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Introduction

Discrete series representations o f a  semisimple Lie group have been studied
fo r  a  lo n g  t im e . In  [1], Harish-Chandra gave their parametrization by means
of the theory of characters. F o r  realization of discrete series, R. Hotta a n d  R.
Parthasarathy [4], W . Schm id [7] a n d  others gave geometric construction of
those representations. L et G  be a  connected semisimple L ie  group with finite
center, K  its maximal compact subgroup, n A  th e  discrete series representation of
G  with Harish-Chandra parameter A  and  (TA , V,t )  the  lowest K-type of n A . A
differential operator g  on  the  space C (G )  o f  VA -valued smooth functions f  on
G  satisfying f (k g ) =  A (k )f(g ) for a ll k e K and  fo r a ll g  e G , denoted by g 2 in
this paper, is introduced in  [7 ]  b y S chm id . H e  showed, also in  [7 ], that the
discrete series it, is realized a s  th e  space o f L2 -kernel o f a  T his result was
shown in  a  simpler way in the paper [4] of Hotta and Parthasarathy. By means
of g  and "Szegi5 kernel", A. W . Knapp and  N . R. Wallach [5 ] found that each
discrete series is expressed as a quotient of some principal series representations,
determined relative to  th e  discrete series. Considering duality, one  can obtain
certain principal series into which a  given discrete series can be embedded.

Modifying and  extending th e  idea in  [5 ], th e  second-named author of the
present paper gave, in  [9 ] , a  method to determine the  embeddings of discrete
series into various induced representations, as (g, K)-modules. Here g  denotes
the complexified Lie algebra of G.

F o r  a  closed subgroup P  of G and  its representation ri o n  a  Fréchet space
F, define Cr,(G; ri) to  be th e  space o f  VA F-valued smooth functions f  o n  G
with the condition f(kgp) = p(P) 1 1 2 (t z(k) 0 ri(P) - 1 )f(9 ) for k e K, g  e G and p e P,
where (5, is  a  modular function of P .  Since C (G ; ri) is canonically embedded
in C (G ) C ) F, a  differential operator g2 , ,  o n  C,T(G; ri) is defined a s  g A  =
g A i d F ,  where id F  i s  th e  identity map o n  F .  Under these notations, one of
the im portant results given there is the  isomorphism
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Hom ( q , , ) (70, I n a  (n)) Ker

as linear spaces, provided ri is weakly cyclic and the Blattner parameter 2 of ir
is  "far from the walls".

In the case where P  is a parabolic subgroup of G, the above result gives that

(*) Hom(p,K) (ir A', In a (  0  1 , ) )  H o m a ,K 0  (Z*, Ker I N )

as linear spaces, provided 2 is "far from  the w alls". H ere is  an irreducible,
admissible representation of the Levi part L  o f P , I = Lie (L) 0 C, =  el'
with p ( H )  = tr ad (H)1 11, n  =  Lie (N ) 0  C , N  is the nilpotent radical of P, K , =
K  n L , and 1 , is the trivial character of N .  In order to obtain the embeddings
for discrete series whose Blattner parameter is not far from the walls, the "transla-
tion functor" introduced by G . J. Zukerm an in [10] can be used.

For the problem of determining all the embeddings of discrete series into
principal series, W. B. Silva investigated in her paper [8], the case of real rank
one g ro u p s . For the groups w ith higher real rank, the second-named author
studied the case of SU(2, 2) in [ 9 ] .  Our main aim  in this paper is to determine
the embeddings of discrete series into principal series induced from a minimal
parabolic subgroup for the normal real form of a comlex Lie group of type G2.
Our method is elementary one, which is the same as th a t in [9 , Part A].

W e are now going to explain the contents of each section.
In §1, we summarize general theory: parametrization of discrete series, differ-

ential operators .92 and 9 , ,  the results in  [9 ]  and Zuckerman's translation
functor.

We specialize G  and K  as the normal real form  of a  complex Lie group
of type G , and a maximal compact subgroup of G  respectively. Then the struc-
ture of G and that of go  =  Lie (G) are explicitly described in § 2 .  The parametriza-
tion  and structures of irreducible K -modules are also given in § 2 .  According
to  the standard facts in §1, one sees that it m ay be assum ed that the Harish-
Chandra parameter A  of a given discrete series o f G  is  dominant w ith respect
t o  one of the following three different A i

+.  ( J = I, 11,111) of positive systems of
the root system A.

47- = 2 '  CX1 cx2 , 2cx1 +  cx2 , 3 + cx2 , 30(1 + 2a2},

=  {CC' cx,, (X2, CCI, 2a, + cx 2 , 3(X12 C X 2 , a2},

A PH  =  { — a l  — (1 2, 30c1 +  20(2, 2 a l +  2 2, 1 1 — 311 + 2 2}'

Here a i i s  short compact root and 1 2  i s  long noncompact root, which are both
simple in 4 .

For a  function f  of (G ) , f  is expressed uniquely in the form  f (g) =
E„,„cpq (g )e(g) with a certain basis {47 ) }  o f  V  and smooth functions c pq on  G.
In §3, we write g , f  explicitly in terms of cp q .

Subsequently we solve the differential equation 9 , , , , f  =  0  in § 4 .  There the
explicit form of Ker gA , 1, and its (I, KO-module structure are given.

In §5 we rewrite the results in §4 by means of (*) and obtain the main result:
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Theorem  (see Theorem  5.1). Fo r J = 1 , I I ,  I I I ,  le t E j  b e  th e  totality  of
linear form s A  e  t*  w hich are A t-dom inant, regular and K  -in tegral. I f  A  E E l

(resp. E li, Ern), there ex ist three (resp. thirteen, four) distinct principal series
representations W  = I n a (  0  11,,r) satisfying

dim Hom ( " ) (it ,1 , W ) = 1,

and f or other principal series W', dim Hom ( q K )  (7r A , W ') = O.

In  this theorem, we can determine W  explicitly according to A.
Finally in  § 6 , w e compare our results w ith those in  [ 5 ] .  T h e  m ethod in

[5 ]  gives two embeddings o u t  o f  three, thirteen or four em beddings described
in  the  above theorem.

1. General theory

I n  th is  section, we summarize th e  results o n  which th e  later calculations
rely. The arguments in §§ 3 -5  a re  based o n  th e  results in §1.4.

1.1. Notations. W e explain some n o ta tio n s . L e t G  b e  a  connected semi-
simple L ie  group w ith finite center a n d  g ,  i t s  L ie  a lgeb ra . D eno te  by  g , =
to +  p o a  C artan  decomposition of go , and B stands for the corresponding Cartan
involution, where t o = {X e g o lOX = X}, p 0 = {X e 9 0 10X = — X}. W e denote
the com plexifications of go ,  t o e t c .  b y  g ,  t e tc ., om itting  t h e  subscript 0 .
For a m axim al abelian subspace a , o f  p o ,  le t  V" be th e  restricted root system
for (go , a 0 ) and V-1 +  the  set of all positive roots in  W . Then w e have an Iwasawa
decomposition o f  go a s  g ,  =  to CI a , 0 , n o . H e re , no =  EA E  ( 9 0 ) ,  ( g o ), =
{X e go I [H, X ] = .1(H)X (V H e (10 )1. L e t G  = K A N  b e  the Iw asaw a decomposi-
tion of G  corresponding to the  decomposition o f go .

F rom  now  o n , w e  assum e that rank G =  rank K .  I t  is  know n tha t th is
condition is necessary and  sufficient for G  to  have discrete series representations
(cf. [1, Theorem  13]). B y virtue of this assumption, there is a compact Cartan
subalgebra to ( OE to ) of go . W e  d e n o te  the root system of g  with respect to  t by
A , and  le t g  =  t +  E„ e ,g c,  b e  th e  root space decomposition o f  g , where g a, =
{X E gl[H, X ] = ot(H)X (VH e t)}. D e f in e  A , (resp. A n ) as the set of compact (resp.
noncompact) roots, and  we denote the W eyl groups of A  and  A , by W  and 147,
respectively. Let U(g) b e  the  universal enveloping algebra of g, Z(g) the center
of U(g), U(t) w  th e  se t o f the  elements in U(t) invariant under the action of the
Weyl group W . The Harish-Chandra isomorphism of Z(g) onto  U ( t ) R '  is denoted
by y. A s usual, R  a n d  C  stand for the field  of real numbers and the field of
complex numbers respectively.

1.2. Parameterization of discrete series representations. Let to b e  a compact
Cartan subalgebra of go a s  above, and  T  the maximal torus of K  corresponding
to to.
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Definition 1.1. F o r  a  linear form A o n  t, w e say that A is  K -integral if the
following assignment gives a  unitary character o f  T:

Tn exp H  e " )  c C" (H e t o ).

L e t E b e  the  totality o f  linear forms A  o n  t  satisfying th e  following two
conditions:

(i) A  + p  is  K -integral,
(ii) A  is regular.

Here, p = 1E ,„ A+ a for some fixed positive system A +  o f  A .  Note that condition
(i) is independent o f  th e  choice of a  positive system A t. B y Harish-Chandra,
there exists a  tempered invariant distribution 0,, o n  G, which is in  fact a  locally
integrable function o n  G, satisfying the following conditions:

( i ) Choose a positive system A + s o  th a t  A  is  A t -dominant, then

04(ex p  H )• (  E (det w) P ( " ) )= (  0 ( 1 / 2 )  d im  p o

(det w)e"" A ( H ) (H e t o ).
W E  W W E  W c

(ii) Let 1 be the  rank  of g , DI th e  coefficient of x i i n  det (x — 1 — Ad (g)),
G' = { g e GIDI (g) 0}, then

sup 104101'11)1101
1 / 2  <  C O .

geG'

(iii) P u t x 4 (Z) = A (T(Z)), then

Z • e  =  X  A(Z ) A e Z(g)).

Distribution ( 9 4  is uniquely determined under the  above conditions.
The following facts give the parametrization of discrete series. For the case

where G  is  acceptable (i.e. p  is  K -integral), see [1, Theorem 16].
( i ) For any A  c E, there exists a unique, up to isomorphisms, discrete series

representation n A o f  G  with character (9 4 .

( ii) F o r any discrete series representation it o f  G , there exists a n  element
A  of E such that it is unitarily equivalent to n A .

(iii) F o r two elements A , and A 2 o f  E, n,1 ,  is unitarily equivalent to rt A 2

if  and  only if  W, A , = W e • A 2.
The linear form A  in  (i) is called the Harish-Chandra param eter of It A .

Now, define a n  equivalence relation — o n  E as follows:

A, —  A2 if and  only if  We • A  = Hi, • A 2.

Then discrete series representations o f G  are  parametrized by E/—.

1.3. Gradient type differential operators. Let 1" be a  finite-dimensional uni-
tary representation o f  K  on  a  H ilbert space H .  Take a  closed subgroup P  of
G, and a  continuous representation (n, F) of P  o n  a  Fréchet space F .  We define
three function spaces C (G ) , C (G ; t i)  and  Cr(G; 17) a s  follows:
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C'°(G) = I f :  G c -̀: Hi f(kg) = t(k)f(g)(V (k, g) e K x G)} ,

CN G; n) = f : G`L ; Fif (gp) = S p (p) 112 n(p) if (g)(V (g, p)e G x P)},

C.(G ;r1)= { f : ;H O  Fl

f(kgp) = (5,11 2 (t(k) ri(p)')f (g)(V  (k , g, p) ek  x  G x  P)} .

Here, b p  stands fo r the  modular function o f  P  w ith  respect t o  th e  left Haar
measure o f P.

Equip these spaces with th e  topology o f uniform convergence of functions
and their partial derivatives o n  any compact subset of G .  N ow  G  acts on the
space C (G ; n )  a s  follows:

(g • f)(x) = f(g -
l x) (f  e C(G; n), g, X E G),

and we have a smooth representation of G on  Cœ)(G; n). W e call it the represen-
tation o f  G  induced from (n, F) in  C " -contex t a n d  d en o te  it b y  (C '-) I n a  ( 1).
By differentiating the  ac tion  o f G , w e can introduce a (g, K)-module structure
o n  C ( G ; n ) .  This (g, K)-module is also denoted by (C - )  I n a  (a).

Next, f o r  a  fixed positive system A+  o f  A, p u t  LI, = Ac n  " ,  a n d  4„- ' =
.61„ n A+  . F o r  a  .61-,'-dominant, K  -integral linear form 2 o n  t, le t (T A , V,) be  the
finite-dimensional irreducible representation of K  with highest weight A. Consider
the adjoint representation (Ad 1,, p) of K  o n  p .  Then the tensor product represen-
tation TA 0  A d  is decomposed into irreducible as

TA Ad (1.1)
fic A „

Here, m(fl) is the multiplicity of TA + 0 in  TA 0  Ad 1,, and is 0 o r  1 for any /3 in  An .
By using decomposition (1.1), we define a  subrepresentation (TA- , V,C) (resp. T 1A- , VA+ ))

o f  TA 0  A d p b y  T i  =  p c  +,1 111( —  -r"  (resp. T -AF, =  0 13 c M ( M T A + f i). Then,
1/2 0 p is decomposed as

VA C) p = VA+ 0  VA—  . (1.2)

Let PA  be  the projection onto V I: along decom position (1.2).
W e are now ready to define certain differential operators playing an  impor-

tan t ro le  in  th e  determination o f  embeddings o f  discrete series representations
in to  principal series. L et L ,  (X  e g) b e  the  differentiation with respect t o  the
right invariant vector field defined by X .  The Killing form o f g  is denoted by
B (, •), and ( , •) stands for the inner product on g defined by (X , Y ) = -  B(X , Y ).
H ere , Y  denotes th e  com plex conjugate o f Y  re la tive  t o  the compact real
form t o +  l p o  o f  g .  Then we can define first order differential operators
V: C,7 (G) -> C,703,„ 1,(G) and  gA: C,T(G) - )  C (G )  a s  follows:

2n
i f (g) =  E L x  f (g) o Yi ,

gAf(g) = PA(Vf(g)).
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Here, {Xi l j  = 1, 2„ 2n} is  an orthonorm al basis o f p  re la tive  t o  th e  inner
product (-, • ). N ote th a t V  a n d  g , a re  independent o f  a  choice of Since
the  space C (G ; ti)  is canonically embedded into C(G) C) F , we can define an
operator g C,T(G; ri) ti) by =  9 A  id,.

1.4. Description of embeddings. F o r  A e ZE, w e take a positive system A +

of A  so that A  is A t -dominant. F o r  such A ,  p u t  n 1, V= Pn E a  z1,1̀  QC,

and  A  = A  — p, + pn . N ote tha t A is also K-integral and -dominant.

Definition 1.2. For a  A t-dom inant, integral linear form  2 o n  t ,  A  is said
to  be  f ar f rom  the walls if the  following condition holds:

A  — 1 f l e ( 2  f3 is A t-dom inant for any subset Q  of A .

Definition 1.3. Let P  be a  closed subgroup of G .  A continuous representa-
tion (ti, F) of P  on a Fréchet space F, is  sa id  to  be  weakly cyclic if there exists
a  continuous linear functional T  on F such that for an element y of F, T(ti(p)v) =
O(Vp e P) implies y = O.

For instance, every irreducible unitary representation is weakly cyclic.
F o r  a n  element A  o f E , take p„ p n , A  a s  a b o v e . F o r  a  linear form  p on

t ,  define a n  integer NA(p) by

N (p) = det (w) 02(w • (11 +  Pet — (A + tic))•

Here, Q(v) (v e t* ) i s  th e  num ber of distinct w ays tha t v  can  be  w ritten  as a
sum of elements of A .  Then next theorem  gives the K-multiplicity formula for
discrete series.

Theorem 1.1 (cf. [2, Theorem  (1.3)]). T he discrete series R A is decomposed
as a K  -module in the following way:

cAlic — E NA (p)r,.

H e re , p  runs through th e  s e t  o f  linear f orm s v  o n  t  f o r which v —  A  can be
expressed as  a sum  of  (not necessarily  distinct) positive roots.

N ote  th a t  N JA )= 1, a n d  th a t T A  is  the  lowest K -type o f  n A . T he linear
form A  is called the  B lattner param eter of n 4 . F o r  a  discrete series n A o f  G,
the contragredient representation it  o f  n A i s  a lso  a  discrete series. Therefore
we m ay consider the embeddings of  it  in s te a d  o f  those o f  n A ,  a n d  they  are
described a s  in  the  following theorem.

Theorem 1.2 (cf. [9 , T heorem  2 .4]). L e t A  b e  in  E  and  (II, F) a  weakly
cyclic representation o f  a  closed subgroup P o f  G. T h e n  th e re  e x is ts  a  natural
isomorphism

Homo J o  (n*A , Ind,? (11)) Ker 9 A ,

as  linear spaces, if  A  is  jar f rom  the walls.
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When P  is  a  parabolic subgroup o f  G , le t  P = M pA pN , be a  Langlands
decomposition o f  P  a n d  L p  th e  L e v i p a r t  M A  ofo f  P .  We denote the Lie
algebra of L p (resp. A p, Np )  by 10  (resp . a p o , np o )  a n d  p u t K L  =  L , n  K .  The
complexification of l  ( re sp . a p o , np 0 ) is denoted by 1 (resp. ap, np) as u su a l. The
Levi part L ,  acts o n  Ker gA , 1 , by right translation as

(x •f )(g) = f (gx) (x e Lp, g E G, f  e K er 9,1, 1N )• (1.3)

H ere, 1 ,  stands fo r the  tr iv ia l character of N .  A s  in  t h e  c a s e  o f  Ina (II),
Ker .9,1, 1N  h as  a n  (I, K L )-m odule  structure.

Now we are  going to see that K er g,. 1 ,  is  stable under L . L e t  g, x e G,
f  e  C,T(G) and  X  e go , then

(x • Lx.f)(g) = (Lxf)(gx)

= —

d  

f (exp (— tX)• gx)It=odt

d
= —

d t
(x- f)(exp (— tX)• g) "

= (L x x • f)(g).

So, x • (L x f )  = L x (x • f). Here, x • f  is defined as in  (1.3). We see that for g c G,
X e L ,„ n c Np,

2n

( x - f )  = PA E  L o x  • f )(g) 0  X i )
j=1
2n

= P,1( E
1

 (L x  f )(gx ) X i )
.J=

= (g Af )(gx )

= 0( '  . •  f  e  K er g,1).

Since K e r  9 , ,  =  If e Ker ga(gn) = f (g)(V (g, n) e G x N p)} and L ,  normalizes
N,„

(x •f )(gn) = f(gnx)

= f (gxx - l nx)

= f(gx) (• E Np )

= (x•f)(g).

Therefore, x •f  is also an element of K er g,, i N , and L,, actually acts on Ker
Smoothness o f this representation is deduced from th e  topological structure of
Ker

F o r  a n  irreducible admissible representation g  of M p a n d  a  linear form it
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on a p , =  o e'2 i s  a n  irreducible admissible representation of L .  P u t =
a  eP± °P. Here, pp (H) = 4 tr (ad H )  ( H  e  ap). T h e n ,  next theorem gives a  kind
of Frobenius reciprocity on the embeddings in to  principal series, and  our argu-
m ent in  §4  is based on it.

Theorem 1.3 (cf. [9 , T heorem  3 .5]). N otations are  as before, and assume
that the Blattner parameter 2  is f ar from  the walls. Then,

Hom ( q ,K ) (71, 5 n  p* c1G ( 0  1 N )) Hom o , „o ( *, Ker

as  linear spaces.

N ote th a t ,  K e r  2 , iN  is expressed a s  follows:

Ker =  I f  e CZ) (G)19,f  = 0, f (gn) = f(g)(V (g, n)E G x N)}. (1.4)

1.5. Zuckerman's translation functor. Let 1) be a Cartan subalgebra of g, /14

the root system of g relative to 1), All-  a  positive  system of A , , a n d  W b the Weyl
group of A,,. W e  d e n o te  th e  universal enveloping algebra o f  g  b y  U (g ) . The
center of U(g) is denoted by Z(g) and U(1)) 1vb means the  se t o f the  elements in
U(I)) invariant under the action of W eyl g ro u p  W . W e  use  the  symbol y for
the Harish—Chandra isomorphism of Z(g) o n to  U (1 ))" . F o r  a  linear form A on
E), the Wb-orbit through 2 is denoted by [2] and define a character x tAi of Z(g) by

x1 1(z) = ii, (Y(z)) (z E  Z(g)),
where A is extended to an  algebra homomorphism on U(1)) w ith  2(1) =  1 . Note
that this definition is independent of the representative 2  o f [A] and x tA il =
if  and  only if  [2 ,] = [2 2 ].

L et A  be  a (g, K)-module finitely generated over U(g) and assum e that each
K-isotypic subspace o f  A  is finite-dimensional. T h e  category o f  such (g, K)-
m odules is denoted by U .  F o r  a  W b-o rb it [A ] in  b*, define ALA] t o  b e  the
m axim al subm odule of A  o n  which z — x p i (z)• id  is  loca lly  n ilpo ten t fo r  all
z e Z(g). Then A  is decomposed as

A ArAl. (1.5)
N  b*/W,

Let PEA] b e  the projection of A  onto A LAI w ith  respect to decomposition (1.5) and
p u t 11[ 2] = f A  E tti A =

We denote the linear span of A 1) over R by bt, and decompose an  element Â
in  b* as Â = Re 2 + Im 2  along the  decomposition b* =1)11+ 14 .  F o r a

i}-dominant, integral linear form p  o n  b, F, stands for the  finite-dimensional
irreducible g-module with highest weight p. W e assume th a t  the g-action on
Fo  induces a  G -a c tio n . F o r  A  el)* w ith  4 -d o m in an t rea l p a r t  Re A  a n d  .61i; -
dom inant lin e a r  fo rm  p  o n  I), define  tw o functors(41 1

+  and ifrf "1 o n  th e
category 11 a s  follows:

4011+,)(A) = P[A+p](Pi,u(A) Fp) for A e

0 7 ' 2I(A) = Ppi(P[A+,1(A) F,* ) for A e

One can see the following Proposition 1.1 in almost the same manner as the
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proof of Lemma 4.1 in  [ 1 0 ] .  F or the  problem of determining th e  embeddings
of discrete series of G  into principal series, this proposition and Proposition 1.2
below allow us to reduce the  problem to the case where the  Blattner parameter
of the discrete series in  fa r  from the  walls.

Proposition 1.1 (cf. [10 , Lem m a 4.1]). Let b e  a  linear f orm  o n  t) with
1
4, -dom inant real p art R e  an d  y  a  4  -dom inant, integral linear form  o n  1) so

that the g-action on F I L  lif ts  to  a G -ac tio n . Then f o r (g, K)-modules X E and
Y e 11[A+141 ,  there ex ists an  isomorphism

Hom( ,K) (X , Hom(g,,)(qa„,X , Y),

as linear spaces.

Proposition 1.2 (cf. [10 , Theorem 1.2, Corollary 5.5]). A ssume that I) = t,
and let A  b e  in  E ,  4  the unique positive sy stem  so that A  is 4  -dominant and
y  a A t -dominant, K-integral linear form  on t , then

(P141+ e lOr A )  = Tril-hu•

Here nA i s  the discrete series with Harish-Chandra parameter A .  See §1.2.
L et P  be a  parabolic subgroup o f  G  with Langlands decomposition P =

Me ApAie  a s  before. Since the Levi part L e  = M e A , of P  has the  same rank as
G, we can take a C artan subalgebra b of g contained in  1  =  L ie (4 )  C .  Define
two categories 4 11 a n d  L PLIE, ] o f  Harish-Chandra m odule of L e  and projection
L Ppr 1 a s  above. Though 1 is not necessarily semisimple, b u t since 1 is reductive
the definition goes through without change. For the finite-dimensional irreducible
g-module Fg ,  le t y ,  be a  nonzero highest weight vector o f F , a n d  define F„ to
be the M A-cyclic subspace of F,. generated by y,. Then we have an irreducible
Le -module B y  u s i n g  t h i s  module, we define a  functor 4 1/4:17#1 o n  L PII by

4 011+41 (A) = L P PE,44 P[A+pl(A) CD (Te
)*

).

We denote the  functor by G t/iblii111 to distinguish two functors G e f " 1 and

'PEA] •

Next proposition tells us the relation of translation functors and  parabolic
induction.

Proposition 1.3 (cf. [6 , Theorem B.1]). L et notations be  as  above, then for
a A t-dom inant linear form  on  b, a  A (1- -dom inant, integral linear form  y  o n  t)
and an L e -module X E  L PItt + id , w e have

I n a . ( X  1 )  I n 4 ( L Piptli (X)

We use these propositions later in  §5.

2. Real simple Lie group of type G2

2.1. Structure of a Lie algebra of type G 2 .  W e keep to the notations in
th e  last section and specialize g  a s  a  complex simple L ie  algebra of type  G 2 ,
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and  g , a s  a  no rm a l real form  o f  g .  It is know n that a  noncompact real form
o f g  is  unique up to isom orphism s. (cf. [3, Chapter X]).

F o r a  C a rta n  decomposition g , = t o CI p0 , w e have t o  5 u(2)(:), su(2), and
dim p , =  8 . So, rank g = rank t = 2, a n d  w e can  take  a  com pact C artan  sub-
algebra t o  o f  go .  T he  root system A  of g relative to  t is

t +oc i , +0t 2 , +(a 1 +  « 2 ), +(2a l + 0( 2 ), d- (3a i  + ot 2 ), +(3a l + 20( 2 )1.

Here, a , is  the short simple root of 4 , and a2  is  the long simple root of A .  They
satisfy the  following relations:

2_  3 = <C(1, Œ2/ >  =  — 1 ,< a 2 , a i >  =  - 3 .

Since t o  s u (2 )  t sit(2), A , is generated from two mutually orthogonal ro o ts . S o
w e m ay assume th a t 4, = 1+ +(3a, + 201 2 )1 without losing generality.

See Figure 1, and note that "rotation of angle n13" is an element o f  W . Consider
th e  root space decom position g = t + E„, gOE a s  before, then there exists an
element E Œ o f  gOE f o r  each  root a  such that

B(E,„ E_„) = a12,E _ = (2.1)

M oreover, we can take E 's  in  th e  following way:

[Eta ,  E a t] - E11 , (2.2)

[E10, E n ]  = 2E 2 1 , (2.3)

[E10, E21] = 3 E31,

[E 3 2 , E_3,-1] = E01•

(2.4)

(2.5)

Here, Ei i  stands for E1OE1+ ;O E 2 , and  Et i 's are  uniquely determined under conditions
(2.1)-(2.5) above, when E l ,  and E0 1  a re  g iven . F rom  now  on, E il s  are assumed
to satisfy relations (2.1)-(2.5), and  define Hu ,  fi i , 172 a n d  a , by

H i i  -  [E i i , E_ 1. _ i ],

-  E 0 1 + E 0 ,_ 1 ,

-  E21 E _2._1 ,

a , = R171, + RTI 2 .

• : compact root

o: noncompact root

F ig u re  1: The root system
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Then w e see that a ,  is  a  maximal abelian subspace of n o . W e equip at, with
the lexicographic order with respect to  the ordered basis (171 , I-12 ) of a , .  Relative
to this order, V 4- is

{
A

l
, A 2,

 A l  +  112, 2 A1 + 2 2, 3
2

1  +  2 2, 3A 1  +  2A 2 }'

Here, A , and 22  are linear forms o n  a  defined through the conditions:

=  CI, Ai ( 1 2) = 2 ,  2 2(111) = 1,  2 2(172) = —3.

Using this V + , we have the Iwasawa decomposition g o  =  t o  0  a ,  0  n , a s  before.
F o r  a n  element X  o f  g , le t  X  = t(X )  + a(X) + n(X) b e  th e  decomposition

o f  X  w ith  respect t o  the complexified Iwasawa decomposition with t(X) e t,
a(X) E a, n(X) E n, and put s(X) = a(X) + n(X).

If  X  is  one  o f the  root vectors EŒ (a e zl n ) ,  then according to  Proposition
5.2 in  En  t(X ), a (X ), n (X ) a re  given a s  in  th e  following table.

X t(X ) a(X ) n(X )

E l u 2 1 1 0 1 2 1
I — 21..01 — E ol + E o ,-1 )

— 11101 1F-11 -2t(H01 —  E 0 ,  + E 0 ,- 1 )

E 21 2H21 /F12
Itt./

—  E21 + E-2,-1 )—21..21

E-2,-1 —11121 V-12 1-(H2 21 — E21 +  E -2,-1)

E l l E 10 0 E l l  — E 10

E-1,-1 —E-1,0 0 E -1 ,-1  +  E -1 ,0

E31 — E 3 2 0 E31 ± E32

E_3 1 E -3 ,-2 0 E — E 3 , 2 - 3 , - 2

Define an automorphism u  o f g  by

7t
u  = (exp —

4  

ad (E0 1 — E0 , _,)) • (exp —
4  

ad (E 2 1 —

F or this u , there holds u(H 0 1 ) =  -fl, and u(H 2 1 ) = — n 2 . u induces
a  linear bijection of t o n to  a. T h e  linear forms 2 , ,  2 2 , a ,  and a 2 a r e  related
through u  as 2 1

 o u  = —(2a 1 +  a 2 ), 22 o  U  =  3 ,  a 2 .

2.2. Structures of group and its  minimal parabolic subgroup. Let G c  b e  a
connected, simply connected complex simple Lie group w ith L ie algebra g, and
G  the analytic subgroup of G c  corresponding  to  th e  re a l fo rm  g , o f  g . T h e
Iwasawa decomposition o f  G  corresponding to that o f  g , is  G = K A N . Put

(100 = + R(E,, — E_ 1 .0 ) + N / - 1 R ( E 1 0  + E_ 1 ,0 ),

(12 )0 = 1 RH32 R(E32 E 3 , 2 )
 -1-1  R ( E 3 2 E_3,
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then t o = (f1)0 e (f2 )0 .  For the structures of (ti ),, j  = 1, 2, they a re  isomorphic
to  5u(2), and  the  isomorphims Cj : 5142) -- (fi ),, j  = 1, 2, are  given a s  follows:

( '

E-1,0

$u(2) —> (f1)0

0N z  1)
1 H 1 0

( o \
0 )  ' 1 0

(resp. ( f2 )0 )

(resp. 11/32)

(resp. E32 E_ 3 ,_ 2 )

(  ,/ -
1 o —1(Eto + E -1 ,0 ) ( reSp. — 1(E32

Then there exists a  covering homomorphism a  of SU(2) x SU(2) onto  K  whose
differential is C I (1) • F or an  element g of SU(2) x SU(2), the image of g under
a  i s  d e n o te d  b y  g .  N ow , by com paring th e  u n it  la ttice  {1-1 E t o  exp H  = 11
o f  K  w ith  th a t  o f  SU (2) x SU (2), w e  c a n  s e e  th a t  K  (S U  (2 ) x SU (2))/ D
w ith D = 11, ( - 1 2 , — 1 2 )1. H ere 12 i s  the  un it matrix o f  degree 2. P u t M =
1m e KlA d(m)1,,.= id no 1. N o te  th a t  t h e  (d + 1)-dimensional irreducible eu(2)-
module V , is realized o n  th e  space of homogeneous polynomials of degree d in
tw o  variab les. Using this realization fo r K -module p , which is isomorphic to
the exterior tensor product of V3 and 17

1 , and computing the condition Ad(m)Fi;  =
j  = 1, 2, for m e K , we find that M = {1, m,, m 2 , m, m2 }. Here, m1 and  m2 E K

are  given by

m, =
( ( 1

exp(N / — 1 n/2)(1/ 1 0  — H 3 2 ),

- l), , 0( °  -
1)Yk l 0 

—=  e x p  —  i ) ( E
10 E_ 1, 0 + -E3 2  —  E -3 ,-2 ).

Therefore M  is generated by two elements m, and m2 w ith  ri4 = m3 = 1, m i  m2 =
m2 m1 ,  a n d  M  Z/2Z C) Z/2Z. Next, define a  character ac i ,  o f  M  through

= E i fo r i =  1 , 2 . Then, /I/1 = = + 1(i = 1, 2)1.
P u t  P = M A N  fo r  M  defined above, then w e have  a  m in im al parabolic

subgroup o f G and consider principal series Ing,(cre i 2 e " 1N )  for this P.

2.3. Structure of an irreducible K-m odule. Since t o  s u ( 2 )  5 u ( 2 )  and t
51(2, C) 51(2, C), every finite-dimensional irreducible f-module i s  a n  exterior
tensor product of two finite-dimensional irreducible 51(2, C)-modules. So we first
explain some facts about irreducible 51(2, C)-modules.

L et X , Y  and  H  be elements of 51(2, C) satisfying the  following relations:

[H, X ] = 2X , [H , Y ] = —2Y, [X , Y] = H.

m 2  =
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Vd ), there exists a  basis

(p = — d, —d + 2, ..., d)

—  p ) ( d  + p  + 2 ), w here  w e  regard  e(
p
d )  a s  0  i f  p

D eno te  by  ( ., •  )  t h e  in n e r  p ro d u c t o n  Vd  f o r  which
, d}  gives an  orthonorm al basis o f  Vd . T hen  

( Ç , )
 i s

, / - 1 R H  + R(X  —  Y) +  —  1R(X + Y).
as f-modules, where (5 means an  exterior tensor product.

1.1a2 ga 1 d-a2 920e1+OE2 g3a1+0(2 V3 as f l -modules,

9 - 3 Œ 1 - 1 2 g a 2 V1 as f 2 -modules.

Put .4,±  =  {a l , 3a, + 2a 2 }, and let A  b e  a z1-dom inant, integral linear form  on
t  a n d  V) , a  finite-dimensional irreducible f-module with highest weight A. Then,

V, V,. (5 V for r = A(H i o ), s = A(H 3 2 ),

V), ® p (V, ®  v3) "6 (vs 0 V1).

Now, we are going to give an  irreducible decomposition o f a  tensor product
of two finite-dimensional irreducible 51(2, C)-m odules. For two nonnegative inte-
gers m an d  n  with m > n, V„, 0 V„ is decomposed a s  follows:

V„, 0 V,, V,„+ „ 0  Vm +n _2 " V . ( 2 . 6 )

L e t P ( " 1-1) b e  the projection of V„, 0 V„ onto V„,,,,_ 2 ;  in  (2 .6 ) , a n d  u( m_r„Li)2 ;  a
highest weight vector of Vm + n _ 2 i  in (2.6) w ith  length  1 . Here, V. 0 V„ is equipped
w ith a n  inner product fo r which {4 ° 0  e(

q") }  is  an orthonorm al basis, a n d  we
d e n o te  4 ° 0  dqn) b y  dlr .  We define vectors u;',,"'"j) (w = m + n — 2j — 2, m + n —
2j — 4, ..., —(m + n —  2j)) through the following recursion formula:

u (wm ,n;j) ( x (w m +n -2 j) ) -1  y  u (wInlI n2;j) .

Then, u(„vm'n'i) i s  a w-weight vector o f Vm + n _2i in (2.6) with length 1.
T he  weight vectors u ( m'n'i) ( j  = 0, 1, n; w = — (m + n —  2j), — (m + n —  2j)

+ 2, ..., m  + n —  2j) are expressed uniquely in terms of the basis {47 ) } o f  V. 0 V„
as

u (:0 0 ) =  E  zopzo:Pe(przn) ( z p(n, , n;i) e C).
r-Fq=w

By a  straightforward calculation, we have P( m'n'i) e(
pm,") =  z (

pmq 'n'i) u(
p1 V ) . So the pro-

jection P ( m ' n 'i )  is determ ined if u („,m'n'i) 's  a re  explicitly described.
F or the  purpose of determining the projection PA defined in §1.3, calculate

u(„vs' "  (s  >  1 ), (r >- 3) under the conditions z (
s sA i  > 0, 4r:3

3±ili  >  0 , then we

F o r (d + 1)-dimensional irreducible sl(2, C)-module (say
te r  p = — d, — d + 2, ..., d I  o f  V, such that

r  H e( d ) = pefrnP P
X  • e(pd) = x (pd)e (pd 2

Y e  =  x (
p
d_) 2 dp

a± 2

w ith  x (
p

d )  =  ( 1 / 2 ) / ( d

..., d l.
{4'1 ) 1 p = — d, — d + 2, .
invariant under su(2)

N o w ,  p  V3 6 V1
Here,
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 s1)

2(s + 1) e
(w-1,1 +

s + 1 — w (s1)
2(s + 1) ew+1, -1)
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have the following equalities:

(s,1 o)u„, • —

   

' = s + 1 + w
e

(s1 )

2 ( s  +  1 )
 w+1,-1,

03(r + 1)(r + 2)(r + 3)utr,' 3 '° )  = — 1 + w)(r + 1 + w)(r + 3 +

+ ..\ /3(r + 3 — w)(r + 1 + w)(r + 3 +

+ 3(r + 1 — w)(r + 3 — w)(r + 3 + w)e (,:,34,

+ ,,/(r — 1 — w)(r + 1 — w)(r + 3 + _3 ,

„/8r(r + 1)(r + 3)/4• 3 ) = —.\ ,/3(r + 3 — w)(r — 1 + w)(r + 1 + w)e 3 ,3

—(r + 3 — 3w) r + 1 + w en, , 1

+ (r + 3 + 3w).\ /r + 1 — wet,34.), , _1

• N /3 ( r  — 1 — w)(r + 1 — w)(r + 3 + w)en )
3 ,

N /8(r — 1)(r + 1)(r + 2)(4 (Z• 3  2 )  =  .\ /3(r + 1 — w)(r + 3 — w)(r — 1 + w)e 3 ,3

—(r — 1 + 3w).\ /r + 1 — we (Z3J , , ,

— (r — 1 — 3w) r + 1 + _1

+ .\/3(r — 1 — w)(r + 1 + w)(r + 3 + w)e 3 , _3,

,,/8(r — 1)r(r + 1) u(wr.3,3) = — — 1 — w)(r + 1 — w)(r + 3 — w)e 3 )
3 ,3

+ ,/3(r — 1 — w)(r + 1 — w)(r — 1 + w)e („,r3_)
1 , 1

— .\ /3(r — 1 — w)(r — 1 + w)(r + 1 + w)en ), _ 1

+ .\,/(r — 1 + w)(r + 1 + w)(r + 3 + w)er.f.)3 ,  3.

In  th e  above formulae, the coefficient of eq
(s." w ith  g  < —s or q >  s  is  0.

Similarly, the coefficient of e (
pr »  with p < —r o r  p >  r becomes 0.

3. Explicit expression of the differential equation

Since fe(g )  p  = —  r, , r; =  — s,,  s }  is a  basis of V,. (5 Vs V ,  an element
f  of C (G )  is expressed uniquely in  the  following form:

.f ( g )=  E c  ( g ) e V s )

pq pq (3.1)
p, c1

where the  sum  is taken for p= —r, —r + 2, ... , r; g = —s, — s + 2, . . . , s  and
the coefficients c• p q  are  smooth functions o n  G.
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I n  th is section, w e give th e  differential operator explicitly, and rewrite
the condition ..9,f = 0 for f E  C (G )  in  terms of the coefficient functions cp q  in
(3.1). Then we have certain systems of differential equations for cp q 's, and  they
are  solved in  next section.

3.1. Explicit description of the projection PA . In  § 1.2, w e gave the para-
metrization o f the  discrete series. Since th e  present group G  is  th e  real form
o f  a  simply connected complex Lie group, p  is  K -integral and  the  elements in

are a ll K -integral. F i x  a n  element A  of E and  take the unique positive sys-
tem  A +  s o  t h a t  A  i s  A t  -dom inant. S e t E, = {A e At  A c

+ }  w ith  A c+  =
fa i , 3a, + 2a 2 1. Then E , is a  complete system of representatives for E / - .  T h e
positive system A +  contain ing d e

+  i s  one of the following As'i's

A i+ = 1/ OE2, OE1 a2 , 2a1 + OE2, 3OEI a2 , 3OEI 2OE21,

ZGE/ — {OE 1O E 2 , OE2, OE1, 2 1 O E 2, 3011  ±  2O E 2, 3O E i a2 },

= — ct 2 , 3ct i  + 20( 2 , 20c, + ot 2 , OE2, 3OEI CX2}.

Set r' = A (H 1 0 )  a n d  s' = A(H 3 2 )  a n d  p u t r = ;M 10, s = A (H 3 2 )  a s  before.
Through th e  isomorphism VA 0 p (  V, V1 ) 6 (V, 0 V3 ), we identify these two
f-modules. In  the  rest of this subsection, we give the condition for A  being an
element o f E w ith positive system 4,1- ( J = I , II , I II ) , th e  Blattner parameter A
of n A ,  the condition for A  being far from the  walls and the projection PA .

C ase  I:  A +  = A -
1
F

F or A E t*,

A E E and  A +  = A 1+-

s ' are positive integers with s' —  r' > 2 and  s' — r' is even.

<=> r, s are  nonnegative integers with s — r > 4 and  s —  r is even. (*1)

In  this case, w e have

p„ = 3a, ±  2 ,  A  A  + a , + a2 .

o : positive root

F ig u re  2: Th ree  poss ib le  po s it ive  systems
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2  is  far from the  walls r > 4, s > 4 (with (*1))

= I ® P s' l 'n

Case II: A + =

F or A e t*,

A e  E  and  A+ =

<*r', s ' are  integers with r' — s' > 2, r' < 3s' —  2  and  r' —  s' is even.

r , s  are nonnegative integers with r — s > 4 , r < 3s and  r — s is even.
(*2)

In  this case, we have

= 301 i + 0(2, A =  A  + at-

A  is  far from the  walls r  >  7 ,  s 3 (with (*2))
po2  = p(r 3; 1) 0 p(s, 1; 1) ± p(r, 3 ;2 ) 0  p(s, 1 ;1 ) ±  p (r ,3 ;3 ) 0  p(s, 1 ;1 ) +  p (r ,3 ;3 ) 0  p(s, 1,0)

Case III: A + =

F o r A e t*,

A e E  and  A+ =  4 1,

s '  are positive integers with s' > 1, r' —  3s' > 2  and  r' —  s' is even.

-4=> r, s  are nonnegative integers with r — 3s > 8 and r — s  is even. (*3)

In  this case, w e have

p„ = 2a 1 ,  A = A  — ot2 .

A is  far from the  walls <r> r > 8, s > 2 (with (*3))

1)1  =  p (  3;2 ) 0  / p (r ,3 ;2 ) 0

3 .2 . Differential operator V .  I n  view o f  Theorem  1.3 a n d  equation (1.4),
we need to know the explicit form of the differential operator g ,  = P2 0 P. S in c e
the projection PA is determined in  th e  last subsection, here w e calculate the
differential operator V.

For f E  C (G )  and  X  e to ,  Lx f  is computed a s  follows:

d
(L x f )(9)= —

d t
f(exP( — tX) • g) =o

d
= 

d
—

t  
(T.t(exP( tX)).f(9))1t=o

= —r2 (X)f(g).
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where we denote the  differential of T A  by th e  same sy m b o l. So th e  first term
of the right-hand side of 1,, f = L t m f + L, ( x )f  is expressed in  terms of TA.

Compute L s ( E „ ) 's  by using the values of  a ( E )  and ti(E 1 )  in  the  tab le  in
§2.1, then we see that Ff is explicitly written as

8 , .J f7f  =  E  Ou (f),

where I = 1(0, 1), (0, - 1), (1, 1), ( - 1, - 1), (2, 1), ( - 2, - 1), (3, 1), ( - 3 ,  - 1 ) 1 ,  and
are  defined by

0 0 1 (f )=  -  p,„ (p  -  q  + 4.29
0 1 )c „eV )  0  e (

gs,121 ,

0 0 ,-1 (f) = E„,„ ( - p  + q + 4220 , _ocpq e(r,,32, ® eV ),

0 22(f) = - E p , q  ( -  - 3q + 4 -r2i)cp4 2 2 e (
q
s 2

1,
0 -2,-1(f) = (p  +  3q +  4 2 _2,_1)cpq e( ip.i ) 0 ed

0 11(f) = 2 E p,q (
2 2 '

 11C „ + 2 - P)(r + P)cp-2,q)eV ) e (qs,
2
1,

0 _1,_1(f ) =  2 Ep, q
(2-r_i,_lcpa + ,./(r - p)(r + 2 + p)cp + 2 ,0 4 2  (D e"q l°

3 1 ( f )  = E p ,q  (2 Y 31C „ + 2  -  q)(s + q)cp, q -2 )er2 3 0 e (qs,1 15

° - 3 , - 1 ( f )  = Ep, q  2  Irg ) C „  O S  q)(s + 2 + q)c„, q +2)eV ) e (
q
s11) ,

where .r t j  -  y (E , , )•

3.3. The equation = 0: A-
I

F -case. Here we assume that 4 + =  A .  In
this case, for f  n C,  (G), g A f  is expressed as

.g2f  =  j,p,q OC 4,4 - 2

where th e  sum  is taken fo r j =  0 , 1 , 2 , 3 ; p  =  -r ,  - r  +  2 ,  . . .  ,  r ;  q = -s,
-s  +  2 , ... , s  -  2 , with nonzero constants oci 's  independent of p, q, and  smooth
functions fq,Ts o n  G.

This expression gives that th e  co n d itio n  9 ,J =  0  is equivalent to the
equations

A (0) A u ) _ A (2) _ A (3) _
"( " - P9 't1PPI

p =  -r ,  - r  +  2, ... , rfor
q = -s , -s  +  2, ... , s - 2'

(3.2)

and functions 24;,lq) a r e  given by

A(
pT =  4 s - + N/s + 2 + q(4Y 0 1  -  2 s  +  p + q - 2)c p ,q + 2 ,

A(
pli =  \ q(4.29_2, _1 + p + 3q)cp q  - 4,/s + 2 +

+ 2 (r + 2  -  p)(r + p)(s + 2 + q)c p _2 ,q + 2 ,

A(
p
2
q
) =  4 s - -  N ts + 2 + q(p + 3q + 6  -  4 -9921)cp, q +2,

+  \ (r - p)(r + 2 + p)(s - q)c p + 2 ,q ,

A(
p
3
q
) =  s  -  q(2s + p + q + 4 -  Cr o , )cp q  + 4N /s + 2 + qY 3 1 ep ,q +  2 .
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In  c o n d it io n  (3 .2 ), w e  re g a rd  cp q  a s  0  i f  p { — r, — r + 2, ..., r } o r  q
s, — s + 2, ..., sl.

3.4. The equation g j  =  0: 4,-case. In  this subsection, we calculate c f
with 4 + =  4 .  Composite P,1 w ith  V  by using the results in  §3.2, then we see
tha t 9 , f  is  o f the  form

.9 •Lf = j, p , 3;i) ®  /4 '

where the  sum  is taken for (i,j)E  41, 1), (2, 1), (3, 1), (3, 0)1; p = — r —  3 , —r — 1,
r + 3 and q = — s —  1, — s + 1, s  + 1, with nonzero constants flu's depend-

ing only o n  i, j, and  smooth functions V ' s  o n  G.
In  this case, g A f  = 0  if  and  only if

gpiq " =  0 for p = —r — 1, r + 1; q = — s + 1, s — 1, (3.3)

g p
2
q

 1 ) 0 for p = — r + 1, r —  1; q = — s + 1, s — 1, (3.4)
(4 1 =  0 for p= — r + 3, ..., r —  3; q= — s +1, s —1, (3.5)

1 3 (p3q° =  0 for p = — r + 3, ..., r —  3; q = —s — 1, s + 1. (3.6)

In  conditions (3.3)-(3.6), w e  regard cp q  a s  0  i f  p { — r, — r + 2, ..., r } o r  q
s, — s + 2 , ..., sl.

The coefficient functions B (Z  are defined a s  follows;

g p
l
q " = 12 O r  + 3 — p)(r —  1 + p)(r + 1 + p)(s + 1 —

+ (r + 3 — p)(r —  1 + p)(r + 1 + p)(s + 1 + q)

x (2r — 6s — 3p + 3q — 12 + 1 2 Y01)cp-3, q +1

+ (r + 3 — 3p) (r + 1 + p)(s + 1 —  q)(p + 3q —  4 + )cp_i , q _,

—4(r + 3— 3p) (r + 1 + p)(s + 1 +

— 4(r + 3 + 3p) (r + 1 — p)(s + 1 — q)..r _1,-1 cp+i,
q -i

+ (r + 3 + 3p) (r + 1 — p)(s + 1 + q)(p + 3g +  4 —  4 -r 2 i )cp + i ,q + 1

+ (r — 1 — p)(r + 1 — p)(r + 3 + p)(s + 1 — q)

x  (-2r + 6s —  3p + 3q + 12 — )cp+3,q_,

+ 12.\ /(r — 1 — p)(r + 1 —  p)(r + 3 + p)(s + 1 + q)-r 3 1  cp+3, q +i,
I (p2q 1 =  1 2  (r  +  1 — p)(r + 3— p)(r —  1 + p)(s + 1 —

+ (r + 1 —  p)(r + 3 — p)(r —  1 + p)(s + 1 + q)

x  (2r + 6s + 3p —  3q + 16 — 12201)cp-3,q+1

+ (r — 1 + 3p) (r + 1 —  p)(s + 1 —  q)(p + 3q —4 +

—4(r — 1 + 3p) (r + 1 —  p)(s + 1 + p_,,a+,
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+ 4(r —  1 —  3p)/(r + 1 + p)(s + 1 —

— (r — 1 — 3p) (r + 1 + p)(s + 1 + q)(p + 3q + 4 — 4 Y2i)cp+i, q +1

+ (r — 1 — p)(r + 1 + p)(r + 3 + p)(s + 1 — q)

x  (2r + 6s — 3p + 3q + 16 — 1 2 Y0,_,)cp+3,
q - 1

+ 12 (r — 1 — p)(r + 1 + p)(r + 3 + p)(s + 1 + q)-r31cp+3,
q +1,

13(
p

3
q

 1 =  4.\/(r — 1 — p)(r + 1 — p)(r + 3 — p)(s + 1 —

— — 1 — p)(r + 1 — p)(r + 3 — p)(s + 1 +

x (2r + 2s + p —  q + 4 — 4Y 0 i )c p _3 4 ± ,

— (r — 1 — p)(r + 1 — p)(r — 1 + p)(s + 1 — q)

x (p + 3q — 4 +

+ 4(r —  1 —  p)(r + 1 — p)(r — 1 + p)(s + 1 +

+ 4.\ /(r — 1 — 3p)(r — 1 + p)(r + 1 + p)(s + 1 —

— (r — 1 — p)(r — 1 + p)(r + 1 + p)(s + 1 +

x  (p + 3q + 4 — 4Y21)cp+1,q+1

+ (r —  1 + p)(r + 1 + p)(r + 3 + p)(s + 1 — q)

x (2r + 2s —  p + q + 4 —

+ 4.\ /(r —  1 + p)(r + 1 + p)(r + 3 + p)(s + 1 + q ) 31C p + 3 ,q+ 11

B (
p

3
q

0 ) =  — 4(r —  1 —  p)(r + 1 —  p)(r + 3 — p)(s + 1 + q)Y  _3, - 1 C p - 3 ,q - 1

— (r — 1 — p)(r + 1 — p)(r + 3 — p)(s + 1 — q)

x (2r — 2s + p — q — 4..r
o 1 )cp _3 ,q + 1

+ .\ /(r — 1 — p)(r + 1 — p)(r — 1 + p)(s + 1 + q)

x (p + 3q — 4 +

+ 4.\ /(r — 1 — p)(r + 1 — p)(r — 1 + p)(s + 1 — q)Y 11cp_ 1 ,q +1
—4.\ /(r —  1—  p)(r — 1 + p)(r +1 + p)(s + 1+ q)-T-1,-1cp+1,

q -i
— .\ /(r — 1 — p)(r — 1 + p)(r + 1 + p)(s + 1 — q)

x (p + 3q + 4— 4 Y 2 1 )c p + 1 ,q + 1

— (r —  1 + p)(r + 1 + p)(r + 3 + p)(s + 1 + q)

x (2r — 2s — p + q —

+ 4.\ /(r —  1 + p)(r + 1 + p)(r + 3 + p)(s + 1 — q)Y 3 1 cp + 3 ,q + 1 .
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3.5. The equation .92 f  = 0: z1 1 -case. I n  this subsection, we assume that
.4+ =  din, and  compute g A f  a s  before . Then w e see that g,k f  is  of the form

gA f  = Y1 Clpi)i1 0 p . '3 ; i) e(
qsi l

where the sum  is taken for i = 2, 3; j = +1; p = — r + 1, — r + 3 , ... , r — 1 and
q = — s, —  s + 2 , .. . , s  with nonzero constants yi i  depending only  on i, j ,  and
smooth functions Op% o n  G.

In  this case, for f  E (G), it is necessary and  sufficient for g , f  =  0  that

Op
2
q

)
1 = 0 for p = — r + 1, r —  1; q = —  s,

= 0 for p  = — r 1 , r —  1; q = — s,

Op
3
q

)
1 = 0 for p = — r + 3 , ... , r — 3; q = — s,

C(
p
3,)

q , _1 = 0 for p = — r + 3, . . . , r — 3; q = — s,

In conditions (3.7)—(3.10), w e regard cp q  a s  0  if  p {  —  r, — r + 2, ... , r} o r  q
{ — s, —s + 2, ... , H ere the  functions CZ are  defined by

= 12. \ /(r + 1 —  p)(r + 3 — p)(r — 1 +

—6.\ /(r + 1 — p)(r + 3 — p)(r —  1 + p)(s —  q)(s + 2 + Ocp-3, q +2

—(r + 3p — 1) r + 1 —  p(p + 3q —  1 + 4.T _ 2 , _i )ep _i ,q

— 4(r — 3p — 1) \ +  1  + -1 cp+1, q

— .\ / (r —  1 —  p)(r + 1 + p)(r + 3 +

x (2r — 3p — 3q + 7 — 122'0,_1)cp+3,q,
0 2 )

, 1  = (r + 1  —  p )(r + 3 — p)(r — 1 + p)

x (2r + 3p + 3q + 7 — 122 o 1  )cp _3 ,q

—4(r + 3p — 1),./r + 1 —

—(r — 3p — 1).\ /r + 1 + p(p + 3q + 1 — 21 )c p+1, q

+ 6 (r —  1 —  p)(r + 1 + p)(r + 3 + p)(s + 2 — q)(s + q)c p + 3 ,q _2

+ 12 (r — 1 — p)(r + 1 + p)(r + 3 + Cp+3,q,

Cp3q) =  —4/(r — 1 — p)(r + 1 —  p)(r + 3 — cp_3,q

+ 2,/(r — 1 — p)(r + 1 —  p)(r + 3 — p)(s —  q)(s + 2 + q)cp-3, q +2

+ (r — 1 — p)(r + 1 —  p)(r —  1 + p)

x (p + 3q —  1 + _2 , _i )c p _ i ,q

—4.,/(r —  1 —  p)(r —  1 + p)(r + 1 + -1 cp+i, q

— —  1 + p)(r + 1 + p)(r + 3 + p)

x (2r — p — q ± 1 — 42'0,_11cp+3,q,

s, (3.7)

s, (3.8)

s, (3.9)

s. (3.10)
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C ( 3 )  - 1  = — (r—  1 —  p)(r + 1 —  p)(r + 3 — p)

x  (2r + p + g + 1 —

+ 4.\ /(r — 1 — p)(r + 1 — — 1 +

—  (r —  1 —  p)(r —  1 + p)(r + 1 + p)

x (p + 3g + 1 —

+ \ /(r —  1 + p)(r + 1 + p)(r + 3 + p)(s + 2 — g)(s + q)cp+3, q -2

+ 4 ,/(r — 1 + p ) ( r  +  1  +  p ) ( r  +  3 + p ) 2
31Cp+3, q •

4. Solutions for the differential equation

4.1. Preparation to solve the equation lNf  = O. In this section, we solve
the equation i N f  = 0  and determine the (a, M)-module structure of Ker gA , 1,
in  § 1 .4 . F irs t  w e  s ta te  the facts com m only hold for the th ree  cases. For
f  e (G), we write f  = Ep,Cp q e(g) as before, then

f (gn) = f (g) (V (g, n)e G x N)

cp q (gn) = c p q (g) (V (g , n) e G x N,Vp, V g). (4.1)

If f  e C ( G )  satisfies (4.1), then for X  e no ,  a e A , n e N  w e have,

d
(1,,c p ,)(an) = c p q (exp(— tX)• an) 1, 0dt

d
= 

d

—
t

c
P q

(a exp( — t Ad(a) - 1 X)• n)lt=o

= c
P q  (

a)1 _o ( • . •  Ad(a) - 1 X  no).dt 

So

(L x cp q )(an)= 0. (4.2)

Note that, for f  e C (G ),

gA f  = 0<=>2,if  A N  =  O. (4.3)

4.2. Solutions for the equation g A ,, N f = 0: Al - -c a se . H ere w e assume that
4 + = In th is case, by using (3.2) and the remarks in the last subsection,
w e see that for f  e  C (G ),

f e Ker

.4.>g A f  = 0  a n d  (4.1)

<=>(4.4)-(4.7) a n d  (4.1),
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with

(2L11 2s +  p + q — 2)c p ,q + 2  =  0, (4.4)

— q(24-1 2 + p + 3q)c p q  +  2.\ /(r + 2 — p)(r + p)(s + 2 + q)c p _2 4 + 2  = 0, (4.5)

— + 2 + q(p + 3q + 6 — 24, 2 )cp . q + 2  +  2 (r — p)(r + 2 + p)(s — q)cp + 2 ,, = 0,
(4.6)

(2s + p + q + 4 — 2Lii i )c p q  =  0, (4.7)

on A for p= —r, —r + 2 , . . . ,  r; q= —s, —s + 2, ..., s — 2.
From  now  on, unless otherwise stated, we consider the equations for cp q 's

such as (4.4)—(4.7) only on A, though cp q 's  are functions on G.
Now define two linear forms pi  ( j  = 1, 2) on a through

Pi ) = — (s + 2), P1(1-12) = r,

i 2 (Hi ) = — (s — r + 4)/2, /1211:12) = —(r + 3s)/2,

and put for a e A,

f0(c1) Eacpce'ep(r,s--) p,

f+(a) = a 42 (e ss) + e (±T _s ),

f_(a) = a 42 (e(
r7) — efrs,.)

where the sum  is taken for p = —r, —r + 2, ..., r. Here ei =  e" , ( I °g(a)) and

2r(2r — 2)• • • (r + p + 2) . (s + r)(s + r — 2)• • • (s + p + 2)
— p)(r — p — 2)• • • 2 (s — p)(s — p — 1)• • • (s — r + 2) .

Extend f t 's  t o  G by f,„(kan) = z,(k)f,(a) for k E K, a e A, n e N .  Then f t 's  are
elements of M G ) , and Ker g A, 1 ,  is described in the following lemma.

Lemma 4.1. The functions f * (* = 0, +, —) belong to Ker .9 1 , and form  its
basis. M oreov er, Ker 2 A  is decomposed as an MA -module in the following way:

Ker
1 N

C f ,  C f + CT-,
with

Cf, (a( _1 ) ,, ( _1 ) (r4-s),2) 0  e ",

Cf+ (a(-i)(---)/2,1) e2,

Cf_ = (c( _1 ) ,.-rvz, _1 ) C) e 2 .

4.3. Proof of Lemma 4.1. In the following, we give a proof of Lemma 4.1.
In this proof, we use the symbol "(•) "  instead of "the equation (•) substi-

tuted x  w ith y". In  case q +s, we have (p + q)c p q  =  0  because of (4.4)q _q _
2

and (4.7). So, if q + s and p + q 0 0, then cp q  = 0.

a  = (4.8)
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Next, by using (4.5)p _s _2 , we have

+ p + 3 s -  6 ) c _ 2  +  \ (r + 2 -  p)(r + p)•2sc p _2 ,s = 0.

Since p + s -  2 2 > 0, C p , s _ 2 = 0 holds, therefore cp _2 ,  is also 0. That
is, cp s  = 0 f o r  p  =  - r ,  - r  +  2, ... , r - 2. Sim ilarly, w e h a v e  cp ,_, = 0 for
p  = - r + 2, ... , r  -  2, r. By the  above remarks we see that

cp q  = 0 if (p, g) (r, s), (-r, - s) and p + g  0  0.

In  (4.4)-(4.7), c„ and  c„  appear only in  th e  following equations.

(4.4)( p , 0 _ , ( r , s - 2 ) ,
i.e., (24i 1 -  s  + r -  4)c, = 0, (4.9)

(4.6)( p , q)_ ,  ( r , s —  2 ) ,
i.e., ( r + 3 s  -  2 4 2 )cr s  = 0, (4.10)

(4.5)( p , ‘0 _,( „, „), i.e., (24 2 - r -  3 5 )c ,_ , = 0, (4.11)

(4.7)( p , q ) _ ( _r , _ s ) 'i . e . ,  (s  -  r + 4 - 2Lfi, )c-r, -s = 0. (4.12)

F or real numbers x, and x2 , put ers (x), x2) = crstexPtx1 171 + X 2
171

2

w e can rewrite (4.9) and  (4.10) as
))- Then

( 2  0  
s  + r - 'er s  = 0,0x,

(r + 3s + 2 )
rs

0  = 0.0x2 

These two equations imply that

s - r +  4 r  +  3 s

Ers (x i , =.x2 ) c exp 2
X 1

2 x 2),

(4.13)

with a constant c. Therefore for a e A ,

cr,(a) = c • ce 2( c  G C).

Similarly c ,  „  is  o f the  form

C— r,—s(a) = c' • a°2 (a E A, c' E C). (4.14)

F or cp ,_ p 's , equations (4.4)-(4.7) give

i.e., (Lit -  s  - =  0,

i.e.,

0,

(4.15)

(4.16)..\/ s  + p(Lh2 - -p \/ (r + 2 - p)(r + p)(s + 2 - p)c_ 2 ,_ ( p _2 ) =

(4.6)q __ p _2 , i.e.,

0, (4.17)- p(L„- 2 + p)c p . p N /(r -  p )(r + 2 + p)(s + 2 + P)Cp+2, — (p+2) =
By using (4.15)p _ r a n d  (4•17)p _„ we see, as in the case of cr ,, th a t
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cr ,_,(a) = c" a"' (a e A, c" e C), (4.18)

a n d  we can determ ine cp ,_ p 's inductively o n  p, by m eans of (4.16) and (4.18).
The result is

C p ,-  p pC r,-r

with ap  defined in (4.8).
Now, define f o ,  f+ , f_  as in §4.2, we can conclude, by the above arguments,

that K er g A. ,, is contained in  the  linear span o f  L 's .  Conversely, we can easily
verify that 4 's actually give elem ents of Ker 9A , 1 ,  a n d  th a t th e y  a re  linearly
independent.

Finally we consider the MA-module structure of Ker g A , I N . F o r  t h e  repre-
sentation TA, it is easily seen that

 y  •  , p-q e (rs)
T.1.(M 1)e — I )P9 P9 TA(M2 ) e (p

r
q
s )  =  —  l (r +s - P - 9)/2e (rs),

So w e have for k e K, a e A , n e N,

(n12'i0)(kan) = f0(kanm2)

= f0(km2am2 1 nm2)

= T,110T,10n2)fo1a)

and

TA (m2)fda)= Epotpeit A (m2 )471,

('.• e N),

SO

= Ep
 Œ , a ' ( —

 o(r+s)/2e(rsi),,p

=  E p o z _ p a p,(__ n(r+s)/2 e (rsi), , p

=  1 ) ( r + s ) 1 2  ce,,frs)
L.-)P p, p

= iyr +s)I2 fo (a ),

(note th a t a  =  a  )- P

(n12* fo)(kan) =  A (k)((— 1
) ( r+ s)/2.fo(a))

= (— 1)( r + s ) / 2 fo(kan).

Therefore m 2
. f 0  = ( - 1)( r + s )/ 2 f0 . B y  s im ila r computations, we see that M-action

on Ker 2 A ,1 N  is  g iven  a s  follows:

m1 fo = — I Yfo m i f +  = ( - 1 ) )/ 2 f+, ml . f -  =  ( - 1 )
(

" 12f - , 
(4.19)

M 2 f0  = I ) ( r + s ) 1 2 f0 ,M 2  1 + = f + 'm 2 1 -  =

Also we have, for a, a , e A , k e K, n e N,
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(a0 . .f0)(kan) = fo(kanao)

= f0 (kaa0 ao
- 1  nao )

= T,(k)(aa o )" fo (1) (• .• ao
- 1  na, N )

= at' ,l (k)a"lf,(1)

= at; f o (kan),

SO

a • fo  =  a f o .

Compute a. f f.  and a• f _  similarly, we see that

a • fo  = a" 'A, a • = a"2f+ , a. f_ = ce2f_ (a e A). (4.20)

By (4.19) and (4.20), w e find that three subspaces CA , (* = 0, +, —) are M A -
invariant, and their MA-module structures are those given in the lemma.

Thus w e have completed the proof of the lemma.

4.4. Solutions for the equation 9 A, , f  = 0: AL-ease. Here we give explicit
form of Ker i n  c a s e  tl + =  L .  First w e prepare som e sym bols. W e use
the symbol "u y" for "u y  (mod 4)", unless otherw ise stated. D efine [m; n]
for two integers m, n  w ith n > 0 by

and put

[m ; n] = 
{ ',--,7,„(m _ 4j)

if n = 0
if n >

(1(r r
—  p)) . (1(s s— g))

1 r
sr i(r — p)) • U s—  q))

Next, set linear forms pi  (1 j  5) on a as in the following table.

1-i P1Fli / i11172)

Yi —(s + 3) r —  3

1,12 —(s + 3) — (r —  1)

I-13 — 1 ( r+ s +  4) — -1(r — 3s)

ti4 — 1 (r+s+ 4) 1-(r — 3s — 4)

/is —1(r — s + 4) — i(r + 3s)

1y r+s-p -q )14

13pq
( )(r-I-N -2 -p -q )/4

i f  p + q - - r + s

if p + g _= r + s  — 2.
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Finally, for a e A  define f i ,* (a) as

f, 0 (a) = fl„ag ie (;:) ,
p+ q= r+s

= E fl„a"le(p7),
p+q =r+s-2

f 2 ,0 (a) =

[3s —  r + 2; (r + 3s —  p —  3q)/4]E  13 (ll2 e (rs )

p -E q— () P q  [3s + 3r — 6; (r + 3s —  p —  3q)/4] "

[3s — r; (r + 3s —  2 — p — 3q)/4]
E

a p2 e (rs)
p -F q = 2  P q  [3s + 3r — 8; (r + 3s —  2 — p — 3q)/4] Pq

if r + s _= 0

if r + s 2,

  

h, + (a)

[

[3s —  r; (r +3s-2 —  p — 3q)/4]
p + q ,2 ,p -F q > 0  

fi P q  [3s + 3r —8; (r + 3s — 2 — p — 3q)/4] 
0 2 ( e ( g  + g )

a  [3 s—  r + 2; (r +3s — p —3q)/4]
( e s )  e (rsi

p-f-q - 0 ,p+q>0 ,—S r—  , r s— p qP P ' rl -1- 3 6. ( + 3 — 3 )/4] a Pq

if r+ s= 0

if r+ s - - 2,

f3,0(a)

   

a  [2s —  2; (r + s —  2 — p — q)/4]
ce3e(rs)

p-1-q ; + s - 2  P P q  [2r — 6; (r + s —  2 — p — q)/4] Pq

[2s; (r + s —  p —  0/4]E flpq   e 3 e ( r s )
p+q .,+ s[ 2 r  —  4 ;  (r + s —  p —  g)/4] '

if r, s even
=

  

if r, s odd,

  

f3,i (a)

fipq
[2s; (r + s — p — q)/z)]

rs) p)
p ±q= r+ s ,p + q> 0 [2r — 4; (r + s — p — g)/4] a

(e( +  e -s ' , ) if r, s even

[2 s -2 : (r + s — 2 — p — q)/4]
a"3(e ( ) e . q )  if r, s odd,

p+qa -r-Fs -2 ,p+q>0  

l3p, 
[2r —6; (r + 5 2 — p — g)/4]

g

0  [2s — 2; (r + s — 2 — p —  q)/4][r —  s + p + q —  4; (s g)/2]E Ppq
p ± q r + s - 2 [6s — 2; (r + 3s — 2 — p — 3q)/4]

1,4 frs)a  ep q

if r, s even

[2s; (r + s — p — y)/4] [r — s + p + q — 4; (s — 0/2]E Pp('   
e p q

p+q  r +s [6s; (r + 3s — p — 3q)/4]

if r, s odd,

Li,o(a)
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f4,+(a)

p q

[2 s ;  (r + s - p - g)/4] [r - s + p + g - 4; (s - g)/2]
Ii 

p +q .r+s ,p +c l0 [6s; (r +3s - p - 30/4]

a ( 4 qs)  + e , _q )

if r, s even

I3 pq [2s 
-  2; (r + s - 2 -  p - q)/4] [r s + p  + g  4; (s- q)/2]

p-I-gar+s-2 ,p+q [6s- 2; (r +3s- 2 - p - 3 0 /4 ]

a4(e (i r,qs) + e q )

if r, s odd,

f 5 ,+ (a) = a°5(e,.( 7 )  + e s ).

Extend these to  G  by

f i ,,(k an) = tA (k )f (a) (k e K , a e A , n c N).

Then, give functions in C ( G ) .  The explicit form of Ker g,, iN i s  as in the
following lemma.

Lemma 4.2. Suppose that i s  f ar f rom  the walls, then the above fi ,'s  f o rm
a  basis o f  Ker 22A 1 N and  t h e  subspace C f o f  Ker g A , IN is  M A -in v arian t. As
M A-modules

CfC E 0  e " '

with e i ,  E2 ,  it listed in the following table.

( j ,  * ) E2 ti ( i ,* ) el e2 ti
(1 , 0) (_1yr-sll2 ( 1)(r+s)I2 (1, 1) ( l ) ( r  - s+ 2)12 (

1

 )(r+s)/2 I l i

( 2 , 0 ) (  —  
o r ( 1 )(r-s)/2 /1 2 (2, +) (_  o r+ 1 ( a  o ( r  -Fs+ 2)/2 i i2

(2, ) ( o r+ 1 ( o(r+s)/2 /1 2 ( 3 ,  0 ) ( o(r+s-1- 2) 12 ( o r+ 1

(3, + ) ( I )(r+s)I2 ( Or p3 (3, _) (_  o(r+ s) 12 ( o r+ 1
[13

( 4 , 0 ) ( -  
i)(r -1- s + 2112 ( 1 )(r - s)/2 /1 4 (4, ±) ( 1 ) (r+0/2 ( or

P4

(4, - ) / _ 1 yr+ s)I2 ( — 1 )r+ 1 tt4 (5, -F) ( _1)(r-s)12 1 /15

(5, ) ( 1 )(r - s)I2
— 1 P5

4.5. Proof of Lem m a 4.2. Here we give a proof of Lemma 4.2.
K eep (4.2) and (4.3) in §4.1 in m ind and solve equations (3.3)-(3.6) with

respect to  L c p q 's. Then we obtain
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Li4 i Cp q  —

+ 2 + p)(r + 4 + p)(r + 6 + p)(s +  2  -
( r  -  4  -  p ) ( r  -  2  - p)(r - p)(s +  q)

x ( r  -  s  -  p  -  q  -  4 ) c p + 6 ,
q

 _ 2  ±  -

1

(r  +  3 s  -  p  -  q +  8)c„ (4.21)
 4

for p = - r, - r +  2, .. . , r  -  6; q  =  -s +  2 , - s  +  4, ... , s,

Lñ i Cp q  —

+ 2 - p)(r + 4  -  p)(r + 6  -  p)(s + 2 + q)
i j ( r  -  4 + p ) ( r  -  2 + p )(r +  p )(s - g)

x  (r - s +  p +  q - 4 )c p _6 ,g + 2  +  
4

-
1

(r + 3s + p +  q +  8)c„ (4.22)

for p = - r  +  6, - r  +  8 , . . .  ,  r ;  g =  - s ,  - s +  2, .. . , s  -  2,

(r + 2 + p)(r + 4 + p) 
•  ( r  s  p  q  4 ) c p + 4 ,  —  - 2 ( p  +  3 q ) „

( r  -  2  -  p )(r  -  p )

1 ( r  +  2  -  p)(s + 2 + q)
• (r + 3s + p - 3 q)cp-2, q +2,

for p =  - r +  2 , - r +  4, . . . , r  - q =  - s ,  - s +  2, .. . , s  -  2,

=  

3 ( r  +  2  -  p ) ( r  +  4  -  p )  

• (r - s + p + -  4)cp _4.,q + -
2

(p + 3q)c 4
( r  -  2 + p)(r + p)

1

4 (r - p)(s + q)
1 ( r  +  2 + p)(s + 2  -  g) 

- ( r  +  3 s  -  p  +  3 q ) c p + 2 , q - 2 ,

for p =  - r +  4, - r +  6, .. . , r  -  2; q =  - s +  2 , - s +  4 , ... , s.

In order to obtain eigenfunctions of the differential operator 4, 1, we define
cpp ,  and tkpq as

(r + 2 + p)(r +  4 + p)(r + 6 + p)(s +  2  -  q)
Tpq ( r  -  4  -  p ) ( r  -  2  -  p)(r - p)(s +  q)

p q  =  C  p q Ypq Cp+ 6 ,q-21

I//p q  ( r  -  S p + q)c p q  -  y „ ( r  -  -  p  —  —  
4

)cp+6 , q -2 ,

then (4.21) and (4.22) imply that  P p q

 a n d
 I J p q

 satisfy the equations

Lñ i (Ppq = + s + 4)(pm , (4.25)

Lfi l ifrp q = (s +3) p q , (4.26)

for p =  - r ,  - r +  2, .  ,  r  -  6; q =  - s +  2 , -  s + 4, ... , s.
Now put I = {(r, s), (r -  2, s), (r -  4, s ) , ( - r ,  - s ) ,  ( - r  +  2, - s ) ,  ( -  r + 4, - s)}

and -epq (x i , x 2 ) = cp q (exp(x +  x 2 1Î2 )) for x 1 , x 2 e R . Then using (4.25) and
(4.26), and calculating as in the argument deriving (4.13) in the proof of Lemma

=

4 (r + p )(s  - q )
(4.23)

(4.24)



+ 2 —  p )(s +  2 + q)
• (2r - p -  3 q  -  6 )up-2, q +2,(r + p)(s - q)

(4.30)
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4.1, w e see that for (p, q) Jim is o f the  following form:

5p q (x i , x2 ) = u p q (x2 ) exp( - (s +  3)x 1 ) + vp q (x2 ) exp( - -1(r + s + 4)x 1 ), (4.27)

where uP9 's  and  uP9 's  are  smooth functions o n  R satistying

u„ + y p o p + 6 ,,_ 2 = 0, (4.28)

(r - s + p + q)v p 4  -  y p q (r -  s  -  p  -  q  -  4 )v  0 .6 4 _2 = 0, (4.29)

for p  =  - r ,  - r  +  2 , . . . ,  r  -  6; q  = - s  + 2 , - s  +  4 , . . . ,  s.
A s a  next setp, we determine the functions up q ,  vp q  i n  (4.27). By means of

(4.23), (4.24), (4.28) and  (4.29), we can deduce the  following relations.

(i) If  cp q ,  Cp _2 , ,+ 2  and  cp + 4 ,q can be expressed in  th e  form  of (4.27), then

1 1
14;q = 2 (19 3 q ) u P q  ± 2

v'
q

 = -
1

(p + 3q)vpq
(r + 2  -  p)(s + 2 + q)

 •  ( r 3 s  +  p  +  
3

q ) v p _ 2 , q + 2 . (
4

. 3
1

)
P 2 (r + p)(s - q)

(ii) If  cp q ,  Cp +2 , q _ 2  and  cp _,, q can be expressed in  th e  form  of (4.27), then

1 1 ( r  +  2 + p)(s + 2  -  q) 
• 6 ) u p + 2 , q _ 2 ,14;q =  2 (1) 3 q ) u P q  ±  2 (r - p)(s + q) ( 2 r  +  p  +  3 q  -

(4.32)

v
P q  

=  - 1 (p + 3q)v
+  2  +  p ) ( s  +  2  -  q )  

• (r 3s- p  - 3q)v  p + 2 . q _2 .2 (r - p)(s + q)
(4.33)

From these four equations, we can derive the following differential equations
for up q  o r  v„:

u';q + 2u'p q  -  ( r -  1 ) ( r -  3)up q  = 0, (4.34)

4C q + 8v'p q  -  ( r -  3s - 4)(r - 3s) v„ = 0, (4.35)

for (p, q) e I ',  with

I' = {(p, q)1 - r + 4 < p r  -  6  a n d  - s  + 2 < q <

U { (p ,q ){ -r+ 6 4  a n d  - s q < s -  2}.

D efine linear form s p i  (1  < j  4) a s  in  §4.4 a n d  solve equations (4.34) and
(4.35). Then we see that c p g  ((p, q) e I') is a  linear combination of a" ,  (1  <j < 4).
By using (4.21)-(4.24), we can conclude that

(*) cp q  is expressed a s  a  linear combination of a" ,  (1 j 4) if (p, q) 0 I.

Now we determine the  form of cp q  w ith  (p, q) e I. F irs t w e  co n sid e r c,._,, s .
By eliminating c ,  from the equations B;.21,) ,_ 1 =  0  and B,.(1 1) ,_ 1 =  0  in §3.4, we get



586 Tetsumi Y oshinaga and Hiroshi Y amashita

.1 2-S (64 1 —  r — 3s — = . r — 1(24, 2 + r + 3s —  8)c,._2 ,s _2 . (4.36)

Combining this equation with the relation 11 2 7
5 + 1  =  O ,  we see that cr _4 „  is also

a linear combination of a'1 , (1  <j < 4) if r 3 s  —  2.
In case r = 3s —  2, from the equations g30.7) s + 1 we can0  a n d

 B 5 _ 1

deduce that c,._4 ,5 (a) (a e A) is expressed as a linear combination of aP,  (1  <j < 4),
x1 02 and x2 aP2 with a = exp(x, + x 2 i -12 ). W rite cr _4 „  as a linear combina-
tion of those terms and carry it in to  each  of the equations (4.36), Br

(3_;')
s + 1

(4.21) and (4.24), then we find that

(**1) is  a linear combination of a" ,  (  < j  4) even if r = 3s —  2.

By similar arguments, one can see that

(**2) cr_25 and 
c _ r + 2 , - 5  are also expressed as linear combinations of

(1 <j 4).

In the calculation of cr _2 ,  in (**2), we may use four equations BP°
5
), s + 1  =  ( ) ,

= 0, (4.21), (4.24), instead of (4.36), B P27 )

s  -  1  —  
0, (4.21) and (4.24) in the

case of cr _4 „.
For c„ and we find that they are linear combinations of am,  (1  <j < 5),

b y  s o lv in g  th e  e q u a tio n s  m.303 ) 5 + 1  =  o ,  B r(21),_, = 0, =  0  and
B 21>  , — s +1 — O. H e r e  / 1 5  is defined as in the last subsection. By virtue of this
fact, (*), (**1) and (**2), f e  Ker gA ,i ,  can be w ritten in the form:

5

f(a ) = E ot(4a"ie (;,s1) + (odis ) Oie (,.7) + ot (i),.,„a 4 je(rs) , ) ,
P, j= 1

(4.37)

for a e A  w ith ot(ji,  e C .  For the first term  in the right-hand side of the above
equation, the sum  is taken for (p, g) (r, s), ( — r, — s) and j  = 1, 2, 3, 4.

Finally  w e com pute the coefficients ocy, in  (4.37). In  general, by using
Bp

(3!,1,+ 1 ) = 0, w e m ay express 41 4 , (resp. ocV)+ 4 ,_ , )  in term s of oc(/, (resp.
and describe oc(1,) , ,  b y  cOr , , ,  and Œ r 2),± s . B y (4.30)—(4.33), w e can derive a
formula giving a relation between ot(4  and ocV)

+ 2 ,q _2 ,  and describe o4A2 ,q _2 in
term s o f 0 6 4  for a lm ost a ll (p, g). For exceptional (p, g)'s, w e  c a n  use other
relations such as (4.22).

Calculating the coefficients o44) by  m eans of the above strategy, we see that
the functions f j ,*  defined in §4.4 actually form a basis for Ker For the
MA-module structure of Ker g2 ,1 , by sim ilar argum ents to  those in the last
part of the proof of Lemma 4.1, we see that the subspace C f  is an MA-module
described in the lemma.

N ow  the proof is completed.

4 .6 .  Solutions for the equation f  = 0 : 4 1- case. Here we will specify
Ker g,,, N in case A + =  4 „ .  W e use the symbols and [-, •] in the same
meaning as in §4.4. First define linear forms m  and jf., on a through
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= —(r — s + 2)/2,

112(1-11) = — (r — s + 2)/2,

tti(F12) = (r + 3s — 2)/2,

il2(11-2) =  — (r + 3s + 2)/2,

and set

(1-(r p )) — q))

r — p))

)  (

1(s s— q))
1 r 

For a e A, put f ( a )  ( i  =  1, 2;j = 0, 1) as follows:

13pq

if p + q = r + s

if p + q = r + s —  2.

f10(a) = (rs)
1 )( r+ s—  P — q )1 4  13 a  eP9 P9 '

p+qm r+s

f11 (a) = E 1yr+s-2—  p— q)14/3p q  a p,e (g ),
p+q.r+s—  2

f 2 0 ( a ) (  l ) _  ' 2 f3  
0 / 2 0  [ r  +  3s—  2 — p — 3q; (r + 3s — p — 30/4] _ t i2  _ fr o s i

P9
p+q=r+s [2r + 6s — 2; (r + 3s — p — 30/4]

[r +  3s—  2 — p — 3q; (r + 3s—  p — 30/4]
fil (a) = E ( -1)(s-q)1213p

q  [ 2 r  +  6 s  —  4 ;  ( r  +  3 s  —  2  —  p  —  3 0 / 4 ]

 P2 vs,a e p q .
p +q .r+s - 2

Extend these f il s  to  G  as

f i i (kan) = T,(k) sf; j (a) (k E K, a E  A, n c N),

then f il s  give elements o f C,T(G). The structure of Ker g A is g iven in the
following lemma.

Lemma 4.3. S uppose that A  is f a r f rom  th e  w alls, then the  functions f i ;

defined above belong to Ker and form  its basis. M oreov er the subspace Cf ;

of Ker 1 is  M A -inv arian t and

C fi ie " as MA -modules

with El , e2 ,  p  listed in the following table.

( i , :I) E1 E2 it (i,i) E1 E2 11

(1 , 0 ) ( — t)(r — s)12 ( i )(r+s)12
Ili (1,

1
) ( — 1 )1. 2s+1

( 1 )(r+s)/2 P i

(2,0) (— l ) '—' )/2 ( —  If p 2 (2, 1) ( - 1 ) !

-
2

s+1 ( i y +1 ii2

4.7. Proof of Lemma 4.3. In this subsection, we give a proof of Lemma 4.3.
Keeping (4.2) and (4.3) in mind, w e can  deduce the following equations

(4.38)-(4.41) from equations (3.7)-(3.10) in §3.5.
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Lfi i c „ =
(r + 2 + p)(r + 4 + p)(r + 6 +

(r — 4 — p)(r — 2 — p)(r — p)

1
x N./(s + 2 — q)(s + q)c p + 6 ,q _2 + —

2

(r + q + 2)c p q (4.38)

for p= — r, — r+  2 , ... , r — 6; q= — s, — s+ 2 , ... , s,

+ 2 — p)(r + 4 — p)(r + 6 — p)
(r — 4 + p)(r — 2 + p)(r + p)

1,
x — q)(s + 2 + q)c p _6 ,

q

 +2 —(r — q + 2)c p q 2

—r+ 6 , — r+ 8 , ... , r; q=  — s, — s+  2 , ... , s,

1r  +  2  —  p  

• (r + 4 — p)(r — 2 + p)c p _4 ,q + —
2

(p + 3q)c p q

r + p

2

r  +  2  +  p  

• (s + 2— q)(s + q)cp+2, q -2r + p

for p= — r+  4 , —r+ 6 , ... , r — 2; q= — s, — s+ 2 , ... , s,

1
L fi,cpq=1,, 

r  +  2  +  p

 • (r + 4 + p)(r — 2 — p)c p + 4 ,
q  

— —
2

(p + 3q)c p q

-  p

2 r + p

3 r  +  2  —  p  

• (s + 2 + q)(s — q)cp-2, q +2

for p= — r+  2 , —r+ 4 , ... , r — 4 ; q= — s, — s+ 2 , ... , s.

First, a s  in  th e  proof o f  Lemma 4.2, w e find eigenfunctions o f Lfi c  F o r
this purpose, define yp ,  cpp q ,  iiip q  a s

(r + 2 + p)(r + 4 + p)(r + 6 + p )
= (r — 4 — p)(r — 2 — p)(r + p)

(pp q  =  N / S  q C p q  ypN/S ± 2 — qcp+6, q -2,

Opq = + 2 — qc p q  — y s + qc p + 6 ,q _2 ,

for p —r, —r+ 2 , ... , r — 6; q=  — s+  2, — s +  4 , ... , s. By (4.38) and (4.39),
it can  be  seen  that (pp q  a n d  ON  satisfy the equations

Lç11 yom  = +  s  +  (Ppq (4.42)

LAIJpq = — s + 2)tfrp q . (4.43)

L e t  I ,  I ' a n d  'Cm  b e  a s  in  th e  proof o f  Lemma 4.2. Then, b y  (4.42) and
(4.43), w e see that if (p, q) I, J p q  S  of the following form

ep q (x i , x 2 ) = up„(x2) exP( + s + 4)x 1 ) + rp„(x2) exP( — s + 2 )x1), (4.44)

—

for p =

=

(4.39)

(4.40)

(4.41)



14'Pq -  2  ( r  -  p)(s +  2 —  q)
1 1(r +  2 + /M s + 61) ( r  _ 3 s + p  3q - 8 )up42, q -2 -F(P 3 0 u Pg

1

+  2  +  p ) ( s  +  2
—

 q )  

• (r + 3s + p + 3q — 2)V p + 2 ,q - 2  j " ( p  + 3q)vpq
1

—  p)(s +  q)P 4  =
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w ith sm ooth functions up q ,  vpq o n  R . B y m eans of the equations 0 p
2J7 ,.; = 0,

for (p, q, j) ( ± ( r  -  1 ), ± (s -  2), 1), (±(r - 1), ± s, 1 ), (± (r - 3 ),  ±s,  - 1),
( +(r -  3), +s, 1) and 0 3

-r ()r — 3), s, 1 — 0 in §3.5, w e see  tha t e-pq is expressed  as in
(4.44) for all p ,  q .  Using (4.40)-(4.43) again, for the functions up q ,  vpq in (4.44),
we obtain the following equations:

(4.45)

for p = - r + 4, - r + 6, ..., r -  2; q = - s + 2, -s + 4, ..., s - 2.

1 u ,  =  1  1(r +  2 —  p)(s — q) 
•  ( r  —  3 s  —  p  —  3 q  —  8 ) u p _ 2 , q + 2  +  

2
-

1

( P  +  3 q ) u p ,P q 2  ( r  +  p)(s +  2 + q)

v ,  _ 1  1(r +  2 —  p)(s +  2 + q) 
•  ( r  +  3 s  —  p  —  3 q  —  2 )v p _ 2 , ,+ 2  +  —

2

1

( p  +  3 q )v p g'  2 (r + p)(s — q)
(4.46)

for p =  - r + 2, - r + 4, ... , r - 4; q = - s ,  - s + 2, ..., s -  2.
As in the case of Lemma 4.2, derive second order differential equations for

up q  or v pq from  (4.45) and (4.46), and solve them . Then w e see that if (p, q) 0 I',
c,,4(a) is  a linear combination of a" ,  (1  < j <  4), where pls are defined as in the
following table.

It 12(170 /102)

Pi -1 (r  -  s + 2) 1(r + 3s - 2)

P2 - 1(r -  s + 2) - 1-(r + 3s + 2)

/23 --1 (r+s+ 4 ) -1(r - 3s - 8)

/24 - 1 ( r + s+  4) - r - 3s - 4)1.(

By the e q u a tio n s  C724-1 ), +(S_2), 1  =  0 etc. used above, we find that

( * * )  e p q (a) is  a linear combination of a" ,  (1 j  4) for a ll p  and q.

According to (**), write cpq 's as a sum of ams with complex coefficients and
calculate the coefficients as in the proof of Lemma 4.2. Then we can conclude
that f il s  defined in §4.6 form a basis of K e r A l N .  In  th e  calculation, we may
use (4.45), (4.46) and 0,3 )

± s , , 1 =  0  m ain ly . Note th a t  the terms containing a"3

or a".4 always vanish.
The M A -module structure of Ker g A , I N is de term ined  in  a sim ilar w ay as
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in  th e  proof o f  Lem m a 4.1, a n d  w e ob ta in  th e  results stated in  Lemma 4.3.
This completes the  proof.

5. Main result

Applying Theorem 1.3 to Lemmas 4.1-4.3, we can determine, into which
principal series representations, a  given discrete series can be em bedded a s  a
(g, K)-module. Before stating the  results, we prepare some symbols.

D efine subsets 2E , of,  J  =  I , I I ,  I I I , as

=  {A e ZIA + =

where A+ is  ta k e n  in  such a  w ay that A  is  A + -dom inan t. F o r  A e E l ,  le t A,
b e  the unique element in  E ,f l  W A ,  a n d  s e t  mj = it A j . T h e n  7C1, Tin  a n d  71,1 1

a re  a ll th e  discrete series with the  same infinitesimal character z i A l  defined  in
§1.5. Let W ' be the Weyl group of 111 a n d  Ki  (resp. 1 2 ) the reflection with respect
to .1, (resp. 22). The unique q '-dom inan t e lem en t in  the  W '-orb it o f A o u - 1

is  deno ted  by  S i. W e have  A  =  (g2.§-0 2( A  u —Is .) R ecall that r' = A (H 1 0 )  and
s' — A(113 2 ).

W e can rewrite the results in the last section by means of Theorem 1.3 and
obtain the  following theorem describing the embeddings completely.

Theorem 5.1. L et P  be the m in im al parabolic subgroup o f G  defined in  §2.2
and  a ssum e that A E E t . T h e n  f o r  any J, e ,, e 2 ,  an d  p e a*, we have

dim Hom ( q , , ) (7r,, Ind (pi (o-,, 2 0  e" 0  IN )) 1.

T h e equality holds i f  a n d  only i f

p = a n d  (e1 , e2 ) E SA (J, K) with a n  rs̀ e W '(J),

where WV) and S 4 (J,3") are subsets of W ' and  { +1}  x  { + 1 } defined respectively
a s  follows:

W V) = }S-
1 , K2 K1 if,

W ' (//) 11, K1K2, K21

W ' (///) —= }K2,

S 4  (II,= { ( ( - 0 ( ;'+ '' ) / 2 ,  / y r ' — ' ' + 2 ) / 2 ) ,  ( ( ) r ' + s ' +  2 ) / 2 ,
± 1)1,

y'+1 ,

SA(J, K1) = { ( ( )r '+s '2 ,

f ( ( l
)

, , (
SA(J, K2) = {(/ 1yr'—s')12 ,

yr'+s')/2)} f o r  J I
i-1), (( )(r'-l-s'+ 2)/2 ,±  1) } f o r  J = II,

)(r'—s'+2)12), i y+1, I ) ) f o r  J = II
i y+1 ), (( )(r' —s'+ 2)/2, ( y ') f o r  J = III,

s A ( J , 3 -1K 2) _ {(+ (_  1 10' +s'+2)/2)} f o r  J = II , III ,

SA(J, :K2KI ) = }(( — I)( '+22, + 1)1 f b r J = I, II.
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R em arks. (1) The num ber of the  embeddings of rci  in to  principal series is
three, thirteen o r four according a s  J  =  I ,  I I  o r  III.

(2) N o te  t h a t  W '(/), W '(///) OE W '(// ), SA (/, gi ) SA (//, ) a n d  that
SA (///, g2 ) OE SA (//, g2). T hen  w e  find  tha t th e  discrete series it 11 is em bedded
into all the possible principal series into which ir, ( J  =  I , II , III) can be embedded.

Proof  o f  T heorem  5.1. For the case where the  Blattner parameter ). of n A
is  "far from  th e  walls", apply Theorem  1.3 t o  th e  results o f  Lemmas 4.1-4.3,
then straightforward calculations give the  statements in  th e  above theorem . In
th a t  argument, w e  n o te  that every discrete series representation o f  G  is self-
contragredient.

Next we consider the  "not far from the walls" c a s e . W e keep to  the nota-
tions in § 1.5. Since g o = Lie(G) is a norm al real form of g, the maximal abelian
subspace a  o f  p  is  a  C a r ta n  subalgebra o f  g  contained in  1 and the positive
system V +  i s  t a k e n  for A .  P u t  j3 =  E A, e  v,, then i s  Vi+  -dominant and
g-action o n  Ff i  can  be  lif ted  to  a  G -ac tion . T he  sam e facts hold for the  linear
form 4

The infinitesimal character of 7C =  Tri i ,  with respect to  l  is  xt,11.  For a e A-21
and kt e a*, the principal series I n g , (a  e" 0  1N ) has infinitesimal character xro l .
Therefore, it,, is em bedded in to  Ind(o - 0 e° 0 1N )  only if /../ =  A  for g c W'.

F o r o- e ia and  g E W', we find that

Lp.i.i.1.(71+4on( 0 . e §•(.1+413)) a  0  e g.. A (5.1)

b y  n o tin g  th a t M  acts trivially  o n  th e  space  spanned  by  a  nonzero highest
weight vector of F,u .o . Together with Proposition 1.1-1.3, relation (5.1) yields

Homo ,m (rri , Ind(a 0 e ' 0  1 N ))

Hom o h ,o (n j ,In d ,( L Ptifit 1 + 4 " ( o - e " 7" - 4 i5) ) 1N ))

H om o ,N ) (7c,, G tlitr:1-1+4131 ( I n 4 (0 - C) e " -A+ 4 /5) 0 1 N )))

Hom ( ,,K ) (G (pE
t11

+ 4 0 1 (iri ), (Ing,(o- 0 e'* ( A + 4 (' ) 0  1 ,))

HOIn( q ,4 . 0 . 4 p , ,  Ind(a C) e' ( 7 1 + 4 '3) 0 1 N )), (5.2)

where pj  =  EOE E  A ,  7.
Let Aj  b e  the  Blattner parameter of the discrete series rt,,, then the discrete

series rrA ,+ 4 p , has Blattner parameter A,, +  4pi  satisfying the condition for being
"far from the walls" described in §3. S o , re la tio n s  (5.1) and (5.2) and the  result
for "far from the  walls" case show tha t for o-, i ,E 2 e .84 a n d  gE W',

dim Hom ( ,,,o (rri , 0  e " 0  1 N )) = 1

dim Flomo d o errA F .A .p ,, Ind(a, 2 0  e ' ( A + 4 )  0 1 N )) = 1

g • (2 + 4fi) = (A i  + 4p i r  a n d  (e , E.2 ) e S 4 + 4 1 ,,(J , g') w ith a n  g' e W '(J),
(5.3)
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w here  SA + 4 ,,(J, 3') a n d  W '(J)  a r e  defined  a s  i n  t h e  theo rem . N o te  that
(A  + 4p i )j  A j  + 4 p ,, that A (H 1 0 ) (A  + 4 P1)(H10)(mod 4) a n d  th a t A(H3 2 ) —=
(A  + 4 P1)(H32)(mod 4). Then one gets SA + 4 p ,(J, =  SA (J, i'). Since
(A j  +  4p = A + 4fi is regular, the equation K•(51 + 4f)')= g'•(A j +4 p j )-  implies
3 = -3'. Then the statements of the theorem immediately follow from (5.3). Thus
the  proof is completed.

6. Knapp - Wallach's embeddings

6.1. Szegii mapping S , .  I n  the ir  pape r [5 ], A . W . K napp  a n d  N . R.
Wallach gave certain (g, K)-homomorphisms of some principal series repsentations
onto discrete series fo r  semisimple L ie groups. H ere  w e apply  their resu lt to
the group G of type G2 and in the next subsection compare it with our Theorem
5.1.

L e t g  b e  a  complex simple Lie algebra of type G2 a s  b e fo re . F o r  A  e
define A + , A c

+ , A n
+ ,  a n d  .1 a s  in  § 3 .  W e introduce the  notion  of "fundamental

sequence".

Definition 6.1. A  sequence (fii , 132 )  of positive noncompact roots is said to
be fundamental if it satisfies the  following two conditions.

(i) T h e  ro o t  /3, i s  a  s im p le  r o o t  i n  A + ,  a n d  f3, and a r e  strongly
orthogonal.

(ii) F o r  y e A ,  d e f in e  ,6(y) a s  th e  first 133 in  ( f l y , $2 )  su ch  th a t y  is not
strongly orthogonal to  f3j . Then one of the following (ii-a) and  (ii-b) holds:
(ii-a) t3 ly/1
(iil)) 1)6011 < I I a n d  y  — 31q(y) e A.

N ote tha t the existence of f3(y) in  (ii) is assured since Rfl, + R/32 =
F o r th e  definition o f  fundamental sequences in  c a se  o f  a  general semisimple g
and the existence of fundamental sequences, see [5].

F o r  a  fundamental sequence (i3i , f32 ), put

Ep , +

17 4,2 — E 132 E-P2'

(a4 )0  —  R fln ,i +

where Efl (f3 e A ) is  th e  root vector defined in  § 2 .  By Definition 6.1, (c14)0 is a
maximal abelian subspace of no . Equip (a 4 )  w ith  the lexicographic order with
respect to  the ordered basis (n4 , 1,7

 4,1
, I 7 4 ,2). Let !P4 be the system of the restricted

roots o f go re la tive  to (a 4 )0 , a n d  (V'A )+ the  se t o f a ll positive elements in  VIA .
Take a  L ie  subalgebra (n A ) ,  of go  a s

=  E  (g o o ,
4 E (  Y,1)
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where (gm) , = {X  e go  l [H, X ] = y(H)X(VH e (1 4 )1. Then we have an Iwasawa de-
composition g , =  to e  (a4)0 e (nA)o o f g ,  and  the  corresponding decomposition
G = KA A N A  o f  G.

Let M A  be  the centralizer of AA in  K  and  TA th e  irreducible representation
of K  with highest weight 2. T he representation space o f TA is  d e n o te d  b y  VA .
Take a  nonzero highest weight vector P A  o f  VA and define UA to  b e  the M A -cyclic
subspace o f  VA generated by yoA . Then w e have  a  representation o- A o f  M A on
UA defined by

0",1(m) = TA(m) I u, E MA ).

The representation a ) , is not always irreducible, and let

(TAC )  cr(2) , IJA =  (D U y (6.1)

be a n  irreducible decomposition of (o-A , UA ).
Now we introduce two function spaces C (G )  a n d  C Z(K ) a s  follows:

C.,°f (G) = { f :  GE; VAI f  (kg) =  t(k )f(g ) (V(k. g) c K x G)},

CZ(K ) = {f: K  U A lf(mk) = 5 A(m)f(k) (V(m, k) c MA X K)},

The definition o f  q ( G )  is  the  same a s  th a t in  § 1.3. F o r  a  linear form  y  on
a A ,  we extend each function f  in  CZ(K ) to  G  in  the  following way:

f(nak) = a'f(k) (n e NA, a G A 4, k E K).

Then G  acts o n  these function spaces by the  right translation:

(g  f)(x) = f(xg) (g, X E G).

W e denote this representation o f  G  on C ( K )  b y  W(o- A , y). F o r  each  o-}1i )  in
(6.1), the  G-representation W(a- (Ai ) , y) is defined in  th e  same w a y . N o te  th a t the
representation W(o- (2 ) , y) is equivalent to the principal series I n a n (oY) e " - ° + 0
1 ,,)  induced from the minimal parabolic subgroup PA = MAAANA, where p+  =

y. I n  th e  following, I n d ( a e j e 2 e" - P P  0  1,)(o-,
1
,

e2
 e M , V e  a* ) is de-

noted by W0 (o-,, 2 , y). Here P  is the minimal parabolic subgroup defined in § 2.2.
F o r  th e  definition o f  Ind(o-e  C) ev+PP 0 1s ), se e  § 1 .3 .  M oreover W(crA , y)0 ,
Wo (o-,,,, 2 , y)0  e tc . stand for the (g, K)-modules of a ll K -finite vectors in  W(o- A , y),
W0 (a,,, e2 , y ) etc. respectively.

We write an  element g  of G  as g = k(g)e H ( g) n(g) with K(g) e K, H(g) e (a 4)0,
n(g) e NA, and for a  linear form y  on a 4 , define a  function SA, v : G  End(VA )  by

SA, v ( g )  =  exp( —  y(H(g)))-r,(K(g)),

and  pu t SA , :  C Z ( K )  C (G )  as

(SA ,,f)(g ) = SA ,(g k ')f(k )d k (y e G).

This definition o f SA , is  equ iva len t to  tha t o f the  operator S  in  [5].
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According to [5], we define a linear form v(.1.) on a „  as

v(2)(174 d) = 2(1/0 i ) + 2nd ,

where nd = e /1;,- 1/1(y) = /3d and /3d +  y e A ll. T h e n  the following result is shown
in [5].

Theorem 6.1 (cf. [5 , T h eo rem  A ]). L et notations b e  a s  abov e, then the
mapping

S  v ( , ) lw  (o p  2  p  _ , ( „)) 0: W (o-V), 2p + — v(2)) °( K e r  g , 1)
°( 6 . 2 )

gives a  nonzero (g, K)-homomorphism and the im age ,S,, , ) W(cr(2), 2p + — v(2))°  i s
isomorphic to the discrete series (g, K)-module f o r n A .

Moreover, if  the B lattner parameter 2 of  n A is  f ar f rom  the walls, the mapping
in (6.2) is  surjective.

Note that (Ker g A )° realizes the (g, K)-module of discrete series n, provided
th a t 2  is  far from the walls.

6.2. Comparison with Theorem 5.1. According as A e E , w ith  J = I ,  I I  or
I / / ,  possible fundamental sequence (fl i , j32 )  and the data a „ , M A ,  a-, 1 0 ,aY v ,
are described explicitly as follows:

Case I: 4 + =

fundamental sequence: (a 2 , 2a 1 +  a 2 ),

Q4 = a, MA = M,

az $

v(2) = ,-s2 g1 71+ pp.

Case II: 4  =

fundamental sequence: ( —  oc2 , 2a, + a 2 ),

Q4 = a, M 4  = M9

6,1 1 - 1  with eA = (— 1) ( r  s ) I 2

1, (11) = '§2g151-  ± pp .

Case III: 4 + = Artl l

fundamental sequence: ( —  (a l  +  a 2 ), 3a, + a 2 ),

a, = Ad(m 0 )a, M 4  =  M 0 M M 0- 1 ,

h 1 ( - 1 + .\/ —1 1 + N / —1 1 N/ — 1 1 —w i t  m o  =  ( -

2 — 1 — f-1)' 2  — 1 — - 1  1  — , / - 1 ) ) '

o-, mo • e mow i t h = )(r +s)/2

V (
2

)  =  MO • (glg2 ±  PP).

w ith E,1. = (—
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Here mo  p (H ) =  y(Ad(m0 )- 1 H) for p e a*  and  H e 04 , mo  • a(m) = o- (mo
- l mmo )  for

a  representation a  of M  and  m E m0 Mmo
- 1 . N ote that for the case of d ,  the

isomorphism

(mo  ( i )  e m "  0  ' N) I n a ( a  0 e 4 N ) (a e i , p e a*),

implies that

W(mo • a, mo • II) = Wo(a, /1 ) (a 6 C  a* ).

Since Wo (o-, 2p,, — y)* Wo (o-, y ) fo r  a e M  a n d  p E a * , th e  above remarks
and Theorem 6.1 imply that 7rA can be embedded into Ina((751 ,52 0 e 0 1 N ) with
parameters e,, E 2 a n d  p  listed below:

•Case I. 4 4 . = p  = K2g1 2
, (E 1 , 2 )

 E  SA,(I, '§2 g 1 ) ,

•Case II. 4 +  = = s 2 s A, (al , a2) e SA,(//,

•C a s e  I I I .  z1+  = p  =  s 1 s2 4, ( a l ,  E2) c S A ,( / / / , g1g2),

These two embeddings for the case of  4  (r e s p . 4;•,, 4 ;11 )  appear in the
three (resp. thirteen, four) embeddings determined in  Theorem 5.1.
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