# Absolute continuity of similar translations 

Dedicated to Professor Shinzo Watanabe on his sixtieth birthday

## By

Hitoshi Mizumachi and Hiroshi Sato

## § 1. Introduction

Let $\mathbf{X}=\left\{X_{k}\right\}_{k}$ be an IID, let $\mathbf{Y}=\left\{Y_{k}\right\}_{k}$ be an independent random sequence defined on a probability space ( $\Omega, \mathscr{F}, \mathrm{P}$ ), and assume that $\mathbf{X}$ and $\mathbf{Y}$ are independent. Denote by $\mu_{\mathrm{X}}, \mu_{\mathrm{Y}}$ and $\mu_{\mathrm{X}+\mathrm{Y}}$ the probability measures on $\mathbf{R}^{\mathrm{N}}$ (the space of all real sequences), induced by $\mathbf{X}, \mathbf{Y}$ and $\mathbf{X}+\mathbf{Y}=\left\{X_{k}+Y_{k}\right\}_{k}$, respectively. Since $\mathbf{X}$ and $\mathbf{X}+\mathbf{Y}$ are independent random sequences, $\mu_{\mathbf{x}}$ and $\mu_{\mathbf{X}+\mathrm{Y}}$ are product measures:

$$
\mu_{\mathrm{x}}=\prod_{k} \mu_{X_{k}} \quad \text { and } \quad \mu_{\mathrm{X}+\mathrm{x}}=\prod_{k} \mu_{X_{k}+Y_{k}},
$$

where $\mu_{X_{k}}$ and $\mu_{x_{k}+Y_{k}}$ are marginal distributions.
When $\mu_{x_{1}}$ is absolutely continuous with respect to the Lebesgue measure $d x$, define $f(x)=\frac{d \mu_{x_{1}}}{d x}(x)$. If $f$ is an absolutely continuous function, $f^{\prime}$ denotes the derivative of $f$ in the distribution sense, and if $f^{\prime}$ is an absolutely continuous function, $f^{\prime \prime}$ denotes the derivative of $f^{\prime}$ in the same sense. In these cases, define

$$
I_{1}(\mathbf{X})=\int_{-\infty}^{+\infty} \frac{f^{\prime}(x)^{2}}{f(x)} d x \quad \text { and } \quad I_{2}(\mathbf{X})=\int_{-\infty}^{+\infty} \frac{f^{\prime \prime}(x)^{2}}{f(x)} d x \quad \text { if } \quad f>0 \text { a.e.. }
$$

Sato and Watari [8, Theorem 1] proved the relation $I_{1}(\mathbf{X}) \leq \frac{3}{2} \sqrt{I_{2}(\mathbf{X})}$, so that $I_{2}(\mathbf{X})<\infty$ implies $I_{1}(\mathbf{X})<\infty$.

Several authors have investigated the conditions for satisfying $\mu_{\mathbf{X}+\mathbf{Y}} \sim$ $\mu_{\mathbf{X}}$ (mutually absolutely continuous) in terms of the distribution of $\mathbf{Y}$, but necessary and sufficient conditions are not yet known in general (see Sato [7]). In the present paper we concentrate on the case in which $\mathbf{Y}$ is a similar random sequence, that is, $\mathbf{Y}=\mathbf{a} \boldsymbol{\Theta}=\left\{a_{k} \Theta_{k}\right\}_{k}$, where $\boldsymbol{\Theta}=\left\{\Theta_{k}\right\}_{k}$ are independent copies of a random variable $\Theta$, and $\mathbf{a}=\left\{a_{k}\right\}_{k}$ is a real sequence. In the following with the exception of Section 2, we fix the above notation and assume $\mathrm{P}(\Theta \neq 0)>0$. The following results are known.

Theorem A (Shepp [9]). Assume $\Theta \equiv 1$ a. s.. Then we have :
(1) $\mu_{\mathrm{X}+\mathrm{a} \boldsymbol{\theta}} \sim \mu_{\mathrm{x}}$ implies $\sum_{k} a_{k}^{2}<\infty$.
(2) Assume $I_{1}(\mathbf{X})<\infty$. Then $\Sigma_{k} a_{k}^{2}<\infty$ implies $\mu_{\mathbf{X}+\mathrm{a} \boldsymbol{e}} \sim \mu_{\mathbf{x}}$.
(3) If $\Sigma_{k} a_{k}^{2}<\infty$ implies $\mu_{\mathrm{X}+\mathrm{a} \theta} \sim \mu_{\mathrm{x}}$, then $I_{1}(\mathbf{X})<\infty$ holds.

Theorem B (Okazaki and Sato [6], Sato and Watari [8], and Okazaki [5]). Let $\boldsymbol{\Theta}=\left\{\Theta_{k}\right\}_{k}$ be the Rademacher sequence, that is, $P(\Theta=1)=P(\Theta=-$ 1) $=\frac{1}{2}$. Then we have :
(1) $\mu_{\mathrm{X}+\mathrm{a} \boldsymbol{e}} \sim \mu_{\mathrm{x}}$ implies $\sum_{k} a_{k}^{4}<\infty$.
(2) Assume $I_{2}(\mathbf{X})<\infty$. Then $\sum_{k} a_{k}^{4}<\infty$ implies $\mu_{\mathbf{X}+\mathrm{a} \boldsymbol{e}} \sim \mu_{\mathrm{x}}$.
(3) If $\sum_{k} a_{k}^{4}<\infty$ implies $\mu_{\mathrm{x}+\mathrm{a} \theta} \sim \mu_{\mathrm{x}}$, then $I_{2}(\mathbf{X})<\infty$ holds.

Theorem C (Kakutani [3]). Let $\mathbf{X}=\left\{X_{k}\right\}_{k}$ be a standard Gaussian sequence and $\Theta$ be a standard Gaussian random variable. Then $\mu_{\mathrm{x}+\mathrm{a} \Theta} \sim \mu_{\mathrm{x}}$ holds if and only if $\Sigma_{k} a_{k}^{4}<\infty$.

In this paper we first prove, without assumption of the similarity of $\mathbf{Y}$, a variation of Theorem 3 of Sato and Watari [8], and then prove the following theorems for similar $\mathbf{Y}=\mathbf{a} \boldsymbol{\Theta}$. We begin with necessary conditions for the relation $\mu_{\mathbf{X}+\mathrm{a} \boldsymbol{e}} \sim \mu_{\mathrm{X}}$.

Theorem 1. (1) $\mu_{\mathrm{X}+\mathrm{at}} \sim \mu_{\mathrm{x}}$ implies $\sum_{k} a_{k}^{4}<\infty$.
(2) If $\lim \inf _{x \rightarrow \infty}|\mathrm{E}[\Theta:|\Theta| \leq x]|>0$, then $\mu_{\mathrm{x}+\mathrm{a} \theta} \sim \mu_{\mathrm{x}}$ implies $\sum_{k} a_{k}^{2}$ $<\infty$.
(3) If $\lim \inf _{x \rightarrow \infty} x^{p} \mathrm{P}(|\Theta|>x)>0$ for some $p>0$, then $\mu_{\mathrm{x}+\mathrm{a} \boldsymbol{\theta}} \sim \mu_{\mathrm{x}}$ implies $\sum_{k}\left|a_{k}\right|^{2 p}<\infty$.

The following corollary is an immediate consequence of Theorem 1 (2).

Corollary 1. If $\Theta$ is integrable and $\mathrm{E}[\Theta] \neq 0$, then $\mu_{\mathrm{x}+\mathrm{a} \Theta} \sim \mu_{\mathrm{x}}$ implies $\sum_{k} a_{k}^{2}<\infty$.

Then sufficient conditions are :
Theorem 2. (1) Assume $I_{1}(\mathbf{X})<\infty$ and $\mathrm{E}\left[\Theta^{2}\right]<\infty$. Then $\sum_{k} a_{k}^{2}<\infty$ implies $\mu_{\mathrm{X}+\mathrm{a}} \sim \mu_{\mathrm{x}}$.
(2) Assume $I_{2}(\mathbf{X})<\infty, \mathrm{E}\left[|\Theta|^{p}\right]<\infty$ for some $p \geq 2$, and $\mathrm{E}[\Theta]=0$. Then $\Sigma_{k}\left|a_{k}\right|^{\text {ค^4 }}<\infty$ implies $\mu_{\mathbf{x}+\mathrm{a}} \sim \mu_{\mathrm{x}}$, where $p \wedge 4=\min (p, 4)$.

Combining Theorems 1 and 2, we obtain necessary and sufficient conditions for several cases, extending (1) and (2) of both Theorems A
and B , and Theorem C.

Theorem 3. (1) Assume $I_{1}(\mathbf{X})<\infty, \mathrm{E}\left[\Theta^{2}\right]<\infty$, and $\mathrm{E}[\Theta] \neq 0$. Then $\mu_{\mathrm{X}+\mathrm{a} \theta} \sim \mu_{\mathrm{X}}$ holds if and only if $\Sigma_{k} a_{k}^{2}<\infty$.
(2) Assume $I_{2}(\mathbf{X})<\infty, \mathrm{E}\left[\Theta^{4}\right]<\infty$, and $\mathrm{E}[\Theta]=0$. Then $\mu_{\mathrm{x}+\mathrm{a} \boldsymbol{e}} \sim \mu_{\mathrm{X}}$ holds if and only if $\Sigma_{k} a_{k}^{4}<\infty$.

We now refine certain sufficient conditions. In the following Proposition 1, we weaken the assumption $\mathrm{E}\left[|\Theta|^{p}\right]<\infty$ to $\sup _{x>0} x^{p} \mathrm{P}(|\Theta|$ $>x)<\infty$.

Proposition 1. Assume $I_{2}(\mathbf{X})<\infty$ and $\sup _{x \geq 0} x^{p} \mathrm{P}(|\Theta|>x)<\infty$ for some $p>0$. If one of the following (1)~(4) holds, then $\sum_{k}\left|a_{k}\right|^{p \wedge 4}<\infty$ implies $\mu_{\mathrm{X}+\mathrm{a} \boldsymbol{e}} \sim \mu_{\mathrm{x}}$ :
(1) $0<p \leq 2$
(2) $2<p<4$ and $\mathrm{E}[\Theta]=0$.
(3) $p=4, \mathrm{E}[\Theta]=0$, and there exists $\varepsilon>0$ such that

$$
\sup _{|z|<\varepsilon}(\varepsilon-|z|)^{2} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}(x+z)^{2}}{f(x)} d x<\infty \text {, where } f(x)=\frac{d \mu_{x_{1}}}{d x}(x)
$$

(4) $p>4$ and $\mathrm{E}[\Theta]=0$.

On the other hand, we have the following.
Theorem 4. (1) If $\sum_{k} a_{k}^{2}<\infty$ implies $\mu_{\mathrm{X}+\mathrm{a} \mathrm{\theta}} \sim \mu_{\mathrm{X}}$, then we have lim sup $\mathrm{p}_{\mathrm{x} \rightarrow \infty}$ $|\mathrm{E}[\Theta:|\Theta| \leq x]|<\infty$.
(2) If $\sum_{k} a_{k}^{4}<\infty$ implies $\mu_{\mathrm{x}+\mathrm{a} \boldsymbol{\theta}} \sim \mu_{\mathrm{x}}$, then we have $\mathrm{E}\left[\Theta^{2}\right]<\infty$ and $\mathrm{E}[\Theta]=$ 0.

If $\Theta \geq 0$ a.s., then $\lim \sup _{x \rightarrow \infty}|\mathrm{E}[\Theta:|\Theta| \leq x]|<\infty$ in Theorem 4 (1) implies $\mathrm{E}[\Theta]<\infty$, so that we have the following.

Corollary 2. Assume $\Theta \geq 0$ a. s.. If $\sum_{k} a_{k}^{2}<\infty$ implies $\mu_{\mathrm{x}+\mathrm{a} \Theta} \sim \mu_{\mathrm{x}}$, then we have $\mathrm{E}[\Theta]<\infty$.

Example 1. Let $\mathbf{X}=\left\{X_{k}\right\}_{k}$ be an IID such that $I_{1}(\mathbf{X})<\infty$, and let $\mathbf{Y}=$ $\left\{Y_{k}\right\}_{k}$ be an independent random sequence, independent of $\mathbf{X}$, such that each $Y_{k}$ is exponentially distributed. Then the following (1) $\sim(4)$ are equivalent:
(1) $\mu_{\mathrm{X}+\mathrm{Y}} \sim \mu_{\mathrm{x}}$.
(2) $\sum_{k} \mathrm{E}\left[Y_{k}\right]^{2}<\infty$.
(3) $\sum_{k} \mathrm{E}\left[Y_{k}^{2}\right]<\infty$.
(4) $\sum_{k} Y_{k}^{2}<\infty \quad$ a.s..

In fact, $\mu_{\mathrm{Y}}$ is expressed as $\mu_{\mathrm{Y}}=\mu_{\mathrm{a} \boldsymbol{\theta}}$, where $\Theta$ is exponentially distributed, $\mathrm{E}[\Theta]=1$, and $a_{k}=\mathrm{E}\left[Y_{k}\right], \quad k \in \mathbf{N}$. Then by Theorem 3(1), $\mu_{\mathrm{X}+\mathrm{a} \theta} \sim \mu_{\mathrm{X}}$ is equivalent to $\Sigma_{k} a_{k}^{2}<\infty$. They are also equivalent to $\Sigma_{k} \mathrm{E}\left[Y_{k}^{2}\right]<\infty$ because $\mathrm{E}\left[Y_{k}^{2}\right]=a_{k}^{2} \mathrm{E}\left[\Theta^{2}\right]=2 a_{k}^{2}$. Moreover, we have by Kolmogorov's three series theorem, $\sum_{k} Y_{k}^{2}<\infty$ a. s. if and only if $\sum_{k} a_{k}^{2}<\infty$.

Example 2. Let $\mathbf{X}=\left\{X_{k}\right\}_{k}$ be an IID such that $I_{2}(\mathbf{X})<\infty$, and let $\mathbf{Y}=$ $\left\{Y_{k}\right\}_{k}$ be an independent random sequence, which is independent of $\mathbf{X}$, such that each $Y_{k}$ is a symmetric $\alpha$-stable random variable, where $0<\alpha \leq 2$. Let

$$
\mathrm{E}\left[e^{i\left(Y_{k}\right.}\right]=e^{-c_{k}|t|^{\alpha}}, \quad \text { where } \quad c_{k} \geq 0, k \in \mathbf{N} .
$$

Then $\mu_{\mathrm{Y}}$ is expressed as $\mu_{\mathrm{Y}}=\mu_{\mathrm{a} \theta}$, where $\mathrm{E}\left[e^{i \theta}\right]=e^{-|t|^{\alpha}}$ and $a_{k}=c_{k}^{\frac{1}{\alpha}}, k \in \mathbf{N}$. In addition, we have by Blumenthal and Getoor [1, Theorem 2.1],

$$
0<\liminf _{x \rightarrow \infty} x^{\alpha} \mathrm{P}(|\Theta|>x) \leq \sup _{x \geq 0} x^{\alpha} \mathrm{P}(|\Theta|>x)<\infty
$$

Hence by Proposition 1, $\Sigma_{k}\left|a_{k}\right|^{a}<\infty$ implies $\mu_{\mathrm{x}+\mathrm{Y}} \sim \mu_{\mathrm{x}}$, and by Theorem 1 (3), $\mu_{\mathrm{X}+\mathrm{Y}} \sim \mu_{\mathrm{x}}$ implies $\sum_{k}\left|a_{k}\right|^{2 a}<\infty$.

## § 2. General Case

In this section we do not assume that $\mathbf{Y}$ is similar. We first give preliminaries and then prove a variation of Theorem 3 of Sato and Watari [8]. A general characterization of $\mu_{\mathrm{X}+\mathrm{Y}} \sim \mu_{\mathrm{x}}$ has been given by Kitada and Sato [4, Theorem 2] as follows.

Lemma 1 (Kitada and Sato [4]). Assume $\mu_{X_{k}+Y_{k}} \sim \mu_{X_{k}}$ for every $k \in \mathbf{N}$, and define

$$
Z_{k}(x)=\frac{d \mu_{x_{k}+Y_{k}}}{d \mu_{x_{k}}}(x)-1, \quad k \in \mathbf{N} .
$$

Then $\mu_{\mathrm{X}+\mathrm{Y}} \sim \mu_{\mathrm{x}}$ holds if and only if the following hold :

$$
\begin{aligned}
& \sum_{k} \mathrm{E}\left[Z_{k}\left(X_{k}\right): Z_{k}\left(X_{k}\right) \geq 1\right]<\infty, \\
& \sum_{k} \mathrm{E}\left[Z_{k}\left(X_{k}\right)^{2}:\left|Z_{k}\left(X_{k}\right)\right|<1\right]<\infty .
\end{aligned}
$$

This is a necessary and sufficient condition, but $Z_{k}(x)$ depends on the distribution of $X_{1}$ and is not always easily estimated. Starting from Lemma 1, Hino [2, Theorem 1.8] proved certain conditions for the relation $\mu_{\mathrm{x}+\mathrm{Y}} \sim \mu_{\mathrm{x}}$ as follows. His conditions are described in terms only of the distribution of $\mathbf{Y}$, but they are necessary or sufficient conditions.

Lemma 2 (Hino [2]). (1) If $\mu_{\mathrm{x}+\mathrm{x}} \sim \mu_{\mathrm{x}}$, then we have for every $\varepsilon>0$, $\sum_{k} \mathrm{P}\left(\left|Y_{k}\right|>\varepsilon\right)^{2}+\sum_{k} \mathrm{E}\left[Y_{k}:\left|Y_{k}\right| \leq \varepsilon\right]^{2}+\sum_{k} \mathrm{E}\left[Y_{k}^{2}:\left|Y_{k}\right| \leq \varepsilon\right]^{2}<\infty$.
(2) Assume $I_{2}(\mathbf{X})<\infty$. If there exists $\varepsilon>0$ such that
$\sum_{k} \mathrm{P}\left(\left|Y_{k}\right|>\varepsilon\right)+\sum_{k} \mathrm{E}\left[Y_{k}:\left|Y_{k}\right| \leq \varepsilon\right]^{2}+\sum_{k} \mathrm{E}\left[Y_{k}^{4}:\left|Y_{k}\right| \leq \varepsilon\right]<\infty$, then we have $\mu_{\mathrm{x}+\mathrm{x}} \sim \mu_{\mathrm{x}}$.
(3) If there exists $\varepsilon>0$ such that

$$
\sup _{|z|<\varepsilon}(\varepsilon-|z|)^{2} \int_{-\infty}^{+\infty} \frac{f^{\prime \prime}(x+z)^{2}}{f(x)} d x<\infty
$$

and
$\sum_{k} \mathrm{P}\left(\left|Y_{k}\right|>\varepsilon\right)+\sum_{k} \mathrm{E}\left[Y_{k}:\left|Y_{k}\right|<\varepsilon\right]^{2}+\sum_{k} \mathrm{E}\left[Y_{k}^{2}:\left|Y_{k}\right| \leq \varepsilon\right]^{2}<\infty$, then we have $\mu_{\mathrm{x}+\mathrm{y}} \sim \mu_{\mathrm{x}}$.

Applying Lemma 2, we have the following theorem.
Theorem 5. If $I_{2}(\mathbf{X})<\infty, \mathrm{E}\left[Y_{k}\right]=0, \sup _{k} \mathrm{E}\left[Y_{k}^{2}\right]<\infty$ and $\sum_{k} Y_{k}^{4}<\infty$ a. s., then we have $\mu_{\mathrm{x}+\mathrm{x}} \sim \mu_{\mathrm{x}}$.

Proof. Since $\sum_{k} Y_{k}^{4}<\infty$ a. s., we have by Kolmogorov's three series theorem,

$$
\sum_{k} \mathrm{P}\left(\left|Y_{k}\right|>1\right)<\infty \quad \text { and } \quad \sum_{k} \mathrm{E}\left[Y_{k}^{4}:\left|Y_{k}\right| \leq 1\right]<\infty .
$$

Since $\mathrm{E}\left[Y_{k}\right]=0$, we have

$$
\mathrm{E}\left[Y_{k}:\left|Y_{k}\right| \leq 1\right]=-\mathrm{E}\left[Y_{k}:\left|Y_{k}\right|>1\right],
$$

and thus, by the Schwarz inequality,

$$
\begin{aligned}
\sum_{k} \mathrm{E}\left[Y_{k}:\left|Y_{k}\right| \leq 1\right]^{2} & =\sum_{k} \mathrm{E}\left[Y_{k}:\left|Y_{k}\right|>1\right]^{2} \leq \sum_{k} \mathrm{E}\left[Y_{k}^{2}\right] \mathrm{P}\left(\left|Y_{k}\right|>1\right) \\
& \leq\left(\sup _{k} \mathrm{E}\left[Y_{k}^{2}\right]\right) \sum_{k} \mathrm{P}\left(\left|Y_{k}\right|>1\right)<\infty .
\end{aligned}
$$

Hence by Lemma 2 (2), we have $\mu_{\mathrm{x}+\mathrm{y}} \sim \mu_{\mathrm{x}}$.
Corollary 3. $I_{2}(\mathbf{X})<\infty, \sum_{k} \mathrm{E}\left[Y_{k}^{2}\right]<\infty$ and $\mathrm{E}\left[Y_{k}\right]=0$ together imply $\mu_{\mathrm{X}+\mathrm{y}} \sim \mu_{\mathrm{X}}$.

Sato and Watari [8, Theorem 3] proved that $\mu_{\mathbf{X}+\mathrm{Y}} \sim \mu_{\mathrm{X}}$ holds if $I_{2}(\mathbf{X})<$ $\infty, \sum_{k} Y_{k}^{4}<\infty$ a. s. and each $Y_{k}$ is symmetric. We assume $\mathrm{E}\left[Y_{k}\right]=0$ and $\sup _{k}$ $\mathrm{E}\left[Y_{k}^{2}\right]<\infty$ instead of assuming the symmetry of $Y_{k}$. Then the case $p=4$ of Theorem 2 (2) is a special case of Theorem 5. In fact, $\mathrm{E}\left[\Theta^{4}\right]<\infty$ and $\Sigma_{k} a_{k}^{4}$ $<\infty$ together imply $\sum_{k} \mathrm{E}\left[a_{k}^{4} \Theta_{k}^{4}\right]<\infty$, so that we have $\sum_{k} a_{k}^{4} \Theta_{k}^{4}<\infty$ a. s. and $\sup _{k} \mathrm{E}\left[a_{k}^{2} \Theta_{k}^{2}\right]<\infty$.

## § 3. Proofs

Proof of Theorem 1. (1) Since $\mathrm{P}(\Theta \neq 0)>0$, there exists $K>0$ such that

$$
\mathrm{P}(0<|\Theta| \leq K)>0 \quad \text { and } \quad \mathrm{P}(|\Theta| \geq K)>0
$$

Then by Lemma 2 (1), we have

$$
\begin{aligned}
\infty & >\sum_{a_{k} \neq 0} \mathrm{P}\left(|\Theta|>\frac{1}{\left|a_{k}\right|}\right)^{2} \geq \sum_{\left|a_{k}\right| K>1} \mathrm{P}\left(|\Theta|>\frac{1}{\left|a_{k}\right|}\right)^{2} \\
& \geq \sum_{\left|a_{k}\right| K>1} \mathrm{P}(|\Theta| \geq K)^{2},
\end{aligned}
$$

so that $\left|a_{k}\right| K>1$ holds for finitely many $k \in \mathbf{N}$. Hence there exists $k_{0} \in \mathbf{N}$ such that

$$
\left|a_{k}\right| K \leq 1 \quad \text { for } \quad k \geq k_{0}
$$

We therefore have, by Lemma 2 (1),

$$
\begin{aligned}
\infty & >\sum_{k \geq k_{0}} \mathrm{E}\left[Y_{k}^{2}:\left|Y_{k}\right| \leq 1\right]^{2} \\
& =\sum_{\substack{k \geq k_{0} \\
a_{k} \neq 0}} a_{k}^{4} \mathrm{E}\left[\Theta_{k}^{2}:\left|\Theta_{k}\right| \leq \frac{1}{a_{k}}\right]^{2} \geq \sum_{k \geq k_{0}} a_{k}^{4} \mathrm{E}\left[\Theta^{2}:|\Theta| \leq K\right]^{2},
\end{aligned}
$$

so that $\sum_{k} a_{k}^{4}<\infty$.
(2) Let $m=\frac{1}{2} \lim \inf _{x \rightarrow \infty}|\mathrm{E}[\Theta:|\Theta| \leq x]|>0$. In the case that $|\Theta| \leq$ $M$ a. s. for some $M>0$, we have $m=\frac{1}{2}|\mathrm{E}[\Theta]|$, so that by Lemma 2 (1), we have

$$
\infty>\sum_{k} \mathrm{E}\left[Y_{k}:\left|Y_{k}\right| \leq M\right]^{2}=\sum_{k} \mathrm{E}\left[Y_{k}\right]^{2}=\sum_{k} a_{k}^{2} \mathrm{E}[\Theta]^{2}=4 m^{2} \sum_{k} a_{k}^{2}
$$

In the case that $\mathrm{P}(|\Theta|>x)>0$ for all $x>0$, there exists $L>0$ such that

$$
|\mathrm{E}[\Theta:|\Theta| \leq x]| \geq m \quad \text { for } \quad x \geq L .
$$

By Lemma 2 (1), we have

$$
\begin{aligned}
\infty & >\sum_{k} \mathrm{P}\left(\left|Y_{k}\right|>1\right)^{2}=\sum_{a_{k} \neq 0} \mathrm{P}\left(|\Theta|>\frac{1}{\left|a_{k}\right|}\right)^{2} \\
& \geq \sum_{\left|a_{k}\right| L>1} \mathrm{P}\left(|\Theta|>\frac{1}{\left|a_{k}\right|}\right)^{2} \geq \sum_{\left|a_{k}\right| L>1} \mathrm{P}(|\Theta|>L)^{2} .
\end{aligned}
$$

Then since $\mathrm{P}(|\Theta|>L)>0,\left|a_{k}\right| L>1$ holds for finitely many $k \in \mathbf{N}$, so that there exists $n_{0} \in \mathbf{N}$ such that $\left|a_{k}\right| L \leq 1$ for $k \geq n_{0}$. We thus have

$$
\left|\mathrm{E}\left[\Theta:|\Theta| \leq \frac{1}{\left|a_{k}\right|}\right]\right| \geq m \text { for } k \geq n_{0} \text { with } a_{k} \neq 0 .
$$

Therefore by Lemma 2 (1), we have

$$
\begin{aligned}
\infty & >\sum_{k} \mathrm{E}\left[Y_{k}:\left|Y_{k}\right| \leq 1\right]^{2} \geq \sum_{\substack{k \geq n_{0} \\
a_{k} \neq 0}} a_{k}^{2} \mathrm{E}\left[\Theta_{k}:\left|\Theta_{k}\right| \leq \frac{1}{\left|a_{k}\right|}\right]^{2} \\
& \geq m^{2} \sum_{k \geq n_{0}} a_{k}^{2} .
\end{aligned}
$$

(3) Let $r=\frac{1}{2} \lim _{x \rightarrow \infty} \inf x^{p} \mathrm{P}(|\Theta|>x)>0$. Then there exists $L>0$ such that

$$
x^{p} \mathrm{P}(|\Theta|>x) \geq r \text { for } x \geq L
$$

Since $\mathrm{P}(|\Theta|>L)>0$, as in the proof of (1), we know there exists $n_{0} \in \mathbf{N}$ such that

$$
\left|a_{k}\right| L \leq 1 \quad \text { for } \quad k \geq n_{0} .
$$

Hence by Lemma 2 (1), we have

$$
\infty>\sum_{k \geq n_{0}} \mathrm{P}\left(\left|Y_{k}\right|>1\right)^{2} \geq \sum_{\substack{k \geq n_{0} \\ a_{k} \neq 0}} \mathrm{P}\left(|\Theta|>\frac{1}{\left|a_{k}\right|}\right)^{2} \geq r^{2} \sum_{k \geq n_{0}}\left|a_{k}\right|^{2 p},
$$

so that $\sum_{k}\left|a_{k}\right|^{2 p}<\infty$.

Proof of Theorem 2. (1) Since $\mathrm{E}\left[\sum_{k} a_{k}^{2} \Theta_{k}^{2}\right]=\mathrm{E}\left[\Theta^{2}\right] \Sigma_{k} a_{k}^{2}<\infty$, we have $\sum_{k} a_{k}^{2} \Theta_{k}^{2}<\infty$ a. s., that is, $\mu_{\mathbf{a} \boldsymbol{\theta}}\left(l_{2}\right)=1$, and since $\mathbf{X}$ and $\mathbf{a} \boldsymbol{\Theta}$ are independent, we therefore have $\mu_{\mathrm{X}+\mathrm{a} \boldsymbol{e}}=\mu_{\mathrm{x}} * \mu_{\mathrm{as}}$. It follows that

$$
\mu_{\mathrm{X}+\mathrm{a} \boldsymbol{\theta}}(A)=\int_{\mathrm{I}_{2}} \mu_{\mathrm{X}+\mathrm{y}}(A) d \mu_{\mathrm{a} \boldsymbol{\theta}}(\mathbf{y})
$$

for every Borel set $A$ in $\mathbf{R}^{\mathrm{N}}$. On the other hand, since $I_{1}(\mathbf{X})<\infty$, we have by Theorem A, $\mu_{\mathbf{x}+\boldsymbol{y}} \sim \mu_{\mathbf{x}}$ for every $\mathbf{y} \in l_{2}$. If $\mu_{\mathbf{x}+\mathrm{a} \boldsymbol{e}}(A)=0$, then $\mu_{\mathrm{X}+\mathrm{y}}(A)=0$ for some $\mathbf{y} \in l_{2}$, so that $\mu_{\mathrm{x}}(A)=0$. Conversely, if $\mu_{\mathrm{x}}(A)=0$, then $\mu_{\mathbf{x}+\mathbf{y}}(A)=0$ for all $\mathbf{y} \in l_{2}$, so that $\mu_{\mathbf{x}+\mathbf{a} \boldsymbol{\theta}}(A)=0$. We therefore have $\mu_{\mathrm{x}+\mathrm{a} \boldsymbol{\theta}} \sim \mu_{\mathrm{x}}$.
(2) Since $\mathrm{E}\left[|\Theta|^{p}\right]<\infty$, we have $M=\sup _{x}|x|^{p} \mathrm{P}(|\Theta|>x)<\infty$. Then for every $k \in \mathbf{N}$,

$$
\mathrm{P}\left(\left|Y_{k}\right|>1\right)=\mathrm{P}\left(|\Theta|>\frac{1}{\left|a_{k}\right|}\right) \leq M\left|a_{k}\right|^{\mathrm{p}},
$$

$$
\begin{aligned}
\mathrm{E}\left[Y_{k}:\left|Y_{k}\right| \leq 1\right]^{2} & =a_{k}^{2} \mathrm{E}\left[\Theta:|\Theta| \leq \frac{1}{\left|a_{k}\right|}\right]^{2}=a_{k}^{2} \mathrm{E}\left[\Theta:|\Theta|>\frac{1}{\left|a_{k}\right|}\right]^{2} \\
& \leq a_{k}^{2} \mathrm{E}\left[\Theta^{2}\right] \mathrm{P}\left(|\Theta|>\frac{1}{\left|a_{k}\right|}\right) \\
& \leq a_{k}^{2} \mathrm{E}\left[\Theta^{2}\right] a_{k}^{2} \mathrm{E}\left[\Theta^{2}\right]=a_{k}^{4} \mathrm{E}\left[\Theta^{2}\right]^{2}
\end{aligned}
$$

and $\mathrm{E}\left[Y_{k}^{4}:\left|Y_{k}\right| \leq 1\right] \leq \mathrm{E}\left[\left|Y_{k}\right|^{p \wedge 4}:\left|Y_{k}\right| \leq 1\right]$

$$
\begin{aligned}
& =\left|a_{k}\right|^{p \wedge 4} \mathrm{E}\left[|\Theta|^{p \wedge 4}:|\Theta| \leq \frac{1}{\left|a_{k}\right|}\right] \\
& \leq\left|a_{k}\right|^{p \wedge 4} \mathrm{E}\left[|\Theta|^{p \wedge 4}\right] .
\end{aligned}
$$

Hence by Lemma 2 (2), $\sum_{k}\left|a_{k}\right|^{\triangleright \wedge 4}<\infty$ implies $\mu_{\mathrm{x}+\mathrm{a} \boldsymbol{e}} \sim \mu_{\mathrm{x}}$.
Proof of Theorem 3. (1) By Corollary 1, $\mu_{\mathrm{x}+\mathrm{a} \boldsymbol{e}} \sim \mu_{\mathrm{x}}$ implies $\Sigma_{k} a_{k}^{2}<\infty$, and by Theorem 2 (1), $\sum_{k} a_{k}^{2}<\infty$ implies $\mu_{\mathrm{X}+\mathrm{a} \boldsymbol{e}} \sim \mu_{\mathrm{x}}$.
(2) By Theorem 1 (1) and Theorem 2 (2), we have $\mu_{x+a \boldsymbol{e}} \sim \mu_{\mathrm{x}}$ if and only if $\sum_{k} a_{k}^{4}<\infty$.

Proof of Proposition 1. Let $M=\sup _{x \geq 0} x^{p} \mathrm{P}(|\Theta|>x)<\infty$. Then we have for $0<p<4$,

$$
\mathrm{P}\left(\left|Y_{k}\right|>1\right)=\mathrm{P}\left(|\Theta|>\frac{1}{\left|a_{k}\right|}\right) \leq M\left|a_{k}\right|^{p}
$$

and $\mathrm{E}\left[Y_{k}^{4}:\left|Y_{k}\right| \leq 1\right]=a_{k}^{4} \mathrm{E}\left[\Theta^{4}:|\Theta| \leq \frac{1}{\left|a_{k}\right|}\right]=-a_{k}^{4} \int_{0}^{\frac{1}{\left|a_{k}\right|}} x^{4} d \mathrm{P}(|\Theta|>x)$

$$
\begin{aligned}
& \leq 4 a_{k}^{4} \int_{0}^{\frac{1}{\left|a_{k}\right|}} x^{3} \mathrm{P}(|\Theta|>x) d x \leq 4 M a_{k}^{4} \int_{0}^{\frac{1}{\left|a_{k}\right|}} x^{3-p} d x \\
& =\frac{4 M}{4-p}\left|a_{k}\right|^{p} .
\end{aligned}
$$

Therefore in (1) and (2), it is sufficient by Lemma 2 (2) to prove that $\Sigma_{k}\left|a_{k}\right|^{p}<\infty$ implies $\sum_{k} \mathrm{E}\left[Y_{k}:\left|Y_{k}\right| \leq 1\right]^{2}<\infty$.

Assume $\sum_{k}\left|a_{k}\right|^{p \wedge 4}<\infty$. Then there exists $k_{0} \in \mathbf{N}$ such that

$$
\left|a_{k}\right| \leq 1 \quad \text { for } k \geq k_{0} .
$$

We thus have for $k \geq k_{0}$,

$$
\begin{aligned}
\left|\mathrm{E}\left[Y_{k}:\left|Y_{k}\right| \leq 1\right]\right| & \leq\left|a_{k}\right| \mathrm{E}\left[|\Theta|:|\Theta| \leq \frac{1}{\left|a_{k}\right|}\right] \\
& \leq\left|a_{k}\right|+\left|a_{k}\right| \mathrm{E}\left[|\Theta|: 1<|\Theta| \leq \frac{1}{\left|a_{k}\right|}\right] \\
& \leq\left|a_{k}\right|+\left|a_{k}\right| \int_{1}^{\frac{1}{\left|a_{k}\right|}} \mathrm{P}(|\Theta|>x) d x \\
& \leq\left|a_{k}\right|+M\left|a_{k}\right| \int_{1}^{\frac{1}{\left|a_{k}\right|}} x^{-p} d x .
\end{aligned}
$$

(1) If $0<p<1$, then for $k \geq k_{0}$,

$$
\begin{aligned}
\left|\mathrm{E}\left[Y_{k}:\left|Y_{k}\right| \leq 1\right]\right| & \leq\left|a_{k}\right|+M\left|a_{k}\right| \int_{1}^{\frac{1}{1 a_{k} \mid}} x^{-p} d x \\
& =\left(1-\frac{M}{1-p}\right)\left|a_{k}\right|+\frac{M}{1-p}\left|a_{k}\right|^{p} .
\end{aligned}
$$

Therefore $\sum_{k}\left|a_{k}\right|^{p}<\infty$ implies $\sum_{k} \mathrm{E}\left[Y_{k}:\left|Y_{k}\right| \leq 1\right]^{2}<\infty$. If $p=1$, then for $k \geq k_{0}$,

$$
\begin{aligned}
\left|\mathrm{E}\left[Y_{k}:\left|Y_{k}\right| \leq 1\right]\right| & \leq\left|a_{k}\right|+M\left|a_{k}\right| \int_{1}^{\frac{1}{\left|a_{k}\right|}} \frac{1}{x} d x \\
& =\left|a_{k}\right|\left(1+M|\log | a_{k}| |\right)
\end{aligned}
$$

Therefore $\sum_{k}\left|a_{k}\right|<\infty$ implies $\sum_{k} \mathrm{E}\left[Y_{k}:\left|Y_{k}\right| \leq 1\right]^{2}<\infty$.
If $1<p \leq 2$, then for $k \geq k_{0}$,

$$
\left|\mathrm{E}\left[Y_{k}:\left|Y_{k}\right| \leq 1\right]\right| \leq\left|a_{k}\right|+M\left|a_{k}\right| \int_{1}^{\frac{1}{\left|a_{k}\right|}} x^{-p} d x \leq \frac{M+1}{p-1}\left|a_{k}\right|
$$

Therefore $\sum_{k}\left|a_{k}\right|^{p}<\infty$ implies $\sum_{k} \mathrm{E}\left[Y_{k}:\left|Y_{k}\right| \leq 1\right]^{2}<\infty$.
(2) Since

$$
\mathrm{E}\left[\Theta:|\Theta| \leq \frac{1}{\left|a_{k}\right|}\right]=-\mathrm{E}\left[\Theta:|\Theta|>\frac{1}{\left|a_{k}\right|}\right] \quad \text { and } \mathrm{E}\left[\Theta^{2}\right]<\infty,
$$

the following holds :

$$
\begin{aligned}
\mathrm{E}\left[Y_{k}:\left|Y_{k}\right| \leq 1\right]^{2} & =a_{k}^{2} \mathrm{E}\left[\Theta:|\Theta| \leq \frac{1}{\left|a_{k}\right|}\right]^{2}=a_{k}^{2} \mathrm{E}\left[\Theta:|\Theta|>\frac{1}{\left|a_{k}\right|}\right]^{2} \\
& \leq a_{k}^{2} \mathrm{E}\left[\Theta^{2}\right] \mathrm{P}\left(|\Theta|>\frac{1}{\left|a_{k}\right|}\right) \\
& \leq a_{k}^{2} \mathrm{E}\left[\Theta^{2}\right] a_{k}^{2} \mathrm{E}\left[\Theta^{2}\right]=a_{k}^{4} \mathrm{E}\left[\Theta^{2}\right]^{2},
\end{aligned}
$$

so that $\sum_{k}\left|a_{k}\right|^{p}<\infty$ implies $\sum_{k} \mathrm{E}\left[Y_{k}:\left|Y_{k}\right| \leq 1\right]^{2}<\infty$.
(3) We have

$$
\mathrm{P}\left(\left|Y_{k}\right|>\varepsilon\right)=\mathrm{P}\left(|\Theta|>\frac{\varepsilon}{\left|a_{k}\right|}\right) \leq \frac{M}{\varepsilon^{4}} a_{k}^{4},
$$

and since

$$
\mathrm{E}\left[\Theta:|\Theta| \leq \frac{\varepsilon}{\left|a_{k}\right|}\right]=-\mathrm{E}\left[\Theta:|\Theta|>\frac{\varepsilon}{\left|a_{k}\right|}\right] \quad \text { and } \quad \mathrm{E}\left[\Theta^{2}\right]<\infty,
$$

if follows that

$$
\begin{aligned}
\mathrm{E}\left[Y_{k}:\left|Y_{k}\right| \leq \varepsilon\right]^{2} & =a_{k}^{2} \mathrm{E}\left[\Theta:|\Theta| \leq \frac{\varepsilon}{\left|a_{k}\right|}\right]^{2}=a_{k}^{2} \mathrm{E}\left[\Theta:|\Theta|>\frac{\varepsilon}{\left|a_{k}\right|}\right]^{2} \\
& \leq a_{k}^{2} \mathrm{E}\left[\Theta^{2}\right] \mathrm{P}\left(|\Theta|>\frac{\varepsilon}{\left|a_{k}\right|}\right) \\
& \leq a_{k}^{2} \mathrm{E}\left[\Theta^{2}\right] \frac{a_{k}^{2}}{\varepsilon^{2}} \mathrm{E}\left[\Theta^{2}\right]=a_{k}^{4} \frac{\mathrm{E}\left[\Theta^{2}\right]^{2}}{\varepsilon^{2}},
\end{aligned}
$$

and $\mathrm{E}\left[Y_{k}^{2}:\left|Y_{k}\right| \leq \varepsilon\right]^{2}=a_{k}^{4} \mathrm{E}\left[\Theta_{k}^{2}:\left|\Theta_{k}\right| \leq \frac{\varepsilon}{\left|a_{k}\right|}\right]^{2} \leq a_{k}^{4} \mathrm{E}\left[\Theta^{2}\right]^{2}$.

Hence by Lemma 2 (3), $\Sigma_{k} a_{k}^{4}<\infty$ implies $\mu_{\mathrm{X}+\mathrm{ae}} \sim \mu_{\mathrm{x}}$.
(4) If $p>4$, then we have $\mathrm{E}\left[\Theta^{4}\right]<\infty$. This case is proved in Theorem 2 (2).

Proof of Theorem 4. (1) Assume $\lim \sup _{x \rightarrow \infty}|\mathrm{E}[\Theta:|\Theta| \leq x]|=\infty$. Then for $T(x)=\mathrm{E}\left[\Theta:|\Theta| \leq \frac{1}{x}\right]^{2}$, we have lim $\sup _{x \rightarrow 0} T(x)=\infty$, so that there exists, by Shepp [9, Lemma 4], a sequence $\mathbf{a}=\left\{a_{k}\right\}_{k}$ such that

$$
\sum_{k} a_{k}^{2}<\infty \quad \text { and } \quad \sum_{k} \mathrm{E}\left[Y_{k}:\left|Y_{k}\right| \leq 1\right]^{2}=\sum_{a_{k} \neq 0} a_{k}^{2} \mathrm{E}\left[\Theta:|\Theta| \leq \frac{1}{\left|a_{k}\right|}\right]^{2}=\infty
$$

Therefore by Lemma 2 (1), we have $\mu_{\mathbf{x}+\boldsymbol{a}} \not \mathcal{\mu}_{\mathrm{x}}$.
(2) We first prove $\mathrm{E}\left[\Theta^{2}\right]<\infty$. If $\mathrm{E}\left[\Theta^{2}\right]=\infty$, it follows that $\lim _{x \rightarrow+0} \mathrm{E}[\Theta$ : $\left.|\Theta| \leq \frac{1}{\sqrt{x}}\right]^{2}=\infty$. Hence by Shepp [9, Lemma 4], there exists a sequence $\mathbf{a}=\left\{a_{k}\right\}_{k}$ such that

$$
\sum_{k} a_{k}^{4}<\infty \quad \text { and } \quad \sum_{k} \mathrm{E}\left[Y_{k}^{2}:\left|Y_{k}\right| \leq 1\right]^{2}=\sum_{a_{k} \neq 0} a_{k}^{4} \mathrm{E}\left[\Theta_{k}^{2}:\left|\Theta_{k}\right| \leq \frac{1}{\sqrt{a_{k}^{2}}}\right]^{2}=\infty .
$$

Therefore by Lemma 2 (1), we have $\mu_{\mathrm{x}+\mathrm{a} \boldsymbol{\theta}} \not \mu_{\mathrm{x}}$.
Next we prove $\mathrm{E}[\Theta]=0$. If $\mathrm{E}[\Theta] \neq 0$, then $\lim _{x \rightarrow \infty}|\mathrm{E}[\Theta:|\Theta| \leq x]|=$ $|\mathrm{E}[\Theta]|>0$. Hence by Theorem 1 (2), $\mu_{\mathrm{x}+\mathrm{a} \boldsymbol{e}} \sim \mu_{\mathrm{x}}$ implies $\sum_{k} a_{k}^{2}<\infty$. Then $\sum_{k} a_{k}^{4}<\infty$ implies $\mu_{\mathrm{x}+\mathrm{a} \theta} \sim \mu_{\mathrm{X}}$, and $\mu_{\mathrm{X}+\mathrm{a} \theta} \sim \mu_{\mathrm{x}}$ implies $\sum_{k} a_{k}^{2}<\infty$, so that $\sum_{k} a_{k}^{4}<\infty$ implies $\sum_{k} a_{k}^{2}<\infty$. This is a contradiction.

It is therefore shown that $\mathrm{E}\left[\Theta^{2}\right]<\infty$ and $\mathrm{E}[\Theta]=0$.

## Department of Mathematics, <br> Kumamoto University College of Medical Science <br> Graduate School of Mathematics, Kyushu University

## References

[1] R. M. Blumenthal and R. K. Getoor, Some theorems on stable processes, Trans. Amer. Math. Soc., 95 (1960), 263-273.
[2] M. Hino, On equivalence of product measures by random translation, J. Math. Kyoto Univ., 34-4 (1994), 755-765.
[3] S. Kakutani, On equivalence of infinite product measures, Ann. Math., 49 (1948), 214 224.
[4] K. Kitada and H. Sato, On the absolute continuity of infinite product measure and its convolution, Probab. Th. Rel. Fields, 81 (1989), $609-627$.
[5] Y. Okazaki, On equivalence of product measure by symmetric random $l_{4}$-translation, J. Funct. Anal., 115 (1993), $100-103$.
[6] Y. Okazaki and H. Sato, Distinguishing a random sequence from a random translate of itself, Ann. Probab., 22 (1994), 1092-1096.
[7] H. Sato, Infinite products and infinite sum, in Stochastic analysis on infinite dimensional spaces, 289-296, Longman Scientific \& Technical, 1994.
[8] H. Sato and C. Watari, Some integral inequalities and absolutely continuity of a symmetric random translation, J. Funct. Anal., 114-1 (1993), $257-266$.
[9] L. A. Shepp, Distinguishing a sequence of random variables from a translate of itself, Ann. Math. Stat., 36 (1965), $1107-1112$.

