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On maps from BS! to classifying
spaces of certain gauge groups

By
SnuicHI Tsukubpa

1. Introduction

Let G be a compact connected Lie group, 7 : P—~X a principal G bundle
over a compact connected manifold X, and ¢ its gauge group. ¥ is
identified with I'(AdP), all continuous sections of the adjoint bundle of P,
and we give the compact open topology on it.

Assume that the structure group of P reduces to Z(S'), the centralizer
of a closed subgroup S! of G, then

AdP=PX 4,,G :PZ(SI) X 4G,

therefore ¥ naturally contains S!. Conversely if 4 contains S! as a
subgroup, one can show that the structure group of P reduces to Z(S') (see
Appendix). We can show similar results in the level of classifying spaces
in some cases. The homotopy theory of classifying spaces of compact Lie
groups has been developed since 80’s ([9] is a good survey) and using the
results of [8], [6] we have following results.

Theorem 1.1. Let P be a principal SU(m) or Sp(m) bundle over an n
dimensional sphere S". Then the following three conditions are equivalent.
1. There exists a homotopically non trivial map from BS! to B%.
2. There exists a non trivial homomorphism from S to 4.
3. There exists a non trivial homomorphism p . S'=G(G=SU(m),
Sp(m)) and the structure group of P reduces to Z(o(SY)).

Theorem 1.2. Let P be a principal SU(2) bundle over a smooth simply
connected spin 4 manifold X or CP. Then the following three conditions are
equivalent.

1. There exists a homotopically non trivial map from BS! to B%.

2. There exists a non trivial homomorphism from S' to 4.

3. The structure group of P reduces to S
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In the case of X=CP? we can show a similar result in classical way
using the ring structure of the cohomology of B%. In section 3 we prove
the following result. See section 3 for details.

Proposition 1.3 (weaker version of 1.2). If M, c2=M_.2 o, then there

exists an integer m and |= —m?

The author is grateful to Akira Kono for valuable discussions.
2. Proof of Theorem 1.1, 1.2

By [2], we have a homotopy equivalence
B%~=Map;(X, BG),

where Mapy(X, BG) denotes the connected component of Map(X, BG)
containing the map inducing P and a fibration

Map; (X, BG)—>Map:(X, BG)—BG,
where Map; (X, BG) is the space of based maps. Consider a map f : BS'—
Map(S”, BG). The following holds.

Lemma 2.1. Assume that nis even or m;(G) ®Q=( for j>n. Ifevofis
homotopically trivial then so is f.

Proof. If evo fis homotopically trivial then we have a lifting f :BS'—
Map; (S BG)=0""'G. By [6], if Y is a finite dimensional connected
complex and z;(Y) is finitely generated for each i>1, for j>1

n(Map® (BG, Y))=I1H""(BG ; m:(Y) ®Z/2),

where Z=11Z, is the product over all p-adic integers.
Thus we have

[BS, @"'G]=[XZ""'BS' G]=rm,..(Map*(BS', G))
= I1 H* "' (BS", 1...(G)®Z/Z) =0,

k>n—1

where [ ] denotes based homotopy classes. Therefore f~ * and so is f.

We can prove a similar result in the case of principal SU(2) bundles
over simply connected 4 manifolds. Let X be a simply connected 4
manifold with 2nd betti number b. Then we have a cofibering
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and obtain a fibering
*S*—>Map; (X, BSU(2))—>T11RS3 €))
b

Note that principal SU(2) bundles over X are classified by their 2nd Chern
classes and Map,(X, BSU(2)) denotes the component corresponds to the
bundle P, with c,(P,) =k.

Lemma 2.2. Consider a map f: BS'>Map,(X, BSU(2)). Ifevofis
homotopically trivial, then so is f.

Proof. If evof is homotopically trivial, we have a lifting f: BS'—
Map; (X, BSU(2)). Since
[BS!, Ibms:"] =T1I1(BS' QS*]=I1[ZBS S7]
b b

=@m(Map* (BS', SN =1 B '(BS' ; 1...(S*) ®2/2) =),
b >
b
i*o f is trivial and f lifts to 2°S%
[BS', 'S =11 H*(BS' ; m(S)®Z/2) =0
k>
hence f is homotopically trivial.
Note that this lemma also holds if X is a finite complex with only even
cells.
We recall some results from [8]. Let o : S'>G be a homomorphism.
Denote by Z(p) the centralizer of this homomorphism and by

Map,(BS!, BG) the component which contains the map Bo. The obvious
homomorphism

Z(p) XS'=G
induces a map
BZ(p) X BS'-=BG,
which has as adjoint
ad, . BZ(p)—>Map,(BS', BG).

Denote by Rep (S, G) the set of conjugation classes of homomorphisms.

Theorem 2.3 ([8]). The map
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Rep(S', G)—[BS', BG]
is a bijection.

Theorem 2.4 ([8]). ad, induces an isomorphism in the mod p
homology.

Moreover one can describe the homotopy fiber X, of ad,. Suppose that
X is a space with an action of a topological group H. We define X?=
Mapx(pt, X) to be the fixed point set and X"*=Mapx(EH, X) to be the
homotopy fixed point set where Mapy(,) denote the space of all
equivariant maps. X, denote the p-adic completion in the sense of
Bousfield and Kan and X =11X, is the product over all p—adic completions.
Let S! act on G via p and conjugation. By choosing a fixed point as base
point of (6)* S! acts on the homotopy fiber F of G—G. This induces a
homotopy fibration (see [8] for details)

Fhsl_>Ghsl_) (é)hsl

and one can compute the homotopy groups 7, (F"Y.

Proposition 2.5 ([8]).
(FSY =11 H7(BS"; 1..(G) ®2/Z).
i2j

One can also compute the homotopy groups of the homotopy fiber Fg,
of G5'=G*',

Proposition 2.6 ([8]).

5 (Fp) =10, (G°) ®Z/Z=H*(BS" ; 1,.:(G*) ®Z/Z)

and the map m,(Fu)—m,(F™) is given by the canonical homomorphism
between the coefficients of the homology groups.

Note that [8] contains more general results.

Proof of Theorem 1.1. We must show that 1 implies 3. We consider
the case of G=SU(n).
Let o - S'=>SU(m) be a homomorphism given by

zm—l
on(2) =

z—l
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then Z(0,.) =SUmM)N(S'XUm—1)). If n<2m—1, since z,-,(SU(m) N (S!
XU(m—1)))—7r,_,(SUGm)) is surjective, the structure group of any
principal SU(Gn) bundle over S" reduces to Z(0..) hence 1, 2 and 3 always
hold.

Assume that n>2m. Suppose there exists a non trivial map f : BS'—
Map:(S", BG). By 2.1, ev o fis homotopically nontrivial and by 2.3 there
exists a non trivial homomorphism p : S'=G such that ev o f=B, hence
taking adjoint of f we obtain a map g

BZ(p)
l ad,
S"——>Map,(BS', BG)
e
BG.

Note that ev 0 g induces P and ev 0 ad, is homotopic to the map induced by
the inclusion Z(p)—G.
By [8] there is a fibration

1
hS
Fp—F" —X,.

Since 7;(G) ®Q =0 for j >2m—1 and 7,(G*) ®Q =0 for j >m—9, m,(F*") =0
for j>2m—2 and m;(Fs) =0 for j>2m—3 hence by the homotopy exact
sequence for the fibration we have m;(X,) =0 for j>2m—2. Therefore
(ad,) . : m.(BZ(p))—n,(Map,(BS', BG)) is surjective hence we have a lift of
g & . S">BZ(p) and the structure group of P reduces to Z(p).

The proof in the case of Sp(m) is similar.

Proof of Theorem 1.2. As above, if there exists a non trivial map f :
BS'->Map:(X, BSU(2)) we obtain a map

g : X—Map,(BS', BSU(2)),

where p : S'=>SU(2) is a non trivial homomorphism. Note that Z(p)=S"
andev oad,~Bi : BS'=BSU(2) where{ : S'=>SU(2) is an inclusion. Bi*c,=
—c! where ¢;EH'(BSU(2) ; Z) is the universal 2nd Chern class and ¢,€
H*(BS'; Z) is the universal 1st Chern class. By 2.4 there exists an element
a€H*(Map,(BS!, BSU(2)) ; Z/p) and ad;a=c,. We have

(P)=grev’c,=g " (—a)=—(@g (@) €H' (X ; Z/D).

If X is a spin manifold with the 2nd betti number b,=(), we have c,(P)
=((mod p) for any prime p hence ¢;(P) =0.

Note that the intersection form @ of a simply connected spin 4
manifold is even. If X is smooth, by a result of Donaldson [4], @ is
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indefinite hence of the form @ =mH®nE; where

0 1
= _<1 0>
and m, nE€Z, By [5] if n>(, m >3 therefore if b,>0, @ has at least one H
part hence the structure group of P reduces to S' if and only if ¢;(P) is
even. Since we have an element vEH?*(X ; Z/2) such that ¢,(P) = —v*=(€E
H'(X ; Z/2), the result follows.

If X is CP? we have an integer m, for each prime p such that ¢,(P) = —
mi(mod p) therefore ¢,(P) = —m? for some integer m.

Remark 2.7. The proof above breaks for general simply connected 4
manifolds because of algebraic reason. For example, in the case of X=
CPHCP? we have integers m, 0, for each prime p such that —c,(P)=
mi+ni(mod p) but this does not imply that —c,(P) is a sum of square

numbers. Infact6=6+0=2+4=3+3 and <%>=(%) (%) where (%) is the

Legendre’s symbol.
3. Cohomology of Map(CP? BSU (2))

In this section we determine the cohomology of Map(CP? BSU(2)) in
low degree. Of course the calculation is based on the Serre spectral
sequences for the fibrations

Map; (CP% BSU(2))->Map.(CP?% BSU(2))-2*>BSU(2), @

23S*->Map; (CP? BSU(2))—>QS". 3

Denote Map,(X, BSU(2)) (resp. Map: (X, BSU(2))) by M, x (resp. M; x).
It is well known that Maps(CP? BSU(2))—02S? is a rational
equivalence.

Proposition 3.1.
H*(Map; (CP% BSU(2)) ; @) =Q[x],

where deg x=2.

Let p be a prime. Note that for * <2p
H (QS*; Zy) =Z[uy, u]/ (Ul —puy)

as algebras where deg u;=2, deg u,=2p,
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0 if j is odd

d 3 - =
H(QS?; Z/p) {Z/p if  is even,

if p>3 the p component of the homotopy groups of S? is given by
a (s =10 0<k<2p—3 2p—3<k<dp—6
o Z/p k=23

and
. 0 0<y —J —2<j<4p—
HJ(Q3S3: Z/p)—{ / ] §<21§ 3 ZP 2 7 D 6

From the homotopy exact sequence for the fibrations (2), (3), using
results of [10, ChV] we have 7, (M} c2) =m (M. cr2) =0 and

z — z

T(Mi cp2) ——> m,(Q2S%)
7o (M, cp?)

hence H*(M;c?; Z)=H'M.*; Z)=Z. Let a be a generator of
H*(M, c»? ; Z) and a its image in H*(M; 2 ; Z). Note that we can choose
u, to satisfy i* (u) =a€HM; 2} Z»).

We show the following results.

Theorem 3.2. Let p be an odd prime. For * <9p—9
H* (M; 2 5 Ziy) =Zla, b]/ (@' —pb)
as rings where deg a=2, deg b=2p—2.
Z/p 20—1<j<4p—1, odd

H (M © Z/D) E{Z/p@Z/p 2p<j<4p—8, even

 as vector spaces.

Corollary 3.3. For * <2p—2
H M, 25 Z/p)=H"(M: 2 ; Z/p) QH (BSU(2) ; Z/p)

as vector spaces and @ '=(0 mod (evic) EH?**(M, cp?2 ; Z/D).

Theorem 3.4. For * <4
H (M2 Z)=Z[a, bl/(a*—6b)
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as algebras where deg a=2, deg b=4.

Proof of Theorem 3.2. We give some remarks on the fibration
QiS*>Map,(S*, BSU(2))-24>BSU(2).
Consider the transgression 7, : H*3(Q’S* ; Z/p)—=H**(BSU) ; Z/p). It
is easy to see that t.=k7,.

Lemma 3.5. 7,#0if p=>3

Proof. If p>5, this is deduced from Lemma 2.2, 2.3, 2.4 of [11]. For
p=3, see [7].

The first possibly nontrivial differential for the Z/p coefficient Serre
spectral sequence for the principal fibration (3) in total degree <2 —3 is
dy-2 P EY2 =H?(Q’S* ; Z/p)—~H?*(QS*; Z/p) =E%5".

Lemma 3.6. Ifp>3 dyp-—2#0.
Proof. Note that the fibration (3) is independent of k. Consider the

following commutative diagram

P —— Mg — QS°

l l

M st —> M e

l l

BSU(2) == BSU(2)

Assume that dy,—,=( then for a generator x€ H*3(2%S® ; Z/p), there exists
an element yEH?*(M*, 2 ; Z/p) and ¢* (¥) =x. Then t(x) =1¢" (y) =7(y)
#(). There exists a map f.BS'->M_, 2 such that (evof) #0:
H**(BSU(2) ; Z/p)—~H* *(BS'; Z/p) therefore

0#Cvof) tly)=f (ev't(y)) =0,
which is a contradiction.
By proposition 3.1 H* *(M; ¢* ; Z) has a free part hence d,=() : E}*~2

—FE5 %73 therefore H* 2(M; cr2 ; Z/p)=Z/p. Consider the Z, coefficient
Serre spectral sequence for the fibration (3). Since Ej'=( for 0<t<2p—2,
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we have an exact sequence

0 — EV?? — H* (Mic?; Zp) — EZ22° —> ()

Zy Z/p.
This sequence does not split because H? *(M; e ; Z/p) =Z/p, therefore
a* '=i* (™) =pb where b is a generator of H* *(M; 2 ; Zy) =Z) and we
complete the proof of the first part of theorem 3.2.

Again we consider the Z/p coefficient spectral sequence. Since d,=0 :
E}*'>Et%»73 we have d,=0 : E3¥*>—E; ¥ for any s.

Lemma 3.7. If (0<s<2p—2
dy-2=0 @ E52  —>ER% 72"
Proof. We may assume s is even. Note that E5% =E;* 3 =F;'QE}»-3
and if j<2p—2, the cup product
H(QS; Z/p) @H? Y (QS* ; Z/p)—~H***(QS*; Z/p)
is zero. Let v be a generator of H*3(Q3S* ; Z/p)=2Z/p. Then d u{*®v) =
u? « d()=0.

Therefore we have
5 ES_,Z[E{Z;E'?W‘EZ_/p 2p—1<j<4p—T, odd
s | EYRR PR, =Z/p@PZ/p 2 <j<4p—8§ even
as vector spaces which completes the proof.

Proof of Corollary 3.3. Consider the Z/p coefficient Serre spectral
sequence for the fibration (2). By theorem 3.2 Ej! t<9p—2 are
concentrated in even dimensions. Therefore

H* (M. o2 5 Z/p)=H" (M; 2 ; Z/p)QH"(BSU(2) ; Z/p)

as vector spaces for * <2p—2.
Since @*'is in the kernel of H* *(M, cp? ; Z/p)—>H?* *(M; c»? | Z/D), We
have @ '=( mod(ev:c,).

At this stage we can prove proposition 1.3.

Proof of Proposition [.3. Note that we have a canonical map f . BS'—
M_:2 cp2 (see the proof of the following lemma).
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Lemma 3.8.
(@) =¢ekc,EH*BS'; Z),
where e=1or —1.
Proof. The map f decomposes as follows.

BS!'>Map,(CP? BS")>Map,(CP% BS")Z>Map_.2(CP% BSU(2)),

where j : BS'=BSU(2) is an inclusion. Consider the following commuta
tive diagram

Z——n,(Map(S?, BSUQ))<  7,(M_ o) —

Z

o) - o) -
Z— my(Map,(S® BSY)) <—m(Map,(CP?% BSY))

m(Mapy(S%, BS")) <—m(Map,(CP% BSY))

|-

Z— 2] (BS 1)

—_ ”z(BS])
From the homotopy exact sequence for fibrations (2), (3)
@) .=2X . m(M_2 p?) =Z—Z=m,(Map(S: BSU()).

Let & : S2>S? be a map of degree k then we have a commutative diagram

Z—n,(Map, (S, BSY)Ys7,(Map(S? BSU(2)))—2

H (k). T k. T Ikx
Z=——m,(Map,(S% BS")257,(Map(S% BSU(2)))=——2Z.

A generator of 7,(Map(S?* BSU(2))) is given by the adjoint of the degree
1 map S?AS8?=S'—->BSU(2) and that of m;(Map,(S? BS!)) is given by the

adjoint of the map % . S?XS?>—BS! which represents the line bundle with ¢,
=a®1+1®a. Then we have a commutative diagram

StxS? —> BS!

l 5

2

St — BSU(®).
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This shows that
n(Map,(S2 BSD) 95 7,(Map(S%, BSU(2))

2%

VA — Z.
Thus we have
f.=kX :m(BSY)=Z—Z=m,(M-2 c?).
Recall that 7,(BS") =m (M_.2 r2) =0 hence
fT=kX :H*M_ 2 ; Z)=H*BS'; 2).
Letg : M_2 2—>M, c»2 be a homotopy equivalence, p prime to k. By the

above lemma we have (gof)*((a®1)")#0€H**BS'; Z/p) hence by
3.3 (eviogof)c,#0.

Lemma 3.9. For any continuous map f . BS'=BSU(2), f'c,=2m’lE
H!'(BS'; Z) where m is an integer.

Proof. Put u=—c, Let ffu=Ict. We must show that [ is a square
number. We have
P (f u) =12 (c) =2t
on the other hand
P W) =1 QutVH) =20+ Vect™!
therefore if (I, p) =1, ’"¥*=1(mod p) and by Euler’s criterion, (%)21 hence
! is a square number.
By this lemma we can put (ev,0g o f)*(c,) = —m%? Taking the adjoint
of go f : BS'>M, cr2, we obtain a map @ . BS!X CP*>BSU(2) and we have
& (u)=m¥i®1+nc,®c,—I1Qck

Let p be a prime satisfying (I, p)=0n, p) =1 and consider the mod p
cohomology.
PP u) =P (Mi®1 +nc,®c;—I11®ch)
=2m’M'®1+nctQc.
On the other hand

10} ‘gl (u) — 2(15 * (up+l/2)
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=2m*"'"' @1+ (p+ Dm 'nct®c,
+HEO+D O Dm = o+ Dim et o0

hence we have

=50+ Do Dnt=—(2Ln)" (mod p),

therefore

—lm

(5 )

and —!/ is a square number.

Proof of Theorem 3.4. For p=2, since we cannot use 3.5, we consider
the Postonikov decomposition of Map* (CP? BSU(2)). For a space Y and
a non negative integer ¢, let Y<g¢>=YUei*"'U-- be a space obtained from
Y by Kkilling the homotopy groups in dimension >¢q. From the homotopy
exact sequence of the fibering (3), using results of [10, ChV] we have

MJCP2<4 > ZMO‘_ cp2< 5 >
and a fibration
K(Z/6, 3)—>M; c2<4>>K(Z, 2)=BS" )

Let kEH'(BS'; Z/6) be the Postnikov invariant.

If 2k =0, the fibration (4) localized at 3 is trivial hence H*(M; cr2 ; Z/3)
=H3(M; p2<4> ; Z/3) #0 which contradicts to theorem 3.2. Therefore 2
k+#0.

Lemma 3.10. 3k#0.

Proof. 1f 3k=0(, there is a map s : BS'=M; »2<4> such that
(pos).=3X : m(BSH—>m(BSH.

Restricting to CP!C BS!, we obtain a lift § : CP*—>Mj ¢2 and its adjoint @ :

CP*XCP*—»BSU(2). Then we obtain a principal SU(2) bundle over CP? X
CP? with 2nd Chern class is 6a®aEH*(CP*X CP? ; Z) where a€H?*(CP?) is
a generator. Note that K(BSU())=Z[u], K(CP*XCP? “‘Z[a bl/(@® &%)
and ch(u)=c,— 112 e, ch(a)= a®1+%a2®1 ch(b)=1Qa+—+ (1®a2) Put
@ () =6ab+2.a*+1,ab*+ 1;a*? where A,EZ.
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&ch(u)=9"* cz—l—lzc%
=6a®a —3a’®a’
On the other hand
ch(®* (w)) =ch(6ab+21.a’b+21ab*+Aa’b?)
3

=pa®a+ (3+A)a*®a+ (3+1)a®@a’+ {7+%(11+12) +23}a2®a2

and we have equations

3+/'l1:0
3+)-2=0
3

S+ 2+ +=—3

which is a contradiction.

Thus kH*(BS! ; Z/6) is a generator. Therefore
d,:E{*=H*K(Z/6,3) ; Z/6)—~H'(BS'; Z/6)=E}°

is an isomorphism in the Z/6 coefficient Serre spectral sequence for the
fibration (4). Then we can prove theorem 3.4 quite similarly to theorem

3.2.

It is known that all differentials in the Z/2 coefficient Serre spectral
sequence for the fibration (1) vanishes if X is spin ([3]).

Appendix

In this appendix we study compact subgroups of gauge groups. Fix a
base point p,EP and z(p,) =x. Then we can naturally identify AdP,, the
fiber over x, of AdP, with G by G3g | [p,, gl EAdP;,. In this appendix we
always identify AdP, with G by this identification.

Define an evaluation map
ev . XX%—>AdP
by ev(x, ) =u(x), and a restriction map
7y, - 9—=>AdP, =G

by r,(u)=ev(x, u). Note that the evaluation map is a fiberwise
homomorphism and the restriction map is a group homomorphism. Then
we will show the following.
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Theorem. For any compact subgroup A of %, the evaluation map
restricted to X X A

ev . XX A —>AdP
is injective. In particular, 1y, - A =G is injective.

Compact subgroups of a gauge group is related to the reduction of the
bundle.

Let H be a closed subgroup of G. A sub H bundle of P is a subset PyC
P which is a principal H bundle over X with respect to the natural H
action. Note that if P contains a sub H bundle, the structure group of P
naturally reduces to H.

Assume that the structure group of P reduces to Z(K), the centralizer
of a closed subgroup K of G, then

AdP=PX 4G =Pzx14G,

therefore ¢ naturally contains K. If K is a tori then any compact subgroup
of 4 such that rxo(‘%f ) =K is obtained in this way. More precisely, we have
the following.

Theorem. Let K be a closed torus subgroup of G. Then there exists a
natural one to one correspondence,

{# C% | compact subgroup of 4 such that r.,(A) =K}
Y1to1
{Z(K) sub bundles of P which contains p}.

Let 4,C% denotes all the elements of finite order of 4, G,CG all the
elements of finite order of G. Note that for any u€%,, ev(x, u) is of finite
order for all x€X, hence uI'(PX M(ggc gr,(w)g™)). Since there is an
isomorphism

P/2(r, @) =P Ugr,(g™)
sending [p] to [p, ,(w)], we can consider u as a section of P/Z(r, (u)).
Let p : P->P/Z(r,,(w)) be the natural projection. We define a subspace of
P, Py:=p'(u(X)), then Py, is a sub Z(r,()) bundle of P and pyEPe.

Proposition. For any g=G,, P, gives a one to one correspondence,

{u Egﬂ'xo (u) =g}
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V1to1
{sub Z(g) bundles of P which contains p,}.
Proof. We construct the inverse to P,. Let a sub Z(g) bundle p,EP;
CP be given. The inclusion P,~P induces an element of %,
u i X=P/Z@—~P/2@) =P%.( Uchgh“>,
he

where the last isomorphism is given by sending [p] to [, g] and r, (u) =
g. In a sense this u is a constant section i. e.

u . X3x—>[p., g1EP; X 4G.
It can be easily shown that this construction gives the inverse to P,.
Proof of the first Theorem. Note that for any uE %, of order n, ev(x, u)

is of order n for all x€X. Since & is compact, ker[ev(x, - ) : #—G] should
contain elements of finite order, hence ev(x, - ) | » is injective.

Let Inj’(X, G) denote the component of all the injective homo-
morphisms from K to G including the natural inclusion K—G.

Corollary. For any compact subgroup K of G, there is a natural one to
one correspondence,
{# C¥ | compact subgroup of 4 such that r, (X)) =K}
$1t1
{sEr(PX4nj'(K, G)) | s(xo) = [ps, i1},

where i . K—G is the natural inclusion.

Proof. For # C¥%, taking the adjoint of
XXK —— XXAH — PX,G,

LX) ev

we obtain a section of PX,Inj’(K, G). This gives the desired correspon-
dence.

If K is a tori, G acts on Inj’(K, G) transitively, we have Inj’ X, G) =G/
Z(K) and

PX,Ini®(K, G)=PXG/Z(K)=P/Z(K).
Then define a sub Z(K) bundle P, for each compact subgroup " C % such
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that rxo(.%’ )=K as before. Then just as the proposition before, P, gives a
desired one to one correspondence of the second theorem.

Remark. In fact Pu. =,,pr(">' Since G and X are compact, any uE
A is a section of PXAd<g‘~E-JG grxo(u)g*), hence P,y can be defined and Pn=

N Pg.

uENX

We can similarly describe conjugacy classes of subgroups.
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