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Introduction

Discrete series representations of a semisimple Lie group have been studied
for a long time. In [1], Harish-Chandra gave their parametrization by means
of the theory of characters. For realization of discrete series, R. Hotta and R.
Parthasarathy [4], W. Schmid [7] and others gave geometric construction of
those representations. Let G be a connected semisimple Lie group with finite
center, K its maximal compact subgroup, n, the discrete series representation of
G with Harish-Chandra parameter 4 and (t,, V;) the lowest K-type of n,. A
differential operator 2 on the space C°(G) of V;-valued smooth functions f on
G satisfying f(kg) = 1,(k)f(g) for all ke K and for all g € G, denoted by 2, in
this paper, is introduced in [7] by Schmid. He showed, also in [7], that the
discrete series m, is realized as the space of L,-kernel of 2. This result was
shown in a simpler way in the paper [4] of Hotta and Parthasarathy. By means
of 2 and “Szeg6 kernel”, A. W. Knapp and N. R. Wallach [5] found that each
discrete series is expressed as a quotient of some principal series representations,
determined relative to the discrete series. Considering duality, one can obtain
certain principal series into which a given discrete series can be embedded.

Modifying and extending the idea in [5], the second-named author of the
present paper gave, in [9], a method to determine the embeddings of discrete
series into various induced representations, as (g, K)-modules. Here g denotes
the complexified Lie algebra of G.

For a closed subgroup P of G and its representation # on a Fréchet space
F, define C7(G;n) to be the space of V; ® F-valued smooth functions f on G
with the condition f(kgp) = dp(p)*2(r;(k) ® n(p) ')f(g) for ke K, ge G and pe P,
where 6p is a modular function of P. Since C?(G;#) is canonically embedded
in C(G)® F, a differential operator 2;, on C?(G;n) is defined as 2, , =
2, ®idg, where idp is the identity map on F. Under these notations, one of
the important results given there is the isomorphism
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Hom,, ¢, (n%, Ind§ (1)) ~ Ker 2, ,,

as linear spaces, provided # is weakly cyclic and the Blattner parameter A of 7,
is “far from the walls”.
In the case where P is a parabolic subgroup of G, the above result gives that

(*) Hom,, &, (%, Ind§ (£ ® 1)) = Hom x,, (E*, Ker 2;,,,)

as linear spaces, provided 1 is “far from the walls”. Here ¢ is an irreducible,
admissible representation of the Levi part L of P, [=Lie(L)®C, =¢(® e’
with p(H) = 5 tr ad (H)|,, n = Lie (N) ® C, N is the nilpotent radical of P, K, =
KL, and 1y is the trivial character of N. In order to obtain the embeddings
for discrete series whose Blattner parameter is not far from the walls, the “transla-
tion functor” introduced by G. J. Zukerman in [10] can be used.

For the problem of determining all the embeddings of discrete series into
principal series, W. B. Silva investigated in her paper [8], the case of real rank
one groups. For the groups with higher real rank, the second-named author
studied the case of SU(2,2) in [9]. Our main aim in this paper is to determine
the embeddings of discrete series into principal series induced from a minimal
parabolic subgroup for the normal real form of a comlex Lie group of type G,.
Our method is elementary one, which is the same as that in [9, Part A].

We are now going to explain the contents of each section.

In §1, we summarize general theory: parametrization of discrete series, differ-
ential operators 2; and 2, ,, the results in [9] and Zuckerman’s translation
functor.

We specialize G and K as the normal real form of a complex Lie group
of type G, and a maximal compact subgroup of G respectively. Then the struc-
ture of G and that of g, = Lie (G) are explicitly described in §2. The parametriza-
tion and structures of irreducible K-modules are also given in §2. According
to the standard facts in §1, one sees that it may be assumed that the Harish-
Chandra parameter 4 of a given discrete series of G is dominant with respect
to one of the following three different 47 (J = I, I1, I1I) of positive systems of
the root system 4.

AF = {oy, 0p, 0y + 05, 200y + oy, 30t + 0y, 3oy + 200, ),
Af ={oy + ay, —ay, oy, 200 + oy, 3y + 2005, 30 + oy},
Af = {—a; — oy, 300, + 205, 200, + ap, 00 — 0y, 30, + 0y ).

Here o, is short compact root and «, is long noncompact root, which are both
simple in A4;.

For a function f of CX(G), f is expressed uniquely in the form f(g) =
Y p.aCra(9)elY with a certain basis {e%3'} of V; and smooth functions c,, on G.
In §3, we write &, f explicitly in terms of c,,.

Subsequently we solve the differential equation %, ,, f =0 in §4. There the
explicit form of Ker 2, ,, and its (I, K;)-module structure are given.

In §5 we rewrite the results in §4 by means of (¥) and obtain the main result:
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Theorem (see Theorem 5.1). For J =1, 1I, 111, let E; be the totality of
linear forms A et* which are Aj-dominant, regular and K-integral. If AeZ
(resp. E,;, Zy;), there exist three (resp. thirteen, four) distinct principal series
representations W = Ind& (¢ ® 1) satisfying

dim Hom, g, (my4, W)y=1,

0.

and for other principal series W', dim Hom, y, (74, W’)

In this theorem, we can determine W explicitly according to A.

Finally in §6, we compare our results with those in [5]. The method in
[5] gives two embeddings out of three, thirteen or four embeddings described
in the above theorem.

1. General theory

In this section, we summarize the results on which the later calculations
rely. The arguments in §§3-5 are based on the results in §1.4.

1.1. Notations. We explain some notations. Let G be a connected semi-
simple Lie group with finite center and g, its Lie algebra. Denote by g, =
f, + po a Cartan decomposition of g,, and 8 stands for the corresponding Cartan
involution, where f, = {X €g0/0X = X}, po = {X €g0/0X = —X}. We denote
the complexifications of g,, f, etc. by g, [ etc, omitting the subscript .
For a maximal abelian subspace a, of p,, let ¥ be the restricted root system
for (go, ap) and ¥* the set of all positive roots in ¥. Then we have an Iwasawa
decomposition of g, as go=Tf, @ a, ®n,. Here, ng =Y, p+(d0)s» (80)z =
{X egol[H, X] =AH)X(VH € ay)}. Let G=KAN be the Iwasawa decomposi-
tion of G corresponding to the decomposition of g.

From now on, we assume that rank G =rank K. It is known that this
condition is necessary and sufficient for G to have discrete series representations
(cf. [1, Theorem 13]). By virtue of this assumption, there is a compact Cartan
subalgebra t,(cf,) of g,. We denote the root system of g with respect to t by
4, and let g=1t+),.,0, be the root space decomposition of g, where g, =
{X eg|[H, X] =a(H)X(VH €t)}. Define 4, (resp. 4,) as the set of compact (resp.
noncompact) roots, and we denote the Weyl groups of 4 and 4, by W and W,
respectively. Let U(g) be the universal enveloping algebra of g, Z(g) the center
of U(g), U#)" the set of the elements in U(t) invariant under the action of the
Weyl group W. The Harish-Chandra isomorphism of Z(g) onto U(t)¥ is denoted
by y. As usual, R and C stand for the field of real numbers and the field of
complex numbers respectively.

1.2. Parameterization of discrete series representations. Let t, be a compact
Cartan subalgebra of g, as above, and T the maximal torus of K corresponding
to to.
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Definition 1.1. For a linear form A on t, we say that A is K-integral if the
following assignment gives a unitary character of T:

T>exp H—e*® e C~ (H € ty).

—
=)

Let Z be the totality of linear forms A on t satisfying the following two
conditions:

(i) 4+ p is K-integral,

(i) A is regular.
Here, p =Y ,. 4. « for some fixed positive system 4% of 4. Note that condition
(i) is independent of the choice of a positive system A4*. By Harish-Chandra,
there exists a tempered invariant distribution @, on G, which is in fact a locally
integrable function on G, satisfying the following conditions:

(i) Choose a positive system A* so that A4 is 4*-dominant, then

O, (exp H)-( Y (det w)e‘”"""’>=(—l)“/2’dimpo Y. (det we™ 1 (H et,).
weW weW,
(ii) Let ! be the rank of g, D, the coefficient of x' in det (x — 1 — Ad (g)),
G' = {g € G|D\(g) # 0}, then

sup [0 ,4(g)||Di(g)|'? < co.

ge G’

(iii) Put y4(Z) = A(y(Z)), then
2:0,=142) 0, (ZeZ(9))

Distribution @, is uniquely determined under the above conditions.
The following facts give the parametrization of discrete series. For the case
where G is acceptable (i.e. p is K-integral), see [1, Theorem 16].
(i) For any A4 € &, there exists a unique, up to isomorphisms, discrete series
representation n, of G with character @ ,.
(ii) For any discrete series representation n of G, there exists an element
A of Z such that = is unitarily equivalent to = ,.
(i) For two elements A, and A, of =, n, is unitarily equivalent to n,,
if and only if W,- A, = W,- A,.
The linear form A in (i) is called the Harish-Chandra parameter of w 4.
Now, define an equivalence relation ~ on Z as follows:

Ay~ A4, if and only if W,- 4, = W, - 4,.
Then discrete series representations of G are parametrized by =/~.

1.3. Gradient type differential operators. Let 7 be a finite-dimensional uni-
tary representation of K on a Hilbert space H. Take a closed subgroup P of
G, and a continuous representation (1, F) of P on a Fréchet space F. We define
three function spaces C*(G), C*(G;n) and C>*(G;n) as follows:
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C2(G) = {f: GS Hif(kg) = t(k)f(9)(¥(k, g) € K x G)},
C=(G;n) = {f: GS F|f(gp) = 3(p)"*n(p) f(9)(¥(g, P) € G x P)},
C2(Gin) ={f:GSH®F|
flkgp) = 84*(1(k) @ n(p)"")f(9)(V(k, g, p)e k x G x P)}.

Here, , stands for the modular function of P with respect to the left Haar
measure of P.

Equip these spaces with the topology of uniform convergence of functions
and their partial derivatives on any compact subset of G. Now G acts on the
space C®(G;n) as follows:

(g Nx)=flg7'x)  (feC(G;n),g.x€G),

and we have a smooth representation of G on C*(G;#n). We call it the represen-
tation of G induced from (n, F) in C®-context and denote it by (C*-)Ind§ ().
By differentiating the action of G, we can introduce a (g, K)-module structure
on C*(G:#n). This (g, K)-module is also denoted by (C*-) Ind§ (n).

Next, for a fixed positive system A* of 4, put 47 =4.n 4%, and 4, =
4,0 4%. For a A!-dominant, K-integral linear form A on t, let (r;, V;) be the
finite-dimensional irreducible representation of K with highest weight . Consider
the adjoint representation (Ad |,, p) of K on p. Then the tensor product represen-
tation 7, ® Ad |, is decomposed into irreducible as

L®Ad |~ @ m(f)Tsup. (L)
Be 4,
Here, m(f) is the multiplicity of 7,,; in 7, ® Ad |,, and is 0 or 1 for any § in 4,.
By using decomposition (1.1), we define a subrepresentation (¢, V;") (resp. 15, V;"))
of 1;®@Ad|, by t; = ®gc4ym(—pB)1;-p (resp. T = @pe 4y M(B)ti4p). Then,
V,® p is decomposed as

@p =V @V (12)

Let P, be the projection onto V,” along decomposition (1.2).

We are now ready to define certain differential operators playing an impor-
tant role in the determination of embeddings of discrete series representations
into principal series. Let Ly (X € g) be the differentiation with respect to the
right invariant vector field defined by X. The Killing form of g is denoted by
B(-,), and (-, ) stands for the inner product on g defined by (X, Y) = — B(X, Y).
Here, Y denotes the complex conjugate of Y relative to the compact real
form t, + \/jpo of g. Then we can define first order differential operators

V:C3(G) - Cligaa),(G) and Z;: C7(G) — C2(G) as follows:
2n _
Vf(g) = Zl Ly, f(9) ® X;,
=

2,1(9) = P,(Vf(9))-
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Here, {X;|j=1,2,,...,2n} is an orthonormal basis of p relative to the inner
product (-,-). Note that V and 2, are independent of a choice of {X;}. Since
the space C7(G;n) is canonically embedded into Cr(G)® F, we can define an
operator %, ,: C7(G;n) —» C2(G:;n) by 9, ,=2;®id.

1.4. Description of embeddings. For A e =, we take a positive system A*
of 4 so that 4 is 4%-dominant. For such 4%, put p,=3Y . 4.0, p, =3 1 s: t,
and =4 —p .+ p,. Note that 1 is also K-integral and 4}-dominant.

Definition 1.2. For a A}-dominant, integral linear form A on t, 4 is said
to be far from the walls if the following condition holds:

A=Y 4eoB is A4F-dominant for any subset Q of 4, .

Definition 1.3. Let P be a closed subgroup of G. A continuous representa-
tion (n, F) of P on a Fréchet space F, is said to be weakly cyclic if there exists
a continuous linear functional T on F such that for an element v of F, T(n(p)v) =
0(Vp € P) implies v = 0.

For instance, every irreducible unitary representation is weakly cyclic.

For an element A of =, take p,, p,, 4 as above. For a linear form u on
t, define an integer N,(u) by

Ny(w) = ZW det W)Q(w-(u + p.) — (2 + pc))-
weW,

Here, Q(v) (vet*) is the number of distinct ways that v can be written as a
sum of elements of A;. Then next theorem gives the K-multiplicity formula for
discrete series.

Theorem 1.1 (cf. [2, Theorem (1.3)]). The discrete series n, is decomposed
as a K-module in the following way:

Tglg = Z NA(#)T,,-
u

Here, p runs through the set of linear forms v on t for which v— A can be
expressed as a sum of (not necessarily distinct) positive roots.

Note that N;(4) =1, and that t, is the lowest K-type of n,. The linear
form A is called the Blattner parameter of m,. For a discrete series n, of G,
the contragredient representation n*% of n, is also a discrete series. Therefore
we may consider the embeddings of =% instead of those of mn,, and they are
described as in the following theorem.

Theorem 1.2 (cf. [9, Theorem 24]). Let A be in £ and (y, F) a weakly
cyclic representation of a closed subgroup P of G. Then there exists a natural
isomorphism

Hom,g g, (%, Indg (1)) =~ Ker 2, ,

as linear spaces, if A is far from the walls.
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When P is a parabolic subgroup of G, let P = M,A,N, be a Langlands
decomposition of P and L, the Levi part MpAp of P. We denote the Lie
algebra of L, (resp. Ap, Np) by I, (resp. apy, Npo) and put K; = LpnK. The
complexification of I, (resp. apg, Npo) is denoted by I (resp. ap, np) as usual. The
Levi part Lp acts on Ker &, ,, by right translation as

(x-f)g)=flgx) (x€Lp.geG, feKerD,,,) (1.3)

Here, 1, stands for the trivial character of Np. As in the case of Ind§ (n),
Ker 2, ,, has an ([, K;)-module structure.

Now we are going to see that Ker 9, ,, is stable under L,. Let g, x€G,
fe CZ(G) and X € g,, then

(x-Lxf)(g9) = (Lxf)(gx)

d

= fexp (—tX) gxX)|i=0

d
= E(x-f)(exp (—tX) g)li=o

= (Lxx- f)(9)-

So, x(Lyf) = Lx(x-f). Here, x-f is defined as in (1.3). We see that for g€ G,
x€Lp, n€ Np,

2n
(2:x f) = PA(; ij(x'f)(g)®1?j>

2n .
= m(zl (Le,f) g% ® x,)
j=

= (2,/)(9x)
=0 (. feKer 2,).

Since Ker 9, ,, = {f € Ker 2,| f(gn) = f(9)(V(g, n) € G x Np)} and L, normalizes
NP’

(x-f)gn) = f(gnx)
= f(gxx~'nx)
=flgx)  (x"'nxeNp)
= (x-f)(g).

Therefore, x - f is also an element of Ker 2, ,,, and L, actually acts on Ker &, ,,.
Smoothness of this representation is deduced from the topological structure of
Ker 2, 4,-

For an irreducible admissible representation ¢ of M, and a linear form pu
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on ap, ¢ =0 ®e" is an irreducible admissible representation of L,. Put & =
o ® e"***. Here, pp(H) = L tr (ad H l,) (H € ap). Then, next theorem gives a kind
of Frobenius reciprocity on the embeddings into principal series, and our argu-
ment in §4 is based on it.

Theorem 1.3 (cf. [9, Theorem 3.5]). Notations are as before, and assume
that the Blattner parameter A is far from the walls. Then,

Hom(g,x)(”’;, Ind§(¢ ® 1y)) ~ Hom(l.KL)(g*, Ker 9;.,1,)
as linear spaces.

Note that, Ker 2, ;, is expressed as follows:

Ker 2;,,, = {f€ C3(G)|2:f = 0, f(gn) = f(9)(V(g, n) € G x N)}. (1.4

1.5. Zuckerman’s translation functor. Let f) be a Cartan subalgebra of g, 4,
the root system of g relative to b, 47 a positive system of 4, and W, the Weyl
group of 4;. We denote the universal enveloping algebra of g by U(g). The
center of U(g) is denoted by Z(g) and U(h)"» means the set of the elements in
U(b) invariant under the action of Weyl group W;. We use the symbol y for
the Harish-Chandra isomorphism of Z(g) onto U(h)*s». For a linear form A on
b, the Wj-orbit through 1 is denoted by [4] and define a character g, of Z(g) by

(@) = A(2)  (ze Z(9),
where A is extended to an algebra homomorphism on U(l)) with A(1) = 1. Note
that this definition is independent of the representative 4 of [A] and y; ; = xu,
if and only if [4,] = [4,].

Let A be a (g, K)-module finitely generated over U(g) and assume that each
K-isotypic subspace of A is finite-dimensional. The category of such (g, K)-
modules is denoted by U. For a W-orbit [A] in b* define A to be the
maximal submodule of 4 on which z — y;(z)-id is locally nilpotent for all
ze Z(g). Then A is decomposed as

A~ @ Ap (1.5)
(Aleb*/w,
Let p;; be the projection of A onto A, with respect to decomposition (1.5) and
put Uy = {4 eU|A = p;(A)}.
We denote the linear span of 4, over R by b} and decompose an element 4
in h* as A=Re A+ Im 1 along the decomposition h* = h¥ + \/?lb’,';. For a
4y -dominant, integral linear form p on b, F, stands for the finite-dimensional
irreducible g-module with highest weight u. We assume that the g-action on
F, induces a G-action. For 1ebh* with 4;-dominant real part Re A and 4;-
dominant linear form p on b, define two functors ¢ff},, and Y/ on the
category U as follows:

‘P[[ﬂuuj(A) = P[A+u1(P[1](A) ® F,;) for Ael,
‘/’[[4/111“](14) = P[A](P[uu](A) ® F:) for Aell.
One can see the following Proposition 1.1 in almost the same manner as the
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proof of Lemma 4.1 in [10]. For the problem of determining the embeddings
of discrete series of G into principal series, this proposition and Proposition 1.2
below allow us to reduce the problem to the case where the Blattner parameter
of the discrete series in far from the walls.

Proposition 1.1 (cf. [10, Lemma 4.1]). Let A be a linear form on b with
4y -dominant real part Re A and p a 4y -dominant, integral linear form on b so
that the g-action on F, lifts to a G-action. Then for (g, K)-modules X € and
Y e U, there exists an isomorphism

At A
Hom,, i (X, Y{4™Y) ~ Hom, x(@f2 n X, Y),
as linear spaces.

Proposition 1.2 (cf. [10, Theorem 1.2, Corollary 5.5]). Assume that h =,
and let A be in E, A the unique positive system so that A is A" -dominant and
u a A*-dominant, K-integral linear form on t, then

4
(P[[A]+u](nA) =Tty

Here n, is the discrete series with Harish-Chandra parameter 4. See §1.2.

Let P be a parabolic subgroup of G with Langlands decomposition P =
MyApN, as before. Since the Levi part L, = MpAp of P has the same rank as
G, we can take a Cartan subalgebra b of g contained in [ = Lie(Lp) ® C. Define
two categories Al and ', of Harish-Chandra module of L, and projection
Lrp.y as above. Though [ is not necessarily semisimple, but since [ is reductive
the definition goes through without change. For the finite-dimensional irreducible
g-module F,, let v, be a nonzero highest weight vector of F, and define Fu to
be the MpAp-cyclic subspace of F, generated by v,. Then we have an irreducible
Lp-module F,. By using this module, we define a functor “y{4" on U by

Lp'p[[f]“](A) = LPP[A](LPP[M,‘](A) ® (ﬁu)*)

We denote the functor y/i by SYli to distinguish two functors “yi}"*! and
LP(//[}""“]
(A
Next proposition tells us the relation of translation functors and parabolic
induction.

Proposition 1.3 (cf. [6, Theorem B.1]). Let notations be as above, then for
a Ay-dominant linear form A on b, a A7 -dominant, integral linear form p on b
and an Lp-module X € "W ;, ., we have

Y IndE(X @ 1y) ~ IndE(Eyf3(X) ® 1y).

We use these propositions later in §5.

2. Real simple Lie group of type G,

2.1. Structure of a Lie algebra of type G,. We keep to the notations in
the last section and specialize g as a complex simple Lie algebra of type G,,
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and g, as a normal real form of g. It is known that a noncompact real form
of g is unique up to isomorphisms. (cf. [3, Chapter X]).

For a Cartan decomposition g, = f, ® p,, we have t, ~ su(2) @ su(2), and
dim p, = 8. So, rank g = rankf =2, and we can take a compact Cartan sub-
algebra t, of go. The root system 4 of g relative to t is

{+ay, ta,, £(a; + ay), £Q2a; + oy), (30 + a3), £(30; + 20,)}.

Here, «, is the short simple root of 4, and «, is the long simple root of 4. They
satisfy the following relations:

o2 =3y =4, Caa3d=—1,  Cap0f)=-3.

Since £, ~ su(2) @ su(2), 4, is generated from two mutually orthogonal roots. So
we may assume that A, = {+a,, +(30; + 2a,)} without losing generality.

See Figure 1, and note that “rotation of angle n/3” is an element of W. Consider
the root space decomposition g =1+ .. ,g, as before, then there exists an
element E, of g, for each root a such that

B, E_)=2/la|, E_,=-E, 2.1)

—a

Moreover, we can take E.’s in the following way:

[Eio, Eq;]=E,;, (2.2)
[Eio. E{1]=2E,,, 2.3)
[Eio, E;;] =3E;,, (2.4)
[Esy. E_5 1] = Eq,. (2.5)

Here, E;; stands for E;, ,;,,. and E;’s are uniquely determined under conditions
(2.1)-(2.5) above, when E,, and E,, are given. From now on, E;;'s are assumed
to satisfy relations (2.1)—(2.5), and define H;;, H,, H, and a, by

Hij = [Eip E—i.—j]’
H1 =Eo + Eo 15
Hy,=E, +E_, .

a, = RH, + RA,.

: t
a, e : compact roo

Q)

0: noncompact root

Figure 1: The root system 4
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Then we see that a, is a maximal abelian subspace of p,. We equip af with
the lexicographic order with respect to the ordered basis (H,, H,) of a,. Relative
to this order, " is

{1y Ags Ay + A3, 240 + A3, 34, + A5, 34, + 24,5},
Here, A, and A, are linear forms on a defined through the conditions:
M(H) =0, Ay(Hy) =2, () = 1, 4,(fy) = =3,

Using this ¥*, we have the Iwasawa decomposition g, = f, @ a, @ n, as before.
For an element X of g, let X = #(X) + a(X) + n(X) be the decomposition
of X with respect to the complexified Iwasawa decomposition with f(X)ef,
a(X)ea, n(X)en, and put s(X) = a(X) + n(X).
If X is one of the root vectors E, (x € 4,), then according to Proposition
5.2 in [5], ¥(X), a(X), n(X) are given as in the following table.

X t(X) a(X) n(Xx)
Ey, 3Ho, %Hl —3(Hoy — Eoy + Eq,—y)
Eo 4 —3H,, %Hl 3(Hoy — Eqy + Eo —1)
Ey, $Ha, A, —3(Hy — Eoy + E5 )
E_, _, —1H,, 1, YHy, —Ej +E, )
E,, Eo 0 E,, —E,
E_, —E_,, 0 E, +E ,
Es, —E,, 0 Ey + Es,
E—3.—1 E—3,—2 0 E—3,—1 - E—3,—2

Define an automorphism u of g by

n T
u= (exp 1 ad (Ey; — EO,_1)>-<epo ad (E,, — E_z‘_1)>.

For this u, there holds u(H,,) = —H, and u(H,,) = —1712. Therefore, u induces
a linear bijection of t onto a. The linear forms 4,, 4,, «, and a, are related
through u as A, ou = —(20; + o), 4, 0u = 3a; + a,.

2.2. Structures of group and its minimal parabolic subgroup. Let G be a
connected, simply connected complex simple Lie group with Lie algebra g, and
G the analytic subgroup of G corresponding to the real form g, of g. The
Iwasawa decomposition of G corresponding to that of g, is G = KAN. Put

(f1)o = 1RH10 + R(EIO - E—l,o) + Vv IR(EIO + E—l,o)a
(t1)o=+/—1RH3;, + R(E3; —E_3 ;) +/—IR(Es, + E_; ),
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then f, = (f,)o @ (f,)o. For the structures of (f;),, j =1, 2, they are isomorphic
to su(2), and the isomorphims {;: su(2) - (f;)o, j =1, 2, are given as follows:

su(2) - (f,), (resp. (2)o)

V-1 0
( 0 _\/_—l>—>1/—1H10 (resp. / —1Hj3,)

0 1
<_1 0) ~Eo,—E_, (resp. E3; — E_; ;)

0 =1
<\/j1 0 )" Vv —UE o+ E_;,) (resp. / —1(E3, + E_3 _,)).

Then there exists a covering homomorphism ¢ of SU(2) x SU(2) onto K whose
differential is {; @ {,. For an element g of SU(2) x SU(2), the image of g under
o is denoted by g*. Now, by comparing the unit lattice {H €ty|exp H = 1}
of K with that of SU(2) x SU(2), we can see that K ~(SU(2) x SU(2))/D
with D = {1,(—1,, —1,)}. Here 1, is the unit matrix of degree 2. Put M =
{me K|Ad(m)|,, = id,,}. Note that the (d + 1)-dimensional irreducible su(2)-
module V; is realized on the space of homogeneous polynomials of degree d in
two variables. Using this realization for K-module p, which is isomorphic to
the exterior tensor product of V; and V;, and computing the condition Ad(m)ﬁj =
Hj,j =1, 2, for me K, we find that M = {1, m,, m,, m;ym,}. Here, m; and m, € K

are given by
) <<\/__1 0 (—\/—_1 0 Y
m; = 0 _\/?1 ’ 0 V1
= exp(y/ — 1n/2)(Hyo — Hay),

([0 =1 (0 —1)Y
\\uoo)’\1 o
n
= CXP<—§>(E10 —E_ o+ Es; —E_53)

Therefore M is generated by two elements m; and m, with m} =m? =1, m;m, =
mym;, and M ~Z/27Z ® Z/2Z. Next, define a character o, of M through
o, .,(m)=c¢ for i=1,2. Then, M=o,

£1,€2

1:€2

Lnle=t1i=12)}
Put P = MAN for M defined above, then we have a minimal parabolic

subgroup of G and consider principal series Ind§(a,, ,, ® e* ® 1y) for this P.

2.3. Structure of an irreducible K-module. Since f;, ~ su(2) ® su(2) and f ~
sl(2,C) @ sl(2, C), every finite-dimensional irreducible f-module is an exterior
tensor product of two finite-dimensional irreducible sl(2, C)-modules. So we first
explain some facts about irreducible sl(2, C)-modules.

Let X, Y and H be elements of sl(2, C) satisfying the following relations:

[H,X]=2X, [H Y]=-2Y, [X,Y]=AH.
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For (d + 1)-dimensional irreducible sl(2, C)-module (say V;), there exists a basis
{e¥|p=—d, —d+2,....d} of V; such that

H'egi’ =pegi)
d) (d
Xl = xWeld) (p=—d, —d+2,...,d)
Lo — ) @)
Y-e) = xp2,e,7,

with x{ = (1/2/(d — p)d + p + 2), where we regard e as 0 if p ¢
{—d, —d + 2,...,d}. Denote by (-,-) the inner product on V, for which
{e¥|p=—d, —d+2,...,d} gives an orthonormal basis of V,. Then (-,-) is
invariant under su(2) ~ \/TIRH +RX-Y)+ \/TIR(X + Y)

Now, p ~ V; ® V, as f-modules, where ® means an exterior tensor product.
Here,

gaz + gal+a2 + 92a|+a2 + g31,+az =~ V3 as fl'mOdUIcs’
8-30,-a, T 82, = Vi as f,-modules.

Put 47 = {a;, 300; + 22, }, and let A be a 4F-dominant, integral linear form on
t and V, a finite-dimensional irreducible f-module with highest weight A. Then,

VixV,®V,  for r=AHy) s =AHs,),

Vi@p~(V,® V3) ®(V,® V).
Now, we are going to give an irreducible decomposition of a tensor product
of two finite-dimensional irreducible sl(2, C)-modules. For two nonnegative inte-
gers m and n with m>n, V, ® V, is decomposed as follows:

Vm ® Vn =~ Vm+n @ Vm+n—2 @ o @ Vm—n‘ (26)
Let P™") be the projection of V,,® V, onto V,,,_,; in (2.6), and u{477,; a

highest weight vector of V,,,,_,; in (2.6) with length 1. Here, V,, ® V, is equipped
with an inner product for which {e{” ® e!”} is an orthonormal basis, and we
denote €I ® el” by eln”.  We define vectors uy"™) (w=m+n—2/—2,m+n—
2j —4,..., —(m + n — 2j)) through the following recursion formula:

(m,n;j) __ (m+n—2j)\—-1vy.,,(mn;j
uw - (xw J)) Y u(w+"21)‘

Then, u{»" is a w-weight vector of V,,.,_,; in (2.6) with length 1.

The weight vectors u™™) (j=0,1,...,m;w=—(m+ n— 2j), —(m + n — 2j)
+2,...,m+ n — 2j) are expressed uniquely in terms of the basis {e‘p';"’ of V,®V,
as

u&"'"‘”= Z Z(‘z,n;j)e%n) (Z(I,'Z'";j)EC).
ptq=w
By a straightforward calculation, we have P™"elm = z{mmdymmi — So the pro-
jection P™m) is determined if u™"™?s are explicitly described.

For the purpose of determining the projection P, defined in §1.3, calculate

Ut (s > 1), uf¥) (r > 3) under the conditions z&12; > 0, 23, > 0, then we
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have the following equalities:

. s+1+w s+1—w
u(‘:,1,0) _ s 4 oGl

2(S + 1) w—1,1 2(S+ 1) w+l,—1>

. s+1—w s+1+w
i = 20 Te6n 4 [T T Tl
2s+1) ! 20s + 1) bt

B0+ D+ 2)(r + G0 = JSir — 1+ w)(r + 1+ w)(r + 3 + w)et', ,

+/30r+3=wr+ 1+ w)r+ 3+ wet),

+ \/3(r +1—w(r+3—w(r+3+weld

+ /=1 =W+ 1 —w)(r+3+wed, _,,
S+ D+ DUl = — 3 +3—wr — L+ w)r + 1+ wel,

—(r+3=3w/r+ 1+ wel®, ,

Fr+343wr+ 1 —welrd

+ /30— 1= w)(r+ 1 —w)(r+ 3+ wetd; _,,

V80 = D+ D + 2ul3P = 30+ 1 —w)(r + 3 — w)(r — 1 + welld;

—(r— 143w /r+ 1 —welt® ,

—(r=1=3w)/r+ 1 +wel? _,

+ /30 =1 =w(r+ 1+ w)(r+ 3+ wetd, s,
V80 = Dr(r + Dul ¥ = — Jir — 1 —w)(r + 1 — w)(r + 3 — w)e!', ,

+ 30— 1—wr+1—wr—1+wel?

3 —1=w(r—1+wr+1+wed _

+/r =1+ w(r+1+w(r+3+wetds .

In the above formulae, the coefficient of e with ¢ < —s or g>s is 0.
Similarly, the coefficient of e/ with p < —r or p >r becomes 0.

3. Explicit expression of the differential equation

Since {e\)|p=—r,...,r;q= —s,...,s} is a basis of V,® V.~ V,, an element
f of CX(G) is expressed uniquely in the following form:
f(g) =3 cpulg)els, (3.1)
p.q
where the sum is taken for p=—r, —r+2, ..., r; g=—s, —s+2, ..., s and

the coefficients ¢,, are smooth functions on G.
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In this section, we give the differential operator @, explicitly, and rewrite
the condition 2,f =0 for fe C2(G) in terms of the coefficient functions c,, in
(3.1). Then we have certain systems of differential equations for c,’s, and they
are solved in next section.

3.1. Explicit description of the projection P,. In §1.2, we gave the para-
metrization of the discrete series. Since the present group G is the real form
of a simply connected complex Lie group, p is K-integral and the elements in

—

Z are all K-integral. Fix an element 4 of = and take the unique positive sys-
tem A% so that A is A*-dominant. Set Z, = {4 e E|4* > 4]} with 4] =
{oy, 30y + 20,}. Then Z, is a complete system of representatives for Z/~. The
positive system 4* containing 4} is one of the following 4]’s

A = {ay, 0y, 00 + 0y, 20y + 05, 30y + oy, 300, + 20, ),
Af = {oy + ay, —ay, op, 200 + oy, 3y + 205, 30y + ay ),
A;‘II - {_al bt 062, 30(1 + 20(2, 2“1 + az, °‘1 - az, 30(1 + az}.

Set r'= A(H,,) and s' = A(H;,) and put r = A(H,y), s = A(H;,) as before.
Through the isomorphism V,®p~(V,.® V;) ® (V,® V;), we identify these two
f-modules. In the rest of this subsection, we give the condition for A being an
element of = with positive system A4 (J = I, I, I1]), the Blattner parameter A
of n 4, the condition for A being far from the walls and the projection P,.

Case It A% =47
For A e t*,
A€ Z and 4% = A}
<r', s’ are positive integers with s —r' > 2 and s’ —r’ is even.
<>r, s are nonnegative integers with s —r >4 and s — r is even. (*1)

In this case, we have

Pu=130, + 20, A=A+ 0o, + a,.

+
Aj .

0: positive root

Figure 2: Three possible positive systems
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A is far from the walls<r >4, s >4 (with (x1))
P,=I® P®tD
Case II: 4% = 4},
For A e t*,
A€ E and 4% = 47,
<7, s’ are integers with r' —s'>2, r'<3s'—2 and r' — s is even.

<r, s are nonnegative integers with r —s >4, r < 3s and r — s is even.
(*2)

In this case, we have

Po=30y +ay, A=A+ a,.

A is far from the walls<r>7, s >3 (with (2))

P}. — P(r,3;1)®P(s.l;l) + P(r.3;2)® P(S,l;l) + P(r.3;3)® P(s,l;l) + P(r,3;3)®P(s.1;0)
Case III: A = 4],

For A e t*,

AeE and 4% = 4],

<r', s’ are positive integers with s’ > 1, r' —3s'>2 and r' — s’ is even.

<>r, s are nonnegative integers with r —3s > 8 and r — s is even. (*3)
In this case, we have

pp =20y, A=A —a,.

A is far from the walls<>r > 8, s> 2 (with (x3))

P,=P"32 Q@] + P30 ®]

3.2. Differential operator V. In view of Theorem 1.3 and equation (1.4),
we need to know the explicit form of the differential operator 2, = P, o V. Since
the projection P, is determined in the last subsection, here we calculate the
differential operator V.

For fe C2(G) and X €f,, Lyf is computed as follows:

d
(Lx)g) = flexp(—1X) g)l—o

d
= a(tl(exp(—tX))f(g))lmo

= —1,(X)f(9).
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where we denote the differential of t; by the same symbol. So the first term
of the right-hand side of Lyf = Ly f+ L.x,f is expressed in terms of t,.

Compute Lg, s by using the values of a(E;;) and n(E;) in the table in
§2.1, then we see that Vf is explicitly written as

8/67f= Y ®y(f),

i, el

where T = {(0,1),(0, —1),(1, 1),(—1, —=1),(2, 1), (=2, —=1),(3,1),(=3, = 1)}, and
®@,i(f)s are defined by

Boy(f) = —/3 V00 (P — 4+ 4L01)cp0eld) @ €2,
By _1(f) =3 (=D + q+4ZL0 1)c,pget D ® el
D, (f) ==Y g (=P —3q +4L5,)c el ® 5V,
D, (f)=Y,,(p+3q+4L_ 5 _1)Cc,esd ® e,
D, (f) =23, Q%110 — /r +2 = D)(r + P)cpz,)eld @ e,
D (f)=2),,RL 4 _1cp + \/(r —P)r + 2+ P)Cpin el ® el
d,,(f) = 2f Y pd QL31¢p + \/(s +2—q)(s+ g)cp4-2)e s @ el
Dy () =233,.02L 5 16— V5= D + 2+ 9)c, g42)eld @ D,

where &;; = L,

3.3. The equation 2,f=0: A;j-case. Here we assume that 47 = 47. In
this case, for fe C2(G), 2,f is expressed as

_ ) ,r3 ,151)
QJ_ Zj,p.q ajAI;qe;.;—Zj@uilsﬂ ’
where the sum is taken for j=0, 1, 2, 3; p=—r, —r+2, ..., r;, 4= —5,

—s+2, ..., s— 2, with nonzero constants o;’s independent of p, g, and smooth
functions 4Y’s on G.

This expression gives that the condition 2,f=0 is equivalent to the
equations

p=—r,—r+2,...,r

AQ = AN = 4@ — 4D — for
g=—s5,—s+2,...,s =2

3.2)

and functions AY) are given by
APV =4 /s —q&L_ 5 _1Cp + \/s+2—+q(4$01 —25+p+q—2), 42
AL = /s — gLy + D+ 30 — 45+ 2+ 4L11Cpgia
+2/r+2—p)r +p)s+ 2+ @)y 4r2s
AR =4 /s —q&L_ | _ycpg— /5 +2+a(p+3q+ 6 —4L5,)Cp 442
+2/(r — p)(r + 2 + p)(s — Q)Cpiaq

A(3)—«/S— q2s+p+q+4—4L, )y + 45+ 2+ qL31Cp g4z




574 Tetsumi Yoshinaga and Hiroshi Yamashita

In condition (3.2), we regard ¢,, as O if p¢ {—r,—r+2,...,r} or q¢
{—s, —s+2,...,s}

34. The equation Z,f = 0: Aj,-case. In this subsection, we calculate 9, f
with 4" = 4],. Composite P, with ¥ by using the results in §3.2, then we see
that 2, f is of the form

— (ij),,(r,3;i) (s, 1;j
2,/ = Zi.j,p.q BiiBoiuy > ® ug

where the sum is taken for (i,j)e {(1,1),(2,1),(3,1),(3,0)}; p=—r—3, —r — 1,
~r+3andg=—-s—1, —s+1,..., s+ 1, with nonzero constants ;s depend-
ing only on i, j, and smooth functions B{/’s on G.

In this case, 2,f =0 if and only if

Bi,"=0 for p=—r—1, ..., r+1,g=—s+1,...,s—1, (3.3)
B3V =0 for p=—r+1, ..., r—1;g=—s+1,...,s—1, (3.4)
BRV=0 forp=—-r+3 ...,r—3q=—s+1,.., s—1, (3.5)
B3R =0 for p=—r+3, ...,r—3 g=—-s—1, ..., s+ 1 (3.6)

In conditions (3.3)-(3.6), we regard c,, as 0 if p¢{—r, —r+2,...,r} or q¢
{—s, —s+2,...,s}
The coefficient functions B{ are defined as follows:

BRV =12/r+3—plr—1+pr+1+p6+1—qL 3 134

+r+3=pr—1+pr+1+pis+1+q)
X (2r—6s—3p+3q— 124 12%4,)¢p-3 441

+(r+3— 3p)\/(r +1+p+1—q(p+3qg—4+4L_;, _)c, g 4

—4r+3=3p)Jr+ 1 +p+ 1+ L1140
—4(r+3+ 3p)\/(r +1— P s+ 1 —q@QL  _1Cpi1,q1
+(r+3+ 3p)\/(r +1=ps+1+q(p+3g+4—4L5,)Cpi1,4+1

+Jr—1=pr+1—pr+3+pis+1—gq
X (—2r + 6s — 3p +3q+ 12— 1225 _\)Cpi3,q-1

+12/r—=1=p)r+ 1 —p)r +3+p)(s + 1 + Q) L3,Cps3.4415
BEV = —12/r+ 1 —p)r+3—pr—1+p)s+ 1 — QL 3 1Cp 341
+Jr+1=pUr+3-pr—1+ps+1+q

X (2r+6s+3p—3q+ 16 — 12%5,)Cp_3 441
Fr—143p)Jr+1-p+1—q(p+3qg—4+4L 5 _)cp 141
—4r =143 S+ 1L =D+ 1 + QL1 ¢ptgnr
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+40r—1=3p)/r+ 1+ p(s+1-9ZL 1 1Cpr1,41

—r=1=3p)/r+1+p+1+(p+3q+4 42511 001

+/Jr—=1—-pr+1+pr+3+ps+1—9q)
X (2r+6s—3p+3q+ 16— 12%, _;)Cpr3,q-1

+12/r—1—pr+1+p)r+3+p)s+ 1+ 9L31Cp3,4415

B =4 /r—1—pr+1=p)r+3—p(s+1—qL 3 _1Cp3,41
—Jr—=1=pr+1-pr+3—pG+1+9
XQ2r+2s+p—q+4—4Ly1)Cp_3,441
—Jr—1=pr+1-pr—1+ps+1-4q)
X(p+3q—4+4L_ 5 _)Cp1,4-1
+4/r—1=pr+1—pr—1+p+1+ L1140
+4/r—1-3p)r—1+p)r+1+ps+1—qL s _1Cpr1 41
—Jr—=1=pr—1+pr+1+p)(s+1+gq)
X(p+3g+4—42L,5,)Cpi1,911

+Jr=1+pr+1+pr+3+pGs+1-—gq)
XQ2r4+2s—p+q+4—4% _)Cpi3,41

+4r—14+pr+1+pr+3+p6+1+9)LsiCpisge1s
B = -4 /r—1—-pr+1—-pr+3-—pP6+1+9L 3 1¢p 3,4
—Jr—1=p)r+1-p)r+3—pis+1-gq)
X@2r—25+p—q—4%51)Cp-3,4+1
+Jr—1=pr+1—pr—1+ps+1+q)
x(p+3q—4+4%_, )

p—1,9-1

+A4/r—1=p)r+1—p)r—1+p)(s+1— 9L 1¢p1q01
4 Sr—1—pr—1+pr+1+p) s+ 1+ 9L\ _1Cpi1.4
—Jr=1=pr—1+pr+1+ps+1—gq)
X(p+3q+4—4L,1)Cpi1,4+1

~Jr=1+pr+1+pr+3+ps+1+q)

X(2r—2s—p+q—4% _1)Cpi3,4-1

+4Jr—1+pr+1+pr+3+p)+1—9)Ls1Cpi3q01-
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3.5. The equation 2,f = 0: A;,-case. In this subsection, we assume that
4% = 4}, and compute 2, f as before. Then we see that 9, f is of the form
Dif = Livipa ViiCraty > ® €G3,
where the sum is taken for i=2, 3; j=+1; p=—r+1, —r+3, ..., r—1 and
g=—s, —s+2, ..., s with nonzero constants y; depending only on i, j, and
smooth functions C. on G.

pqJ
In this case, for fe C?(G), it is necessary and sufficient for 9,f =0 that

Cgl)1=0 forp:_r+1""’r—'l; q=—-5 ..., 8, (37)
C& ;=0 forp=—r+1, ...,r—1 g=—s ..,5 (3.8)
CcR =0 for p=—-r+3, ..., r—3 qg=—s, ..., 5, (3.9)
C® =0 forp=—r+3 ...,r—3% qg=—s ..., s (3.10)

In conditions (3.7)-(3.10), we regard c,, as O if p¢{—r, —r+2,....,r} or q¢
{—s, —s+2,...,s}. Here the functions C{). are defined by

pai

CO=12/r+1—pr+3—pr—1+pL 3 _1¢, 3.,
—6/r+1=p)r+3—p)r—1+p)s— (s +2+ 9, 3402
—r+3p—D)Sr+1—p(p+3g—1+4Z_, e, 1,
—4r—=3p—UO)yr+1+pL_ _1Cpi1,q
~Jr—=1=pr+1+p(r+3+p)
X(2r—3p—3q+7—12%5 _1)Cpi3,4

CA _ =Jr+1—p(r+3—p)r—1+p

x (2r+3p+3q+7—12%5,)c, 3,
—4r+3p— 1) /r+1—p&L ¢,
—(r=3p—DJ/r+1+p(p+3q+1-4L2)cpn,
+6/(r—1=p)r + 1+ p)r +3+p)s+2— D+ Dpiz0-2
+ 12/t =1 =p)r+ 1L+ p)r + 3+ p)L31Cpe300

CO=—a4/r—1—-plr+1-pr+3—pL s 103,
+2/r =1 =P+ 1=pr+3 = p)s — (s + 2+ 9)cp3,042
+/r=1=p)r+1-p)r—1+p)
Xx(p+3q—1+4%_, _)c,y,
4 Jr—1—p)r—1+p)(r+1+p) L 1Cpirq
—Jr—1+p)r+1+p)r+3+p)
X@2r—p—q+1—4%, _|)Cps3,q
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C¥ . =—Jr—1-pr+1-p)(r+3—p)
XQr+p+q+1—4%L)c, 5,
+4/r—1=pr+1—p(r—1+p)Li1¢p1,
—Jr=1=p)r—1+p)r+1+p)

X(p+3g+1—-42L,,)c 41,

+2/r—14+pr+1+p)r+3+p)+2— g6+ 9Cpisg 2

+4/r—14+p)(r+1+p)r +3 + p)L31Cps3.4

4. Solutions for the differential equation

4.1. Preparation to solve the equation &, , f=0. In this section, we solve
the equation 9, ;,f =0 and determine the (a, M)-module structure of Ker 2, ,,
in §1.4. First we state the facts commonly hold for the three cases. For
fe C2(G), we write f=) , c,e%) as before, then

pa-pq
flgn)=f(g)  (V(g,n)e G x N)
< Cpe(gn) = cpe(9) (V(g,n) e G x N, Vp, ¥q). 4.1)

If fe C2(G) satisfies (4.1), then for X en,, ae A, ne N we have,

d
(Lchq)(an) = E Cpq(exp( - tX) ) an) |t=0

= ac,,q(a exp(—t Ad(a) "' X) n)|,—o
d .. d -1
= acpq(a) li=0 (" Ad(a)"" X € np).
So
(Lycpy)(an) = 0. 4.2)
Note that, for fe C7(G),
2, =0=2,f|lan=0. 4.3)

4.2. Solutions for the equation 2, , f=0: 4f-case. Here we assume that
4% = 4. 1In this case, by using (3.2) and the remarks in the last subsection,
we see that for fe C2(G),

feKer2, ,,
<=2,f=0 and (4.1)
<(4.4)-(4.7) and (4.1),
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with
(RLj, — 25+ p+q—2)c, 442 =0, 4.4)
VS = qQLa, + p 430y + 2/r + 2= p)r + )5+ 2+ 4)cprgra =0,  (4.5)

5+ 2+4(p+3q+ 6 = 2L )y 02 + 23/(r — P + 2 + P)(s — 9)Cpra g = O,
(4.6)

(2s+p+q+4—2L5)c,, =0, 4.7

on Aforp=—r, —r+2,...,r:9q=—5, —s+2,....,5—2.

From now on, unless otherwise stated, we consider the equations for c,,’s
such as (4.4)-(4.7) only on A, though c,’s are functions on G.

Now define two linear forms y; (j=1,2) on a through

p(Hy) = —(s +2), w(Hy) =r,
HolH) = —(s—r +4)2,  py(Hy) = —(r + 352,
and put for ae A,

fola) =Y aya*el) .
p

fula) = ata(els? + ¢7),),
f-(a) = a¥el — e ),

-r,—Ss

where the sum is taken for p=—r, —r +2, ..., r. Here a* = e*1°8@ and

‘= 2r2r=2)(r+p+2) (s+ns+r—2)(s+p+2)
? r=pr—p=22 (s=ps—p—1D(s—r+2)

Extend f,’s to G by f,(kan) = t,(k)f,(a) for ke K, ac A, ne N. Then f,’s are
elements of C7(G), and Ker 2, ,, is described in the following lemma.

(4.8)

Lemma 4.1. The functions f,(x =0, +, —) belong to Ker 2, ,, and form its
basis.  Moreover, Ker 9, ,, is decomposed as an M A-module in the following way:

Ker ;.,, ~ Cfy ® Cf, @ CF..
with
o = (01 (ayreon) ® e,
Cfs = (0<qys-miz,y) ® "2,
Cf- ~ (=1 ys-rnz, 1) ® €2

4.3. Proof of Lemma 4.1. In the following, we give a proof of Lemma 4.1.
In this proof, we use the symbol “(-),.,,” instead of “the equation () substi-
tuted x with y”. In case g # +s, we have (p + g)c,, = 0 because of (4.4),.,_,

and (4.7). So, if g # +s and p+q #0, then ¢, =0.
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Next, by using (4.5),.,-,, we have
V2@Lg, + p+ 35— 6)c, 3+ 2/(r + 2 — p)(r + p)-25¢, 5, = 0.
is also 0. That

Since p+s—22s—r—2>0, c,,_, =0 holds, therefore ¢

p—2,s
i8, ¢,s=0 for p=—r, —r+2, ..., r—2 Similarly, we have ¢, _ =0 for
p=—r+2 ..., r—2,r. By the above remarks we see that

Cpe =0 if (p,q)#(r,s), (—r, —s) and p+q #0.

In (4.4)-(4.7), c,, and c_, _; appear only in the following equations.

@Dy pairszy e QLg, —s+r—4)c,, =0, 4.9)
@.6) gtz 1€ (F+ 35— 2Lj )c, =0, (4.10)
@5 pgyrir—yy 1€ QLG —r —3s)c_, =0, (@4.11)
@ Dpgyrsgy 1€ (s—F+4—2L; )c_, _ =0 (4.12)

For real numbers x, and x,, put &(x,, x,) = ¢,(exp(x, H, + x,H,)). Then
we can rewrite (4.9) and (4.10) as

<—2—a——s+r—4>€',s=0,
0x,

(r +3s + 2i>5,s = 0.
0x,

These two equations imply that

s—r+4 r+3s )
xz N

Ers(xlﬂ'x—Z):cexp(_ 2 Xy — 2

with a constant ¢. Therefore for a€ A4,
¢a@=c-a" (ceC). (4.13)
Similarly ¢_, _, is of the form
¢, _s@=c"a"> (ae A, c Q). (4.14)
For ¢, _,’s, equations (4.4)-(4.7) give
4.7)p~ -, e, (Lg, —s—2)c,_,=0, 4.15)

(4.5),_pn ic.,

S+ PWLi, =Py, S+ 2=P)r + P +2 = Py pory =0, (416)
(4.6),~_ 2. ie.,

VS =PWLi, + Py + S =P+ 24P+ 24 P)Cprrprzy =0 (417)
that

By using (4.15),., and (4.17),.,, we see, as in the case of ¢

rs»°
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¢, —(a)=c"-a" (ae A, c"€C), 4.18)

and we can determine c, _,’s inductively on p, by means of (4.16) and (4.18).
The result is

p.-p = %pCr —r

with o, defined in (4.8).

Now, define f,, f., f_ as in §4.2, we can conclude, by the above arguments,
that Ker &, ,, is contained in the linear span of f,’s. Conversely, we can easily
verify that f.’s actually give elements of Ker 2, ,, and that they are linearly
independent.

Finally we consider the M A-module structure of Ker &, ,,. For the repre-
sentation 1, it is easily seen that

_ tsmpe
Tilmy)ely) = (/= 1Py, T(my)ely) = (— 1)rsTrmaRelr)
So we have for ke K, ae A, ne N,

(m; - fo)(kan) = fo(kanm,)

=f0(km2am;1nm2)

= 1,(k)T;(m2)fo(a) (. m3'nm, € N),

and
T(my) fola) = Y., a,a*it,(my)el
= T, aan (- )
=Y a_,a* (=192 - (note that a, =oa_,)
=(—1)rIY o ate’)
= (=192 f(a),
sO

(myfo) (kan) = 7,6} (= D2 o(@)
= (= D9 (kan)

Therefore m,- fy = (—1)**92f,. By similar computations, we see that M-action
on Ker 2, ,, is given as follows:

my - fo = (=1%o, myfo =(=0)"2f, mpf = (—1)("_"’2f—,(4 19)
myfo=(— ])(r+s)/2fo» my-fo = fi, my f_=—f_.

Also we have, for a, age 4, ke K, ne N,
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(ao fo) (kan) = fo(kanay)
= fo(kaagag'nay)
= 1;(k)(aaoyfo(1) (" ag'nag e N)
= ab't,(k)a*fo(1)
= ag'fo(kan),
SO
a-fo = a*y.
Compute a-f, and a-f_ similarly, we see that
afo = a*f,, a f, =a"f,, a f_ =a*f_ (a € A). (4.20)

By (4.19) and (4.20), we find that three subspaces Cf, (x =0, +, —) are MA-
invariant, and their MA-module structures are those given in the lemma.
Thus we have completed the proof of the lemma.

4.4. Solutions for the equation 2, , f=0: 4;,-case. Here we give explicit
form of Ker 2, ,, in case 4% = 4. First we prepare some symbols. We use
the symbol “u =v” for “u = v (mod 4)”, unless otherwise stated. Define [m; n]
for two integers m, n with n >0 by

[m:n] = 1 ifn=20
T T m -4 ifnx1
and put
-1 (r+s—p—q)/4 r . S 1 =
A \/<%(r—p>> (0g)  Trramres
Pq

+s—2—p—q 1 1 =
(—1)r+s=2 )/4\/?<%(rr—p)>'<%(ss—q)> fp+g=r+s—2

Next, set linear forms y; (1 <j<5) on a as in the following table.

W p()) p(H;)

Uy —(s+3) r—3

Ho —(s+3) —(r—=1
Us —3r+s+4) —3(r —3s)
Ua —3r+s+4) r—3s—4
Hs —3r—s+4) —3(r + 39)
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Finally, for ae A define f; ,(a) as

Ji,0la) = Z qua”le(pr;)’

ptq=r+s

Jiala)= Y Bpga"ieyy,
ptq=r+s—2

¥ [3s —r+2;(r + 3s — p — 3q)/4]

H2p(rs) if =0
b= 47T PrBas 23— 60+ 35— p— 3qyA1 " nres
2,0l4) =
i [3s —rilr+3s — 2 — p— 39)/4] a2y ifr+s=2,
piae2 P35+ 3r — 8 (r + 3s — 2 — p — 3q)/4]
fz,i(a)
( [(B3s—ri(r+3s—2—p—3q)/4] ar (el +e) ) il r+s=0

p+q=2,p+q>0 pa [3S+3r_8’ (r+35_2_17_3q)/4]

[3s—r+2;(r+3s—p—3q)/4]
pta=0p+az0 | [35+3r—6:(r+3s—p—3g)/4]

a2 (el + e _ ) if r+s=2,

J3.0(a)
[25—2;(r+s—2—p—q)/4]u() .
3,(rs f ,
pradees P2 Gt s—2 - po gt e NS
: [28; (r +s—p— q)/4]_ a“3e‘p’;’ if r.s odd,
ptrqg=r+s q[zr - 4» (r + s — P - ‘1)/4]
fs,i(a)
[2S~(r+5—p_q)/4] u (rs) (rs) :
ey 4 elrs) fr,
p+q=r¥s,p+q=0 P2r—4 ("+S—I7-‘l)/4]a (epq = q) RS oeven
ﬂ [28—2; (r+S—-2—P_‘1)/4]auj(eg;)ie(_rsp) _q) if .5 odd,
ptq=r+s—2,p+q=0 b [2"-6, (r+s_2_p_‘”/4] '
f4‘o(a)r
g 520452 p ) =5 +p+q 462
prasres—2 o [6s—2:(r+3s—2—p—3q)/4] "

if r,s even

[2s:(r+s—p—q/4llr—s+p+q—4(s—q)2]
ptq=r+s . [6S7 (r + 3s — pP— 3‘1)/4]

Mg ,(rs)
a epq

if r,s odd,
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f4,1~£a)

L

5.2

8 [2s;(r4+s—p—q)/4]l[r—s+p+q—4 (s—q)/2]
pra=risptazo [6s; (r+3s—p—3q)/4]

Ra(p(rs) (rs)
a 4(epq i-e-p,-q)

if r,s even

[2s—2;(r+s—2—p—q)/4l[r—s+p+q—4(s—q)/2]
prasrts—2,p+q20 [6s—2: (r+3s—2—p—3q)/4]
at (el +e) _ )
if r,s odd,
a) = a"s(efy) £ e _)).

Extend these f; ,’s to G by

Sixlkan) = 1,(k)f; (@) (ke K,ae A,neN).

Then, f;,’s give functions in C?(G). The explicit form of Ker &, ,, is as in the
following lemma.

Lemma 4.2. Suppose that i is far from the walls, then the above f; s form

a basis of Ker 2, and the subspace Cf;, of Ker 2, is MA-invariant. As
M A-modules

with

Cfiy~o0,.,®e"

€1, &, 1 listed in the following table.

(Js *) & & wo| Gs*) & € I
(1, 0) (_ 1)(r—S)/2 (_ 1)(r+S)/2 U (]’ ]) (_ 1)(r—8+2)/2 (_ 1)(r+S)/2 Uy
(2,0 (=1y (=D, [, +) | (=1 (=D,
2 =) [ (=0T (=) | (3,0) [(= DR (— 1yt H3
G, )| (=pronm (=1 |us |G =) | (=1 (=™t H3
4,0 [(=Dr* 22 (=)™, |4 +) | (=12 (=1 Ha
@ =) | (=D (=1 g (5, +) | (=12 1 Hs
(5, =) | (=" -1 Hs

4.5. Proof of Lemma 4.2. Here we give a proof of Lemma 4.2.
Keep (4.2) and (4.3) in §4.1 in mind and solve equations (3.3)—(3.6) with

respect to Ly c,,’s. Then we obtain



584 Tetsumi Yoshinaga and Hiroshi Yamashita

L ¢ _1 [r+24+pr+4+pr+6+p)(s+2—9)
Hipa = 4 r—4—-p@r—-2—-pr—-—ps+9q

1
X(r—s—p—q—3)Cpi6,4-2+ Z(r +3s—p—q+ 8, (4.21)

forp=_r, _r+2~ ey "—6§q=—5+2, _S+4, ceey S,

Lo L frt2-p+4-p0r+6-—pG+2+49
H,Cpa = 3 r—4+p@r—2+pr+ps—q

1
X (r —s+ p + q— 4)cp—6,q+2 + Z(r + 3s + 14 + q + 8)cpq (4'22)

forp=—r+6, —r+8 ...,r;9g=-s, —s+2, ..., s—2,

3 fr+2+pr+4+p
MaN (r—2-p(r—p

1\/{r+2-—p)(s+2+q)

1
Lj,c r=s—pP—q—HCpiaq— 5P +390cy,
2

- : 3 —3g)c,- , 4,
4 Crpe—q TP 4.23)

for p=—r+2, —r+4, ..., r—4 q=—s, —s+2,...,5s—2,

3 fr+2-pr+4—p) 1
LHszq—;\f(r_2+p)(r+p) (r=s+p+q=4c)a,+5(p+ 390,

_1\/(r+2+p)(s+2—q)
4 (r—p)s+q

for p=—r+4, —r+6,...,r—2qg=—-s+2, —s+4, ..., s

“(r+3s—p+39cCpi2,4-2 4.24)

In order to obtain eigenfunctions of the differential operator Lj , we define
Vrg @pg ANd Yy, as

:\/(r+2+p)(r+4+p)(r+6+p)(s+2—q)
(r—4—p(r—2—p)r—p)s+9)

yl"l

Ppg = Cpg t VpgCpt6.9-25
Ypg=(r—5+p+a@Cp = Vplr =5 —p =4 = HCpig,4-2
then (4.21) and (4.22) imply that ¢,, and y,, satisfy the equations
Li, 0pg=30r + s + 4@y, (4.25)
Li Ypq = (s + )Y, (4.26)

for p=—r, —r+2, ..., 7r—6,g=—5+2, —s+4, ..., s

Now put I={(r,s),(r—2,5),0r—45),(=r, =5),(—=r +2, —s),(—r+4, —s)}
and Z,,(x,, X;) = ¢ exp(x; H, + x,H,)) for x;, x;€R. Then using (4.25) and
(4.26), and calculating as in the argument deriving (4.13) in the proof of Lemma
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4.1, we see that for (p,q)¢1, ¢,, is of the following form:
qu(xls x2) = upq(x2) exp(_(s + 3)xl) + qu(x2) exp(_ %(r + s+ 4)x1)’ (4‘27)

where u,’s and u,’s are smooth functions on R satistying

upq +ypqup+6,q—2 = Oa (4.28)
(r —S+p+ q)qu - ypq(r —S—pP—4q— 4)vp+6.q—2 = Oa (4-29)
for p=—r, —r+2 .., r—69g=-s+2, —s+4,...,s

As a next setp, we determine the functions u,,, v,, in (4.27). By means of
(4.23), (4.24), (4.28) and (4.29), we can deduce the following relations.

() If cpgs €po2,q+2 and c,.q, can be expressed in the form of (4.27), then

, 1 I [r+2-p)s+2+q)
Up, = i(p + 3q)u,, + 3 P yR— (2r—p—3q9—6)u,_5 442, (4.30)
1 1 [(r+2—-p)s+2+9q)
L= = - = “(r — . 4.31
qu 2(p + 3q)qu 2 (r + p)(S - q) (r 3S + p + 3Q)vp—2,q+2 ( 3 )

(i) 1If ¢pp Cpsz,q-2 and c,_, , can be expressed in the form of (4.27), then

, 1 1 [r+2+p)(s+2—gq)
Uy, = E(p + 3q)u,, + 3 =G +a @r+p+ 39 = 6)upiz,4-2,
4.32)
1 1 (r+2+p)(s+2—9)
L= —— 3 — = ‘r—3s—p— .
qu 2(P + q)qu 2 (r — p)(S + q) (r 3S p 3q)vp+2,q—2
(4.33)

From these four equations, we can derive the following differential equations
for u,, or v,,:

Upg + 2up — (r — )(r — 3u,, =0, (4.34)
4vp, + 80,y — (r — 35 — 4)(r — 3s)v,,, = 0, (4.35)
for (p,q)eT’, with
I'={(p.q)l—r+4<p<r—6 and —-s+2<qg<s}
U{(pg)l —r+6<p<r—4 and —s<q<s—2}

Define linear forms yu; (1 <j<4) as in §4.4 and solve equations (4.34) and
(4.35). Then we see that c,, ((p,q)€T) is a linear combination of a*/ (1 <j < 4).
By using (4.21)—(4.24), we can conclude that

(*) ¢, is expressed as a linear combination of a* (1 <j<4) if (p,q)¢L

Now we determine the form of c,, with (p,q)el. First we consider ¢,_, ;.
By eliminating c,, from the equations B2 | = 0 and B!}, , = 0 in §3.4, we get
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\/%(6L,~,| —r—=35—20)c,_4=~/r—1Q2L5, +r+ 35— 8)c,5 5. (4.36)

Combining this equation with the relation B39 ., =0, we see that c,_,  is also
a linear combination of a* (1 <j<4) if r #3s — 2.

In case r = 3s — 2, from the equations B39 ., =0 and B39, , =0, we can
deduce that c,_, ((a) (a € A) is expressed as a linear combination of a* (1 <j < 4),
x,a"* and x,a*> with a = exp(x,H, + x,H,). Write C,_4,s as a linear combina-
tion of those terms and carry it into each of the equations (4.36), B39

(4.21) and (4.24), then we find that

s+1 & 0’

B

(¥x1) c¢,_4, is a linear combination of a*/ (1 <j < 4) even if r = 35 — 2.
By similar arguments, one can see that

(*%2) c_,1q.-5» C—35 and c_,,, _ are also expressed as linear combinations of
at (1 <j<4).

In the calculation of ¢,_, ; in (++2), we may use four equations B®Y ., =0,
B\,-; =0, (4.21), (4.24), instead of (4.36), BP9 ., =0, (4.21) and (4.24) in the
case of c,_4 .

For ¢, and c_, _;, we find that they are linear combinations of a* (1 <j < 5),
by solving the equations B39 ., =0, B2Y,, =0, B39, ., =0 and
B2, 41 =0. Here ps is defined as in the last subsection. By virtue of this
fact, (), (*+1) and (+#2), fe€ Ker 2, ,, can be written in the form:

5

flay= ) afaterd + Zl (oParelr™ + o) _ aties) ), (4.37)
p.q,J =

for ae A with o{)e C. For the first term in the right-hand side of the above

equation, the sum is taken for (p,q) # (r,s), (—r, —s) and j =1, 2, 3, 4.

Finally we compute the coefficients oY) in (4.37). In general, by using
B+, =0, we may express af, . (resp. ol _,) in terms of a) (resp. a¥_,)
and describe af’,, by o), ., and o, _, ,,. By (4.30)-(4.33), we can derive a
formula giving a relation between oY) and af), , ,. and describe a¥},, , in
terms of a‘;} for almost all (p,q). For exceptional (p,q)’s, we can use other
relations such as (4.22).

Calculating the coefficients al) by means of the above strategy, we see that
the functions f; , defined in §4.4 actually form a basis for Ker &, ,,. For the
MA-module structure of Ker 2, ,,, by similar arguments to those in the last
part of the proof of Lemma 4.1, we see that the subspace Cf; , is an MA-module
described in the lemma.

Now the proof is completed.

4.6. Solutions for the equation 2, , f=0: 4;,,-case. Here we will specify
Ker @, ,, in case 4% = 4f;;. We use the symbols = and [-,"] in the same
meaning as in §4.4. First define linear forms u, and p, on a through
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(A = —(r—s+2)/2,  p(Ay)=(r+3s—2)2,
pa(H) = —(r—s+2)2, pp(Hy) =—(r+3s+2)2

\/<l ' ><1 ’ ) ifp+q5r+s
ir—p)\36— 9

1/ r ; | )
\/;<%(r_l’)><%(8—q)> ifp+rg=r+s—2.

For ae A, put f(a) (i=1,2:j=0,1) as follows:

and set

ﬁpq =

fiola) = +Z . (— ])(f"’s_p_q)/“ﬂpqa”leg;)’
ptq=r+s

fll(a)= . Z+ 2(—1)"*s‘z"’_‘"/“qua"'e},,’;’,
ptq=rt+s—

_ [r+3s—2—p—3q(r+3s—p—3q)/4]
— —_1)e /2 u2 (rS)’
J20(@) ,,+qZ§:r+s( ) Bra [2r + 6s — 2;(r + 3s — p — 3q)/4] @Cra

_ [r+3s—2—p—3q;(r+3s—p—39)/4]
— —1 (s q)llf v M2 (rS).
L T T Ty i e g 1175 R

Extend these f;/s to G as
Sijlkan) = t,(k)f;;(a) (ke K,ae A.ne N),

then f’s give elements of CX(G). The structure of Ker &, is given in the
following lemma.

Lemma 4.3. Suppose that i is far from the walls, then the functions f;;
defined above belong to Ker &, | and form its basis. Moreover the subspace Cf;;
of Ker % is M A-invariant and

A ly

Cfj~oa, ., Q" as M A-modules

with ¢, ¢,, p listed in the following table.

i, j) & & n (i, ) & &y u
(1,0 (— 1)(r—s)/2 (— 1)(r+s)/2 1, (1,1 (— l)r—zs“ (— 1)(r+s)/2 Uy
(2’ 0) (___ ])(r—.\')/Z (_ l)r Uy (2’ l) (_ 1)!%'§+1 (_ ])r+1 Ly

4.7. Proof of Lemma 4.3. In this subsection, we give a proof of Lemma 4.3.
Keeping (4.2) and (4.3) in mind, we can deduce the following equations
(4.38)—(4.41) from equations (3.7)-(3.10) in §3.5.
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Lec _ L Jr+2+p(r+4+p)(r+6+p)
Hipa = 2N r—4—p)(r—2-p)r—p
1
x s+ 2= 0)s + Deprgz + 50+ 4+ 2)cp, (4.38)
for p=—r, —r+2, ..., r—6,q=—s, —s+2, ..., 5
Lo o =1\/(r+2—p)(r+4—p)(r+6—p)
Hora = o\ r—4+p(r—24+p)(r+p
1
X /5= (s + 2+ 9)Cpm6.402 + 5 — 4+ 20y (4.39)
forp=—r+6 —r+8 ..., rq=—-5 —5+2,...,5,
1 r+2—p 1
Liz,Cp = 5\/r—+—p_.(r +4 =P =24 P)Cpoaq + 5P+ 39)cy,
3 r+24+p
- 5\/‘77‘(5 +2—q)(s+ q)Cpi2,4-2 (4.40)
for p=—r+4, —r+6, ..., r—2,qg=—-5 —s+2,...,5

1 r+2+p 1
Li,Cpe = 5\/ﬁ'(f + 4+ P = 2= P)Cpia — 5P+ 39)Cp

3 r+2-—
- i\/—#(s +2+q)(s—q)cp2,4+2 (4.41)

forp:_r+2v —r+47 ey r_4;q=_s, _S+2, ey Se

First, as in the proof of Lemma 4.2, we find eigenfunctions of Lz . For
this purpose, define y,, @, ¥,, as

_ r+2+p)r+4+pr+6+p
Tr r—4—pr—2—p+p

Ppqg = \/ s+ qcpq + yp\/ s+2— qcp+6,q—2’
wpq =V s+2— qcpq — Yo/ S + qcp+6,q—-2’

for p=—r, —r+2, ..., r—6,g=—-s5s+2, —s+4,...,s. By (438) and (4.39),
it can be seen that ¢,, and y,, satisfy the equations

b

Li, @py = 3(r + 5 + 4 0p,, (4.42)
L Wpg = 30 — 5 + 20, (4.43)

Let I, I' and ¢,, be as in the proof of Lemma 4.2. Then, by (4.42) and
(4.43), we see that if (p,q) ¢ 1, ¢, is of the following form

Cpa(X1, X3) = Upg(x;) exp(— 3+ 54+ 4)x,) + v,,(x3) exp(—i(r —s + 2)x,), (4.44)
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with smooth functions u,, v,, on R. By means of the equations C{) ;=0,
for (p,q,j) = (£(r — 1), £(s — 2),1), (£(r — 1), £5,1), (£(r — 3), £s, = 1),
(£(r —3), £s,1) and CQ)_3,,; =0 in §3.5, we see that Cp 1s expressed as in
(4.44) for all p, q. Using (4.40)—(4.43) again, for the functions u in (4.44),
we obtain the following equations:

g’ UP‘I

,_ 1 jr+2+p)(s+q

M2\ -ps+2—9q)
1\/(r+2+p)(s+2—q)
2 (r—p)(s + q)

1
(r—=3s+p+3q—8upip -2 — E(p + 3q)u,,

1
r+3s+p+39—2)vp45,4-2 — §(p + 3q)v,,
(4.45)

for p=—r+4, —r+6,....r—2,q=—s+2, —s+4, ..., s—2

. r+2—p)s—gq) 1
e ™ r+pGs+2+4q 3= 3= By ¥ 5 (P 30)uy,

\/(r+2 P)s+2+q)
(r+p)(s —q)

1
( + 3s — D — 3q - 2)vp—2,q+2 + i(p + 3q)qu
(4.46)

for p=—r+2, —r+4, ..., r—4 g=—-s5, —s+2, ..., s—2.

As in the case of Lemma 4.2, derive second order differential equations for
u,, or v,, from (4.45) and (4.46), and solve them. Then we see that if (p, q) ¢ I,
Cpo(a) is a linear combination of a*/ (1 <j < 4), where p;’s are defined as in the
following table.

u u(A,) u(H,)

I —3r—s+2 3(r+3s—2)
Ha —dr—s+2 —3(r +3s+2)
i —4r+s+4) 3(r —3s — 8)
Ua —3(r+s+4) —30r—3s—4)

By the equations CZ),_;, ;-2.1 =0 etc. used above, we find that
(**) c,,(a) is a linear combination of a* (1 <j < 4) for all p and gq.

According to (%), write ¢,’s as a sum of a*’s with complex coefficients and
calculate the coefficients as in the proof of Lemma 4.2. Then we can conclude
that f;'s defined in §4.6 form a basis of Ker 2, ,,. In the calculation, we may
use (4.45), (4.46) and C?,,,, =0 mainly. Note that the terms containing a*>
or a*+ always vanish.

The MA-module structure of Ker &, ,, is determined in a similar way as
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in the proof of Lemma 4.1, and we obtain the results stated in Lemma 4.3.
This completes the proof.

5. Main result

Applying Theorem 1.3 to Lemmas 4.1-4.3, we can determine, into which
principal series representations, a given discrete series can be embedded as a
(g, K)-module. Before stating the results, we prepare some symbols.

Define subsets =, of =, J =1, 11, 111, as

E,={AdeE|4* = 43},

where 4% is taken in such a way that 4 is 4*-dominant. For AeZ,, let 4,
be the unique element in Z,NW-A4, and set n; =n,. Then n; n; and n;y,
are all the discrete series with the same infinitesimal character y, defined in
§1.5. Let W’ be the Weyl group of ¥ and §, (resp. §,) the reflection with respect
to A, (resp. 4,). The unique ¥*-dominant element in the W’-orbit of Aou™!
is denoted by 4. We have A =(5,5,)>(4ou""). Recall that r' = A(H,,) and
s’ = A(Hj,).

We can rewrite the results in the last section by means of Theorem 1.3 and
obtain the following theorem describing the embeddings completely.

Theorem 5.1. Let P be the minimal parabolic subgroup of G defined in §2.2
and assume that A € E,. Then for any J, &, ¢,, and p€ a*, we have

dim Hom,, x(n;, Ind§ (s, ,, ® e* @ 1y)) < 1.
The equality holds if and only if

u=5A4 and (e, ¢,)eSJ,5) with an e W'(J),

where W'(J) and S ,(J, §) are subsets of W' and {41} x {41} defined respectively
as follows:

W) = {5,,5,5,),

SA(II 1 { ( (r +5')/2 ( l)('l_s'+2)/2), (( _ l)(r’+s‘+2)/2, i ])}’
S J 3 { )r ‘+1 ( )(r'+51,/2)} /0" J — 1
A( »Sl - { 1)(r +5)/2 ( r +l),((_1)(r’+5'+2)/2’ '_’f‘l)} fOV J — 11’
— ])r l)(r‘—s‘+2)12)’ ((_ 1)r'+l’ + 1)\ fO" J=1I
J,5,) = !
AW 2 { )(r —s5')/2 ( )r +1)’((_1)(r'—s’+2)/2’(__])r')} for J - III,
S .(J.5,3,) ={ 1), (= )22y for g = [, 11,

SA(J,5,8,) = {((= N *22 4 1)} for J =1, Il
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Remarks. (1) The number of the embeddings of n, into principal series is
three, thirteen or four according as J =1, Il or III.

(2) Note that W'(I), W'UIl) < W'(I), S,(,5,) < S4(IL3§,) and that
S,(I1,5,) = S,(I1,5,). Then we find that the discrete series n,; is embedded
into all the possible principal series into which =, (J = I, I, I11) can be embedded.

Proof of Theorem 5.1. For the case where the Blattner parameter 4 of m,
is “far from the walls”, apply Theorem 1.3 to the results of Lemmas 4.1-4.3,
then straightforward calculations give the statements in the above theorem. In
that argument, we note that every discrete series representation of G is self-
contragredient.

Next we consider the “not far from the walls” case. We keep to the nota-
tions in §1.5. Since g, = Lie(G) is a normal real form of g, the maximal abelian
subspace a of p is a Cartan subalgebra of g contained in [ and the positive
system ¥* is taken for 47. Put g=3%Y, 4.4, then p is ¥*-dominant and
g-action on F; can be lifted to a G-action. The same facts hold for the linear
form 4p.

The infinitesimal character of n; = n 4, with respect to b is x,3;. For g€ M
and p € a*, the principal series Indf(c ® e* ® 1) has infinitesimal character x,.
Therefore, 7, is embedded into Ind$(c ® e* ® 1) only if u =351 for §e W'

For 6e M and §e W', we find that

5(i+ap s(i+ap
LP'//{;{Z] Mg @ eS(1+49) ~ g @ 54, (5.1

by noting that M acts trivially on the space spanned by a nonzero highest
weight vector of Fy;;. Together with Proposition 1.1-1.3, relation (5.1) yields

Hom,, (7, Ind§(c ® 7 ® 1))

G [5-(A+45)] §(A+4p
~ Hom,, g)(m,, Ind,,(""t//[;/]] o ®@ ¥4 ® 1y))

A

~ Hom, (. “y!5"“"Y(Ind§(c ® ¥ 1*4P @ 1))

~ Homy, )(%0{Th4(ms). (Indf(0 ® 714 @ 1))

~ Hom,, x(7 4,+4,,, Ind$(0 ® €149 @ 1)), (5.2)

where p; =3 ,car %

Let A, be the Blattner parameter of the discrete series n;, then the discrete
series m 4, .4, has Blattner parameter i, + 4p, satisfying the condition for being
“far from the walls” described in §3. So, relations (5.1) and (5.2) and the result
for “far from the walls” case show that for o, . € M and §e W/,

dim Hom,, ,(n,, Ind§(a,, ,, ® 7 ® 1y)) = 1
<>dim Homy x\(7; 14,,. Ind§(a, ., ® ST @ 1)) = 1

<5(A+4p) =5 (A, + 4p,)” and (e, ;) € Sypq,(J,5) with an § e W'(J),
(5.3)
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where S,.,4,(J,5) and W’'(J) are defined as in the theorem. Note that
(A + 4p)); = A; + 4p,, that A(H,y) = (A4 + 4p;)(H,o)(mod 4) and that A(H;,) =
(A4 + 4p;)(H;;)(mod 4). Then one gets S 4+4p,J,§) = §4(J,§). Since
(Ay + 4p;)" = A + 4p is regular, the equation §-(A + 45) = §'- (A, + 4p,)” implies
§=3. Then the statements of the theorem immediately follow from (5.3). Thus
the proof is completed.

6. Knapp-Wallach’s embeddings

6.1. Szegd mapping S,,. In their paper [5], A. W. Knapp and N. R.
Wallach gave certain (g, K)-homomorphisms of some principal series repsentations
onto discrete series for semisimple Lie groups. Here we apply their result to
the group G of type G, and in the next subsection compare it with our Theorem
5.1.

Let g be a complex simple Lie algebra of type G, as before. For A€ %,
define 4%, 4}, 47, and A as in §3. We introduce the notion of “fundamental
sequence”.

Definition 6.1. A sequence (f;, f,) of positive noncompact roots is said to
be fundamental if it satisfies the following two conditions.

(i) The root B, is a simple root in 4%, and B, and B, are strongly
orthogonal.

(i) For yed,, define B(y) as the first f; in (B, f,) such that y is not
strongly orthogonal to f;. Then one of the following (ii-a) and (ii-b) holds:
(ii-a) (B = Iy,

(i-b) [ <yl and y—3B(y) e 4.

Note that the existence of B(y) in (ii) is assured since Rf; + Rf, = \/—~1t3.
For the definition of fundamental sequences in case of a general semisimple g
and the existence of fundamental sequences, see [5].

For a fundamental sequence (f,, ,), put

Hy =E;, +E,,
Hy,=Ey+E,
(aq)o = RHA,I + RHA,Z’

where E(f € 4) is the root vector defined in §2. By Definition 6.1, (a4), is a
maximal abelian subspace of p,. Equip (a,)§ with the lexicographic order with
respect to the ordered basis (H 15 H 1.2)- Let ¥, be the system of the restricted
roots of g, relative to (a,),, and (¥,)* the set of all positive elements in ¥,.
Take a Lie subalgebra (n,), of go as

(o = Z (840>

ne(¥)*
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where (g,)o = {X € go|[H, X] = u(H)X(VH € a4)}. Then we have an Iwasawa de-
composition g, = fo ® (a4)o ® (n4), of g, and the corresponding decomposition
G =KA/N, of G.

Let M, be the centralizer of 4, in K and t, the irreducible representation
of K with highest weight A. The representation space of 7, is denoted by V;.
Take a nonzero highest weight vector ¢, of V, and define U, to be the M ;-cyclic
subspace of V, generated by ¢,. Then we have a representation g, of M, on
U, defined by

a;(m) = Ta("’“u, (meM,)
The representation o, is not always irreducible, and let

a@d), U, =pUy (6.1)
J

J

be an irreducible decomposition of (a;, U,).
Now we introduce two function spaces C;7(G) and C;°(K) as follows:

C2(G) = {[:GSV,If(kg) = u(fl9)  (V(k.g)e K x G)},
C2(K) = {f: KS U, | f(mk) = a,(m)f(k)  (¥(m, k) e M4 x K)},

The definition of C?(G) is the same as that in §1.3. For a linear form v on
a,, we extend each function f in C(K) to G in the following way:

f(nak) = a*f(k) (neNyjae Ay keK).
Then G acts on these function spaces by the right translation:

(9-N)x) =fxg) (9. x€0)

We denote this representation of G on C*(K) by W(o;,v). For each ¢ in
(6.1), the G-representation W(c{", v) is defined in the same way. Note that the
representation W(a{’, v) is equivalent to the principal series Indj (0’ ® e’ ®
ly,) induced from the minimal parabolic subgroup P, = M, A4 ,N,, where pt =
$Y uew,r b In the following, Ind§(s,, ,, ® e ® 1y)(o,, ., € M,vea*) is de-
noted by Wy(a,, .,,v). Here P is the minimal parabolic subgroup defined in §2.2.
For the definition of Indg(o,, . ® e ” ® 1), see §1.3. Moreover W(s;, )",
Wy (o, v)° etc. stand for the (g, K)-modules of all K-finite vectors in W(o;, v),
Wsl(o,, ., v) etc. respectively.

We write an element g of G as g = k(g)e"®n(g) with k(g) € K, H(g) € (a ),
n(g) € N,, and for a linear form v on a,, define a function S, ,: G - End(V;) by

Sx.(g) = exp(—Vv(H(9)))Ta(x(9)),
and put S, ,: C2(K)— C2(G) as

1,62

S:N9) = L Siulgk™)f(kydk (g€ G).

This definition of S, , is equivalent to that of the operator S in [5].



594 Tetsumi Yoshinaga and Hiroshi Yamashita

According to [5], we define a linear form v(4) on a, as
v(A)(H ;) = MHy) + 2n;,

where n; = |{y € 47| B(y) = p; and B; + y € 4}|. Then the following result is shown
in [5].

Theorem 6.1 (cf. [5, Theorem A]). Let notations be as above, then the
mapping

Si, v |W(a4,p,2p+—v(/1))0: W(Uaj)w 2P+ - V(i))o — (Ker @A)O (6.2)

gives a nonzero (g, K)-homomorphism and the image S, ,;,W(a$,2p*" —v(2))° is
isomorphic to the discrete series (g, K)-module for m 4.

Moreover, if the Blattner parameter 1 of m 4 is far from the walls, the mapping
in (6.2) is surjective.

Note that (Ker 2,)° realizes the (g, K)-module of discrete series n, provided
that A is far from the walls.

6.2. Comparison with Theorem 5.1. According as 4 € Z; with J =1, II or
111, possible fundamental sequence (B;, ;) and the data a,, M,, o, ~ @;c%v,
are described explicitly as follows:

Case I: 4% = 4]
fundamental sequence: (a5, 20; + o),
a,=a M,=M,
0, >0, @0, _, with g, = (=172,
V(A) = 5,5, 4 + pp.
Case II: 4% = 47,
fundamental sequence: (—a,, 2a; + o5),
a,=a M,=M,
0, >0, @0, _, With g5 =(—1)""2
v(A) = 5,5, 4 + pp.
Case III: 4% = 4},
fundamental sequence: (—(a; + a5), 3a; + o),
a,=Ad(mg)a, M= moMmg',
with m0=<1<—l + -1 1+\/?_1_>’1< 1+/-1 1—\/Tl>>f’
2 —1+/-1 —1-/~1 —1-J-1 1=-J/—1

. 1 — +5)/2
0y~ My Gy @My oy, With &} = (—1)""2

2

v(4) = mo'(§1§2;i + pp)-
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Here my-pu(H) = p(Ad(my) 'H) for pea* and H € a,, my-a(m) = o(mg*mm,) for
a representation ¢ of M and me myMmgy'. Note that for the case of 4}, the
isomorphism

IndS p,s (Mo 0 ®e™* @ 1y) ~ Ind§(c ®e* ® 1y) (0 €M, uea*),
implies that
Wimy o, mg ) = Wo(o, 1) (6 € M, pte a¥).

Since Wy(o, 2pp — w)* ~ Wy(o, p) for o e M and p € a*, the above remarks
and Theorem 6.1 imply that n, can be embedded into Indﬁ(a,:hz2 ® e* ® 1) with
parameters ¢,, ¢, and p listed below:

“Case I A% =Af:p=35,5,4, (¢,,¢,) € S,,(I, 5,5,),
Case Il A% = Al p=38,51, (¢, 8,) € S,,(I1, 5,5,),
Case I A% = A} p=3,5,4, (¢, &,) € S4,(I11, §,3,),

These two embeddings for the case of A; (resp. 4;;, 4;;;) appear in the
three (resp. thirteen, four) embeddings determined in Theorem 5.1.
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