a natural isomorphism

$$
\operatorname{Hom}_{(\mathrm{g}, K)}\left(\pi_{A}^{*}, \operatorname{Ind}_{\mathrm{P}}^{\mathrm{G}}(\eta)\right) \simeq \operatorname{Ker} \mathscr{D}_{\lambda, \eta}
$$

as linear spaces, if λ is far from the walls.

When P is a parabolic subgroup of G, let $P=M_{P} A_{P} N_{P}$ be a Langlands decomposition of P and L_{P} the Levi part $M_{P} A_{P}$ of P. We denote the Lie algebra of L_{P} (resp. A_{P}, N_{P}) by \mathfrak{l}_{0} (resp. $\mathfrak{a}_{P 0}, \mathfrak{n}_{P 0}$) and put $K_{L}=L_{P} \cap K$. The complexification of I_{0} (resp. $\mathfrak{a}_{P 0}, \mathfrak{n}_{P 0}$) is denoted by I (resp. $\mathfrak{a}_{P}, \mathfrak{n}_{P}$) as usual. The Levi part L_{P} acts on $\operatorname{Ker} \mathscr{D}_{\lambda, 1_{N}}$ by right translation as

$$
\begin{equation*}
(x \cdot f)(g)=f(g x) \quad\left(x \in L_{P}, g \in G, f \in \operatorname{Ker} \mathscr{D}_{\lambda, 1_{N}}\right) . \tag{1.3}
\end{equation*}
$$

Here, 1_{N} stands for the trivial character of N_{P}. As in the case of $\operatorname{Ind}_{P}^{G}(\eta)$, Ker $\mathscr{D}_{\lambda_{1} 1_{N}}$ has an (l, K_{L})-module structure.

Now we are going to see that $\operatorname{Ker} \mathscr{D}_{\lambda_{1} 1_{N}}$ is stable under L_{P}. Let $g, x \in G$, $f \in C_{\tau_{\lambda}}^{\infty}(G)$ and $X \in \mathfrak{g}_{0}$, then

$$
\begin{aligned}
\left(x \cdot L_{X} f\right)(g) & =\left(L_{X} f\right)(g x) \\
& =\left.\frac{d}{d t} f(\exp (-t X) \cdot g x)\right|_{t=0} \\
& =\left.\frac{d}{d t}(x \cdot f)(\exp (-t X) \cdot g)\right|_{t=0} \\
& =\left(L_{X} x \cdot f\right)(g) .
\end{aligned}
$$

So, $x \cdot\left(L_{X} f\right)=L_{X}(x \cdot f)$. Here, $x \cdot f$ is defined as in (1.3). We see that for $g \in G$, $x \in L_{P}, n \in N_{P}$,

$$
\begin{aligned}
\left(\mathscr{D}_{\lambda} x \cdot f\right) & =P_{\lambda}\left(\sum_{j=1}^{2 n} L_{x_{j}}(x \cdot f)(g) \otimes \overline{X_{j}}\right) \\
& =P_{\lambda}\left(\sum_{j=1}^{2 n}\left(L_{x_{j}} f\right)(g x) \otimes \overline{X_{j}}\right) \\
& =\left(\mathscr{D}_{\lambda} f\right)(g x) \\
& =0 \quad\left(\because f \in \operatorname{Ker} \mathscr{D}_{\lambda}\right) .
\end{aligned}
$$

Since $\operatorname{Ker} \mathscr{D}_{\lambda, 1_{N}}=\left\{f \in \operatorname{Ker} \mathscr{D}_{\lambda} \mid f(g n)=f(g)\left(\forall(g, n) \in G \times N_{P}\right)\right\}$ and L_{P} normalizes N_{P},

$$
\begin{aligned}
(x \cdot f)(g n) & =f(g n x) \\
& =f\left(g x x^{-1} n x\right) \\
& =f(g x) \quad\left(\because x^{-1} n x \in N_{P}\right) \\
& =(x \cdot f)(g) .
\end{aligned}
$$

Therefore, $x \cdot f$ is also an element of Ker $\mathscr{D}_{\lambda, 1_{N}}$, and L_{P} actually acts on Ker $\mathscr{D}_{\lambda, 1_{N}}$. Smoothness of this representation is deduced from the topological structure of Ker $\mathscr{D}_{\lambda, 1_{N}}$.

For an irreducible admissible representation σ of M_{P} and a linear form μ
on $\mathfrak{a}_{P}, \xi=\sigma \otimes e^{\mu}$ is an irreducible admissible representation of L_{P}. Put $\tilde{\xi}=$ $\sigma \otimes e^{\mu+\rho_{\mathrm{P}}}$. Here, $\rho_{P}(H)=\frac{1}{2} \operatorname{tr}\left(\left.\operatorname{ad} H\right|_{\mathrm{n}_{P}}\right)\left(H \in \mathfrak{a}_{P}\right)$. Then, next theorem gives a kind of Frobenius reciprocity on the embeddings into principal series, and our argument in $\S 4$ is based on it.

Theorem 1.3 (cf. [9, Theorem 3.5]). Notations are as before, and assume that the Blattner parameter λ is far from the walls. Then,

$$
\operatorname{Hom}_{(\mathrm{g}, K)}\left(\pi_{A}^{*}, \operatorname{Ind}_{P}^{G}\left(\xi \otimes 1_{N}\right)\right) \simeq \operatorname{Hom}_{\left(\mathrm{l}, K_{L}\right)}\left(\tilde{\xi}^{*}, \operatorname{Ker} \mathscr{D}_{\lambda, 1_{N}}\right)
$$

as linear spaces.
Note that, $\operatorname{Ker} \mathscr{D}_{\lambda, 1_{N}}$ is expressed as follows:

$$
\begin{equation*}
\operatorname{Ker} \mathscr{D}_{\lambda, 1_{N}}=\left\{f \in C_{\tau_{\lambda}}^{\infty}(G) \mid \mathscr{D}_{\lambda} f=0, f(g n)=f(g)(\forall(g, n) \in G \times N)\right\} . \tag{1.4}
\end{equation*}
$$

1.5. Zuckerman's translation functor. Let \mathfrak{h} be a Cartan subalgebra of $\mathfrak{g}, \Delta_{\mathfrak{h}}$ the root system of g relative to $\mathfrak{h}, \Delta_{\mathfrak{h}}^{+}$a positive system of $\Delta_{\mathfrak{h}}$ and $W_{\mathfrak{h}}$ the Weyl group of $\Delta_{\mathfrak{h}}$. We denote the universal enveloping algebra of \mathfrak{g} by $U(\mathfrak{g})$. The center of $U(\mathrm{~g})$ is denoted by $Z(\mathrm{~g})$ and $U(\mathfrak{h})^{W_{\mathrm{b}}}$ means the set of the elements in $U(\mathfrak{h})$ invariant under the action of Weyl group W_{h}. We use the symbol γ for the Harish-Chandra isomorphism of $Z(\mathfrak{g})$ onto $U(\mathfrak{h})^{W_{\mathrm{b}}}$. For a linear form λ on \mathfrak{h}, the $W_{\mathfrak{h}}$-orbit through λ is denoted by [λ] and define a character $\chi_{[\lambda]}$ of $Z(\mathfrak{g})$ by

$$
\chi_{[\lambda]}(z)=\lambda(\gamma(z)) \quad(z \in Z(\mathrm{~g})),
$$

where λ is extended to an algebra homomorphism on $U(\mathfrak{h})$ with $\lambda(1)=1$. Note that this definition is independent of the representative λ of $[\lambda]$ and $\chi_{\left[\lambda_{1}\right]}=\chi_{\left[\lambda_{2}\right]}$ if and only if $\left[\lambda_{1}\right]=\left[\lambda_{2}\right]$.

Let A be a (\mathfrak{g}, K)-module finitely generated over $U(\mathfrak{g})$ and assume that each K-isotypic subspace of A is finite-dimensional. The category of such (\mathfrak{g}, K)modules is denoted by \mathfrak{U}. For a $W_{\mathfrak{b}}$-orbit $[\lambda]$ in \mathfrak{b}^{*}, define $A_{[\lambda]}$ to be the maximal submodule of A on which $z-\chi_{[\lambda]}(z) \cdot$ id is locally nilpotent for all $z \in Z(\mathfrak{g})$. Then A is decomposed as

$$
\begin{equation*}
A \simeq \bigoplus_{[\lambda] \in \mathrm{h}^{*} / W_{\mathrm{h}}} A_{[\lambda]} . \tag{1.5}
\end{equation*}
$$

Let $p_{[\lambda]}$ be the projection of A onto $A_{[\lambda]}$ with respect to decomposition (1.5) and put $\mathfrak{U}_{[\lambda]}=\left\{A \in \mathfrak{U} \mid A=p_{[\lambda]}(A)\right\}$.

We denote the linear span of $\Delta_{\mathfrak{h}}$ over \mathbf{R} by $\mathfrak{h}_{\mathbf{R}}^{*}$ and decompose an element λ in \mathfrak{b}^{*} as $\lambda=\operatorname{Re} \lambda+\operatorname{Im} \lambda$ along the decomposition $\mathfrak{b}^{*}=\mathfrak{b}_{\mathbf{R}}^{*}+\sqrt{-1} \mathfrak{b}_{\mathbf{R}}^{*}$. For a $\Delta_{\mathfrak{h}}^{+}$-dominant, integral linear form μ on \mathfrak{h}, F_{μ} stands for the finite-dimensional irreducible \mathfrak{g}-module with highest weight μ. We assume that the \mathfrak{g}-action on F_{μ} induces a G-action. For $\lambda \in \mathfrak{b}^{*}$ with $\Delta_{\mathfrak{h}}^{+}$-dominant real part $\operatorname{Re} \lambda$ and $\Delta_{\mathfrak{h}}^{+}$dominant linear form μ on \mathfrak{h}, define two functors $\varphi_{[\lambda+\mu]}^{[\lambda]}$ and $\psi_{[\lambda]}^{[\lambda+\mu]}$ on the category \mathfrak{U} as follows:

$$
\begin{array}{ll}
\varphi_{[\lambda+\mu]}^{[\lambda]}(A)=p_{[\lambda+\mu]}\left(p_{[\lambda]}(A) \otimes F_{\mu}\right) & \text { for } A \in \mathfrak{U}, \\
\psi_{[\lambda]}^{[\lambda+\mu]}(A)=p_{[\lambda]}\left(p_{[\lambda+\mu]}(A) \otimes F_{\mu}^{*}\right) & \text { for } A \in \mathfrak{U} .
\end{array}
$$

One can see the following Proposition 1.1 in almost the same manner as the
proof of Lemma 4.1 in [10]. For the problem of determining the embeddings of discrete series of G into principal series, this proposition and Proposition 1.2 below allow us to reduce the problem to the case where the Blattner parameter of the discrete series in far from the walls.

Proposition 1.1 (cf. [10, Lemma 4.1]). Let λ be a linear form on \mathfrak{h} with $\Delta_{\mathfrak{h}}^{+}$-dominant real part $\operatorname{Re} \lambda$ and $\mu a \Delta_{\mathfrak{h}}^{+}$-dominant, integral linear form on \mathfrak{h} so that the \mathfrak{g}-action on F_{μ} lifts to a G-action. Then for (\mathfrak{g}, K)-modules $X \in \mathfrak{U}_{[\lambda]}$ and $Y \in \mathfrak{U}_{[\lambda+\mu]}$, there exists an isomorphism

$$
\operatorname{Hom}_{(\mathrm{g}, \mathrm{~K})}\left(X, \psi_{[\lambda]}^{[\lambda+\mu]} Y\right) \simeq \operatorname{Hom}_{(\mathrm{g}, K)}\left(\varphi_{[\lambda+\mu]}^{[\lambda]} X, Y\right),
$$

as linear spaces.
Proposition 1.2 (cf. [10, Theorem 1.2, Corollary 5.5]). Assume that $\mathfrak{b}=\mathfrak{t}$, and let Λ be in Ξ, Δ^{+}the unique positive system so that Λ is Δ^{+}-dominant and $\mu a \Delta^{+}$-dominant, K-integral linear form on \mathfrak{t}, then

$$
\varphi_{[1+\mu]}^{[\Lambda]}\left(\pi_{A}\right) \simeq \pi_{\Lambda+\mu} .
$$

Here π_{A} is the discrete series with Harish-Chandra parameter 1 . See §1.2.
Let P be a parabolic subgroup of G with Langlands decomposition $P=$ $M_{P} A_{P} N_{P}$ as before. Since the Levi part $L_{P}=M_{P} A_{P}$ of P has the same rank as G, we can take a Cartan subalgebra \mathfrak{h} of \mathfrak{g} contained in $\mathfrak{I}=\operatorname{Lie}\left(L_{P}\right) \otimes \mathbf{C}$. Define two categories ${ }^{L_{P}} \mathfrak{U}$ and ${ }^{L_{P}} \mathfrak{u}_{[\lambda]}$ of Harish-Chandra module of L_{P} and projection ${ }^{L_{p}} p_{[\lambda]}$ as above. Though I is not necessarily semisimple, but since I is reductive the definition goes through without change. For the finite-dimensional irreducible \mathfrak{g}-module F_{μ}, let v_{0} be a nonzero highest weight vector of F_{μ} and define \tilde{F}_{μ} to be the $M_{P} A_{P}$-cyclic subspace of F_{μ} generated by v_{0}. Then we have an irreducible L_{P}-module \tilde{F}_{μ}. By using this module, we define a functor ${ }^{L_{P}} \psi_{[\lambda]}^{[\lambda+\mu]}$ on ${ }^{L_{P}} \mathfrak{U}$ by

$$
{ }^{L_{P}} \psi_{[\lambda]}^{[\lambda+\mu]}(A)={ }^{L_{p}} p_{[\lambda]}\left({ }^{L_{p}} p_{[\lambda+\mu]}(A) \otimes\left(\widetilde{F}_{\mu}\right)^{*}\right) .
$$

We denote the functor $\psi_{[\lambda]}^{[\lambda+\mu]}$ by ${ }^{G} \psi_{[\lambda]}^{[\lambda+\mu]}$ to distinguish two functors ${ }^{G} \psi_{[\lambda]}^{[\lambda+\mu]}$ and ${ }^{L_{p}} \psi_{[\lambda]}^{[\lambda+\mu]}$.

Next proposition tells us the relation of translation functors and parabolic induction.

Proposition 1.3 (cf. [6, Theorem B.1]). Let notations be as above, then for a $\Delta_{\mathfrak{h}}^{+}$-dominant linear form λ on \mathfrak{h}, a $\Delta_{\mathfrak{h}}^{+}$-dominant, integral linear form μ on \mathfrak{h} and an L_{P}-module $X \in{ }^{L_{P}} \mathfrak{l}_{[\lambda+\mu]}$, we have

$$
{ }^{G} \psi_{[\lambda]}^{[\lambda+\mu]} \operatorname{Ind}_{P}^{G}\left(X \otimes 1_{N}\right) \simeq \operatorname{Ind}_{P}^{G}\left(L_{P} \psi_{[\lambda]}^{[\lambda+\mu]}(X) \otimes 1_{N}\right) .
$$

We use these propositions later in $\S 5$.

2. Real simple Lie group of type G_{2}

2.1. Structure of a Lie algebra of type G_{2}. We keep to the notations in the last section and specialize g as a complex simple Lie algebra of type G_{2},
and \mathfrak{g}_{0} as a normal real form of \mathfrak{g}. It is known that a noncompact real form of \mathfrak{g} is unique up to isomorphisms. (cf. [3, Chapter X]).

For a Cartan decomposition $\mathfrak{g}_{0}=\mathfrak{f}_{0} \oplus \mathfrak{p}_{0}$, we have $\mathfrak{t}_{0} \simeq \mathfrak{s u}(2) \oplus \mathfrak{s u}(2)$, and $\operatorname{dim} \mathfrak{p}_{0}=8$. So, rank $\mathfrak{g}=$ rank $\mathfrak{f}=2$, and we can take a compact Cartan subalgebra t_{0} of \mathfrak{g}_{0}. The root system Δ of \mathfrak{g} relative to t is

$$
\left\{ \pm \alpha_{1}, \pm \alpha_{2}, \pm\left(\alpha_{1}+\alpha_{2}\right), \pm\left(2 \alpha_{1}+\alpha_{2}\right), \pm\left(3 \alpha_{1}+\alpha_{2}\right), \pm\left(3 \alpha_{1}+2 \alpha_{2}\right)\right\} .
$$

Here, α_{1} is the short simple root of Δ, and α_{2} is the long simple root of Δ. They satisfy the following relations:

$$
\left|\alpha_{2}\right|^{2}=3\left|\alpha_{1}\right|^{2}=\frac{1}{4}, \quad\left\langle\alpha_{1}, \alpha_{2}^{\vee}\right\rangle=-1, \quad\left\langle\alpha_{2}, \alpha_{1}^{\vee}\right\rangle=-3 .
$$

Since $\mathfrak{f}_{0} \simeq \mathfrak{s u}(2) \oplus \mathfrak{s u}(2), \Delta_{c}$ is generated from two mutually orthogonal roots. So we may assume that $\Delta_{c}=\left\{ \pm \alpha_{1}, \pm\left(3 \alpha_{1}+2 \alpha_{2}\right)\right\}$ without losing generality.

See Figure 1, and note that "rotation of angle $\pi / 3$ " is an element of W. Consider the root space decomposition $\mathfrak{g}=\mathfrak{t}+\sum_{\alpha \in \Delta} \mathfrak{g}_{\alpha}$ as before, then there exists an element E_{α} of \mathfrak{g}_{α} for each root α such that

$$
\begin{equation*}
B\left(E_{\alpha}, E_{-\alpha}\right)=2 /|\alpha|^{2}, \quad E_{-\alpha}=-\bar{E}_{\alpha} . \tag{2.1}
\end{equation*}
$$

Moreover, we can take E_{α} 's in the following way:

$$
\begin{align*}
{\left[E_{10}, E_{01}\right] } & =E_{11}, \tag{2.2}\\
{\left[E_{10}, E_{11}\right] } & =2 E_{21}, \tag{2.3}\\
{\left[E_{10}, E_{21}\right] } & =3 E_{31}, \tag{2.4}\\
{\left[E_{32}, E_{-3,-1}\right] } & =E_{01} . \tag{2.5}
\end{align*}
$$

Here, $E_{i j}$ stands for $E_{i \alpha_{1}+j \alpha_{2}}$, and $E_{i j}$'s are uniquely determined under conditions (2.1)-(2.5) above, when E_{10} and E_{01} are given. From now on, $E_{i j}$'s are assumed to satisfy relations (2.1)-(2.5), and define $H_{i j}, \tilde{H}_{1}, \tilde{H}_{2}$ and \mathfrak{a}_{0} by

$$
\begin{aligned}
H_{i j} & =\left[E_{i j}, E_{-i,-j}\right], \\
\tilde{H}_{1} & =E_{01}+E_{0,-1}, \\
\tilde{H}_{2} & =E_{21}+E_{-2,-1}, \\
\mathfrak{a}_{0} & =\mathbf{R} \tilde{H}_{1}+\mathbf{R} \tilde{H}_{2} .
\end{aligned}
$$

- : compact root

O: noncompact root

Figure 1: The root system Δ

Then we see that \mathfrak{a}_{0} is a maximal abelian subspace of \mathfrak{p}_{0}. We equip \mathfrak{a}_{0}^{*} with the lexicographic order with respect to the ordered basis $\left(\tilde{H}_{1}, \tilde{H}_{2}\right)$ of \mathfrak{a}_{0}. Relative to this order, Ψ^{+}is

$$
\left\{\lambda_{1}, \lambda_{2}, \lambda_{1}+\lambda_{2}, 2 \lambda_{1}+\lambda_{2}, 3 \lambda_{1}+\lambda_{2}, 3 \lambda_{1}+2 \lambda_{2}\right\} .
$$

Here, λ_{1} and λ_{2} are linear forms on \mathfrak{a} defined through the conditions:

$$
\lambda_{1}\left(\tilde{H}_{1}\right)=0, \lambda_{1}\left(\tilde{H}_{2}\right)=2, \lambda_{2}\left(\tilde{H}_{1}\right)=1, \lambda_{2}\left(\tilde{H}_{2}\right)=-3 .
$$

Using this Ψ^{+}, we have the Iwasawa decomposition $\mathfrak{g}_{0}=\mathfrak{f}_{0} \oplus \mathfrak{a}_{0} \oplus \mathfrak{n}_{0}$ as before.
For an element X of \mathfrak{g}, let $X=\mathfrak{f}(X)+\mathfrak{a}(X)+\mathfrak{n}(X)$ be the decomposition of X with respect to the complexified Iwasawa decomposition with $\mathfrak{f}(X) \in \mathfrak{f}$, $\mathfrak{a}(X) \in \mathfrak{a}, \mathfrak{n}(X) \in \mathfrak{n}$, and put $\mathfrak{s}(X)=\mathfrak{a}(X)+\mathfrak{n}(X)$.

If X is one of the root vectors $E_{\alpha}\left(\alpha \in \Delta_{n}\right)$, then according to Proposition 5.2 in [5], $\mathfrak{f}(X), \mathfrak{a}(X), \mathfrak{n}(X)$ are given as in the following table.

X	$\mathfrak{f}(X)$	$\mathfrak{a}(X)$	$\mathfrak{n}(X)$
E_{01}	$\frac{1}{2} H_{01}$	$\frac{1}{2} \tilde{H}_{1}$	$-\frac{1}{2}\left(H_{01}-E_{01}+E_{0,-1}\right)$
$E_{0,-1}$	$-\frac{1}{2} H_{01}$	$\frac{1}{2} \tilde{H}_{1}$	$\frac{1}{2}\left(H_{01}-E_{01}+E_{0,-1}\right)$
E_{21}	$\frac{1}{2} H_{21}$	$\frac{1}{2} \tilde{H}_{2}$	$-\frac{1}{2}\left(H_{21}-E_{21}+E_{-2,-1}\right)$
$E_{-2,-1}$	$-\frac{1}{2} H_{21}$	$\frac{1}{2} \tilde{H}_{2}$	$\frac{1}{2}\left(H_{21}-E_{21}+E_{-2,-1}\right)$
E_{11}	E_{10}	0	$E_{11}-E_{10}$
$E_{-1,-1}$	$-E_{-1,0}$	0	$E_{-1,-1}+E_{-1,0}$
E_{31}	$-E_{32}$	0	$E_{31}+E_{32}$
$E_{-3,-1}$	$E_{-3,-2}$	0	$E_{-3,-1}-E_{-3,-2}$

Define an automorphism u of \mathfrak{g} by

$$
u=\left(\exp \frac{\pi}{4} \operatorname{ad}\left(E_{01}-E_{0,-1}\right)\right) \cdot\left(\exp \frac{\pi}{4} \operatorname{ad}\left(E_{21}-E_{-2,-1}\right)\right) .
$$

For this u, there holds $u\left(H_{01}\right)=-\tilde{H}_{1}$ and $u\left(H_{21}\right)=-\tilde{H}_{2}$. Therefore, u induces a linear bijection of t onto a. The linear forms $\lambda_{1}, \lambda_{2}, \alpha_{1}$ and α_{2} are related through u as $\lambda_{1} \circ u=-\left(2 \alpha_{1}+\alpha_{2}\right), \lambda_{2} \circ u=3 \alpha_{1}+\alpha_{2}$.
2.2. Structures of group and its minimal parabolic subgroup. Let $G_{\mathbf{C}}$ be a connected, simply connected complex simple Lie group with Lie algebra \mathfrak{g}, and G the analytic subgroup of $G_{\mathbf{C}}$ corresponding to the real form \mathfrak{g}_{0} of \mathfrak{g}. The Iwasawa decomposition of G corresponding to that of \mathfrak{g}_{0} is $G=K A N$. Put

$$
\begin{aligned}
& \left(\mathrm{f}_{1}\right)_{0}=\sqrt{-1} \mathbf{R} H_{10}+\mathbf{R}\left(E_{10}-E_{-1,0}\right)+\sqrt{-1} \mathbf{R}\left(E_{10}+E_{-1,0}\right), \\
& \left(\mathrm{f}_{2}\right)_{0}=\sqrt{-1} \mathbf{R} H_{32}+\mathbf{R}\left(E_{32}-E_{-3,-2}\right)+\sqrt{-1} \mathbf{R}\left(E_{32}+E_{-3,-2}\right),
\end{aligned}
$$

then $\mathfrak{f}_{0}=\left(\mathfrak{f}_{1}\right)_{0} \oplus\left(\mathfrak{f}_{2}\right)_{0}$. For the structures of $\left(\mathfrak{f}_{j}\right)_{0}, j=1,2$, they are isomorphic to $\mathfrak{s u}(2)$, and the isomorphims $\zeta_{j}: \mathfrak{s u}(2) \rightarrow\left(\mathfrak{f}_{j}\right)_{0}, j=1,2$, are given as follows:

$$
\begin{aligned}
& \mathfrak{s u}(2) & \rightarrow\left(\mathfrak{f}_{1}\right)_{0} & \\
\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right) & \rightarrow \sqrt{-1} H_{10} & & \text { (resp. } \left.\left(\mathfrak{f}_{2}\right)_{0}\right) \\
\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right) & \rightarrow E_{10}-E_{-1,0} & & \text { (resp. } \left.E_{32}-E_{-3,-2}\right) \\
\left(\begin{array}{cc}
0 & \sqrt{-1} \\
\sqrt{-1} & 0
\end{array}\right) & \rightarrow \sqrt{-1}\left(E_{10}+E_{-1,0}\right) & & \text { (resp. } \left.\sqrt{-1}\left(E_{32}+E_{-3,-2}\right)\right) .
\end{aligned}
$$

Then there exists a covering homomorphism σ of $S U(2) \times S U(2)$ onto K whose differential is $\zeta_{1} \oplus \zeta_{2}$. For an element g of $S U(2) \times S U(2)$, the image of g under σ is denoted by g^{\ddagger}. Now, by comparing the unit lattice $\left\{H \in \mathrm{t}_{0} \mid \exp H=1\right\}$ of K with that of $S U(2) \times S U(2)$, we can see that $K \simeq(S U(2) \times S U(2)) / D$ with $D=\left\{1,\left(-1_{2},-1_{2}\right)\right\}$. Here 1_{2} is the unit matrix of degree 2. Put $M=$ $\left\{m \in K|\operatorname{Ad}(m)|_{\mathrm{a}_{0}}=\mathrm{id}_{\mathrm{a}_{0}}\right\}$. Note that the $(d+1)$-dimensional irreducible $\mathfrak{s u}(2)$ module V_{d} is realized on the space of homogeneous polynomials of degree d in two variables. Using this realization for K-module \mathfrak{p}, which is isomorphic to the exterior tensor product of V_{3} and V_{1}, and computing the condition $\operatorname{Ad}(m) \tilde{H}_{j}=$ $\tilde{H}_{j}, j=1,2$, for $m \in K$, we find that $M=\left\{1, m_{1}, m_{2}, m_{1} m_{2}\right\}$. Here, m_{1} and $m_{2} \in K$ are given by

$$
\begin{aligned}
m_{1} & =\left(\left(\begin{array}{cc}
\sqrt{-1} & 0 \\
0 & -\sqrt{-1}
\end{array}\right),\left(\begin{array}{cc}
-\sqrt{-1} & 0 \\
0 & \sqrt{-1}
\end{array}\right)\right)^{\ddagger} \\
& =\exp (\sqrt{-1} \pi / 2)\left(H_{10}-H_{32}\right), \\
m_{2} & =\left(\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right),\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right)^{\ddagger} \\
& =\exp \left(-\frac{\pi}{2}\right)\left(E_{10}-E_{-1,0}+E_{32}-E_{-3,-2}\right) .
\end{aligned}
$$

Therefore M is generated by two elements m_{1} and m_{2} with $m_{1}^{2}=m_{2}^{2}=1, m_{1} m_{2}=$ $m_{2} m_{1}$, and $M \simeq \mathbf{Z} / 2 \mathbf{Z} \otimes \mathbf{Z} / 2 \mathbf{Z}$. Next, define a character $\sigma_{\varepsilon_{1}, \varepsilon_{2}}$ of M through $\sigma_{\varepsilon_{1}, \varepsilon_{2}}\left(m_{i}\right)=\varepsilon_{i}$ for $i=1$, 2. Then, $\hat{M}=\left\{\sigma_{\varepsilon_{1}, \varepsilon_{2}} \mid \varepsilon_{i}= \pm 1(i=1,2)\right\}$.

Put $P=M A N$ for M defined above, then we have a minimal parabolic subgroup of G and consider principal series $\operatorname{Ind}_{P}^{G}\left(\sigma_{\varepsilon_{1}, \varepsilon_{2}} \otimes e^{\mu} \otimes 1_{N}\right)$ for this P.
2.3. Structure of an irreducible K-module. Since $\mathfrak{f}_{0} \simeq \mathfrak{s u}(2) \oplus \mathfrak{s u}(2)$ and $\mathfrak{f} \simeq$ $\mathfrak{s l}(2, \mathbf{C}) \oplus \mathfrak{s l}(2, \mathbf{C})$, every finite-dimensional irreducible \mathfrak{f}-module is an exterior tensor product of two finite-dimensional irreducible $\mathfrak{s l}(2, \mathbf{C})$-modules. So we first explain some facts about irreducible $\mathfrak{s l}(2, \mathbf{C})$-modules.

Let X, Y and H be elements of $\mathfrak{s l}(2, \mathbf{C})$ satisfying the following relations:

$$
[H, X]=2 X, \quad[H, Y]=-2 Y, \quad[X, Y]=H
$$

For $(d+1)$-dimensional irreducible $\mathfrak{s l}(2, \mathbf{C})$-module (say V_{d}), there exists a basis $\left\{e_{p}^{(d)} \mid p=-d,-d+2, \ldots, d\right\}$ of V_{d} such that

$$
\left\{\begin{array}{l}
H \cdot e_{p}^{(d)}=p e_{p}^{(d)} \\
X \cdot e_{p}^{(d)}=x_{p}^{(d)} e_{p+2}^{(d)} \\
Y \cdot e_{p}^{(d)}=x_{p-2}^{(d)} e_{p-2}^{(d)}
\end{array} \quad(p=-d,-d+2, \ldots, d)\right.
$$

with $x_{p}^{(d)}=(1 / 2) \sqrt{(d-p)(d+p+2)}$, where we regard $e_{p}^{(d)}$ as 0 if $p \notin$ $\{-d,-d+2, \ldots, d\}$. Denote by (\cdot, \cdot) the inner product on V_{d} for which $\left\{e_{p}^{(d)} \mid p=-d,-d+2, \ldots, d\right\}$ gives an orthonormal basis of V_{d}. Then (\cdot, \cdot) is invariant under $\mathfrak{s u}(2) \simeq \sqrt{-1} \mathbf{R} H+\mathbf{R}(X-Y)+\sqrt{-1} \mathbf{R}(X+Y)$.

Now, $\mathfrak{p} \simeq V_{3} \hat{\otimes} V_{1}$ as \mathfrak{f}-modules, where $\hat{\otimes}$ means an exterior tensor product. Here,

$$
\begin{aligned}
\mathfrak{g}_{\alpha_{2}}+\mathfrak{g}_{\alpha_{1}+\alpha_{2}}+\mathfrak{g}_{2 \alpha_{1}+\alpha_{2}}+\mathfrak{g}_{3 \alpha_{1}+\alpha_{2}} \simeq V_{3} & \text { as } \mathfrak{f}_{1} \text {-modules }, \\
\mathfrak{g}_{-3 \alpha_{1}-\alpha_{2}}+\mathfrak{g}_{\alpha_{2}} \simeq V_{1} & \text { as } \mathfrak{f}_{2} \text {-modules } .
\end{aligned}
$$

Put $\Delta_{\mathrm{c}}^{+}=\left\{\alpha_{1}, 3 \alpha_{1}+2 \alpha_{2}\right\}$, and let λ be a Δ_{c}^{+}-dominant, integral linear form on t and V_{λ} a finite-dimensional irreducible f -module with highest weight λ. Then,

$$
\begin{gathered}
V_{\lambda} \simeq V_{r} \hat{\otimes} V_{s} \quad \text { for } r=\lambda\left(H_{10}\right), s=\lambda\left(H_{32}\right), \\
V_{\lambda} \otimes \mathfrak{p} \simeq\left(V_{r} \otimes V_{3}\right) \hat{\otimes}\left(V_{s} \otimes V_{1}\right) .
\end{gathered}
$$

Now, we are going to give an irreducible decomposition of a tensor product of two finite-dimensional irreducible $\mathfrak{s l}(2, \mathbf{C})$-modules. For two nonnegative integers m and n with $m \geq n, V_{m} \otimes V_{n}$ is decomposed as follows:

$$
\begin{equation*}
V_{m} \otimes V_{n} \simeq V_{m+n} \oplus V_{m+n-2} \oplus \cdots \oplus V_{m-n} \tag{2.6}
\end{equation*}
$$

Let $P^{(m, n ; j)}$ be the projection of $V_{m} \otimes V_{n}$ onto $V_{m+n-2 j}$ in (2.6), and $u_{m+n-2 j}^{(m, n ; j)}$ a highest weight vector of $V_{m+n-2 j}$ in (2.6) with length 1 . Here, $V_{m} \otimes V_{n}$ is equipped with an inner product for which $\left\{e_{p}^{(m)} \otimes e_{q}^{(n)}\right\}$ is an orthonormal basis, and we denote $e_{p}^{(m)} \otimes e_{q}^{(n)}$ by $e_{p q}^{(m n)}$. We define vectors $u_{w}^{(m, n ; j)}(w=m+n-2 j-2, m+n-$ $2 j-4, \ldots,-(m+n-2 j))$ through the following recursion formula:

$$
u_{w}^{(m, n ; j)}=\left(x_{w}^{(m+n-2 j)}\right)^{-1} Y \cdot u_{w+2}^{(m, n ; j)} .
$$

Then, $u_{w}^{(m, n ; j)}$ is a w-weight vector of $V_{m+n-2 j}$ in (2.6) with length 1 .
The weight vectors $u_{w}^{(m, n ; j)}(j=0,1, \ldots, n ; w=-(m+n-2 j),-(m+n-2 j)$ $+2, \ldots, m+n-2 j$) are expressed uniquely in terms of the basis $\left\{e_{p q}^{(m n)}\right\}$ of $V_{m} \otimes V_{n}$ as

$$
u_{w}^{(m, n ; j)}=\sum_{p+q=w} z_{p q}^{(m, n ; j)} e_{p q}^{(m n)} \quad\left(z_{p q}^{(m, n ; j)} \in \mathbf{C}\right) .
$$

By a straightforward calculation, we have $P^{(m, n ; j)} e_{p q}^{(m n)}=\overline{z_{p q}^{(m ; n ; j}} u_{p+q}^{(m, n ; j)}$. So the projection $P^{(m, n ; j)}$ is determined if $u_{w}^{(m, n ; j)}$'s are explicitly described.

For the purpose of determining the projection P_{λ} defined in $\S 1.3$, calculate $u_{w}^{(s, 1 ; j)}(s \geq 1), u_{w}^{(r, 3 ; j)}(r \geq 3)$ under the conditions $z_{s, 1-2 j}^{(s, 1 ; j)}>0, z_{r, 3-2 j}^{(r, 3 ; j)}>0$, then we
have the following equalities:

$$
\begin{aligned}
& u_{w}^{(s, 1 ; 0)}=\sqrt{\frac{s+1+w}{2(s+1)}} e_{w-1,1}^{(s 1)}+\sqrt{\frac{s+1-w}{2(s+1)}} e_{w+1,-1}^{(s 1)}, \\
& u_{w}^{(s, 1 ; 1)}=-\sqrt{\frac{s+1-w}{2(s+1)}} e_{w-1,1}^{(s 1)}+\sqrt{\frac{s+1+w}{2(s+1)}} e_{w+1,-1}^{(s 1)}, \\
& \sqrt{8(r+1)(r+2)(r+3)} u_{w}^{(r, 3 ; 0)}= \sqrt{(r-1+w)(r+1+w)(r+3+w)} e_{w-3,3}^{(r 3)} \\
&+\sqrt{3(r+3-w)(r+1+w)(r+3+w)} e_{w-1,1}^{(r 3)} \\
&+\sqrt{3(r+1-w)(r+3-w)(r+3+w)} e_{w+1,-1}^{(r 3)} \\
&+\sqrt{(r-1-w)(r+1-w)(r+3+w)} e_{w+3,-3}^{(r 3)}, \\
& \sqrt{8 r(r+1)(r+3)} u_{w}^{(r, 3 ; 1)}=-\sqrt{3(r+3-w)(r-1+w)(r+1+w)} e_{w-3,3}^{(r 3)} \\
&-(r+3-3 w) \sqrt{r+1+w} e_{w-1,1}^{(r 3)} \\
&+(r+3+3 w) \sqrt{r+1-w} e_{w+1,-1}^{(r 3)} \\
&+\sqrt{3(r-1-w)(r+1-w)(r+3+w}) e_{w+3,-3}^{(r 3)}, \\
& \sqrt{8(r-1)(r+1)(r+2)} u_{w}^{(r, 3 ; 2)}= \sqrt{3(r+1-w)(r+3-w)(r-1+w)} e_{w-3,3}^{(r 3)} \\
&-(r-1+3 w) \sqrt{r+1-w} e_{w-1,1}^{(r 3)} \\
&-(r-1-3 w) \sqrt{r+1+w} e_{w+1,-1}^{(r 3)} \\
&+\sqrt{3(r-1-w)(r+1+w)(r+3+w)} e_{w+3,-3}^{(r 3)}, \\
& \sqrt{8(r-1) r(r+1)} u_{w}^{(r, 3 ; 3)}=-\sqrt{(r-1-w)(r+1-w)(r+3-w)} e_{w-3,3}^{(r 3)} \\
&+\sqrt{3(r-1-w)(r+1-w)(r-1+w)} e_{w-1,1}^{(r 3)} \\
&-\sqrt{3(r-1-w)(r-1+w)(r+1+w)} e_{w+1,-1}^{(r 3)} \\
&+\sqrt{(r-1+w)(r+1+w)(r+3+w)} e_{w+3,-3}^{(r 3)} .
\end{aligned}
$$

In the above formulae, the coefficient of $e_{q^{*}}^{\left.(s)^{*}\right)}$ with $q<-s$ or $q>s$ is 0 . Similarly, the coefficient of $e_{p^{*}}^{(r 3)}$ with $p<-r$ or $p>r$ becomes 0 .

3. Explicit expression of the differential equation

Since $\left\{e_{p q}^{(r s)} \mid p=-r, \ldots, r ; q=-s, \ldots, s\right\}$ is a basis of $V_{r} \hat{\otimes} V_{s} \simeq V_{\lambda}$, an element f of $C_{\tau_{\lambda}}^{\infty}(G)$ is expressed uniquely in the following form:

$$
\begin{equation*}
f(g)=\sum_{p, q} c_{p q}(g) e_{p q}^{(r s)}, \tag{3.1}
\end{equation*}
$$

where the sum is taken for $p=-r,-r+2, \ldots, r ; q=-s,-s+2, \ldots, s$ and the coefficients $c_{p q}$ are smooth functions on G.

In this section, we give the differential operator \mathscr{D}_{λ} explicitly, and rewrite the condition $\mathscr{D}_{\lambda} f=0$ for $f \in C_{\tau_{\lambda}}^{\infty}(G)$ in terms of the coefficient functions $c_{p q}$ in (3.1). Then we have certain systems of differential equations for $c_{p q}$'s, and they are solved in next section.
3.1. Explicit description of the projection P_{λ}. In $\S 1.2$, we gave the parametrization of the discrete series. Since the present group G is the real form of a simply connected complex Lie group, ρ is K-integral and the elements in Ξ are all K-integral. Fix an element Λ of Ξ and take the unique positive system Δ^{+}so that Λ is Δ^{+}-dominant. Set $\Xi_{c}=\left\{\Lambda \in \Xi \mid \Delta^{+} \supset \Delta_{c}^{+}\right\}$with $\Delta_{c}^{+}=$ $\left\{\alpha_{1}, 3 \alpha_{1}+2 \alpha_{2}\right\}$. Then Ξ_{c} is a complete system of representatives for Ξ / \sim. The positive system Δ^{+}containing Δ_{c}^{+}is one of the following Δ_{J}^{+}'s

$$
\begin{aligned}
\Delta_{I}^{+} & =\left\{\alpha_{1}, \alpha_{2}, \alpha_{1}+\alpha_{2}, 2 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+2 \alpha_{2}\right\} \\
\Delta_{I I}^{+} & =\left\{\alpha_{1}+\alpha_{2},-\alpha_{2}, \alpha_{1}, 2 \alpha_{1}+\alpha_{2}, 3 \alpha_{1}+2 \alpha_{2}, 3 \alpha_{1}+\alpha_{2}\right\} \\
\Delta_{I I I}^{+} & =\left\{-\alpha_{1}-\alpha_{2}, 3 \alpha_{1}+2 \alpha_{2}, 2 \alpha_{1}+\alpha_{2}, \alpha_{1}-\alpha_{2}, 3 \alpha_{1}+\alpha_{2}\right\} .
\end{aligned}
$$

Set $r^{\prime}=\Lambda\left(H_{10}\right)$ and $s^{\prime}=\Lambda\left(H_{32}\right)$ and put $r=\lambda\left(H_{10}\right), s=\lambda\left(H_{32}\right)$ as before. Through the isomorphism $V_{\lambda} \otimes p \simeq\left(V_{r} \otimes V_{1}\right) \hat{\otimes}\left(V_{s} \otimes V_{3}\right)$, we identify these two \mathfrak{f}-modules. In the rest of this subsection, we give the condition for Λ being an element of Ξ with positive system $\Delta_{J}^{+}(J=I, I I, I I I)$, the Blattner parameter λ of π_{A}, the condition for λ being far from the walls and the projection P_{λ}.

Case I: $\Delta^{+}=\Delta_{I}^{+}$
For $\Lambda \in \mathrm{t}^{*}$,
$\Lambda \in \Xi$ and $\Delta^{+}=\Delta_{I}^{+}$
$\Leftrightarrow r^{\prime}, s^{\prime}$ are positive integers with $s^{\prime}-r^{\prime} \geq 2$ and $s^{\prime}-r^{\prime}$ is even.
$\Leftrightarrow r, s$ are nonnegative integers with $s-r \geq 4$ and $s-r$ is even.
In this case, we have

$$
\rho_{n}=3 \alpha_{1}+2 \alpha_{2}, \lambda=\Lambda+\alpha_{1}+\alpha_{2} .
$$

O: positive root
Figure 2: Three possible positive systems
λ is far from the walls $\Leftrightarrow r \geq 4, s \geq 4 \quad$ (with (*1))
$P_{\lambda}=I \otimes P^{(s, 1 ; 1)}$
Case II: $\Delta^{+}=\Delta_{I I}^{+}$
For $\Lambda \in \mathrm{t}^{*}$,
$\Lambda \in \Xi$ and $\Delta^{+}=\Delta_{I I}^{+}$
$\Leftrightarrow r^{\prime}, s^{\prime}$ are integers with $r^{\prime}-s^{\prime} \geq 2, r^{\prime} \leq 3 s^{\prime}-2$ and $r^{\prime}-s^{\prime}$ is even.
$\Leftrightarrow r, s$ are nonnegative integers with $r-s \geq 4, r \leq 3 s$ and $r-s$ is even.

In this case, we have
$\rho_{n}=3 \alpha_{1}+\alpha_{2}, \lambda=\Lambda+\alpha_{1}$.
λ is far from the walls $\Leftrightarrow r \geq 7, s \geq 3 \quad$ (with (*2))
$P_{\lambda}=P^{(r, 3 ; 1)} \otimes P^{(s, 1 ; 1)}+P^{(r, 3 ; 2)} \otimes P^{(s, 1 ; 1)}+P^{(r, 3 ; 3)} \otimes P^{(s, 1 ; 1)}+P^{(r, 3 ; 3)} \otimes P^{(s, 1 ; 0)}$
Case III: $\Delta^{+}=\Delta_{I I I}^{+}$
For $\Lambda \in \mathrm{t}^{*}$,
$\Lambda \in \Xi$ and $\Delta^{+}=\Delta_{I I I}^{+}$
$\Leftrightarrow r^{\prime}, s^{\prime}$ are positive integers with $s^{\prime} \geq 1, r^{\prime}-3 s^{\prime} \geq 2$ and $r^{\prime}-s^{\prime}$ is even.
$\Leftrightarrow r, s$ are nonnegative integers with $r-3 s \geq 8$ and $r-s$ is even.
In this case, we have
$\rho_{n}=2 \alpha_{1}, \lambda=\Lambda-\alpha_{2}$.
λ is far from the walls $\Leftrightarrow r \geq 8, s \geq 2 \quad$ (with (*3))
$P_{\lambda}=P^{(r, 3 ; 2)} \otimes I+P^{(r, 3 ; 2)} \otimes I$
3.2. Differential operator ∇. In view of Theorem 1.3 and equation (1.4), we need to know the explicit form of the differential operator $\mathscr{D}_{\lambda}=P_{\lambda} \circ \nabla$. Since the projection P_{λ} is determined in the last subsection, here we calculate the differential operator ∇.

For $f \in C_{\tau_{\lambda}}^{\infty}(G)$ and $X \in \mathfrak{f}_{0}, L_{X} f$ is computed as follows:

$$
\begin{aligned}
\left(L_{X} f\right)(g) & =\left.\frac{d}{d t} f(\exp (-t X) \cdot g)\right|_{t=0} \\
& =\left.\frac{d}{d t}\left(\tau_{\lambda}(\exp (-t X)) f(g)\right)\right|_{t=0} \\
& =-\tau_{\lambda}(X) f(g) .
\end{aligned}
$$

where we denote the differential of τ_{λ} by the same symbol. So the first term of the right-hand side of $L_{X} f=L_{t(X)} f+L_{5(X)} f$ is expressed in terms of τ_{λ}.

Compute $L_{\mathfrak{s}\left(E_{i j}\right)}$'s by using the values of $\mathfrak{a}\left(E_{i j}\right)$ and $\mathfrak{n}\left(E_{i j}\right)$ in the table in $\S 2.1$, then we see that ∇f is explicitly written as

$$
8 \sqrt{6} \nabla f=\sum_{(i, j) \in \mathrm{I}} \Phi_{i j}(f),
$$

where $\quad I=\{(0,1),(0,-1),(1,1),(-1,-1),(2,1),(-2,-1),(3,1),(-3,-1)\}, \quad$ and $\Phi_{i j}(f)$'s are defined by

$$
\begin{aligned}
\Phi_{01}(f) & =-\sqrt{3} \sum_{p, q}\left(p-q+4 \mathscr{L}_{01}\right) c_{p q} e_{p 3}^{(r 3)} \otimes e_{q,-1}^{(s)}, \\
\Phi_{0,-1}(f) & =\sqrt{3} \sum_{p, q}\left(-p+q+4 \mathscr{L}_{0,-1}\right) c_{p q} e_{p,-3}^{(r 3)} \otimes e_{q 1}^{(s 1)}, \\
\Phi_{21}(f) & =-\sum_{p, q}\left(-p-3 q+4 \mathscr{L}_{21}\right) c_{p q} e_{p,-1}^{(r 3)} \otimes e_{q,-1}^{(s 1)}, \\
\Phi_{-2,-1}(f) & =\sum_{p, q}\left(p+3 q+4 \mathscr{L}_{-2,-1}\right) c_{p q} e_{p 1}^{(r 3)} \otimes e_{q 1}^{(s 1)}, \\
\Phi_{11}(f) & =2 \sum_{p, q}\left(2 \mathscr{L}_{11} c_{p q}-\sqrt{(r+2-p)(r+p)} c_{p-2, q}\right) e_{p 1}^{(r 3)} \otimes e_{q,-1}^{(s 1)}, \\
\Phi_{-1,-1}(f) & =2 \sum_{p, q}\left(2 \mathscr{L}_{-1,-1} c_{p q}+\sqrt{(r-p)(r+2+p)} c_{p+2, q}\right) e_{p,-1}^{(r 3)} \otimes e_{q 1}^{(s 1)}, \\
\Phi_{31}(f) & =2 \sqrt{3} \sum_{p, q}\left(2 \mathscr{L}_{31} c_{p q}+\sqrt{(s+2-q)(s+q)} c_{p, q-2}\right) e_{p,-3}^{(r 3)} \otimes e_{q,-1}^{(s)}, \\
\Phi_{-3,-1}(f) & \left.=2 \sqrt{3} \sum_{p, q} 2 \mathscr{L}_{-3,-1} c_{p q}-\sqrt{(s-q)(s+2+q)} c_{p, q+2}\right) e_{p 3}^{(r 3)} \otimes e_{q 1}^{(s 1)},
\end{aligned}
$$

where $\mathscr{L}_{i j}=I_{s\left(E_{i j}\right)}$.
3.3. The equation $\mathscr{D}_{\lambda} f=0: \Delta_{I}^{+}$-case. Here we assume that $\Delta^{+}=\Delta_{I}^{+}$. In this case, for $f \in C_{\tau_{\lambda}}^{\infty}(G), \mathscr{D}_{\lambda} f$ is expressed as

$$
\mathscr{D}_{\lambda} f=\sum_{j, p, q} \alpha_{j} A_{p q}^{(j)} e_{p, 3-2 j}^{(r 3)} \otimes u_{q+1}^{(s, 1 ; 1)},
$$

where the sum is taken for $j=0,1,2,3 ; p=-r,-r+2, \ldots, r ; q=-s$, $-s+2, \ldots, s-2$, with nonzero constants α_{j} 's independent of p, q, and smooth functions $A_{p q}^{(j)}$'s on G.

This expression gives that the condition $\mathscr{D}_{\lambda} f=0$ is equivalent to the equations

$$
A_{p q}^{(0)}=A_{p q}^{(1)}=A_{p q}^{(2)}=A_{p q}^{(3)}=0 \quad \text { for } \quad \begin{align*}
p & =-r,-r+2, \ldots, r \tag{3.2}\\
q & =-s,-s+2, \ldots, s-2
\end{align*},
$$

and functions $A_{p q}^{(j)}$ are given by

$$
\begin{aligned}
A_{p q}^{(0)}= & 4 \sqrt{s-q} \mathscr{L}_{-3,-1} c_{p q}+\sqrt{s+2+q}\left(4 \mathscr{L}_{01}-2 s+p+q-2\right) c_{p, q+2}, \\
A_{p q}^{(1)}= & \sqrt{s-q}\left(4 \mathscr{L}_{-2,-1}+p+3 q\right) c_{p q}-4 \sqrt{s+2+q} \mathscr{L}_{11} c_{p, q+2}, \\
& +2 \sqrt{(r+2-p)(r+p)(s+2+q)} c_{p-2, q+2}, \\
A_{p q}^{(2)}= & 4 \sqrt{s-q} \mathscr{L}_{-1,-1} c_{p q}-\sqrt{s+2+q}\left(p+3 q+6-4 \mathscr{L}_{21}\right) c_{p, q+2}, \\
& +2 \sqrt{(r-p)(r+2+p)(s-q)} c_{p+2, q}, \\
A_{p q}^{(3)}= & \sqrt{s-q}\left(2 s+p+q+4-4 \mathscr{L}_{0,-1}\right) c_{p q}+4 \sqrt{s+2+q} \mathscr{L}_{31} c_{p, q+2} .
\end{aligned}
$$

In condition (3.2), we regard $c_{p q}$ as 0 if $p \notin\{-r,-r+2, \ldots, r\}$ or $q \notin$ $\{-s,-s+2, \ldots, s\}$.
3.4. The equation $\mathscr{D}_{\lambda} f=0: \Delta_{I I}^{+}$-case. In this subsection, we calculate $\mathscr{D}_{\lambda} f$ with $\Delta^{+}=\Delta_{I I}^{+}$. Composite P_{λ} with ∇ by using the results in $\S 3.2$, then we see that $\mathscr{D}_{\lambda} f$ is of the form

$$
\mathscr{D}_{\lambda} f=\sum_{i, j, p, q} \beta_{i j} B_{p q}^{(i j)} u_{p}^{(r, 3 ; i)} \otimes u_{q}^{(s, 1 ; j)}
$$

where the sum is taken for $(i, j) \in\{(1,1),(2,1),(3,1),(3,0)\} ; p=-r-3,-r-1$, $\ldots, r+3$ and $q=-s-1,-s+1, \ldots, s+1$, with nonzero constants $\beta_{i j}$'s depending only on i, j, and smooth functions $B_{p q}^{(i j)}$ s on G.

In this case, $\mathscr{D}_{\lambda} f=0$ if and only if

$$
\begin{array}{ll}
B_{p q}^{(11)}=0 & \text { for } p=-r-1, \ldots, r+1 ; q=-s+1, \ldots, s-1, \\
B_{p q}^{(21)}=0 & \text { for } p=-r+1, \ldots, r-1 ; q=-s+1, \ldots, s-1, \\
B_{p q}^{(31)}=0 & \text { for } p=-r+3, \ldots, r-3 ; q=-s+1, \ldots, s-1, \\
B_{p q}^{(30)}=0 & \text { for } p=-r+3, \ldots, r-3 ; q=-s-1, \ldots, s+1 . \tag{3.6}
\end{array}
$$

In conditions (3.3)-(3.6), we regard $c_{p q}$ as 0 if $p \notin\{-r,-r+2, \ldots, r\}$ or $q \notin$ $\{-s,-s+2, \ldots, s\}$.

The coefficient functions $B_{p q}^{(i j)}$ are defined as follows:

$$
\begin{aligned}
& B_{p q}^{(11)}= 12 \sqrt{(r+3-p)(r-1+p)(r+1+p)(s+1-q)} \mathscr{L}_{-3,-1} c_{p-3, q-1} \\
&+\sqrt{(r+3-p)(r-1+p)(r+1+p)(s+1+q)} \\
& \times\left(2 r-6 s-3 p+3 q-12+12 \mathscr{L}_{01}\right) c_{p-3, q+1} \\
&+(r+3-3 p) \sqrt{(r+1+p)(s+1-q)}\left(p+3 q-4+4 \mathscr{L}_{-2,-1}\right) c_{p-1, q-1} \\
&-4(r+3-3 p) \sqrt{(r+1+p)(s+1+q)} \mathscr{L}_{11} c_{p-1, q+1} \\
&-4(r+3+3 p) \sqrt{(r+1-p)(s+1-q)} \mathscr{L}_{-1,-1} c_{p+1, q-1} \\
&+(r+3+3 p) \sqrt{(r+1-p)(s+1+q)\left(p+3 q+4-4 \mathscr{L}_{21}\right) c_{p+1, q+1}} \\
&+\sqrt{(r-1-p)(r+1-p)(r+3+p)(s+1-q)} \\
& \times\left(-2 r+6 s-3 p+3 q+12-12 \mathscr{L}_{0,-1}\right) c_{p+3, q-1} \\
&+12 \sqrt{(r-1-p)(r+1-p)(r+3+p)(s+1+q)} \mathscr{L}_{31} c_{p+3, q+1}, \\
& B_{p q}^{(21)}=-12 \sqrt{(r+1-p)(r+3-p)(r-1+p)(s+1-q)} \mathscr{L}_{-3,-1} c_{p-3, q-1} \\
&+\sqrt{(r+1-p)(r+3-p)(r-1+p)(s+1+q)} \\
& \times\left(2 r+6 s+3 p-3 q+16-12 \mathscr{L}_{01}\right) c_{p-3, q+1} \\
&+(r-1+3 p) \sqrt{(r+1-p)(s+1-q)}\left(p+3 q-4+4 \mathscr{L}_{-2,-1}\right) c_{p-1, q-1} \\
&-4(r-1+3 p) \sqrt{ }(r+1-p)(s+1+q) \\
& \mathscr{L}_{11} c_{p-1, q+1}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
& +4(r-1-3 p) \sqrt{(r+1+p)(s+1-q)} \mathscr{L}_{-1,-1} c_{p+1, q-1} \\
& \left.-(r-1-3 p) \sqrt{(r+1+p)(s+1+q)(p+3 q+4}-4 \mathscr{L}_{21}\right) c_{p+1, q+1} \\
& +\sqrt{(r-1-p)(r+1+p)(r+3+p)(s+1-q)} \\
& \times\left(2 r+6 s-3 p+3 q+16-12 \mathscr{L}_{0,-1}\right) c_{p+3, q-1} \\
& +12 \sqrt{(r-1-p)(r+1+p)(r+3+p)(s+1+q)} \mathscr{L}_{31} c_{p+3, q+1}, \\
B_{p q}^{(31)}= & 4 \sqrt{(r-1-p)(r+1-p)(r+3-p)(s+1-q)} \mathscr{L}_{-3,-1} c_{p-3, q-1} \\
& -\sqrt{(r-1-p)(r+1-p)(r+3-p)(s+1+q)} \\
& \times\left(2 r+2 s+p-q+4-4 \mathscr{L}_{01}\right) c_{p-3, q+1} \\
& -\sqrt{(r-1-p)(r+1-p)(r-1+p)(s+1-q)} \\
& \times\left(p+3 q-4+4 \mathscr{L}_{-2,-1}\right) c_{p-1, q-1} \\
& +4 \sqrt{(r-1-p)(r+1-p)(r-1+p)(s+1+q)} \mathscr{L}_{11} c_{p-1, q+1} \\
& +4 \sqrt{(r-1-3 p)(r-1+p)(r+1+p)(s+1-q)} \mathscr{L}_{-1,-1} c_{p+1, q-1} \\
& -\sqrt{(r-1-p)(r-1+p)(r+1+p)(s+1+q)} \\
& \times\left(p+3 q+4-4 \mathscr{L}_{21}\right) c_{p+1, q+1} \\
& +\sqrt{(r-1+p)(r+1+p)(r+3+p)(s+1-q)} \\
& \times\left(2 r+2 s-p+q+4-4 \mathscr{L}_{0,-1}\right) c_{p+3, q-1} \\
& +4 \sqrt{(r-1+p)(r+1+p)(r+3+p)(s+1+q)} \mathscr{L}_{31} c_{p+3, q+1}, \\
= & -4 \sqrt{(r-1-p)(r+1-p)(r+3-p)(s+1+q)} \mathscr{L}_{-3,-1} c_{p-3, q-1} \\
& -\sqrt{(r-1-p)(r+1-p)(r+3-p)(s+1-q)} \\
& \times\left(2 r-2 s+p-q-4 \mathscr{L}_{01}\right) c_{p-3, q+1} \\
& +\sqrt{(r-1-p)(r+1-p)(r-1+p)(s+1+q)} \\
& \times\left(p+3 q-4+4 \mathscr{L}_{-2,-1}\right) c_{p-1, q-1} \\
& +4 \sqrt{(r-1-p)(r+1-p)(r-1+p)(s+1-q)} \mathscr{L}_{11} c_{p-1, q+1} \\
& -4 \sqrt{(r-1-p)(r-1+p)(r+1+p)(s+1+q)} \mathscr{L}_{-1,-1} c_{p+1, q-1} \\
& -\sqrt{(r-1-p)(r-1+p)(r+1+p)(s+1-q)} \\
& \times\left(p+3 q+4-4 \mathscr{L}_{21}\right) c_{p+1, q+1} \\
& -\sqrt{(r-1+p)(r+1+p)(r+3+p)(s+1+q)} \\
& \left(2 r-2 s-p+q-4 \mathscr{L}_{0,-1}\right) c_{p+3, q-1} \\
& 4+p)(r+1+p)(r+3+p)(s+1-q) \\
\mathscr{L}_{31} c_{p+3, q+1} . \\
(r-1+1 \\
(r+1+1
\end{array}\right)
$$

3.5. The equation $\mathscr{D}_{\lambda} f=0: \Delta_{I I I}^{+}$-case. In this subsection, we assume that $\Delta^{+}=\Delta_{I I I}^{+}$, and compute $\mathscr{D}_{\lambda} f$ as before. Then we see that $\mathscr{D}_{\lambda} f$ is of the form

$$
\mathscr{D}_{\lambda} f=\sum_{i, j, p, q} \gamma_{i j} C_{p q j}^{(i)} u_{p}^{(r, 3 ; i)} \otimes e_{q j}^{(s 1)}
$$

where the sum is taken for $i=2,3 ; j= \pm 1 ; p=-r+1,-r+3, \ldots, r-1$ and $q=-s,-s+2, \ldots, s$ with nonzero constants $\gamma_{i j}$ depending only on i, j, and smooth functions $C_{p q j}^{(i)}$ on G.

In this case, for $f \in C_{\tau_{\lambda}}^{\infty}(G)$, it is necessary and sufficient for $\mathscr{D}_{\lambda} f=0$ that

$$
\begin{array}{rll}
C_{p q 1}^{(2)}=0 & \text { for } p=-r+1, \ldots, r-1 ; & q=-s, \ldots, s, \\
C_{p, q,-1}^{(2)}=0 & \text { for } p=-r+1, \ldots, r-1 ; & q=-s, \ldots, s, \\
C_{p q 1}^{(3)}=0 & \text { for } p=-r+3, \ldots, r-3 ; & q=-s, \ldots, s, \\
C_{p, q,-1}^{(3)}=0 & \text { for } p=-r+3, \ldots, r-3 ; & q=-s, \ldots, s . \tag{3.10}
\end{array}
$$

In conditions (3.7)-(3.10), we regard $c_{p q}$ as 0 if $p \notin\{-r,-r+2, \ldots, r\}$ or $q \notin$ $\{-s,-s+2, \ldots, s\}$. Here the functions $C_{p q j}^{(i)}$ are defined by

$$
\begin{aligned}
C_{p q 1}^{(2)}= & 12 \sqrt{(r+1-p)(r+3-p)(r-1+p)} \mathscr{L}_{-3,-1} c_{p-3, q} \\
& -6 \sqrt{(r+1-p)(r+3-p)(r-1+p)(s-q)(s+2+q)} c_{p-3, q+2} \\
& -(r+3 p-1) \sqrt{r+1-p}\left(p+3 q-1+4 \mathscr{L}_{-2,-1}\right) c_{p-1, q} \\
& -4(r-3 p-1) \sqrt{r+1+p} \mathscr{L}_{-1,-1} c_{p+1, q} \\
& -\sqrt{(r-1-p)(r+1+p)(r+3+p)} \\
& \times\left(2 r-3 p-3 q+7-12 \mathscr{L}_{0,-1}\right) c_{p+3, q}, \\
C_{p, q,-1}^{(2)}= & \sqrt{(r+1-p)(r+3-p)(r-1+p)} \\
& \times\left(2 r+3 p+3 q+7-12 \mathscr{L}_{01}\right) c_{p-3, q} \\
& -4(r+3 p-1) \sqrt{r+1-p \mathscr{L}_{11} c_{p-1, q}} \\
& -(r-3 p-1) \sqrt{r+1+p}\left(p+3 q+1-4 \mathscr{L}_{21}\right) c_{p+1, q} \\
& +6 \sqrt{(r-1-p)(r+1+p)(r+3+p)(s+2-q)(s+q)} c_{p+3, q-2} \\
& +12 \sqrt{(r-1-p)(r+1+p)(r+3+p)} \mathscr{L}_{31} c_{p+3, q}, \\
C_{p q 1}^{(3)}= & -4 \sqrt{(r-1-p)(r+1-p)(r+3-p)} \mathscr{L}_{-3,-1} c_{p-3, q} \\
& +2 \sqrt{(r-1-p)(r+1-p)(r+3-p)(s-q)(s+2+q)} c_{p-3, q+2} \\
& +\sqrt{(r-1-p)(r+1-p)(r-1+p)} \\
& \times\left(p+3 q-1+4 \mathscr{L}_{-2,-1}\right) c_{p-1, q} \\
& -4 \sqrt{(r-1-p)(r-1+p)(r+1+p)} \mathscr{L}_{-1,-1} c_{p+1, q} \\
& -\sqrt{(r-1+p)(r+1+p)(r+3+p)} \\
& \times\left(2 r-p-q+1-4 \mathscr{L}_{0,-1}\right) c_{p+3, q}
\end{aligned}
$$

$$
\begin{aligned}
C_{p, q,-1}^{(3)}= & -\sqrt{(r-1-p)(r+1-p)(r+3-p)} \\
& \times\left(2 r+p+q+1-4 \mathscr{L}_{01}\right) c_{p-3, q} \\
& +4 \sqrt{(r-1-p)(r+1-p)(r-1+p)} \mathscr{L}_{11} c_{p-1, q} \\
& -\sqrt{(r-1-p)(r-1+p)(r+1+p)} \\
& \times\left(p+3 q+1-4 \mathscr{L}_{21}\right) c_{p+1, q} \\
& +2 \sqrt{(r-1+p)(r+1+p)(r+3+p)(s+2-q)(s+q)} c_{p+3, q-2} \\
& +4 \sqrt{(r-1+p)(r+1+p)(r+3+p)} \mathscr{L}_{31} c_{p+3, q} .
\end{aligned}
$$

4. Solutions for the differential equation

4.1. Preparation to solve the equation $\mathscr{D}_{\lambda, 1_{N}} f=0$. In this section, we solve the equation $\mathscr{D}_{\lambda, 1_{N}} f=0$ and determine the (\mathfrak{a}, M)-module structure of Ker $\mathscr{D}_{\lambda, 1_{N}}$ in §1.4. First we state the facts commonly hold for the three cases. For $f \in C_{\tau_{\lambda}}^{\infty}(G)$, we write $f=\sum_{p, q} c_{p q} e_{p q}^{(r s)}$ as before, then

$$
\begin{array}{cl}
f(g n)=f(g) & (\forall(g, n) \in G \times N) \\
\Leftrightarrow c_{p q}(g n)=c_{p q}(g) \quad(\forall(g, n) \in G \times N, \forall p, \forall q) . \tag{4.1}
\end{array}
$$

If $f \in C_{\tau_{\lambda}}^{\infty}(G)$ satisfies (4.1), then for $X \in \mathrm{n}_{0}, a \in A, n \in N$ we have,

$$
\begin{aligned}
\left(L_{X} c_{p q}\right)(a n) & =\left.\frac{d}{d t} c_{p q}(\exp (-t X) \cdot a n)\right|_{t=0} \\
& =\left.\frac{d}{d t} c_{p q}\left(a \exp \left(-t \operatorname{Ad}(a)^{-1} X\right) \cdot n\right)\right|_{t=0} \\
& =\left.\frac{d}{d t} c_{p q}(a)\right|_{t=0} \quad\left(\because \operatorname{Ad}(a)^{-1} X \in \mathfrak{n}_{0}\right) .
\end{aligned}
$$

So

$$
\begin{equation*}
\left(L_{X} c_{p q}\right)(a n)=0 . \tag{4.2}
\end{equation*}
$$

Note that, for $f \in C_{\tau_{\lambda}}^{\infty}(G)$,

$$
\begin{equation*}
\mathscr{D}_{\lambda} f=\left.0 \Leftrightarrow \mathscr{D}_{\lambda} f\right|_{A N}=0 . \tag{4.3}
\end{equation*}
$$

4.2. Solutions for the equation $\mathscr{D}_{\lambda, 1_{N}} f=0: \Delta_{I}^{+}$-case. Here we assume that $\Delta^{+}=\Delta_{I}^{+}$. In this case, by using (3.2) and the remarks in the last subsection, we see that for $f \in C_{\tau_{\lambda}}^{\infty}(G)$,

$$
\begin{gathered}
f \in \operatorname{Ker} \mathscr{D}_{\lambda, 1_{N}} \\
\Leftrightarrow \mathscr{D}_{\lambda} f=0 \quad \text { and } \quad(4.1) \\
\Leftrightarrow(4.4)-(4.7) \quad \text { and } \quad(4.1),
\end{gathered}
$$

with

$$
\begin{gather*}
\left(2 L_{\tilde{H}_{1}}-2 s+p+q-2\right) c_{p, q+2}=0, \tag{4.4}\\
\sqrt{s-q}\left(2 L_{\tilde{H}_{2}}+p+3 q\right) c_{p q}+2 \sqrt{(r+2-p)(r+p)(s+2+q)} c_{p-2, q+2}=0, \tag{4.5}\\
-\sqrt{s+2+q}\left(p+3 q+6-2 L_{\tilde{H}_{2}}\right) c_{p, q+2}+2 \sqrt{(r-p)(r+2+p)(s-q)} c_{p+2, q}=0, \tag{4.6}\\
\left(2 s+p+q+4-2 L_{\tilde{H}_{1}}\right) c_{p q}=0, \tag{4.7}
\end{gather*}
$$

on A for $p=-r,-r+2, \ldots, r ; q=-s,-s+2, \ldots, s-2$.
From now on, unless otherwise stated, we consider the equations for $c_{p q}$'s such as (4.4)-(4.7) only on A, though $c_{p q}$'s are functions on G.

Now define two linear forms $\mu_{j}(j=1,2)$ on a through

$$
\begin{array}{ll}
\mu_{1}\left(\tilde{H}_{1}\right)=-(s+2), & \mu_{1}\left(\tilde{H}_{2}\right)=r \\
\mu_{2}\left(\tilde{H}_{1}\right)=-(s-r+4) / 2, & \mu_{2}\left(\tilde{H}_{2}\right)=-(r+3 s) / 2
\end{array}
$$

and put for $a \in A$,

$$
\begin{aligned}
& f_{0}(a)=\sum_{p} \alpha_{p} a^{\mu_{1}} e_{p,-p}^{(r s)}, \\
& f_{+}(a)=a^{\mu_{2}}\left(e_{r s}^{(r s)}+e_{-r,-s}^{(r s)}\right), \\
& f_{-}(a)=a^{\mu_{2}}\left(e_{r s}^{(r s)}-e_{-r,-s}^{(r s s)},\right.
\end{aligned}
$$

where the sum is taken for $p=-r,-r+2, \ldots, r$. Here $a^{\mu_{j}}=e^{\mu_{j}(\log (a))}$ and

$$
\begin{equation*}
\alpha_{p}=\sqrt{\frac{2 r(2 r-2) \cdots(r+p+2)}{(r-p)(r-p-2) \cdots 2} \cdot \frac{(s+r)(s+r-2) \cdots(s+p+2)}{(s-p)(s-p-1) \cdots(s-r+2)}} \tag{4.8}
\end{equation*}
$$

Extend f_{*} 's to G by $f_{*}(k a n)=\tau_{\lambda}(k) f_{*}(a)$ for $k \in K, a \in A, n \in N$. Then f_{*} 's are elements of $C_{\tau_{\lambda}}^{\infty}(G)$, and Ker $\mathscr{D}_{\lambda_{1}, 1_{N}}$ is described in the following lemma.

Lemma 4.1. The functions $f_{*}(*=0,+,-)$ belong to Ker $\mathscr{D}_{\lambda_{, 1}}$ and form its basis. Moreover, Ker $\mathscr{D}_{\lambda, 1_{N}}$ is decomposed as an MA-module in the following way:

$$
\text { Ker } \mathscr{D}_{\lambda_{1} 1_{N}} \simeq \mathbf{C} f_{0} \oplus \mathbf{C} f_{+} \oplus \mathbf{C} f_{-},
$$

with

$$
\begin{aligned}
& \mathbf{C} f_{0} \simeq\left(\sigma_{(-1)^{r},(-1)^{(r+s) / 2}}\right) \otimes e^{\mu_{1}}, \\
& \mathbf{C} f_{+} \simeq\left(\sigma_{(-1)^{(s-r / 2}, 1}\right) \otimes e^{\mu_{2}}, \\
& \mathbf{C} f_{-} \simeq\left(\sigma_{(-1)^{(s-r / 1 / 2},-1}\right) \otimes e^{\mu_{2}} .
\end{aligned}
$$

4.3. Proof of Lemma 4.1. In the following, we give a proof of Lemma 4.1.

In this proof, we use the symbol " $(\cdot)_{x \rightarrow y}$ " instead of "the equation (\cdot) substituted x with y ". In case $q \neq \pm s$, we have $(p+q) c_{p q}=0$ because of (4.4) $)_{q \rightarrow q-2}$ and (4.7). So, if $q \neq \pm s$ and $p+q \neq 0$, then $c_{p q}=0$.

Next, by using (4.5) $)_{p \rightarrow s-2}$, we have

$$
\sqrt{2}\left(2 L_{\tilde{H}_{2}}+p+3 s-6\right) c_{p, s-2}+2 \sqrt{(r+2-p)(r+p) \cdot 2} c_{p-2, s}=0 .
$$

Since $p+s-2 \geq s-r-2>0, c_{p, s-2}=0$ holds, therefore $c_{p-2, s}$ is also 0 . That is, $c_{p s}=0$ for $p=-r,-r+2, \ldots, r-2$. Similarly, we have $c_{p,-s}=0$ for $p=-r+2, \ldots, r-2, r$. By the above remarks we see that

$$
c_{p q}=0 \quad \text { if }(p, q) \neq(r, s),(-r,-s) \quad \text { and } \quad p+q \neq 0 .
$$

In (4.4)-(4.7), $c_{r s}$ and $c_{-r,-s}$ appear only in the following equations.

$$
\begin{array}{ll}
(4.4)_{(p, q) \rightarrow(r, s-2)}, & \text { i.e., }\left(2 L_{\tilde{H}_{1}}-s+r-4\right) c_{r s}=0, \\
(4.6)_{(p, q) \rightarrow(r, s-2)}, & \text { i.e., }\left(r+3 s-2 L_{\tilde{H}_{2}}\right) c_{r s}=0, \\
(4.5)_{(p, q) \rightarrow(-r,-s)}, & \text { i.e., }\left(2 L_{\tilde{H}_{2}}-r-3 s\right) c_{-r,-s}=0, \\
(4.7)_{(p, q) \rightarrow(-r,-s)}, & \text { i.e., }\left(s-r+4-2 L_{\tilde{H}_{1}}\right) c_{-r,-s}=0 . \tag{4.12}
\end{array}
$$

For real numbers x_{1} and x_{2}, put $\tilde{c}_{r s}\left(x_{1}, x_{2}\right)=c_{r s}\left(\exp \left(x_{1} \tilde{H}_{1}+x_{2} \tilde{H}_{2}\right)\right)$. Then we can rewrite (4.9) and (4.10) as

$$
\begin{aligned}
\left(-2 \frac{\partial}{\partial x_{1}}-s+r-4\right) \tilde{c}_{r s} & =0, \\
\left(r+3 s+2 \frac{\partial}{\partial x_{2}}\right) \tilde{c}_{r s} & =0 .
\end{aligned}
$$

These two equations imply that

$$
\tilde{c}_{r s}\left(x_{1}, x_{2}\right)=c \exp \left(-\frac{s-r+4}{2} x_{1}-\frac{r+3 s}{2} x_{2}\right),
$$

with a constant c. Therefore for $a \in A$,

$$
\begin{equation*}
c_{r s}(a)=c \cdot a^{\mu_{2}} \quad(c \in \mathbf{C}) . \tag{4.13}
\end{equation*}
$$

Similarly $c_{-r,-s}$ is of the form

$$
\begin{equation*}
c_{-r,-s}(a)=c^{\prime} \cdot a^{\mu_{2}} \quad\left(a \in A, c^{\prime} \in \mathbf{C}\right) \tag{4.14}
\end{equation*}
$$

For $c_{p,-p}$'s, equations (4.4)-(4.7) give
(4.7) $)_{p \rightarrow-p}$,

$$
\begin{equation*}
\text { i.e., }\left(L_{\tilde{H}_{1}}-s-2\right) c_{p,-p}=0 \text {, } \tag{4.15}
\end{equation*}
$$

$(4.5)_{p \rightarrow-p}$, i.e.,

$$
\begin{equation*}
\sqrt{s+p}\left(L_{\tilde{H}_{2}}-p\right) c_{p,-p}+\sqrt{(r+2-p)(r+p)(s+2-p)} c_{p-2,-(p-2)}=0 \tag{4.16}
\end{equation*}
$$

$(4.6)_{q \rightarrow-p-2}$, i.e.,

$$
\begin{equation*}
\sqrt{s-p}\left(L_{\tilde{H}_{2}}+p\right) c_{p,-p}+\sqrt{ }(r-p)(r+2+p)(s+2+p) c_{p+2,-(p+2)}=0 \tag{4.17}
\end{equation*}
$$

By using (4.15) $)_{p \rightarrow r}$ and $(4.17)_{p \rightarrow r}$, we see, as in the case of $c_{r s}$, that

$$
\begin{equation*}
c_{r,-r}(a)=c^{\prime \prime} \cdot a^{\mu_{1}} \quad\left(a \in A, c^{\prime \prime} \in \mathbf{C}\right) \tag{4.18}
\end{equation*}
$$

and we can determine $c_{p,--p}$'s inductively on p, by means of (4.16) and (4.18). The result is

$$
c_{p,-p}=\alpha_{p} c_{r,-r}
$$

with α_{p} defined in (4.8).
Now, define f_{0}, f_{+}, f_{-}as in $\S 4.2$, we can conclude, by the above arguments, that Ker $\mathscr{D}_{\lambda, 1_{N}}$ is contained in the linear span of f_{*} 's. Conversely, we can easily verify that f_{*} 's actually give elements of $\operatorname{Ker} \mathscr{D}_{\lambda, 1_{N}}$ and that they are linearly independent.

Finally we consider the $M A$-module structure of $\operatorname{Ker} \mathscr{D}_{\lambda, 1_{N}}$. For the representation τ_{λ}, it is easily seen that

$$
\tau_{\lambda}\left(m_{1}\right) e_{p q}^{(r s)}=(\sqrt{-1})^{p-q} e_{p q}^{(r s)}, \quad \tau_{\lambda}\left(m_{2}\right) e_{p q}^{(r s)}=(-1)^{(r+s-p-q) / 2} e_{-p,-q}^{(r s)} .
$$

So we have for $k \in K, a \in A, n \in N$,

$$
\begin{aligned}
\left(m_{2} \cdot f_{0}\right)(k a n) & =f_{0}\left(k a n m_{2}\right) \\
& =f_{0}\left(k m_{2} a m_{2}^{-1} n m_{2}\right) \\
& =\tau_{\lambda}(k) \tau_{\lambda}\left(m_{2}\right) f_{0}(a) \quad\left(\because m_{2}^{-1} n m_{2} \in N\right)
\end{aligned}
$$

and

$$
\begin{aligned}
\tau_{\lambda}\left(m_{2}\right) f_{0}(a) & =\sum_{p} \alpha_{p} a^{\mu_{1}} \tau_{\lambda}\left(m_{2}\right) e_{p,-p}^{(r s)} \\
& =\sum_{p} \alpha_{p} a^{\mu_{1}}(-1)^{(r+s) / 2} e_{-p, p}^{(r s)} \\
& =\sum_{p} \alpha_{-p} a^{\mu_{1}}(-1)^{(r+s) / 2} e_{-p, p}^{(r s)} \quad\left(\text { note that } \alpha_{p}=\alpha_{-p}\right) \\
& =(-1)^{(r+s) / 2} \sum_{p} \alpha_{-p} a^{\mu_{1}} e_{-p, p}^{(r s)} \\
& =(-1)^{(r+s) / 2} f_{0}(a),
\end{aligned}
$$

so

$$
\begin{aligned}
\left(m_{2} \cdot f_{0}\right)(k a n) & =\tau_{\lambda}(k)\left((-1)^{(r+s) / 2} f_{0}(a)\right) \\
& =(-1)^{(r+s) / 2} f_{0}(k a n) .
\end{aligned}
$$

Therefore $m_{2} \cdot f_{0}=(-1)^{(r+s) / 2} f_{0}$. By similar computations, we see that M-action on $\operatorname{Ker} \mathscr{D}_{\lambda, 1_{N}}$ is given as follows:

$$
\begin{array}{lll}
m_{1} \cdot f_{0}=(-1)^{r} f_{0}, & m_{1} \cdot f_{+}=(-1)^{(s-r) / 2} f_{+}, & m_{1} \cdot f_{-}=(-1)^{(s-r) / 2} f_{-}, \tag{4.19}\\
m_{2} \cdot f_{0}=(-1)^{(r+s) / 2} f_{0}, & m_{2} \cdot f_{+}=f_{+}, & m_{2} \cdot f_{-}=-f_{-} .
\end{array}
$$

Also we have, for $a, a_{0} \in A, k \in K, n \in N$,

$$
\begin{aligned}
\left(a_{0} \cdot f_{0}\right)(k a n) & =f_{0}\left(\text { kana }_{0}\right) \\
& =f_{0}\left(k a a_{0} a_{0}^{-1} n a_{0}\right) \\
& =\tau_{\lambda}(k)\left(a a_{0}\right)^{\mu_{1}} f_{0}(1) \quad\left(\because a_{0}^{-1} n a_{0} \in N\right) \\
& =a 0^{\mu_{1}} \tau_{\lambda}(k) a^{\mu_{1}} f_{0}(1) \\
& =a_{0}^{\mu_{1}} f_{0}(k a n),
\end{aligned}
$$

so

$$
a \cdot f_{0}=a^{\mu_{1}} f_{0}
$$

Compute $a \cdot f_{+}$and $a \cdot f_{-}$similarly, we see that

$$
\begin{equation*}
a \cdot f_{0}=a^{\mu_{1}} f_{0}, \quad a \cdot f_{+}=a^{\mu_{2}} f_{+}, \quad a \cdot f_{-}=a^{\mu_{2}} f_{-} \quad(a \in A) . \tag{4.20}
\end{equation*}
$$

By (4.19) and (4.20), we find that three subspaces $\mathbf{C} f_{*}(*=0,+,-)$ are $M A-$ invariant, and their $M A$-module structures are those given in the lemma.

Thus we have completed the proof of the lemma.
4.4. Solutions for the equation $\mathscr{D}_{\lambda, 1_{N}} f=0: \Delta_{I I}^{+}$-case. Here we give explicit form of $\operatorname{Ker} \mathscr{D}_{\lambda, 1_{N}}$ in case $\Delta^{+}=\Delta_{I I}^{+}$. First we prepare some symbols. We use the symbol " $u \equiv v$ " for " $u \equiv v(\bmod 4)$ ", unless otherwise stated. Define $[m ; n]$ for two integers m, n with $n \geq 0$ by

$$
[m ; n]=\left\{\begin{array}{ll}
1 & \text { if } n=0 \\
\prod_{j=0}^{n-1}(m-4 j) & \text { if } n \geq 1
\end{array},\right.
$$

and put

$$
\beta_{p q}= \begin{cases}(-1)^{(r+s-p-q) / 4} \sqrt{\binom{r}{\frac{1}{2}(r-p)} \cdot\binom{s}{\frac{1}{2}(s-q)}} & \text { if } p+q \equiv r+s \\ (-1)^{(r+s-2-p-q) / 4} \sqrt{\frac{1}{r}\binom{r}{\frac{1}{2}(r-p)} \cdot\binom{s}{\frac{1}{2}(s-q)}} & \text { if } p+q \equiv r+s-2 .\end{cases}
$$

Next, set linear forms $\mu_{j}(1 \leq j \leq 5)$ on \mathfrak{a} as in the following table.

μ	$\mu\left(\tilde{H}_{1}\right)$	$\mu\left(\tilde{H}_{2}\right)$
μ_{1}	$-(s+3)$	$r-3$
μ_{2}	$-(s+3)$	$-(r-1)$
μ_{3}	$-\frac{1}{2}(r+s+4)$	$-\frac{1}{2}(r-3 s)$
μ_{4}	$-\frac{1}{2}(r+s+4)$	$\frac{1}{2}(r-3 s-4)$
μ_{5}	$-\frac{1}{2}(r-s+4)$	$-\frac{1}{2}(r+3 s)$

Finally, for $a \in A$ define $f_{j, *}(a)$ as

$$
\begin{aligned}
& f_{1,0}(a)=\sum_{p+q \equiv r+s} \beta_{p q} a^{\mu_{1}} e_{p q}^{(r s)}, \\
& f_{1,1}(a)=\sum_{p+q \equiv r+s-2} \beta_{p q} a^{\mu_{1}} e_{p q}^{(r s)}, \\
& f_{2,0}(a)= \begin{cases}\sum_{p+q=0} \beta_{p q} \frac{[3 s-r+2 ;(r+3 s-p-3 q) / 4]}{[3 s+3 r-6 ;(r+3 s-p-3 q) / 4]} a^{\mu_{2}} e_{p q}^{(r s)} & \text { if } r+s \equiv 0 \\
\sum_{p+q \equiv 2} \beta_{p q} \frac{[3 s-r ;(r+3 s-2-p-3 q) / 4]}{[3 s+3 r-8 ;(r+3 s-2-p-3 q) / 4]} a^{\mu_{2}} e_{p q}^{(r s)} & \text { if } r+s \equiv 2,\end{cases}
\end{aligned}
$$

$$
\begin{aligned}
& f_{2, \pm}(a) \\
& =\left\{\begin{array}{cl}
\sum_{p+q=2, p+q \geq 0} \beta_{p q} \frac{[3 s-r ;(r+3 s-2-p-3 q) / 4]}{[3 s+3 r-8 ;(r+3 s-2-p-3 q) / 4]} a^{\mu_{2}}\left(e_{p q}^{(r s)} \pm e_{-p,-q}^{(r s)}\right) & \text { if } r+s \equiv 0 \\
\sum_{p+q \equiv 0, p+q \geq 0} \beta_{p q} \frac{[3 s-r+2 ;(r+3 s-p-3 q) / 4]}{[3 s+3 r-6 ;(r+3 s-p-3 q) / 4]} a^{\mu_{2}}\left(e_{p q}^{(r s)} \pm e_{-p,-q}^{(r s)}\right) & \text { if } r+s \equiv 2,
\end{array}\right.
\end{aligned}
$$

$f_{3,0}(a)$

$$
= \begin{cases}\sum_{p+q \equiv r+s-2} \beta_{p q} \frac{[2 s-2 ;(r+s-2-p-q) / 4]}{[2 r-6 ;(r+s-2-p-q) / 4]} a^{\mu_{3}} e_{p q}^{(r s)} & \text { if } r, s \text { even } \\ \sum_{p+q \equiv r+s} \beta_{p q} \frac{[2 s ;(r+s-p-q) / 4]}{[2 r-4 ;(r+s-p-q) / 4]} a^{\mu_{3}} e_{p q}^{(r s)} & \text { if } r, s \text { odd, }\end{cases}
$$

$$
\begin{aligned}
& f_{3, \pm}(a) \\
& \quad=\left\{\begin{array}{c}
\sum_{p+q \equiv r+s, p+q \geq 0} \beta_{p q} \frac{[2 s ;(r+s-p-q) / 4]}{[2 r-4 ;(r+s-p-q) / 4]} a^{\mu_{3}}\left(e_{p q}^{(r s)} \pm e_{-p,-q}^{(r s)}\right) \\
\sum_{p+q \equiv r+s-2, p+q \geq 0} \beta_{p q} \frac{[2 s-2 ;(r+s-2-p-q) / 4]}{[2 r-6 ;(r+s-2-p-q) / 4]} a^{\mu_{3}}\left(e_{p q}^{(r s)} \pm e_{-p,-q}^{(r s)}\right)
\end{array} \text { if } r, s\right. \text { even }
\end{aligned}
$$

$$
\quad=\left\{\begin{array}{cc}
f_{4,0}(a) \\
\sum_{p+q \equiv r+s-2} \beta_{p q} \frac{[2 s-2 ;(r+s-2-p-q) / 4][r-s+p+q-4 ;(s-q) / 2]}{[6 s-2 ;(r+3 s-2-p-3 q) / 4]} & a^{\mu_{4}} e_{p q}^{(r s)} \\
\sum_{p+q \equiv r+s} \beta_{p q} \frac{[2 s ;(r+s-p-q) / 4][r-s+p+q-4 ;(s-q) / 2]}{[6 s ;(r+3 s-p-3 q) / 4]} & \text { if } r, s \text { even } \\
a^{\mu_{4}} e_{p q}^{(r s)}
\end{array}\right.
$$

$f_{4 . \pm}(a)$
$=\left\{\begin{array}{l}\sum_{p+q \equiv r+s, p+q \geq 0} \beta_{p q} \frac{[2 s ;(r+s-p-q) / 4][r-s+p+q-4 ;(s-q) / 2]}{[6 s ;(r+3 s-p-3 q) / 4]} \\ a^{\mu_{4}\left(e_{p q}^{(r s)} \pm e_{-p,-q}^{(r s)}\right)} \\ \sum_{p+q \equiv r+s-2, p+q \geq 0} \beta_{p q} \frac{[2 s-2 ;(r+s-2-p-q) / 4][r-s+p+q-4 ;(s-q) / 2]}{[6 s-2 ;(r+3 s-2-p-3 q) / 4]} \\ a^{\mu_{4}\left(e_{p q}^{(r s)} \pm e_{-p,-q}^{(r s)}\right)}\end{array}\right.$ if r, s odd,
$f_{5, \pm}(a)=a^{\mu_{5}}\left(e_{r s}^{(r s)} \pm e_{-r,-s}^{(r s)}\right)$.
Extend these $f_{j, *}$'s to G by

$$
f_{j, *}(k a n)=\tau_{\lambda}(k) f_{j, *}(a) \quad(k \in K, a \in A, n \in N) .
$$

Then, $f_{j, *}$'s give functions in $C_{\tau_{\lambda}}^{\infty}(G)$. The explicit form of $\operatorname{Ker} \mathscr{D}_{\lambda, 1_{N}}$ is as in the following lemma.

Lemma 4.2. Suppose that λ is far from the walls, then the above $f_{j, *}$'s form a basis of Ker $\mathscr{D}_{\lambda, 1_{N}}$ and the subspace $\mathbf{C} f_{j, *}$ of $\operatorname{Ker} \mathscr{D}_{\lambda, 1_{N}}$ is $M A$-invariant. As MA-modules

$$
\mathbf{C} f_{j, *} \simeq \sigma_{\varepsilon_{1}, \varepsilon_{2}} \otimes e^{\mu}
$$

with $\varepsilon_{1}, \varepsilon_{2}, \mu$ listed in the following table.

$(j, *)$	ε_{1}	ε_{2}	μ	$(j, *)$	ε_{1}	ε_{2}	μ
$(1,0)$	$(-1)^{(r-s) / 2}$	$(-1)^{(r+s) / 2}$	μ_{1}	$(1,1)$	$(-1)^{(r-s+2) / 2}$	$(-1)^{(r+s) / 2}$	μ_{1}
$(2,0)$	$(-1)^{r}$	$(-1)^{(r-s) / 2}$	μ_{2}	$(2,+)$	$(-1)^{r+1}$	$(-1)^{(r+s+2) / 2}$	μ_{2}
$(2,-)$	$(-1)^{r+1}$	$(-1)^{(r+s) / 2}$	μ_{2}	$(3,0)$	$(-1)^{(r+s+2) / 2}$	$(-1)^{r+1}$	μ_{3}
$(3,+)$	$(-1)^{(r+s) / 2}$	$(-1)^{r}$	μ_{3}	$(3,-)$	$(-1)^{(r+s) / 2}$	$(-1)^{r+1}$	μ_{3}
$(4,0)$	$(-1)^{(r+s+2) / 2}$	$(-1)^{(r-s) / 2}$	μ_{4}	$(4,+)$	$(-1)^{(r+s) / 2}$	$(-1)^{r}$	μ_{4}
$(4,-)$	$(-1)^{(r+s) / 2}$	$(-1)^{r+1}$	μ_{4}	$(5,+)$	$(-1)^{(r-s) / 2}$	1	μ_{5}
$(5,-)$	$(-1)^{(r-s) / 2}$	-1	μ_{5}				

4.5. Proof of Lemma 4.2. Here we give a proof of Lemma 4.2.

Keep (4.2) and (4.3) in $\S 4.1$ in mind and solve equations (3.3)-(3.6) with respect to $L_{\tilde{H}_{j}} c_{p q}$'s. Then we obtain

$$
\begin{align*}
L_{\tilde{H}_{1}} c_{p q}= & \frac{1}{4} \sqrt{\frac{(r+2+p)(r+4+p)(r+6+p)(s+2-q)}{(r-4-p)(r-2-p)(r-p)(s+q)}} \\
& \times(r-s-p-q-4) c_{p+6, q-2}+\frac{1}{4}(r+3 s-p-q+8) c_{p q} \tag{4.21}\\
\text { for } p= & -r,-r+2, \ldots, r-6 ; q=-s+2,-s+4, \ldots, s \\
L_{\tilde{H}_{1}} c_{p q}= & \frac{1}{4} \sqrt{\frac{(r+2-p)(r+4-p)(r+6-p)(s+2+q)}{(r-4+p)(r-2+p)(r+p)(s-q)}} \\
& \times(r-s+p+q-4) c_{p-6, q+2}+\frac{1}{4}(r+3 s+p+q+8) c_{p q} \tag{4.22}\\
\text { for } p= & -r+6,-r+8, \ldots, r ; q=-s,-s+2, \ldots, s-2 \\
L_{\tilde{H}_{2}} c_{p q}= & \frac{3}{4} \sqrt{\frac{(r+2+p)(r+4+p)}{(r-2-p)(r-p)} \cdot(r-s-p-q-4) c_{p+4, q}-\frac{1}{2}(p+3 q) c_{p q}} \\
& -\frac{1}{4} \sqrt{\frac{(r+2-p)(s+2+q)}{(r+p)(s-q)}} \cdot(r+3 s+p-3 q) c_{p-2, q+2} \tag{4.23}
\end{align*}
$$

for $p=-r+2,-r+4, \ldots, r-4 ; q=-s,-s+2, \ldots, s-2$,
$L_{\tilde{H}_{2}} c_{p q}=\frac{3}{4} \sqrt{\frac{(r+2-p)(r+4-p)}{(r-2+p)(r+p)}} \cdot(r-s+p+q-4) c_{p-4, q}+\frac{1}{2}(p+3 q) c_{p q}$

$$
\begin{equation*}
-\frac{1}{4} \sqrt{\frac{(r+2+p)(s+2-q)}{(r-p)(s+q)}} \cdot(r+3 s-p+3 q) c_{p+2, q-2}, \tag{4.24}
\end{equation*}
$$

for $p=-r+4,-r+6, \ldots, r-2 ; q=-s+2,-s+4, \ldots, s$.
In order to obtain eigenfunctions of the differential operator $L_{\tilde{H}_{1}}$, we define $\gamma_{p q}, \varphi_{p q}$ and $\psi_{p q}$ as

$$
\begin{aligned}
& \gamma_{p q}=\sqrt{\frac{(r+2+p)(r+4+p)(r+6+p)(s+2-q)}{(r-4-p)(r-2-p)(r-p)(s+q)}}, \\
& \varphi_{p q}=c_{p q}+\gamma_{p q} c_{p+6, q-2}, \\
& \psi_{p q}=(r-s+p+q) c_{p q}-\gamma_{p q}(r-s-p-q-4) c_{p+6, q-2},
\end{aligned}
$$

then (4.21) and (4.22) imply that $\varphi_{p q}$ and $\psi_{p q}$ satisfy the equations

$$
\begin{align*}
& L_{\tilde{H}_{1}} \varphi_{p q}=\frac{1}{2}(r+s+4) \varphi_{p q}, \tag{4.25}\\
& L_{\tilde{H}_{1}} \psi_{p q}=(s+3) \psi_{p q}, \tag{4.26}
\end{align*}
$$

for $p=-r,-r+2, \ldots, r-6 ; q=-s+2,-s+4, \ldots, s$.
Now put $\mathrm{I}=\{(r, s),(r-2, s),(r-4, s),(-r,-s),(-r+2,-s),(-r+4,-s)\}$ and $\tilde{c}_{p q}\left(x_{1}, x_{2}\right)=c_{p q}\left(\exp \left(x_{1} \tilde{H}_{1}+x_{2} \tilde{H}_{2}\right)\right)$ for $x_{1}, x_{2} \in \mathbf{R}$. Then using (4.25) and (4.26), and calculating as in the argument deriving (4.13) in the proof of Lemma
4.1, we see that for $(p, q) \notin \mathrm{I}, \tilde{c}_{p q}$ is of the following form:

$$
\begin{equation*}
\tilde{c}_{p q}\left(x_{1}, x_{2}\right)=u_{p q}\left(x_{2}\right) \exp \left(-(s+3) x_{1}\right)+v_{p q}\left(x_{2}\right) \exp \left(-\frac{1}{2}(r+s+4) x_{1}\right), \tag{4.27}
\end{equation*}
$$

where $u_{p q}$'s and $u_{p q}$'s are smooth functions on \mathbf{R} satistying

$$
\begin{gather*}
u_{p q}+\gamma_{p q} u_{p+6, q-2}=0 \tag{4.28}\\
(r-s+p+q) v_{p q}-\gamma_{p q}(r-s-p-q-4) v_{p+6, q-2}=0 \tag{4.29}
\end{gather*}
$$

for $p=-r,-r+2, \ldots, r-6 ; q=-s+2,-s+4, \ldots, s$.
As a next setp, we determine the functions $u_{p q}, v_{p q}$ in (4.27). By means of (4.23), (4.24), (4.28) and (4.29), we can deduce the following relations.
(i) If $c_{p q}, c_{p-2, q+2}$ and $c_{p+4, q}$ can be expressed in the form of (4.27), then $u_{p q}^{\prime}=\frac{1}{2}(p+3 q) u_{p q}+\frac{1}{2} \sqrt{\frac{(r+2-p)(s+2+q)}{(r+p)(s-q)}} \cdot(2 r-p-3 q-6) u_{p-2, q+2}$,
$v_{p q}^{\prime}=\frac{1}{2}(p+3 q) v_{p q}-\frac{1}{2} \sqrt{\frac{(r+2-p)(s+2+q)}{(r+p)(s-q)}} \cdot(r-3 s+p+3 q) v_{p-2, q+2}$.
(ii) If $c_{p q}, c_{p+2, q-2}$ and $c_{p-4, q}$ can be expressed in the form of (4.27), then

$$
\begin{equation*}
u_{p q}^{\prime}=-\frac{1}{2}(p+3 q) u_{p q}+\frac{1}{2} \sqrt{\frac{(r+2+p)(s+2-q)}{(r-p)(s+q)}} \cdot(2 r+p+3 q-6) u_{p+2, q-2}, \tag{4.32}
\end{equation*}
$$

$$
\begin{equation*}
v_{p q}^{\prime}=-\frac{1}{2}(p+3 q) v_{p q}-\frac{1}{2} \sqrt{\frac{(r+2+p)(s+2-q)}{(r-p)(s+q)}} \cdot(r-3 s-p-3 q) v_{p+2, q-2} . \tag{4.33}
\end{equation*}
$$

From these four equations, we can derive the following differential equations for $u_{p q}$ or $v_{p q}$:

$$
\begin{gather*}
u_{p q}^{\prime \prime}+2 u_{p q}^{\prime}-(r-1)(r-3) u_{p q}=0, \tag{4.34}\\
4 v_{p q}^{\prime \prime}+8 v_{p q}^{\prime}-(r-3 s-4)(r-3 s) v_{p q}=0, \tag{4.35}
\end{gather*}
$$

for $(p, q) \in \mathrm{I}^{\prime}$, with

$$
\begin{aligned}
\mathrm{I}^{\prime}= & \{(p, q) \mid-r+4 \leq p \leq r-6 \quad \text { and } \quad-s+2 \leq q \leq s\} \\
& \cup\{(p, q) \mid-r+6 \leq p \leq r-4 \quad \text { and } \quad-s \leq q \leq s-2\} .
\end{aligned}
$$

Define linear forms $\mu_{j}(1 \leq j \leq 4)$ as in $\S 4.4$ and solve equations (4.34) and (4.35). Then we see that $c_{p q}\left((p, q) \in \mathrm{I}^{\prime}\right)$ is a linear combination of $a^{\mu_{j}}(1 \leq j \leq 4)$. By using (4.21)-(4.24), we can conclude that
(*) $\quad c_{p q}$ is expressed as a linear combination of $a^{\mu_{j}}(1 \leq j \leq 4)$ if $(p, q) \notin \mathrm{I}$.
Now we determine the form of $c_{p q}$ with $(p, q) \in \mathbf{I}$. First we consider $c_{r-4, s}$. By eliminating $c_{r s}$ from the equations $B_{r-1, s-1}^{(21)}=0$ and $B_{r-1, s-1}^{(11)}=0$ in $\S 3.4$, we get

$$
\begin{equation*}
\sqrt{2 s}\left(6 L_{\tilde{H}_{1}}-r-3 s-20\right) c_{r-4, s}=\sqrt{r-1}\left(2 L_{\tilde{H}_{2}}+r+3 s-8\right) c_{r-2, s-2} . \tag{4.36}
\end{equation*}
$$

Combining this equation with the relation $B_{r-7, s+1}^{(30)}=0$, we see that $c_{r-4, s}$ is also a linear combination of $a^{\mu_{j}}(1 \leq j \leq 4)$ if $r \neq 3 s-2$.

In case $r=3 s-2$, from the equations $B_{r-7, s+1}^{(30)}=0$ and $B_{r-5, s-1}^{(30)}=0$, we can deduce that $c_{r-4, s}(a)(a \in A)$ is expressed as a linear combination of $a^{\mu_{j}}(1 \leq j \leq 4)$, $x_{1} a^{\mu_{2}}$ and $x_{2} a^{\mu_{2}}$ with $a=\exp \left(x_{1} \tilde{H}_{1}+x_{2} \tilde{H}_{2}\right)$. Write $c_{r-4, s}$ as a linear combination of those terms and carry it into each of the equations (4.36), $B_{r-7, s+1}^{(30)}=0$, (4.21) and (4.24), then we find that
$(* * 1) \quad c_{r-4, s}$ is a linear combination of $a^{\mu_{j}}(1 \leq j \leq 4)$ even if $r=3 s-2$.
By similar arguments, one can see that
(**2) $\quad c_{-r+4,-s}, c_{r-2, s}$ and $c_{-r+2,-s}$ are also expressed as linear combinations of $a^{\mu_{j}}(1 \leq j \leq 4)$.

In the calculation of $c_{r-2, s}$ in (**2), we may use four equations $B_{r-5, s+1}^{(30)}=0$, $B_{r+1, s-1}^{(11)}=0,(4.21),(4.24)$, instead of (4.36), $B_{r-7, s+1}^{(30)}=0,(4.21)$ and (4.24) in the case of $c_{r-4, s}$.

For $c_{r s}$ and $c_{-r,-s}$, we find that they are linear combinations of $a^{\mu_{j}}(1 \leq j \leq 5)$, by solving the equations $B_{r-3, s+1}^{(30)}=0, \quad B_{r-1, s-1}^{(21)}=0, \quad B_{-r+3,-s-1}^{(30)}=0 \quad$ and $B_{-r+1,-s+1}^{(21)}=0$. Here μ_{5} is defined as in the last subsection. By virtue of this fact, (*), (**1) and (**2), $f \in \operatorname{Ker} \mathscr{D}_{\lambda_{, 1} 1_{N}}$ can be written in the form:

$$
\begin{equation*}
f(a)=\sum_{p, q, j} \alpha_{p q}^{(j)} a^{\mu_{j}} e_{p q}^{(r s)}+\sum_{j=1}^{5}\left(\alpha_{r s}^{(j)} a^{\mu_{j}} e_{r s}^{(r s)}+\alpha_{-r,-s}^{(j)} a^{\mu_{j}} e_{-r,-s}^{(r s)}\right), \tag{4.37}
\end{equation*}
$$

for $a \in A$ with $\alpha_{p q}^{(j)} \in \mathbf{C}$. For the first term in the right-hand side of the above equation, the sum is taken for $(p, q) \neq(r, s),(-r,-s)$ and $j=1,2,3,4$.

Finally we compute the coefficients $\alpha_{p q}^{(j)}$ in (4.37). In general, by using $B_{p, \pm(s+1)}^{(30)}=0$, we may express $\alpha_{p-4, s}^{(j)}$ (resp. $\alpha_{p+4,-s}^{(j)}$) in terms of $\alpha_{p s}^{(j)}$ (resp. $\alpha_{p,-s}^{(j)}$) and describe $\alpha_{p, \pm s}^{(j)}$ by $\alpha_{ \pm r, \pm s}^{(j)}$ and $\alpha_{ \pm(r-2), \pm s}^{(j)}$. By (4.30)-(4.33), we can derive a formula giving a relation between $\alpha_{p q}^{(j)}$ and $\alpha_{p+2, q-2}^{(j)}$, and describe $\alpha_{p+2, q-2}^{(j)}$ in terms of $\alpha_{p q}^{(j)}$ for almost all (p, q). For exceptional (p, q) 's, we can use other relations such as (4.22).

Calculating the coefficients $\alpha_{p q}^{(j)}$ by means of the above strategy, we see that the functions $f_{j, *}$ defined in $\S 4.4$ actually form a basis for Ker $\mathscr{D}_{\lambda, 1_{N}}$. For the $M A$-module structure of $\operatorname{Ker} \mathscr{D}_{\lambda, 1_{N}}$, by similar arguments to those in the last part of the proof of Lemma 4.1, we see that the subspace $\mathbf{C} f_{j, *}$ is an $M A$-module described in the lemma.

Now the proof is completed.
4.6. Solutions for the equation $\mathscr{D}_{\lambda, 1_{N}} f=0: \Lambda_{I I I}^{+}$-case. Here we will specify Ker $\mathscr{D}_{\lambda_{1} 1_{N}}$ in case $\Delta^{+}=\Delta_{I I I}^{+}$. We use the symbols \equiv and $[\cdot, \cdot]$ in the same meaning as in §4.4. First define linear forms μ_{1} and μ_{2} on a through

$$
\begin{array}{ll}
\mu_{1}\left(\tilde{H}_{1}\right)=-(r-s+2) / 2, & \mu_{1}\left(\tilde{H}_{2}\right)=(r+3 s-2) / 2, \\
\mu_{2}\left(\tilde{H}_{1}\right)=-(r-s+2) / 2, & \mu_{2}\left(\tilde{H}_{2}\right)=-(r+3 s+2) / 2,
\end{array}
$$

and set

$$
\beta_{p q}=\left\{\begin{array}{cl}
\sqrt{\binom{r}{\frac{1}{2}(r-p)}\binom{s}{\frac{1}{2}(s-q)}} & \text { if } p+q \equiv r+s \\
\sqrt{\frac{1}{r}\binom{r}{\frac{1}{2}(r-p)}\binom{s}{\frac{1}{2}(s-q)}} & \text { if } p+q \equiv r+s-2 .
\end{array}\right.
$$

For $a \in A$, put $f_{i j}(a)(i=1,2 ; j=0,1)$ as follows:

$$
\begin{aligned}
& f_{10}(a)=\sum_{p+q \equiv r+s}(-1)^{(r+s-p-q) / 4} \beta_{p q} a^{\mu_{1}} e_{p q}^{(r s)}, \\
& f_{11}(a)=\sum_{p+q \equiv r+s-2}(-1)^{(r+s-2-p-q) / 4} \beta_{p q} a^{\mu_{1}} e_{p q}^{(r s)}, \\
& f_{20}(a)=\sum_{p+q \equiv r+s}(-1)^{(s-q) / 2} \beta_{p q} \frac{[r+3 s-2-p-3 q ;(r+3 s-p-3 q) / 4]}{[2 r+6 s-2 ;(r+3 s-p-3 q) / 4]} a^{\mu_{2}} e_{p q}^{(r s)}, \\
& f_{21}(a)=\sum_{p+q \equiv r+s-2}(-1)^{(s-q) / 2} \beta_{p q} \frac{[r+3 s-2-p-3 q ;(r+3 s-p-3 q) / 4]}{[2 r+6 s-4 ;(r+3 s-2-p-3 q) / 4]} a^{\mu_{2}} e_{p q}^{(r s)} .
\end{aligned}
$$

Extend these $f_{i j}$'s to G as

$$
f_{i j}(k a n)=\tau_{\lambda}(k) f_{i j}(a) \quad(k \in K, a \in A, n \in N),
$$

then $f_{i j}$'s give elements of $C_{\tau_{\lambda}}^{\infty}(G)$. The structure of $\operatorname{Ker} \mathscr{D}_{\lambda_{, 1}, 1_{N}}$ is given in the following lemma.

Lemma 4.3. Suppose that λ is far from the walls, then the functions $f_{i j}$ defined above belong to Ker $\mathscr{L}_{\lambda, 1_{N}}$ and form its basis. Moreover the subspace $\mathbf{C} f_{i j}$ of Ker $\mathscr{D}_{\lambda, 1}$, is MA -invariant and

$$
\mathbf{C} f_{i j} \simeq \sigma_{\varepsilon_{1}, \varepsilon_{2}} \otimes e^{\mu} \quad \text { as MA-modules }
$$

with $\varepsilon_{1}, \varepsilon_{2}, \mu$ listed in the following table.

(i, j)	ε_{1}	ε_{2}	μ	(i, j)	ε_{1}	ε_{2}	μ
$(1,0)$	$(-1)^{(r-s) / 2}$	$(-1)^{(r+s) / 2}$	μ_{1}	$(1,1)$	$(-1)^{\frac{r-s}{2}+1}$	$(-1)^{(r+s) / 2}$	μ_{1}
$(2,0)$	$(-1)^{(r-s) / 2}$	$(-1)^{r}$	μ_{2}	$(2,1)$	$(-1)^{r-s+1}$	$(-1)^{r+1}$	μ_{2}

4.7. Proof of Lemma 4.3. In this subsection, we give a proof of Lemma 4.3.

Keeping (4.2) and (4.3) in mind, we can deduce the following equations (4.38)-(4.41) from equations (3.7)-(3.10) in §3.5.

$$
\begin{align*}
L_{\tilde{H}_{1}} c_{p q}= & \frac{1}{2} \sqrt{\frac{(r+2+p)(r+4+p)(r+6+p)}{(r-4-p)(r-2-p)(r-p)}} \\
& \times \sqrt{(s+2-q)(s+q)} c_{p+6, q-2}+\frac{1}{2}(r+q+2) c_{p q} \tag{4.38}\\
\text { for } p= & -r,-r+2, \ldots, r-6 ; q=-s,-s+2, \ldots, s, \\
L_{\tilde{H}_{1}} c_{p q}= & \frac{1}{2} \sqrt{\frac{(r+2-p)(r+4-p)(r+6-p)}{(r-4+p)(r-2+p)(r+p)}} \\
& \times \sqrt{(s-q)(s+2+q)} c_{p-6, q+2}+\frac{1}{2}(r-q+2) c_{p q} \tag{4.39}\\
\text { for } p= & -r+6,-r+8, \ldots, r ; q=-s,-s+2, \ldots, s, \\
L_{\tilde{H}_{2}} c_{p q}= & \frac{1}{2} \sqrt{\frac{r+2-p}{r+p} \cdot(r+4-p)(r-2+p) c_{p-4, q}+\frac{1}{2}(p+3 q) c_{p q}} \\
& -\frac{3}{2} \sqrt{\frac{r+2+p}{r+p} \cdot(s+2-q)(s+q)} c_{p+2, q-2} \tag{4.40}\\
\text { for } p= & -r+4,-r+6, \ldots, r-2 ; q=-s,-s+2, \ldots, s, \\
L_{\tilde{H}_{2}} c_{p q}= & \frac{1}{2} \sqrt{\frac{r+2+p}{r-p} \cdot(r+4+p)(r-2-p)} c_{p+4, q}-\frac{1}{2}(p+3 q) c_{p q} \\
& -\frac{3}{2} \sqrt{\frac{r+2-p}{r+p} \cdot(s+2+q)(s-q)} c_{p-2, q+2} \tag{4.41}
\end{align*}
$$

for $p=-r+2,-r+4, \ldots, r-4 ; q=-s,-s+2, \ldots, s$.
First, as in the proof of Lemma 4.2, we find eigenfunctions of $L_{\tilde{H}_{1}}$. For this purpose, define $\gamma_{p}, \varphi_{p q}, \psi_{p q}$ as

$$
\begin{aligned}
\gamma_{p} & =\sqrt{\frac{(r+2+p)(r+4+p)(r+6+p)}{(r-4-p)(r-2-p)(r+p)}} \\
\varphi_{p q} & =\sqrt{s+q} c_{p q}+\gamma_{p} \sqrt{s+2-q} c_{p+6, q-2} \\
\psi_{p q} & =\sqrt{s+2-q} c_{p q}-\gamma_{p} \sqrt{s+q} c_{p+6, q-2}
\end{aligned}
$$

for $p=-r,-r+2, \ldots, r-6 ; q=-s+2,-s+4, \ldots, s$. By (4.38) and (4.39), it can be seen that $\varphi_{p q}$ and $\psi_{p q}$ satisfy the equations

$$
\begin{align*}
& L_{\tilde{H}_{1}} \varphi_{p q}=\frac{1}{2}(r+s) \varphi_{p q} \tag{4.42}\\
& L_{\tilde{H}_{1}} \psi_{p q}=\frac{1}{2}(r-s+2) \psi_{p q} . \tag{4.43}
\end{align*}
$$

Let I, I^{\prime} and $\tilde{c}_{p q}$ be as in the proof of Lemma 4.2. Then, by (4.42) and (4.43), we see that if $(p, q) \notin \mathbf{I}, \tilde{c}_{p q}$ is of the following form

$$
\begin{equation*}
\tilde{c}_{p q}\left(x_{1}, x_{2}\right)=u_{p q}\left(x_{2}\right) \exp \left(-\frac{1}{2}(r+s+4) x_{1}\right)+v_{p q}\left(x_{2}\right) \exp \left(-\frac{1}{2}(r-s+2) x_{1}\right), \tag{4.44}
\end{equation*}
$$

with smooth functions $u_{p q}, v_{p q}$ on \mathbf{R}. By means of the equations $C_{p, q, j}^{(2)}=0$, for $(p, q, j)=(\pm(r-1), \pm(s-2), 1),(\pm(r-1), \pm s, 1),(\pm(r-3), \pm s,-1)$, $(\pm(r-3), \pm s, 1)$ and $C_{ \pm(r-3), s, 1}^{(3)}=0$ in $\S 3.5$, we see that $\tilde{c}_{p q}$ is expressed as in (4.44) for all p, q. Using (4.40)-(4.43) again, for the functions $u_{p q}, v_{p q}$ in (4.44), we obtain the following equations:

$$
\left\{\begin{array}{l}
u_{p q}^{\prime}=-\frac{1}{2} \sqrt{\frac{(r+2+p)(s+q)}{(r-p)(s+2-q)}} \cdot(r-3 s+p+3 q-8) u_{p+2, q-2}-\frac{1}{2}(p+3 q) u_{p q} \tag{4.45}\\
v_{p q}^{\prime}=\frac{1}{2} \sqrt{\frac{(r+2+p)(s+2-q)}{(r-p)(s+q)}} \cdot(r+3 s+p+3 q-2) v_{p+2, q-2}-\frac{1}{2}(p+3 q) v_{p q}
\end{array}\right.
$$

for $p=-r+4,-r+6, \ldots, r-2 ; q=-s+2,-s+4, \ldots, s-2$.

$$
\left\{\begin{array}{l}
u_{p q}^{\prime}=-\frac{1}{2} \sqrt{\frac{(r+2-p)(s-q)}{(r+p)(s+2+q)}} \cdot(r-3 s-p-3 q-8) u_{p-2, q+2}+\frac{1}{2}(p+3 q) u_{p q} \tag{4.46}\\
v_{p q}^{\prime}=\frac{1}{2} \sqrt{\frac{(r+2-p)(s+2+q)}{(r+p)(s-q)}} \cdot(r+3 s-p-3 q-2) v_{p-2, q+2}+\frac{1}{2}(p+3 q) v_{p q}
\end{array}\right.
$$

for $p=-r+2,-r+4, \ldots, r-4 ; q=-s,-s+2, \ldots, s-2$.
As in the case of Lemma 4.2, derive second order differential equations for $u_{p q}$ or $v_{p q}$ from (4.45) and (4.46), and solve them. Then we see that if $(p, q) \notin \mathrm{I}^{\prime}$, $c_{p q}(a)$ is a linear combination of $a^{\mu_{j}}(1 \leq j \leq 4)$, where μ_{j} 's are defined as in the following table.

μ	$\mu\left(\tilde{H}_{1}\right)$	$\mu\left(\tilde{H}_{2}\right)$
μ_{1}	$-\frac{1}{2}(r-s+2)$	$\frac{1}{2}(r+3 s-2)$
μ_{2}	$-\frac{1}{2}(r-s+2)$	$-\frac{1}{2}(r+3 s+2)$
μ_{3}	$-\frac{1}{2}(r+s+4)$	$\frac{1}{2}(r-3 s-8)$
μ_{4}	$-\frac{1}{2}(r+s+4)$	$-\frac{1}{2}(r-3 s-4)$

By the equations $C_{ \pm(r-1), \pm(s-2), 1}^{(2)}=0$ etc. used above, we find that
$(* *) \quad c_{p q}(a)$ is a linear combination of $a^{\mu_{j}}(1 \leq j \leq 4)$ for all p and q.
According to (**), write $c_{p q}$'s as a sum of $a^{\mu_{j}}$'s with complex coefficients and calculate the coefficients as in the proof of Lemma 4.2. Then we can conclude that $f_{i j}$'s defined in $\S 4.6$ form a basis of $\operatorname{Ker} \mathscr{D}_{\lambda, 1_{N}}$. In the calculation, we may use (4.45), (4.46) and $C_{p, \pm s, \pm 1}^{(3)}=0$ mainly. Note that the terms containing $a^{\mu_{3}}$ or $a^{\mu_{4}}$ always vanish.

The $M A$-module structure of $\operatorname{Ker} \mathscr{D}_{\lambda, 1_{N}}$ is determined in a similar way as
in the proof of Lemma 4.1, and we obtain the results stated in Lemma 4.3. This completes the proof.

5. Main result

Applying Theorem 1.3 to Lemmas 4.1-4.3, we can determine, into which principal series representations, a given discrete series can be embedded as a (\mathfrak{g}, K)-module. Before stating the results, we prepare some symbols.

Define subsets Ξ_{J} of $\Xi, J=I, I I, I I I$, as

$$
\Xi_{J}=\left\{\Lambda \in \Xi \mid \Delta^{+}=\Delta_{J}^{+}\right\},
$$

where Δ^{+}is taken in such a way that Λ is Δ^{+}-dominant. For $\Lambda \in \Xi_{I}$, let Λ_{J} be the unique element in $\Xi_{J} \cap W \cdot \Lambda$, and set $\pi_{J}=\pi_{A_{J}}$. Then $\pi_{I}, \pi_{I I}$ and $\pi_{I I I}$ are all the discrete series with the same infinitesimal character $\chi_{[A]}$ defined in $\S 1.5$. Let W^{\prime} be the Weyl group of Ψ and \tilde{s}_{1} (resp. \tilde{s}_{2}) the reflection with respect to λ_{1} (resp. λ_{2}). The unique Ψ^{+}-dominant element in the W^{\prime}-orbit of $\Lambda \circ u^{-1}$ is denoted by $\tilde{\Lambda}$. We have $\tilde{\Lambda}=\left(\tilde{s}_{2} \tilde{s}_{1}\right)^{2}\left(\Lambda \circ u^{-1}\right)$. Recall that $r^{\prime}=\Lambda\left(H_{10}\right)$ and $s^{\prime}=\Lambda\left(H_{32}\right)$.

We can rewrite the results in the last section by means of Theorem 1.3 and obtain the following theorem describing the embeddings completely.

Theorem 5.1. Let P be the minimal parabolic subgroup of G defined in $\S 2.2$ and assume that $\Lambda \in \Xi_{I}$. Then for any $J, \varepsilon_{1}, \varepsilon_{2}$, and $\mu \in \mathfrak{a}^{*}$, we have

$$
\operatorname{dim} \operatorname{Hom}_{(\mathrm{g}, K)}\left(\pi_{J}, \operatorname{Ind}_{P}^{G}\left(\sigma_{\varepsilon_{1}, \varepsilon_{2}} \otimes e^{\mu} \otimes 1_{N}\right)\right) \leq 1
$$

The equality holds if and only if

$$
\mu=\tilde{s} \cdot \tilde{\Lambda} \quad \text { and } \quad\left(\varepsilon_{1}, \varepsilon_{2}\right) \in S_{A}(J, \tilde{s}) \quad \text { with an } \quad \tilde{s} \in W^{\prime}(J),
$$

where $W^{\prime}(J)$ and $S_{A}(J, \tilde{s})$ are subsets of W^{\prime} and $\{ \pm 1\} \times\{ \pm 1\}$ defined respectively as follows:

$$
\begin{gathered}
W^{\prime}(I)=\left\{\tilde{s}_{1}, \tilde{s}_{2} \tilde{s}_{1}\right\}, \\
W^{\prime}(I I)=\left\{1, \tilde{s}_{1}, \tilde{s}_{2}, \tilde{s}_{1} \tilde{s}_{2}, \tilde{s}_{2} \tilde{s}_{1}\right\}, \\
W^{\prime}(I I I)=\left\{\tilde{s}_{2}, \tilde{s}_{1} \tilde{s}_{2}\right\}, \\
S_{A}(I I, 1)=\left\{\left((-1)^{\left(r^{\prime}+s^{\prime} / / 2\right.},(-1)^{\left(r^{\prime}-s^{\prime}+2\right) / 2}\right),\left((-1)^{\left(r^{\prime}+s^{\prime}+2\right) / 2}, \pm 1\right)\right\}, \\
S_{A}\left(J, \tilde{s}_{1}\right)= \begin{cases}\left\{\left((-1)^{r^{\prime}+1},(-1)^{\left(r^{\prime}+s^{\prime}\right) / 2}\right)\right\} & \text { for } J=I \\
\left\{\left((-1)^{\left(r^{\prime}+s^{\prime}\right) / 2},(-1)^{r^{\prime}+1}\right),\left((-1)^{\left(r^{\prime}+s^{\prime}+2\right) / 2}, \pm 1\right)\right\} & \text { for } J=I I,\end{cases} \\
S_{A}\left(J, \tilde{s}_{2}\right)= \begin{cases}\left\{\left((-1)^{\left.\left.r^{\prime},(-1)^{\left(r^{\prime}-s^{\prime}+2\right) / 2}\right),\left((-1)^{r^{\prime}+1}, \pm 1\right)\right\}} \quad \text { for } J=I I\right.\right. \\
\left\{\left((-1)^{\left(r^{\prime}-s^{\prime} / 2\right.},(-1)^{r^{\prime}+1}\right),\left((-1)^{\left(r^{\prime}-s^{\prime}+2\right) / 2},(-1)^{r^{\prime}}\right)\right\} & \text { for } J=I I I,\end{cases} \\
S_{A}\left(J, \tilde{s}_{1} \tilde{s}_{2}\right)=\left\{(\pm 1),(-1)^{\left.\left.\left(r^{\prime}+s^{\prime}+2\right) / 2\right)\right\}} \begin{array}{ll}
\text { for } J=I I, I I I, & \text { for } J=I, I I .
\end{array}\right. \\
S_{A}\left(J, \tilde{s}_{2} \tilde{s}_{1}\right)=\left\{\left((-1)^{\left(r^{\prime}-s^{\prime}+2\right) / 2}, \pm 1\right)\right\} \quad l
\end{gathered}
$$

Remarks. (1) The number of the embeddings of π_{J} into principal series is three, thirteen or four according as $J=I, I I$ or III.
(2) Note that $W^{\prime}(I), \quad W^{\prime}(I I I) \subset W^{\prime}(I I), \quad S_{A}\left(I, \tilde{s}_{1}\right) \subset S_{A}\left(I I, \tilde{s}_{1}\right)$ and that $S_{A}\left(I I I, \tilde{s}_{2}\right) \subset S_{A}\left(I I, \tilde{s}_{2}\right)$. Then we find that the discrete series $\pi_{I I}$ is embedded into all the possible principal series into which $\pi_{J}(J=I, I I, I I I)$ can be embedded.

Proof of Theorem 5.1. For the case where the Blattner parameter λ of π_{A} is "far from the walls", apply Theorem 1.3 to the results of Lemmas 4.1-4.3, then straightforward calculations give the statements in the above theorem. In that argument, we note that every discrete series representation of G is selfcontragredient.

Next we consider the "not far from the walls" case. We keep to the notations in $\S 1.5$. Since $\mathfrak{g}_{0}=\operatorname{Lie}(G)$ is a normal real form of \mathfrak{g}, the maximal abelian subspace \mathfrak{a} of \mathfrak{p} is a Cartan subalgebra of \mathfrak{g} contained in \mathbb{I} and the positive system Ψ^{+}is taken for Δ_{a}^{+}. Put $\tilde{\rho}=\frac{1}{2} \sum_{\lambda \in \Psi^{+}} \lambda$, then $\tilde{\rho}$ is Ψ^{+}-dominant and \mathfrak{g}-action on $F_{\tilde{\rho}}$ can be lifted to a G-action. The same facts hold for the linear form $4 \tilde{\rho}$.

The infinitesimal character of $\pi_{J}=\pi_{\Lambda_{j}}$ with respect to \mathfrak{h} is $\chi_{[\hat{\lambda}]}$. For $\sigma \in \hat{M}$ and $\mu \in \mathfrak{a}^{*}$, the principal series $\operatorname{Ind}_{P}^{G}\left(\sigma \otimes e^{\mu} \otimes 1_{N}\right)$ has infinitesimal character $\chi_{[\mu]}$. Therefore, π_{J} is embedded into $\operatorname{Ind}_{P}^{G}\left(\sigma \otimes e^{\mu} \otimes 1_{N}\right)$ only if $\mu=\tilde{s} \cdot \tilde{\Lambda}$ for $\tilde{s} \in W^{\prime}$.

For $\sigma \in \hat{M}$ and $\tilde{s} \in W^{\prime}$, we find that

$$
\begin{equation*}
{ }^{L_{\rho}} \psi_{[\tilde{s} \cdot \overline{\tilde{s}} \cdot(\tilde{\lambda}]+4 \tilde{\rho})]}\left(\sigma \otimes e^{\tilde{s} \cdot(\tilde{\lambda}+4 \tilde{\rho})}\right) \simeq \sigma \otimes e^{\tilde{s} \cdot \tilde{\lambda}}, \tag{5.1}
\end{equation*}
$$

by noting that M acts trivially on the space spanned by a nonzero highest weight vector of $F_{4 \tilde{s} \cdot \hat{\rho}}$. Together with Proposition 1.1-1.3, relation (5.1) yields

$$
\begin{align*}
& \operatorname{Hom}_{(\mathrm{g}, K)}\left(\pi_{J}, \operatorname{Ind}_{P}^{G}\left(\sigma \otimes e^{\xi \cdot \tilde{\lambda}} \otimes 1_{N}\right)\right) \\
& \left.\simeq \operatorname{Hom}_{(\mathrm{g}, \mathrm{~K})}\left(\pi_{J}, \operatorname{Ind}_{P}^{G}\left({ }^{L_{p}} \psi_{[\bar{s} \cdot \tilde{j}]}^{[\bar{s} \cdot(\tilde{\rho})}(\sigma \tilde{p}] 3 e^{\bar{s} \cdot(\tilde{\lambda}+4 \tilde{\rho})}\right) \otimes 1_{N}\right)\right) \\
& \simeq \operatorname{Hom}_{(\mathrm{g}, \mathrm{~K})}\left(\pi_{J},{ }^{G} \psi_{[\tilde{\lambda}]}^{[\tilde{\Gamma}+4 \tilde{\rho}]}\left(\operatorname{Ind}_{P}^{G}\left(\sigma \otimes e^{\tilde{\xi} \cdot(\tilde{\Lambda}+4 \tilde{\rho})} \otimes 1_{N}\right)\right)\right) \\
& \simeq \operatorname{Hom}_{(\mathrm{g}, \mathrm{~K})}{ }^{G} \varphi_{[\tilde{\lambda}+4 \hat{\rho}]}^{[\tilde{\lambda}]}\left(\pi_{J}\right),\left(\operatorname{Ind}_{P}^{G}\left(\sigma \otimes e^{\bar{s} \cdot(\tilde{\lambda}+4 \tilde{\rho})} \otimes 1_{N}\right)\right) \\
& \simeq \operatorname{Hom}_{(\mathfrak{g}, K)}\left(\pi_{\Lambda_{\jmath}+4 \rho_{\jmath}}, \operatorname{Ind}_{P}^{G}\left(\sigma \otimes e^{\tilde{s} \cdot(\tilde{A}+4 \tilde{\rho})} \otimes 1_{N}\right)\right), \tag{5.2}
\end{align*}
$$

where $\rho_{J}=\frac{1}{2} \sum_{\alpha \in \Delta f} \alpha$.
Let λ_{J} be the Blattner parameter of the discrete series π_{J}, then the discrete series $\pi_{\Lambda_{J}+4 \rho_{J}}$ has Blattner parameter $\lambda_{J}+4 \rho_{J}$ satisfying the condition for being "far from the walls" described in §3. So, relations (5.1) and (5.2) and the result for "far from the walls" case show that for $\sigma_{\varepsilon_{1}, \varepsilon_{2}} \in \hat{M}$ and $\tilde{s} \in W^{\prime}$,

$$
\begin{gather*}
\operatorname{dim} \operatorname{Hom}_{(\mathfrak{g}, K)}\left(\pi_{J}, \operatorname{Ind}_{P}^{G}\left(\sigma_{\varepsilon_{1}, \varepsilon_{2}} \otimes e^{\tilde{\tilde{s}} \cdot \tilde{\Lambda}} \otimes 1_{N}\right)\right)=1 \\
\Leftrightarrow \operatorname{dim} \operatorname{Hom}_{(\mathfrak{g}, K)}\left(\pi_{A_{j}+4 \rho_{J}}, \operatorname{Ind}_{P}^{G}\left(\sigma_{\varepsilon_{1}, \varepsilon_{2}} \otimes e^{\tilde{s} \cdot(\tilde{\Lambda}+4 \tilde{\rho})} \otimes 1_{N}\right)\right)=1 \\
\Leftrightarrow \tilde{s} \cdot(\tilde{\Lambda}+4 \tilde{\rho})=\tilde{s}^{\prime} \cdot\left(\Lambda_{J}+4 \rho_{J}\right)^{\sim} \quad \text { and } \quad\left(\varepsilon_{1}, \varepsilon_{2}\right) \in S_{A+4 \rho_{1}}\left(J, \tilde{s}^{\prime}\right) \quad \text { with an } \quad \tilde{s}^{\prime} \in W^{\prime}(J), \tag{5.3}
\end{gather*}
$$

where $S_{1+4 \rho_{I}}(J, \tilde{s})$ and $W^{\prime}(J)$ are defined as in the theorem. Note that $\left(\Lambda+4 \rho_{I}\right)_{J}=\Lambda_{J}+4 \rho_{J}$, that $\Lambda\left(H_{10}\right) \equiv\left(\Lambda+4 \rho_{I}\right)\left(H_{10}\right)(\bmod 4)$ and that $\Lambda\left(H_{32}\right) \equiv$ $\left(\Lambda+4 \rho_{I}\right)\left(H_{32}\right)(\bmod 4)$. Then one gets $S_{\Lambda+4 \rho_{I}}\left(J, \tilde{s}^{\prime}\right)=S_{\Lambda}\left(J, \tilde{s}^{\prime}\right)$. Since $\left(\Lambda_{J}+4 \rho_{J}\right)^{\sim}=\tilde{\Lambda}+4 \tilde{\rho}$ is regular, the equation $\tilde{s} \cdot(\tilde{\Lambda}+4 \tilde{\rho})=\tilde{s}^{\prime} \cdot\left(\Lambda_{J}+4 \rho_{J}\right)^{\sim}$ implies $\tilde{s}=\tilde{s}^{\prime}$. Then the statements of the theorem immediately follow from (5.3). Thus the proof is completed.

6. Knapp-Wallach's embeddings

6.1. Szegö mapping $\overline{S_{\lambda, v}}$. In their paper [5], A. W. Knapp and N. R. Wallach gave certain (\mathfrak{g}, K)-homomorphisms of some principal series repsentations onto discrete series for semisimple Lie groups. Here we apply their result to the group G of type G_{2} and in the next subsection compare it with our Theorem 5.1 .

Let \mathfrak{g} be a complex simple Lie algebra of type G_{2} as before. For $\Lambda \in \Xi_{c}$, define $\Delta^{+}, \Delta_{c}^{+}, \Delta_{n}^{+}$, and λ as in $\S 3$. We introduce the notion of "fundamental sequence".

Definition 6.1. A sequence (β_{1}, β_{2}) of positive noncompact roots is said to be fundamental if it satisfies the following two conditions.
(i) The root β_{1} is a simple root in Δ^{+}, and β_{1} and β_{2} are strongly orthogonal.
(ii) For $\gamma \in \Delta_{n}^{+}$, define $\beta(\gamma)$ as the first β_{j} in $\left(\beta_{1}, \beta_{2}\right)$ such that γ is not strongly orthogonal to β_{j}. Then one of the following (ii-a) and (ii-b) holds:
(ii-a) $|\beta(\gamma)| \geq|\gamma|$,
(ii-b) $\quad|\beta(\gamma)|<|\gamma|$ and $\gamma-3 \beta(\gamma) \in \Delta$.
Note that the existence of $\beta(\gamma)$ in (ii) is assured since $\mathbf{R} \beta_{1}+\mathbf{R} \beta_{2}=\sqrt{-1}{ }_{0}^{*}$. For the definition of fundamental sequences in case of a general semisimple \mathfrak{g} and the existence of fundamental sequences, see [5].

For a fundamental sequence (β_{1}, β_{2}), put

$$
\begin{aligned}
& \tilde{H}_{\Lambda, 1}=E_{\beta_{1}}+E_{-\beta_{1}}, \\
& \tilde{H}_{A, 2}=E_{\beta_{2}}+E_{-\beta_{2}}, \\
& \left(\mathfrak{a}_{\Lambda}\right)_{0}=\mathbf{R} \tilde{H}_{\Lambda, 1}+\mathbf{R} \tilde{H}_{\Lambda, 2},
\end{aligned}
$$

where $E_{\beta}(\beta \in \Delta)$ is the root vector defined in $\S 2$. By Definition 6.1, $\left(\mathfrak{a}_{A}\right)_{0}$ is a maximal abelian subspace of \mathfrak{p}_{0}. Equip $\left(\mathfrak{a}_{A}\right)_{0}^{*}$ with the lexicographic order with respect to the ordered basis $\left(\tilde{H}_{A, 1}, \tilde{H}_{A, 2}\right)$. Let Ψ_{A} be the system of the restricted roots of \mathfrak{g}_{0} relative to $\left(\mathfrak{a}_{A}\right)_{0}$, and $\left(\Psi_{A}\right)^{+}$the set of all positive elements in Ψ_{A}. Take a Lie subalgebra $\left(\mathrm{n}_{A}\right)_{0}$ of \mathfrak{g}_{0} as

$$
\left(\mathbf{n}_{A}\right)_{0}=\sum_{\mu \in\left(\Psi_{A}\right)^{+}}\left(\mathfrak{g}_{\mu}\right)_{0}
$$

where $\left(\mathfrak{g}_{\mu}\right)_{0}=\left\{X \in \mathfrak{g}_{0} \mid[H, X]=\mu(H) X\left(\forall H \in \mathfrak{a}_{A}\right)\right\}$. Then we have an Iwasawa decomposition $\mathfrak{g}_{0}=\mathfrak{f}_{0} \oplus\left(\mathfrak{a}_{A}\right)_{0} \oplus\left(\mathfrak{n}_{A}\right)_{0}$ of \mathfrak{g}_{0} and the corresponding decomposition $G=K A_{A} N_{A}$ of G.

Let M_{A} be the centralizer of A_{A} in K and τ_{λ} the irreducible representation of K with highest weight λ. The representation space of τ_{λ} is denoted by V_{λ}. Take a nonzero highest weight vector φ_{λ} of V_{λ} and define U_{λ} to be the M_{Λ}-cyclic subspace of V_{λ} generated by φ_{λ}. Then we have a representation σ_{λ} of M_{Λ} on U_{λ} defined by

$$
\sigma_{\lambda}(m)=\left.\tau_{\lambda}(m)\right|_{U_{\lambda}} \quad\left(m \in M_{\Lambda}\right)
$$

The representation σ_{λ} is not always irreducible, and let

$$
\begin{equation*}
\sigma_{\lambda} \simeq \bigoplus_{j} \sigma_{\lambda}^{(j)}, \quad U_{\lambda}=\bigoplus_{j} U_{\lambda}^{(j)} \tag{6.1}
\end{equation*}
$$

be an irreducible decomposition of $\left(\sigma_{\lambda}, U_{\lambda}\right)$.
Now we introduce two function spaces $C_{\tau_{\lambda}}^{\infty}(G)$ and $C_{\sigma_{\lambda}}^{\infty}(K)$ as follows:

$$
\begin{array}{ll}
C_{\tau_{\lambda}}^{\infty}(G)=\left\{f: G \xrightarrow{C^{\infty}} V_{\lambda} \mid f(k g)=\tau_{k}(k) f(g)\right. & (\forall(k, g) \in K \times G)\}, \\
C_{\sigma_{\lambda}}^{\infty}(K)=\left\{f: K \xrightarrow{C^{\infty}} U_{\lambda} \mid f(m k)=\sigma_{\lambda}(m) f(k) \quad\left(\forall(m, k) \in M_{\Lambda} \times K\right)\right\},
\end{array}
$$

The definition of $C_{\tau_{\lambda}}^{\infty}(G)$ is the same as that in $\S 1.3$. For a linear form v on \mathfrak{a}_{A}, we extend each function f in $C_{\sigma_{\lambda}}^{\infty}(K)$ to G in the following way:

$$
f(n a k)=a^{v} f(k) \quad\left(n \in N_{\Lambda}, a \in A_{\Lambda}, k \in K\right) .
$$

Then G acts on these function spaces by the right translation:

$$
(g \cdot f)(x)=f(x g) \quad(g, x \in G)
$$

We denote this representation of G on $C_{\sigma_{\lambda}}^{\infty}(K)$ by $W\left(\sigma_{\lambda}, v\right)$. For each $\sigma_{\lambda}^{(j)}$ in (6.1), the G-representation $W\left(\sigma_{\lambda}^{(j)}, v\right)$ is defined in the same way. Note that the representation $W\left(\sigma_{\lambda}^{(j)}, v\right)$ is equivalent to the principal series $\operatorname{Ind}_{P_{A}}^{G}\left(\sigma_{\lambda}^{(j)} \otimes e^{v-\rho^{+}} \otimes\right.$ $1_{N_{A}}$) induced from the minimal parabolic subgroup $P_{A}=M_{A} A_{A} N_{A}$, where $\rho^{+}=$ $\frac{1}{2} \sum_{\mu \in\left(\Psi_{1}\right)^{+}} \mu$. In the following, $\operatorname{Ind}_{P}^{G}\left(\sigma_{\varepsilon_{1}, \varepsilon_{2}} \otimes e^{v-\rho_{P}} \otimes 1_{N}\right)\left(\sigma_{\varepsilon_{1}, \varepsilon_{2}} \in \hat{M}, v \in \mathfrak{a}^{*}\right)$ is denoted by $W_{0}\left(\sigma_{\varepsilon_{1}, \varepsilon_{2}}, v\right)$. Here P is the minimal parabolic subgroup defined in $\S 2.2$. For the definition of $\operatorname{Ind}_{P}^{G}\left(\sigma_{\varepsilon_{1}, \varepsilon_{2}} \otimes e^{v-\rho_{P}} \otimes 1_{N}\right)$, see $\S 1.3$. Moreover $W\left(\sigma_{\lambda}, v\right)^{0}$, $W_{0}\left(\sigma_{\varepsilon_{1}, \varepsilon_{2}}, v\right)^{0}$ etc. stand for the (\mathfrak{g}, K)-modules of all K-finite vectors in $W\left(\sigma_{\lambda}, v\right)$, $W_{0}\left(\sigma_{\varepsilon_{1}, \varepsilon_{2}}, v\right)$ etc. respectively.

We write an element g of G as $g=\kappa(g) e^{H(g)} n(g)$ with $\kappa(g) \in K, H(g) \in\left(\mathfrak{a}_{A}\right)_{0}$, $n(g) \in N_{A}$, and for a linear form v on \mathfrak{a}_{A}, define a function $S_{\lambda, v}: G \rightarrow \operatorname{End}\left(V_{\lambda}\right)$ by

$$
S_{\lambda, v}(g)=\exp (-v(H(g))) \tau_{\lambda}(\kappa(g)),
$$

and put $\overline{S_{\lambda, v}}: C_{\sigma_{\lambda}}^{\infty}(K) \rightarrow C_{\tau_{\lambda}}^{\infty}(G)$ as

$$
\left(\overline{S_{\lambda, v}} f\right)(g)=\int_{K} S_{\lambda, v}\left(g k^{-1}\right) f(k) d k \quad(g \in G)
$$

This definition of $\overline{S_{\lambda, v}}$ is equivalent to that of the operator S in [5].

According to [5], we define a linear form $v(\lambda)$ on \mathfrak{a}_{A} as

$$
v(\lambda)\left(\tilde{H}_{A, j}\right)=\lambda\left(H_{\beta_{j}}\right)+2 n_{j},
$$

where $n_{j}=\mid\left\{\gamma \in \Delta_{n}^{+} \mid \beta(\gamma)=\beta_{j}\right.$ and $\left.\beta_{j}+\gamma \in \Delta\right\} \mid$. Then the following result is shown in [5].

Theorem 6.1 (cf. [5, Theorem A]). Let notations be as above, then the mapping

$$
\begin{equation*}
\left.\overline{S_{\lambda, v(\lambda)}}\right|_{\left.W(\sigma)^{(j)}, 2 \rho^{+-} v(\lambda)\right)^{0}}: W\left(\sigma_{\lambda}^{(j)}, 2 \rho^{+}-v(\lambda)\right)^{0} \rightarrow\left(\operatorname{Ker} \mathscr{D}_{\lambda}\right)^{0} \tag{6.2}
\end{equation*}
$$

gives a nonzero (\mathfrak{g}, K)-homomorphism and the image $\overline{S_{\lambda, v(\lambda)}} W\left(\sigma_{\lambda}^{(j)}, 2 \rho^{+}-v(\lambda)\right)^{0}$ is isomorphic to the discrete series (\mathfrak{g}, K)-module for π_{A}.

Moreover, if the Blattner parameter λ of π_{A} is far from the walls, the mapping in (6.2) is surjective.

Note that $\left(\operatorname{Ker} \mathscr{D}_{\lambda}\right)^{0}$ realizes the (\mathfrak{g}, K)-module of discrete series π_{A} provided that λ is far from the walls.
6.2. Comparison with Theorem 5.1. According as $\Lambda \in \Xi_{J}$ with $J=I, I I$ or $I I I$, possible fundamental sequence (β_{1}, β_{2}) and the data $\mathfrak{a}_{A}, M_{\Lambda}, \sigma_{\lambda} \simeq \oplus_{j} \sigma_{\lambda}^{(j)} v_{\lambda}$ are described explicitly as follows:

Case I: $\Delta^{+}=\Delta_{I}^{+}$
fundamental sequence: $\left(\alpha_{2}, 2 \alpha_{1}+\alpha_{2}\right)$,
$\mathfrak{a}_{A}=\mathfrak{a}, M_{A}=M$,
$\sigma_{\lambda} \simeq \sigma_{\varepsilon_{\lambda}, 1} \oplus \sigma_{\varepsilon_{\lambda},-1}$ with $\varepsilon_{\lambda}=(-1)^{(r-s) / 2}$,
$\nu(\lambda)=\tilde{s}_{2} \tilde{s}_{1} \tilde{\Lambda}+\rho_{P}$.
Case II: $\Delta^{+}=\Delta_{I I}^{+}$
fundamental sequence: $\left(-\alpha_{2}, 2 \alpha_{1}+\alpha_{2}\right)$,
$\mathfrak{a}_{A}=\mathfrak{a}, M_{A}=M$,
$\sigma_{\lambda} \simeq \sigma_{\varepsilon_{\lambda}, 1} \oplus \sigma_{\varepsilon_{\lambda},-1}$ with $\varepsilon_{\lambda}=(-1)^{(r-s) / 2}$,
$\nu(\lambda)=\tilde{s}_{2} \tilde{s}_{1} \tilde{\Lambda}+\rho_{P}$.
Case III: $\Delta^{+}=\Delta_{I I I}^{+}$
fundamental sequence: $\left(-\left(\alpha_{1}+\alpha_{2}\right), 3 \alpha_{1}+\alpha_{2}\right)$,
$\mathfrak{a}_{A}=\operatorname{Ad}\left(m_{0}\right) \mathfrak{a}, M_{A}=m_{0} M m_{0}^{-1}$,
with $m_{0}=\left(\begin{array}{cc}\left.\frac{1}{2}\left(\begin{array}{cc}-1+\sqrt{-1} & 1+\sqrt{-1} \\ -1+\sqrt{-1} & -1-\sqrt{-1}\end{array}\right), \frac{1}{2}\left(\begin{array}{cc}1+\sqrt{-1} & 1-\sqrt{-1} \\ -1-\sqrt{-1} & 1-\sqrt{-1}\end{array}\right)\right)^{\ddagger}, ~, ~, ~\end{array}\right.$
$\sigma_{\lambda} \simeq m_{0} \cdot \sigma_{1, \varepsilon_{i}^{\prime}} \oplus m_{0} \cdot \sigma_{-1, \varepsilon_{\lambda}^{\prime}}$ with $\varepsilon_{\lambda}^{\prime}=(-1)^{(r+s) / 2}$,
$v(\lambda)=m_{0} \cdot\left(\tilde{s}_{1} \tilde{s}_{2} \tilde{\Lambda}+\rho_{P}\right)$.

Here $m_{0} \cdot \mu(H)=\mu\left(\operatorname{Ad}\left(m_{0}\right)^{-1} H\right)$ for $\mu \in \mathfrak{a}^{*}$ and $H \in \mathfrak{a}_{A}, m_{0} \cdot \sigma(m)=\sigma\left(m_{0}^{-1} m m_{0}\right)$ for a representation σ of M and $m \in m_{0} M m_{0}^{-1}$. Note that for the case of $\Delta_{I I I}^{+}$, the isomorphism

$$
\operatorname{Ind}_{m_{0} P m_{\overline{0}}}^{G}\left(m_{0} \cdot \sigma \otimes e^{m_{0} \cdot \mu} \otimes 1_{N}\right) \simeq \operatorname{Ind}_{P}^{G}\left(\sigma \otimes e^{\mu} \otimes 1_{N}\right) \quad\left(\sigma \in \hat{M}, \mu \in \mathfrak{a}^{*}\right),
$$

implies that

$$
W\left(m_{0} \cdot \sigma, m_{0} \cdot \mu\right) \simeq W_{0}(\sigma, \mu) \quad\left(\sigma \in \hat{M}, \mu \in \mathfrak{a}^{*}\right) .
$$

Since $W_{0}\left(\sigma, 2 \rho_{P}-\mu\right)^{*} \simeq W_{0}(\sigma, \mu)$ for $\sigma \in \hat{M}$ and $\mu \in \mathfrak{a}^{*}$, the above remarks and Theorem 6.1 imply that π_{A} can be embedded into $\operatorname{Ind}_{P}^{G}\left(\sigma_{\varepsilon_{1}, \varepsilon_{2}} \otimes e^{\mu} \otimes 1_{N}\right)$ with parameters $\varepsilon_{1}, \varepsilon_{2}$ and μ listed below:

- Case I. $\Delta^{+}=\Lambda_{I}^{+}: \mu=\tilde{s}_{2} \tilde{s}_{1} \tilde{\Lambda},\left(\varepsilon_{1}, \varepsilon_{2}\right) \in S_{\Lambda_{I}}\left(I, \tilde{s}_{2} \tilde{s}_{1}\right)$,
- Case II. $\Delta^{+}=\Delta_{I I}^{+}: \mu=\tilde{s}_{2} \tilde{s}_{1} \tilde{\Lambda},\left(\varepsilon_{1}, \varepsilon_{2}\right) \in S_{\Lambda_{I}}\left(I I, \tilde{s}_{2} \tilde{s}_{1}\right)$,
- Case III. $\Delta^{+}=\Delta_{I I I}^{+}: \mu=\tilde{s}_{1} \tilde{s}_{2} \tilde{\Lambda},\left(\varepsilon_{1}, \varepsilon_{2}\right) \in S_{A_{I}}\left(I I I, \tilde{s}_{1} \tilde{s}_{2}\right)$,

These two embeddings for the case of Δ_{I}^{+}(resp. $\Delta_{I I}^{+}, \Delta_{I I I}^{+}$) appear in the three (resp. thirteen, four) embeddings determined in Theorem 5.1.

Department of Mathematics, Kyoto University

Department of Mathematics, Hokkaido University

References

[1] Harish-Chandra, Discrete series for semisimple Lie groups, II, Acta Math., 116 (1966), 1-111.
[2] H. Hecht and W. Schmid, A proof of Blattner's conjecture, Invent. Math., 31 (1975), 133-178.
[3] S. Helgason, Differential Geometry, Lie Groups, and Symmetric Spaces, Academic Press, New York, 1978.
[4] R. Hotta and R. Parthasarathy, Multiplicity formulae for discrete series, Invent. Math., 26 (1974), 133-178.
[5] A. W. Knapp and N. R. Wallach, Szegö kernels associated with discrete series, Invent. Math., 34 (1976), 163-200.
correction and addition: ibid., 62 (1980), 341-346.
[6] A. W. Knapp and G. J. Zuckerman, Classification of irreducible tempered representation of semisimple groups, Ann. of Math., 116 (1982), 389-455.
[7] W. Schmid, On the realization of the discrete series of a semisimple Lie group, Rice Univ. Studies, 56 (1970), 99-108.
[8] W. B. Silva, The embeddings of discrete series in the principal series for semisimple Lie groups of real rank one, Trans. Amer. Math. Soc., 261 (1980), 303-368.
[9] H. Yamashita, Embeddings of discrete series into induced representations of semisimple Lie groups, I, Japan. J. Math., 16 (1990), 31-95.
[10] G. J. Zuckerman, Tensor products of finite and infinite dimensional representations of semisimple Lie groups, Ann. of Math., 106 (1977), 295-308.

[^0]: * Supported in part by Grant-in-Aid for Scientific Research (No.07740101), The Ministry of Education, Science and Culture, Japan.
 Received September 27, 1995

