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Relations between unitary representations of
diffeomorphism groups and those of the

infinite symmetric group or of
related permutation groups

By

Takeshi HIRAI and Hiroaki SHIMOMURA

Introduction

In this paper, we study interrelations between unitary representations
of two kinds of groups. The one is the group G = D iff o (M )  of diffeomor-
phisms with compact supports on a manifold of class C ,  1<n < 00, and
the others are certain permutation groups S  contained in .  o f all
permutations on the set N of natural numbers. In certain typical cases, the
latter are equal to  the infinite symmetric group S. o f  all finite
permutations or its standard subgroups.

Let us expain in more detail. The representations treated here are
principally infinite tensor products of natural representations TA s,ER, of
G on /2-spaces Y e,=L 2 (X ,, .4 „  g ,) , with x,=m, ,411 =m (m ) the a-algebra of
Borel subsets of M , and g, locally finite measures on M  which are locally
equivalent to Lebesques measures with respect to local coordinates. (The
set of all such measures on M is denoted by .T .F.Il(M ). Here T» is given as

T l i ( g ) f ( p ) = ( 4 1 1 ( g ( g E G ,  f E l e f , pEm ,

To have an infinite tensor product, we should fix a reference vector
= (x,),EN consisting of unit vectors x ,E le , .  As we see in § 1, it is enough for
us to treat the cases where x, 's are of the form M xE, L 1 .zE, with xE, the
characteristic function of E ,E .4 (M ). Put g= (g,),EN , E= ILENE, and X =
ILENX„ and assume two conditions (MUD and (MU2) on ( g ,  E ) . Then we
see as in § 2 that the infinite tensor product space OjeNie, with respect to
X = (26),EN can be realized as an L 2-space for a measure given as infinite
direct product of measures ,u, with respect to E, 's constructed as in [4, §
or in [5 ]. This realization of tensor product representations by means of
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product measures gives, together with the actions of the infinite
symmetric group S. on the infinite tensor product space, a background of
our method of constructing irreducible unitary representations (=IURs)
of the diffeomorphism group G in [4].

On the other hand, we ask if a permutation can work on the
infinite tensor product space co .fe,./f, by permuting the components as an
intertwining operator of the tensor product representation T =T g ,  s

=

O feN T». More neatly, put s = (s,),.N and - ( s )  =  ;  s o . ( ) = s i ( i E N ) } .
Then we ask, for an element crE - . ( s ) ,  if the following formula defines a
bounded operator R (a) on OfEN,119 )  for a decomposable element f =  ,EN  f
with f, E Ye/ , f= z ( i> N ), put R (a)f  = ,E N h, with

h(x 5) =(  d go - lo) (x i)  y fr i ( ,) (x,) (X, E X,).diax ,)

If R (a) is well defined, it gives an intertwining operator for T, that is,
R (a) E T (G ) '. The set of all such a's is denoted by S„,E

The structure of this important subgroup of the permutation group
-  is studied in §4 . T h e  group a, E, s  contains S-(s) and is properly

contained i n  - ( s ) .  In an interesting case where the ii-unital subset EOEX
is ii-cofinal with another one E' =ILENE', such that each E''s are mutually
disjoint, the group S„, s  is exactly equal to the subgroup S-(s) of the
infinite symmetry group S..

In the above case, we have Theorem 5. 1, one of our main results in this
paper, which says that, under the infinite tensor product representation T,
the diffeomorphism group G  and the standard subgroup S.(s) of the
symmetric group S. form a so-called dual pair, that is,

T (G) /  =R (3 , (s))'  , T (G )"  = R  (a. (s)y.

This case corresponds to the case of our previous work [4]. Further,
the above result on dual pair expains well the meaning of our method of
constructing IURs o f G  employed in  [4] and [51, in connection to an
irreducible decomposition o f T  through the action R  of the so-called
symmetry group S. (s )  of T (cf. § 5.1).

Another interesting case is also studied in §§ 5. 7 - 5. 8 and we get
Theorem 5. 9, where the g -unital subset E  is assumed to satisfy a weaker
disjointness condition (wDIS) (see § 5. 7). These results on dual pairs for
G =Diff o (M ) and certain permutation groups are, in a sense, analogous to
Weyl's reciprocity law between k-times tensor product of the natural
representation of GL„(C) and the k-th symmetry group S k .

Now take a  measure oJE 2 ',F .1 1 (M ) and consider the subgroup
Diffo(M ; w ) of Diffo(M ) consisting of g  which preserve the measure co.
Then, in the case where w has densities of class C" ) with respect to local
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coordinates, the group Diffo(M ; co) is sufficiently big and contains many
elements as is seen in Theorem 6. 5. In such a case, similar results as for the
whole group Diffo(M) can be given. Some of them are given as Theorems
6.7 and 6.9.

We omit historical comments here, but cite simply [9] and [10], along
with the classical work [18], among the studies on irreducible unitary
representations of diffeomorphism groups.

Let us now explain the organization of this paper.
In  § I, we discuss infinite tensor product of Hilbert spaces, and

especially pay attention on a normalization of reference vectors in case of
L 2-spaces.

In § 2, first we discuss a product measure 14,, on X = II,EN X „ X ,=M , of
measures It, on X,(jEN) with respect to a subset E = ILENE,ŒX satisfying
the condition (MUI) (such an E  is called g-unital). Next we discuss a
realization of infinite tensor product of Jr1 =/2(X ) , A , ,a,) with a reference
vector x = (x,),EN of the form x,= M XEI L ' 1 x, as L 2-space L2(x, Ca, E),
v „ 0 for the product measure. Then we introduce infinite tensor product
0;E N T, of representations T, on i f ,  of a group of measurable transforma-
tions on M

In § 3, we concentrate ourselves to the case of diffeomorphism group
G=Diff o (M ) . At this stage, to get an infinite tensor product T = OjE N T'

s ) of
representations, we should ask that (g , E ) satisfies one more condition
(MU2) in § 3. 2. We study the G-quasi-invariance of the product measure

Then we see that, to have such a quasi-invariance in a general setting,
it is necessary to choose an appropriate ,u-unital subset E', g-cofinal with E,
and to restrict the a-ring of measurable subsets to much smaller one, and
thus we come to a product measure vo,„,E , to replace vp, E (for details. see §§
3. 2- 3. 3).

In § 4, we study the subgroup S„,E,, of consisting of elements a
which give canonically intertwining operators for the representation T of
G. We give some general properties, some interesting examples and
propose open problems.

In § 5, we establish a dual pair relation between the diffeomorphism
group G and a permutaion group e- (s) C S. through representaions T
and R , in case where all E, 's are mutually disjoint or in case where E =
ILENE, satisfies a weaker disjointness condition (wDIS).

In § 6, we study the group of measure preserving diffeomorphisms
Diffo(M ; co) and its representations. We obtain some results parallel to the
case of the whole group G.

At last, in Appendix, we give, only for completeness, proofs of several
facts in the case of finite tensor products of natural representations of G on
12(M)'s.
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§ 1 . Infinite tensor products of /2-spaces

1. 1. Infinite tensor product of Hilbert sp a c e s . Let (YaEN be a
countable system of separable Hilbert spaces. We define an infinite tensor
product o f these Hilbert spaces according to von Neumann [12], and
understand it through the interpretation by Guichardet [1]. For this, we
take a unit vector ØE ° for each iE N. Then we form the infinite tensor
product yeo vENye, of Hibert spaces f e, with a reference vector 0 = (0,),E,,,
as the limit of the inductive system of Hilbert spaces :

H> w , I E  WO, = 1, 2, ) .

A complete orthonormal base (=CONB), called standard with respect to 0,
is defined as follows. Take a CONB 0,,1(jEN) containing 0, as 0,, i =0„ for
each Jr,, and then form a set of vectors 0,eN,,, where the sequences
(J)EN  of natural numbers run over such ones that j = 1 for almost all (or
except a finite number of) iE N.

A  vector u= 0,ENu, with u,E.1c9 1, for which TI,EN t u, II is unconditio-
nally convergent, belongs to the space V.A.°, if and only if

L E N  I 1 < >  <+ 0 0 ,
where <.,.> denotes the inner product in l e , .  The above relation is
written as u - 0 ,  and this kind of vectors u are called decomposable. Note
that a product II,EN c„ c,EC, is called unconditionally convergent if c, 0  (iE
N ) and L E N  I CI -  1  <  0° .

For two such decomposable vectors u= 0,E N u, and v = 0,E N v„ their
inner product is given by

< U, > = il,EN < U,, > J r ,.

Note that if v ,=a,u, with a,E C  for i EN, then v—u means that product a=
11,ENa, is unconditionally convergent and 0,ENv, =a •

Note further that if 0 = (0),EN, (A II 0, II =1, satisfies 0 - 0 ,  then the
Hilbert spaces 0 E N .e 1 and V e a t 9 1 are naturally isomorphic, since, for a
vector u= 0,EN u„ the relation u - 0 is equivalent to u—(P. We denote by 4 0

the natural isomorphism from the former to the latter.

1. 2. Case of L2-spaces. Now let us discuss the case where each space
Jr ,  is an L 2-space. Let (X „ ,4„ ,u ,) , iE N , be measure spaces, where
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denotes a a-ring of subsets of a space X, on which a measure g, is defined.
According to Halmos, .4, is a a-ring if Ak E  (k EN), then UkENAkE„ and
if A, B E A ,  then A \B E .4 1 . Put ye1=L2(x1, .4 „ g ,) , the Hilbert space of
L 2-functions on X , .  We assume in this paper that these L 2-spaces are all
separable.

For the infinite tensor products of L 2-spaces, we have several natural
isomorphisms in addition to .10, 0. Firstly put for 0 1 E d 0

1 --L 2 ( x 1,  m„

1 (P)/ I sbi( p) I1 1
for p E supp'(0,),
for p  supp'(q1),

where su p p V )---- 
{ p E X  I f (P ) * 0 }  for a  measurable function f  on X i.

Further put 77i=  O i an d

f (p) for p EE„
7):(1)) = t 

1 for p  E„

with E,=supp i (q51). Denote by z =x E , the indicator function of the set E,.
Then,

0=t; • Tht 77i=77 /i • xi (i E N)

Put — and x= (X .),EN, then we can write the above
relations symbolically as 0=E • 77,77=77' • x.

Let /1//f, be the operator of multiplication by L on the space i f i=L 2 (X „
g i ). Then it sends 77, to 0 „ and therefore we have a natural unitary

operator W :=OiENM t, from the Hilbert space (W E N  Yt° ,• onto V E N  ,  which
sends a decomposable vector Oi.Nu, to OieN(r, • uf).

To give another natural isomorphism between the tensored Hilbert
spaces, let us define a new set of measures (gDiEN as

Clit:(P) = 7 (P) 2( P E X ) .

Then, the multiplication operator M . the vector z, in Y f:=L 2 (X1,
g :)  to 77, in It',=L A X „ .4„ g ,) , and they give naturally a unitary operator

= 0,ENM, , from O fE a t9: onto 0EN.Ye1.
Note that x, =xs, with g:(E ) = 1 . Then, for the tensored Hilbert space

O fEN fe:, we can give a realization of it as an L 2-space, with respect to an
infinite product of measures g: on X (1 E N ) which is defined with reference
to the system of sets (E,)..N. This is done in the next section.

1. 3. Tensor products of linear operators. Let T, be a bounded linear
operator on ./€9 , for each i E N .  We ask under what condition a tensor
product 0,E N T, can be defined as a bounded linear operator on the tensored
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space VEN/ei, where 0=  (0i);EN is the reference vector. To give a useful
sufficient condition, we introduce the following definition.

Definition 1.1. A sequence (tO,EN of vectors u, E E  N ) is said to be
c o f i n a l  with the reference vector q5 if the product 110)0 ut 11 is uncondi-
tionally convergent and

iEN <ui, ÇS re.I < + 0 °.

Lemma 1. 1. Let T, be a bounded linear operator on Y  e,(iE N ). Assume
that 1- 10)0 M T,M is unconditionally convergent, and that (T,(6,),EN is c o f in a l with
the reference vector q5. Then a tensor product T= 0,ENT, is well defined on

fE ry if, in such a way that

u—  i.N ui T u —  i E N  ( T t

for any decomposable vector u =  ENUI in  034.Nle

Proof. Let T ( '  be a linear operator of the subspace 07= i le i to the whole
space OtEN.ff, given as

07= 1Ye i D w (0 7 = iT i )w  (0 i> , , (T i0 i ) )E

Then, the system o f ( T ( ") ) „ .N  is consistent with the inductive system
(0---i.ei).EN and further

T ( ' ) M  T i  M  <

This means that the inductive system ( T ( n) ) ,N  defines a linear operator T
and II T HEN M Ti 1.

§ 2. Infinite products of measures and their L 2 -spaces

2. 1. Definition o f  infinite products. L et (X „  .2 „  ,u ,) , i E N ,  be
measure spaces as  in  § 1. 2. To define an infinite product of measures
(,u),EN on the product space X = II,EN X „ we first fix a system (E,),EN of
m esu rab le  sets E E M „ with reference to which the infinite product is
defined. We put g= (g,),EN and introduce some definitions.

Definition 2. 1. A direct product subset E = ILE N E, of X  with E•E .2 is
called g -u n ita l if the product ILENtti(Ei) is unconditionally convergent.

According to the definition, E =I l i E N E i is  g - u n i t a l  if the following
condition holds :

0<it1(E1)< +00, (Vi)
t LEN I 1—tt1(E ) I <+00.

(MUD
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Definition 2. 2. Two unital subsets E = ILENE, and F = ILENFi of X  are
said to be g-cof inal (Notation : E L F )  if  EieN iz i(EieF,)< + 0 0 . They are
strongly cof inal (Notation i f  E,— F, for i»0 (i. e., for sufficiently large
i).

Let .110 (E ) (resP. dt(,u, E ) )  be the a-ring of subsets of X  which is
generated by the family 1 0 (E) (resp. q,u, E)) of unital subsets F such that
F E  (resp. F '-E ) .  W e  d e f in e  a  product measure vo, E  (resp. 2),,E) by
patching together the standard product measure ILEN(X1F,) on each F =
ILENE in g o(E )  (resp. in 4' ( 1 4  E )), where ,u,1F1 denotes the restriction of g,
on F , .  Then we have

di (16 E) =  U F PE Jto(F), vo.„ .E =1A 4E 0 (E ).

Furtheremore it may be considered that the mesure v„, E on div (ii, E) is
a kind of completion of the one vo E on J t o( E ) .  In fact, any F=II,EN F, in
e (g , E )  can be approximated, with respect to v„ E, by a series of elements
in .110(E )  as shown below. Put, for NEN, ( I r i F , )  X  ( I I , > N E . ) ,  then
F (N ) E JI 0 (E ), and F n F m  =( -m iF ) x ( r -L >FnE,), and therefore

E ( F e F (N ) )  .411u1 ( F , ) )  nu, (F, UE,) — 14g,(F,nE,)}
I>N I>N

- > aji l l , ( F ) ) 1 1 - 1 ) = 0.

Concerning the relationship between two direct product mesures such as
(Um, Er Ji E )), we have the following

Lemma 2. 1. Suppose that two unital subsets E and E ' are not g-cofinal.
Then, for any  subset A in di (g, E) fl .11(g, E'),

1) {1 E ) E' )  —0.

2. 2. Relation to  in fin ite  tensor products o f L 2-spaces. Let us
consider an  infinite tensor product of L 2-spaces ye,=L '(X , g ,)  and
study a relation to an infinite product of measures g,.

Take a unital subset E=11,ENE, of X  =II,EN X ,. Then x 1 xE, 11;0-1, XE, is
a unit vector of Y e°,. So we get a tensor product ẀEf,,,Ye, of Hilbert spaces,
with reference vector x = (x,),EN.

On the other hand, we have product measures (X , J l o(E ), va,,,E) and
(X , .11(,u, E), for ,tt (,(0,EN with respect to the unital subset E . Hence
we obtain two /2-spaces L 2 (X, .410(E), vo,,,E) and L 2 (X, ( g ,  v , 4 E ) ,  which
are naturally isomorphic, because the latter measure is a 'completion' of
the former one. However the expression L 2 (X, .110(E), vagE) is the most
intimately related one to the tensor product Of.,,,L2(X„ .4„ ,a,).
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In fact, a natural isomorphism from the latter to the former can be
given as follows. Arbitrary element of a standard basis of OLN.le, is of the
form f  = (Ofq=1.f) (0,>N x ,) with f Ey t'1=L 2 (x1, O. since z =  I X ,

x E  and the product IL N  x E, ;r1, =cN (put) is convergent, the vector !  can
be interpreted as a function on X  according to the expression

( r = if  ( p.)) X (c , • i- L,NxE, ( A ) )  for x= (p.).NEX.

Denote this function on X  by Uf, then Uf  is clearly measurable with
respect to .110 (E) and belongs to the L 2-space L 2 (X, .110(E), E ) .  Let * ' (E)
denote the linear span of vectors in OfENA', of the form (0fg= i f) 0 (01>Nx,)
with f E l f , .  Then this is a dense subspace containing the CONS and U is
defined on it as a linear map.

Lemma 2. 2. The above map U on Ye (E )C  OLNie, is uniquely extended to
a unitary operator and it gives a natural isomorphism between two Hilbert
spaces as

U : ofEN.Ye L2 (X, .t0 (E ) , E)"="1,2 (X, .11(E),E ) ,

where Yta ,=1 2 (X 1,  ,2„ ,a,) and X, =  XE, 11 1
1

Let us now consider a non-zero decomposable element of OLNO, of the
fo r m  1E N X F ,  with F 1 E .4 1 . Then we see that F= H,ENFI should be a unital
subset of X , and be g-cofinal with E .  In fact, to see F Z E , we check the
criterion for 0,ENxF,E W./.1.e„ that is,

E ,E N  I 1 —  <xF„ <Do.

Since x =  II XE,II 0 1, XE, and the product H E N  X E ,  Ite, is convergent, the above
inequality is equivalent to

E ,E N  I 1 —  <xF„ X E, >Jr,1 <oe.

This in turn is equivalent to E,EN g,(E,eF,)< c o , or FL E , because F and E
are both g-unital.

Note that if we make correspond to f = of...Ye, a function on
X  as f ' (x )= r-LENxF, (A) for x = (/),),.N Ex, then it is .11(,u, E)-measurable but
not necessarily Jt o (E)-measurable.

2. 3. Group of measurable transformations. Let G be a topological
group consisting of measurable transformations g, which act on each X, in
such a way that the transformed measure g iL , is equivalent to ,It„ where
gg,(A ) := E  , )  .  From now on we assume that all the measures
appearing are u-finite, so that there exists the Jacobian between mutually
equivalent measures.

We have a unitary operator T i ( g )  on Ye, =L 2 (X „ •2„ ,u,) given as
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T , ( g ) f ( p ) = c t i ( g ,  p )
.1 0 , ( g - 1 p )  

f ( g 'p )  ( f  E Ye„ p E X ).
dg,(p)

Here a,(g, p ) is a so-called 1-cocycle, j. e., a function on G X X„ measurable
in p E x , and satisfying a,(g, p )  = 1 ,  and for g l , g2EG,

ai(g1g2, p) =cri(gi, P)ai(g2, e P )  for a. a. PEXi.

Then we have r ' , (g i g2) T , (g i )T , (g 2) for g1 , g2E  G. Let E be a measurable
function on X , such that 1 (.13') 1 =1 (P EX,), and Aff  the multiplication
operator on ye, as in § 1. 2, then the transformed operator M Er ` , (g)114V has
a similar form as T,".(g) with a different but equivalent 1-cocycle.

To have a representation of G, we need the continuity GDgi->TXg).
For this we have the following necessary and sufficient condition.

Lemma 2. 3. Let .4 be a subfamily of  i,  consisting of elements with finite
m easures. A ssume that every  elem ent in  2, w ith a f inite m easure can be
approxinated by elements of the a-ring generated by s 1.  T h e n  the map g E-

(g) is continuous if  and only if the following conditions hold : for any fixed
A E d , and as g--->e,

/ j (g ip )
cig,(P) XA(g-1P)-XA(P)

11 
20 , (P ) — 0,

(b) a,(g, P) 1 2dg,(P) —

Furtherm ore the condition ( b )  is  e q u iv ale n t to  th e  continuity  in
probability  of  the map g--> a,(g, • ) at g =e, that is,

(b') for a f ixed f inite m easure w i 1  on M,

V e >0 f ix e d , co({P ; ai(g, 1)) - 1 I > 0 ) - >13 (g - >e).

Proof . We prove here only the necessity of the conditions (a) and (b).
The continuity of the representation is equivalent to 0(g) :=  11 T.(g)xA

XA — > 0 (g->e) for any A E d .  Taking into account I a, I -=-• 1 and
11a1 - 1b11 1a - b1,weobtainfrom .15(0 - >  0,

dg,(g - l p)
XA(g - 1 P) - XA(P) —> 0 (g-->e).

From these two formulas, we have
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IA I a i ( g, 1)) — 1 I 2=  II aizA — xA 112

T'i(g)XA — XA 112 +2 II T i( g ) x A — aix A  II2 =
= 20 (g) 2 +2V1 (g) —> 0 (g—>e).

Let us now prove the equivalence of (b) and (b'). For (b) (b'), it is

enough to approximate the density function (p) on M  by linear combi-dco 

nations of zA, A E d .
For (b/) (b), put A ,,,:= {pEM ; ai(g, p) - 1 I >E}. Then

IA 1 ai(g  p) - 1 1 2 dii,(P) E 2g,(A )+414 1 (A ,,,),

where /41 denotes the restriction of g, onto A :,(41 (B) = g,(B n A ).  Since g',1 is
a finite measure and Le w, we obtain /41 (A, ,)—>() from w (A, ,)—>0. This
gives (b). Q. E. D.

Note that the condition (a) in Lemma 2. 3 means the continuity of the
representation in case of the trivial 1-cocycle :

We have also the next sufficient condition.

Lemma 2. 4. Let d Œ  b e  as in Lemma 2 . 3 . Then the map g 1—> Ti(g)
is continuous if the following three functions in g are continuous at g=e for
any fixed A E d :

111(AegA),
d,ui(g 'p)

a,(g, 1;0) - 1 d i(p ).

Proof. It is sufficient for us to prove the continuity at g =e  of the map

GDg < r'f(g)xA , x .6> (— : 0(g)),

for any A, B E d . Then, the difference 0 (g ) — 0 ( e )  is majorized by the
SUM

gi (A e g A )
I  dg,(g - l p) 

11  d I 4 ( P )
d 1 (p )+ j  a i (g ,  p) —  1 I dul(p).

For a particular case, we have a simple criterion for continuity as
follows.

Lemma 2. 5. Assume that the indicator function x E , of a set E,E.4„ with
0<g,(E1)<00, is cyclic under G, that is, the set of vectors {T,', (g)zE,1 gEG}  is
total in ,Y(,. Then the map g ■--> T,'=(g) is continuous if the function
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i
<T ri(g)x E„ X E ,>Jr, =f  a i ( g ,  p )

d,u(g-lp)
 d 1 ( p )

EingE, d#1(p)

is continuous in g.

Now let us examine a condition for the existence of the product
OfENT,'(g) as an operator on ow.or„ where x= ( X I ) E N ,  L =  11 XE, 11;r1 XE,, be
as in § 2. 2. By Lemma 1. 1, a necessary and sufficient condition is given
for the existence of the product as

(2. 1) E  I 1- <T ,qg)x i, x i>  <  co .iEN

The left hand side is majorized by a constant multiple of

E f  1 -  ai(g, P) ZE;(g-1P)iEN

< C  E M xE1 -T X 0 x E , 11,2(E.),iEN

where C >0 is a constant and M f IlL2cEd =  P f  E 1 ML 2( x 1 ,
According to the natural isomorphisms of Hilbert spaces, ofEN.ye,--

L 2(x , vo,„,E) =71,2 ( X >  t  E ) ,  up, E), we can give, from another point
of view, a sufficient condition for that a transformation of each g E G  can
be given on the Hilbert space. This is nothing but the so-called absolute
continuous action of G on the product measures.

Lemma 2. 6. Assume that the ci-ring J1 0 (E) (resp. E ) )  is invariant
under G, and that the measure gv transformed by gE G  of v = pa p. E  (r eS P . = 1),, E)

is absolutely continuous. Then we have a unitary operator on the corres-
ponding L 2-space .Y e as

f  a ( g ,  )
\  d v ( g - 'x )

H-> x f ( g - l x ) = :  T ( g ) f ( x )  (x E X , f E  Ye),
clv (x )

for g E  G, where a(g , x ) is a 1-cocycle. The case where a(g , x )= ILENce,(g, P,)
for x = (p ,) ,EN , which is assumed to exist v-almost everywhere, corresponds to
the case of tensor products.

To get a tensor product of representations of G, we should have the
continuity of the map g OfENT,'(g), which is not automatic from that of
each map g ( i E N ) .  From the view point of Lemma 2. 6, the
continuity needed is that of the map G g  T " ( g ) f E  A° for any fixed f E

These representations will be discussed more in detail for cetain
choice of G, in the next section.
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§ 3. Tensor products o f natural representations of diffeomorphism
groups

3. 1. Diffeomorphism groups and their natural representations.
Let M  be a non-compact, a-compact, connected differential manifold of
class C, 1<n<co, and G=Dif f o(M ) the group of all diffeomorphisms g on
M  such that the support supp(g): = Cl { p E M  g p * p }  is compact. We
introduce a so-called C-topology in G and consider its unitary represen-
tations. By definition, a net gs in G converges to g E G  if supp(g) are
contained in a fixed compact set and every differential of g,9 converges to
that of g

Denote by Y g:/11(M) the set of all locally finite (i. e., finite on every
compact subset) measures on M  which are equivalent locally to a
Lebesque measure with respect to the local co-ordinates.

For i EN , put X, =M  and take a measure ,u,E.T.F.11(M) on it. Then we
call a natural representation of G the representation of the form on the
L 2-space le ,=L 2 (X„ ,u,), where .4, is the a-algebra o f all Lebesgue
measurable subsets of X . Let us study when and how a tensor product of
these representations can be defined.

3. 2. Reference vectors for tensor product representations. To form
a tensor product Hilbert space of Ye(iEN), we fix a reference vector ç=
(,),EN. Note that under the replacement in § 1. 2 of 0, by z„ and ji, by
the representation on L 2 (X „ .4„ IL) is transformed to a similar one
on L 2 (X1, .4„ / J )  with another 1-cocycle a:. Therefore, taking also into
account the results in §§ 2. 1-2. 2, we may assume from the beginning that
the reference vector is o f  the fo rm  x = (X,) ,EN = M XE, 11;1, XE,EY e=
L 2 (X „ -4„ g ,), with a g-unital product subset E=1-1,EN E, of X = II,,NX„
where g (i,t,),EN as before.

Let us consider which conditions should be put on the g-unital set E to
get a tensor product representation of G.

We introduce the following condition on (,u, :

(MU2) for any compact subset K  of M, E,EN,a,(K n E.) <

As in § 2, denote by ,° (E) the linear span of vectors of ONYt9 1 of the
form

( 0 , „ f )  0 (0,,Nxi)=const. ( 0 . , , f )  O (0,,,x0

for some N > 0 with f E l 0 ,=L 2 (X„ M i , g .). Then .1e(E) is a dense subspace
containing a CONS which is standard with respect to x = (X)EN or rather to
E=IliEN E,. Let us define, for gEG , a map from Ye'(E ) to OfENYC, as

gfE ,f, H  i E N ( T r i  (OA



Diffeommphism groups and inf inite symmetric group 273

where f E d r ,  and f  =26 (i>>1). Suppose that a,(g , p) = 1  if p s u p p ( g ) .
Then we see that, under the condition (M U 2) above, the element in the
right hand side is actually in  OfEN,Ye„ and the above formula defines a
unitary operator on OfEN,re„ denoted by T ( g )  with ek= (a,),E N .  In fact, by
Lemma 1.1, it is sufficient to check that

E  I 1— < T .qg)x i, xi> I —E I <xi— r`i(g)x i, xi> I < co.
i E N i E N

This is equivalent to E iE N  <xE i
—  T(g)X E„ xE, >  I <00. Put K g = supp(g).

Then, since ai(g, p )  =  (pEM ) b y  assumption, each term is evaluated by

Jg

xE,(p )—a,(g, p)
dg,(g - l p) 

XE,(g - 1 P)
(41)(P)

xEi(P)dgi(P)

▪ gi(K k E i )  + I d i i i ( g - 1 P )

d t t i ( P )

 x E 1 (g - 1 P) X 1 ( P )  L 2( K g )  • 11 XE1 111.2(Kg )

- ,a,(If„r1Ei)+gi(K k f lE in g - I E;) 1/211,(Kg riEi) 1/2

where II • IlL2(K9 ) denotes the norm in L 2 (K9 , ji, I K 9 ). Thus the condition
(MU2) guarantees the convergence of the infinite sum in question.

Now we state the following

Theorem 3. 1. A ssum e that a g-unital subset E satisfies, together with g
= (g,),EN, the conditions (MU1)— (MU2), and that a,(g, PO = 1  p Ersupp(g).
Then a system of  unitary representations Y e • , ,Y (1=L 2 (X 1, .4„ g,), gives
naturally a tensor product representation T ,  with a =  (a,),EN, on the tensored
Hilbert space W `Eat',.

By Lemma 1. 1, we can prove T ;(g1g2)=T (g1)T i(g2)(g1, g 2 E G ). To
prove the strong continuity of the map GDg 1--> M g ) , and also to write
down more neatly the operator M g ) , we apply the following

Lemma 3. 2. Under the conditions (MU1)— (MU2), there exists a g-unital
subset E' =ILENE: which satisfies E"----4  and the condition

(MU2str) for any compact subset K  of M , K n E :=0 ( i>0 ) .

Furthermore E' can be so chosen that each E: is a relatively compact, open
subset, and m oreorer is connected in case dim 2.

P ro o f  S T E P  1. Since M  is u-com pact, there exists an  increasing
sequence of relatively compact, open subset Uk , k EN , such that UkEN
M . Put Kk = C 1(U k ). Choose an increasing sequence of integers N k (k EN )
such that
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EAK k ( i  > N , , )  a n d  Ei>Nk iti(Einifk) < 2'.

and put E;=EA Uk:i>NkKk. Note th a t {k : i >Nk} is  f in ite . W e  have, for any
k, E;r. K  k = if  i>Nk, and further E'CE 1 and Ef\E;= U E n K  So- - k , . _
we have E Z E  because

E g i cE,(DED E
iE N i e N  k : i > N .

< E  EiLi(EinKk)_<_E 2- k=1.
keN i>N. keN

S T E P  2. To  see  tha t the  add itiona l cond itions can  be  put on  E', we
renormalize E' above satisfying (MU2str). Assume, in case d im  2, that
E' is  obta ined using such a sequence U k  that M\Kk is a lways connected.

Put K k = 0 for k = 0, and for each i EN, let J, be the m axim um  of {kEN ;
K k n E : =  0}. Put D,:=M \IC J ,  then D D E :, and so  there  ex ists a re la tive ly
compact, open subset E:' of D, such that  t ( E e E ; " )  < 2 .  In case d im M  2,
since D, is connected, E:' can be chosen as connected. Put E"= ILENE:', then
EH /LE, and E" satisfies the add itiona l cond itions demanded. Q .  E .  D .

Le t u s now  consider a new  dense subspace Ye(E'), in  p lace of A' (a
for E 'L E  chosen above. Then we can define a un itary operator fo r any g
E G  on e ( E ')  w h ich  corresponds to  a tensor p roduct o f representations

Ye) as fo llow s . Fo r a gEG, put K g =supp(g), then by C ond it ion  (M U
2str) there  ex ists an  in tege r N g > 0 such  tha t K g rIE :=0 fo r i >1■Ig . Then,
tak ing  w e  have gp=p for pEE: if i >/V, and r'(g)XE', = x  andand so
the map

(a 1) (0 , ,N f) (0,>,,,x0 (0,„(77, (of, ) )  ( 0 , > N x , )

is well-defined on . "(E') and  is un itary, i. e., isom etric on to . T h is  un ita ry
operator o n  ( (E ')  can be extended un iquely to such a one on the whole
space of,N.e,. D eno te  it by T ( g ) ,  then we have n a tu ra lly  T ( g 1 g 2 ) =
Tk(g 1) T ( g 2)  for g 1 , g 2 E G . In th is  w ay w e ob ta in  the fo llow ing theorem
w h ich  is  a  version of Theorem  3. 1.

Theorem 3. 3. Assume that a g-unital subset E satisfies, together with g,
the conditions (M U1)— (M U2). Then there exists a  g-unital set E 'L E
satisfying Condition (M U 2 str) . Assume that a,(g, p) =1 for pErsupp(g).
Then the formula (3. 1) above defines the tensor product (71, OfENI€9 ,)  of
unitary representations Ita 1,2(X „ .4„ g,).

Proof It rests only to prove the con tinu ity  of the m ap G D g  T ( g )
f  for any fixed fE  ofEN,ye„ However, since the operators are a ll un ita ry , it
is enough to check it fo r any f  in the dense subspace ye (.E'). In turn, th is
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f is of the form (01,N f)0  ( 0,, N z r ,). For a relatively compact open set V of
G containing e, the set U v = fgEG ; Kg c V ) is an open neighbourhood of e
in G . On the other hand, we can choose an integer Nv> 0 such that vnE:
=0 for i> N v . Then, for any gE U v , choosing an N> NV, the vector T ( g )
f  is expressed by the formula (3.1). This means that the continuity of the
map Uv Dg 1— > Tl(g)f comes from that of the maps g 1—> T=(g) for i

3.3. Properties of product measures. In  § 1, with reference to a
given 1u-unital set E = I •ENE, we defined two kinds of product measures
(X , I 0(E), E ) a n d  (X , .41(g , E ), v E ) on X = 11,ENX,. We discuss about
the G-quasi-invariance of these measures. The first point is the invariance
under G of the a-ring .110(E) or .4  f (g , E ), and the second point is the
existence of Radon-Nikodym derivatives.

By an example given later, we know that the condition (mu2) on Cu,
E )  is not sufficient to guarantee these two points affirmatively. Our
primary answer coming from the results in § 3. 2 is the following.

Lemma 3. 4. Assume that (g , E )  satisf ies Conditions (MU1)— (MU2).
Let E' =ILENE: be a g-unital set such that E'--?-1-E  and that Condition (M U2str)
holds. Then, the a-ring .IIX E') is invariant under G, and the product measure

E' is G-quasi-invariant with the Radon -Ni kodym derivative given for gEG
by

(3. 2) duo, (g1x )d x ( g - i P i )  
duo,  e(x) d ( p )

for x = (p,)... on every set of  .I10 ( E ') .  Here the product is actually  a f inite
product on each F E 6 0 (E').

Proof  Note that any set A E J t o (g )  is covered by a countable infinite
number of E"EsPo(g) : A C U kEN ( k)  . Then, we see that, to prove the
assertion for A, it is sufficient to prove it for each A n E "  or rather for g ( k)

itself. Since g (k) E g o ( g ) ,  it has the form E' ( '') = (II,A rk E: ( k ) ) X  (II,>NkE ;)  for
some Nk >0. For a gEG, put Kg =supp(g). Then, by (MU2str) for g  , there
exists an N g > 0 such that K g  FIE:=0 for i > N g . Hence, taking N > max (N,„
NO, we have, for i> N, gp,=p,(vp,EE) and so, on the set

dv o, „, e (g -
1 x)d x ( g -1 ( x _  ( p , ) , E N

E' (X ) d  (p ) d,u,(p)

Thus we have the assertion. Q. E. D.

In general, assuming Condition (MU1) apriori, we do not have the
G-invariance of the a-ring .110 (E ) or E ) by the condition (MU2) only.
To show this we give the following example.
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Example 3. 5. Let M =R , and put EiCM as Ei= (0, U  (i+ L 1+2) with
0<a1< L ai O. Measures gi are given as d g (u )  p i(u )d u  with positive
functions pi satisfying

aif Pi(u)du<  c o , pi(u)— =-
1  

on [1, 21, Pi(u) =1 on [i+1, i +
ieN 0 ai

Take an element gEG  such that

g(u) + 1 o n  (0, 1), a n d  g (u) = u for u»O.

As is easily seen, E=11iENE, is a g-unital subset of X =IliENX, with X ,=
M, and it satisfies Condition (MU2).

Consider the set gE :=11,ENgE,. Then, for i»O, gEi= (1, i+ai)U (1+ L i
+2) and so g,(gE,)= 2 and even ,u,(gE,n [L 21) =1. This means that the set
gE is no longer g-unital nor does it satisfy Condition (MU2) for a compact
K = [1, 21. Furthermore we see that the set gE can not be covered by a
countable infinite number of 1a-unital sets so that it does not belong even to
d 'Cu, E)D.iito(E).

Thus, neither .110 (E) nor ../11(g, E) is G-invariant.
Furthermore, put E:= (i +1, i + 2) and E' ,EN E:. Then E / 2̂- E  and

Condition (MU2str) holds for E'.

3. 4. A nother e x p r e s s io n  o f  tensor product representations.
Assume Conditions (MU1)—(MU2) for (g, E ) . Then by Lemma 3. 2 there
exists a g-unital set E' =IL E N E : E  which satisfies the condition (MU2
str). As is proved in Lemma 3. 4, the a-ring .110 (E') is G-invariant and a
product measure vo,„ E  is G-quasi-invariant.

We express, in another form by means of this measure, the tensor
product representation ® N  (T, ye,) of G defined with reference to (g, E),
where Ye1=L 2 (X1, M„ and x = (x,),Er.. be as before.

Lemma 3. 6. A  1-cocycle a(g, x) on X  can be defined by the product of 1-
cocycles ai(iEN ), if a,(g, p,) =1 for p,Ersupp(g). The product converges
1)Œg  E -almost-everywhere on every subset in .110 (E') in such a way that the right
hand side of the following formula is actually a f inite product on each FE
go(E') for each fixed gE  G :

(3. 3) a(g , x ):=1-1 a,(g, p,) ( g E G , x = ( p N)•
,EN

Pro o f  Take a compact subset K  of M  which contains supp(g) in its
interior. Then, by (MU2str) for E', g ar =0 for sufficiently large j. For
any fixed F =11,eNEE‘o(E'), we have F =E  for sufficiently large i, and
accordingly F rix . —15, and so, for an x =(p,)„ N EF,

ai(g, p )  = 1  (i o).
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This means that the product in the lemma is actually a finite product on F.
Moreover every set in 11 0(E ') is covered by a countable number of

sets in 1 0 (E ') . This proves completely the assertion of the lemma. Q. E. D.

Using the Radon-Nikodym derivative in (3. 2) and the 1-cocycle a in
(3. 3), we can define a unitary representation Tk of G on the Hilbert space
L 2 (X , .14 (E'), vau, E-) as

T k ( g ) f ( x ) = a ( g ,  x ) 1 1

d i k . „ E ( g - l x )

(3. 4) f (g - ix ) ,
dvo,,, g(x)

where g E  G, f is an # 0 (E') -measurable L 2-function, and xEsupp'(.f) : = {xE
X ; f (x) 0}.

This gives another expression of the tensor product representation T1
in § 3. 2 as stated in the following theorem.

Theorem 3. 7. Let E=II,EN E, be a unital subset of X =  ILENX ,, X =M,
which satisfies the conditions (MU1)—(MU2). L e t =  X =  1 I x E  11 ;1, xE,,
and take a g-unital E 'L E  satisfying the condition (M U 2 str) . Through the
natural isomorphism of the tensor product Hilbert space Of,,,Y e„ /f1=L 2 (X1,

,u,), with the 1,2-space L 2 (X, E), E) -2=-L2 (X , Jto(E / ), e ), we have
a unitary equivalence of representations TT with 71 of the group G =Diffo(M).

3.5. Conditions for G -quasi-invariance of Pg. E  on  di Cu, a  As is
shown by Example 3. 5, we need some condition to have the G-invariance
of the u-ring 1 1 (g , E )  and also the G-quasi-invariance of the product
measure v„, E on it. As a reasonable sufficient condition we propose the
following one on II =  (x ) ,N :

(M K ) For any g E G  and any compact K cM ,

E n io<  . 0  for A E PA (M ), implies E g,(g(A 1n 1 0 )<
iEN iEN

where M(M) denotes the (7-algebra of all Borel subsets of M.
Under this condition we can prove the desired results as shown below.

For gE G  and x = (1),)EN EX, we put gx= (gp,),E N , and so gF=1 -1,ENgF, for F
=ILENE, F,CM.

Lemma 3.8. Assume (MU1)—(MU2) for Cu, E ), and (MK) for ,u. Then
the a-ring .11(g, E) is G-invariant.

Proof . It is sufficient to prove that, for any F=II,E N F,E g(g , E ), we
have gFE g(,u , E ). Put K g = supp (g ) .  To prove that gF is again g-unital, it
is sufficient to remark that gF,=(F,\K g) Hg(F, nKg ) ,  and therefore
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I 1 - 111(gFi) 1 - 1 ( F i )  + i i i ( F in K g ) - Fiii(g(FinK g)).

To prove g FZ E , we note that gF,CDE,Cg(F, fl Kg ) u u ( F i e E i ) .
Then this gives the assertion.

Lemma 3 .  9 .  A ssum e the conditions (M U1)— (M U2) fo r  ( g ,  E )  and
(MK) for ,u . Then, for any g-unital set F = E ,  i. e ., FE g(,u , E ), the
products

(d ,u ,( g p ,) Vp for x =(Pi)iEN EF
15i5N )

converges on F in the space LP (F, E  F )  as N—>09, for any p, 1 <  .0 .

Proof. We see in [19, Chap. 2] that the convergence for any p, p
.0 is equivalent to the one for some p. So we prove it here for p = 2 . Put for
N <  N',

dgi(gp,) dg,(gPi) 2H d g , ( A ) .dg i (p,) isAr

Then, we should prove IN N, —>0 as N <N '— >00. On the other hand, IN ,  =
XJN N, with

dgi(gpi) 
d#1 (p1).

dg, ( Pi )

Since the products II,E 0,(F ,) and II,EN g,(gF) are both convergent, IN, N
O is equivalent to

1-
d g i ( g p i )  

E (P)
i EN f i d,ui(p,)

< .0.

Moreover, since E tE N  t1(F1) — 1 a n d  E i E N  gi(gFi) are convergent,
this is equivalent to

i . N  fF 1
dui (g pi) 

2d#1 (p,) < .o •

A sufficient condition for the above is given by

iEN

dgi(gpi) 
1

(P i)
d 1(p1)  <

Now put
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A ,= fp, ; dg' ( gPi ) >11, Bi d p iE X , ; d g i ( g P ) < 11.
dgi(Pi)

Then, A L ,B ic  Kg , and the above sum is evaluated as

= E  f li1(g(F1rlA ,))— ii1(F1nA 1)+Ii1(F1nB1)-121(g(F1nB))1
i E N

< E  cui(g(F inic,))+ ,u,(F inif,)} <

This proves our assertion. Q. E. D.

The p-th  power of the limit as N—>co of the products in Lemma 3. 9
gives the same function for any p, and it gives the Jacobian of the product
measures (cf. [19], or [7] for p =2).

Theorem 3. 10. Let E be a g-unital subset of X, and assume the conditions
(M U1)— (M U2) fo r (g , E ) , and (M K ) fo r  g . Then the a-ring .11(g, E) is
G-invariant, and the product measure vu. E  on it is G-quasi-invariant with the
Jacobian given on each F E e ( g , E )  as

dv„, E (gx) d,u,(gp,)= H for x = (p,),NEFCX,dv„, E (x) lEN du1 (p1)

where the infinite product converges in L i (F, v„ E  F).

In the above case, the tensor product representation (Ti, OfEN•Ye,) with
119 1=1, 2 (X 1, .4„ dg,), is realized with a natural expression for representation
operators on the /2-space L 2 (X, (,u, E ), v „E ), at least when all the 1-
cocycles a, are trivial.

3. 6. Space o f ordered configurations and Condition (MU2). A
series x (P,),EN of mutually different points in M  is called an ordered
configuration if it has no convergent subsequence, i. e., the set of points (p, ;
i E  N ) h as  no accumulation points in M  T h e  se t o f all ordered
configurations of points in M  is denoted by J. We say that a measure (v,
2 )  on the product space X  is supported by J if, for any A E  ,

A ng - E a  an d  v(A) =1)(A ag).

Then we have the following

Theorem 3.11. Let g = (g .)  . .N  be a system of measures on X ,=M  (iE N )
taken from 2'.°,./11(M), and E  a g-unital subset of X= II,ENX „ so that (MU])
holds for ( g ,  E ) .  Let ye, „ E  and 2)„E  be the product measures on the a-rings
J(o(E) and .11(g, E) respectively. Then they are supported by the space .X of
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ordered conf igurations if  and only if  the condition (MU2) holds for (11,

Proof . For v =i E(resp. i. , E), it is supported by 1-  if and only if for any
F= IL E N F, in 6'a )  (resP. g(ke, E)), we have F ag' E m o (E) (resP. .1/(f t, E))
and v(F ag) =1)(F).

Now take an increasing sequence K k ,  k EN, of compact subsets of M
such that UkENKk =M . Then the intersection F n it. is expressed as follows.
Put k =  ( 1 1 5 n F 1 )  X (11,>„(FAKk)), then U  n E N  F„, k is the set of points in F
which has no accumulation points in K k EM  and so

F r i g -  n k E N U  n E N F n , k •

On the other hand, since v(F) < cc, we have

v(Fn.k)=iirniimv(F, k )= iiin iim (fi ,u,(Fi)) • (H,,,,(F,vco)•
k-.00 k-.00 i>n

This limit is positive if and only if

E g i (Fi nic k ) < o o  for any k
ie N

and this condition is equivalent to (MU2).
In this case the limit is equal to ILEN,a,(F) =v(F). Q. E. D.

For the space o f (non-ordered) configurations of points and quasi-
invariant measures on it, we cite here the works [16] and [17].

§ 4. Permutations as intertwining operators fo r an  infinite tensor
product representation of G

4.1. Algebra of intertwining operators. Let T  be a unitary repre-
sentation on a Hilbert space H (T ) of a certain group G . A weakly closed
subalgebra

T (G) / = (T (G))' = { L EM  (H(T)) ;L  o  T (g) = T (g) 0 L (gEG)}

of the a lgebra  (H (T )) of all bounded linear operators on H (T ) is called
the algebra of intertwining operators for T, and is essential to analyze the
structure of the representation T .  In fact, we may say that it governs
irreducible decompositions of T .  Actually, in case the algebra of inter-
twining operators T (G)' is of type I, a spatial irreducible decomposition of
this algebra gives essentially an irreducible decomposition of the repre-
sentation T  of G.

Denote by qt(H (T )) the set of all unitary operators on H (T ). Then the
algebra T (G )' is generated weakly by the group .1(T) := T (G)' ( H
( T ) ) .  Therefore we are interested in determining explicitly a certain
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subgroup of unitary intertwining operators which is weakly dense in the
above group.

In our present case, we take as G the group Diffo (M ) and as T one of
the tensor product representations 7'; or their equivalents 71, in § 3. Then
there appear the infinite symmetric group S- or related groups of permu-
tations which act as unitary intertwining operators on the space of infinite
tensor product H ( T )  OfEN/19 „  It°,=L 2 (X „ ,4„ te,), through 'permutations'
of components. The study of structure of these permutation groups is the
subject of this section.

The denseness in the g rou p  (T ) of the set of intertwining operators
corresponding to such a permutation group will be treated in the next
section.

4.2. Representations of G=Diff 0 (M ). For the group G, we take one
of the tensor products o f its natural representaions. As in § 3. 2, we
assume that the conditions (MU1)-(MU2) hold for (te, E), and consider
the tensor product 7'; o f ( T i ,  . 4 , ,  jE N, with respect to a
reference vector x = (x,),EN. Here

(4. 1) T p(g)h(p)=ce1(gP)11 d i t t

C ig i (
i
g

(
 1 P )  h  (g-IP) (PE N 4 gE "

with a 1-cocycle a.„ I  a,(g, p ) I =1. For simplicity, we choose, in this and
the next subsections, a realization of the tensor product by means of
product measures, given in § 3. 4. So that T =T k  on the space H (T )=L 2 (X,
.1,10 (E/ ), :

T (g)f (x )=a(g , x ) clvo, ( g 'x )  f ( g 'x ) .
E , (x)

Here the 1-cocycle a is defined in terms of a,( jE N ) by the product

a(g, x )= ai (g, x,) for x = (x; ),EN
ie N

which is essentially a finite product on every subset F= II,ENF, in 10(g),
and so converges ii  r -almost everywhere on each A Ed1 0 (E') (cf. Theorem
3. 7).

With a sufficient generality, we study from now on the case where
each a, is given as

(4. 2) cri(g x j) ri(g - l x ;)  (dg i (g - l x,) 
ri(x1) d,u,(x;)

with i = siER, and ri (x ) a measurable function in x; EXJ=M such that
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Ti I = 1 .  Put, for F= 0(g),

7(x )= H r i(x )  for x =(x i ) ; ENEF,
jE N

which converges pa,,E--almost everywhere as above. Then, we have the
following expression of a:

a ( g , 7 ( g - l x )   -F r (
7(x) d i a x i )  ) 1

for x EF.

Here the first fractional part containing y is a non-essential part.
Now choose all different values from {s, ; JE  NI and let them be s(k ),

kEK, and put N (k )=  {jE N  ; s,=s(k )}  for k E K . Then the above expres-
sion for a gives us

(4. 3) a (g  x ) =  r (g -lx ) 
k

ix f )y f o r  x EF.
s ( k )

' 7(x) " E K  je  N  )  dgj (X))

4. 3. Infinite symmetric group S. and commuting relations. Let S .
be the group of all finite permutations on the set N of natural numbers.
For a permutation u  o n  N, put supp(g)= fle EN; cl(k ) k) ,  then by
definition a is called finite if supp(g) is finite. We define an action of S .
or its subgroup S  on the space H (T ) as follows. For g E S . and x= (X,),E N

E X , put xg= (x,(,)),EN. Recalling th e  isomorphism H(T) - -=' 0;E/or, in
Theorem 3. 3, we put for aESC S .

duo „,E-(xu)
(4. 4) R (u)f(x )=13(u, x) .1 f ( x a )  (xuEsupp / ( f ) ) ,

dvo,,, E  (X)

where the existence of a 1-cocycle fi for a subgroup SC S. is assumed :

S(010'2, x) x)fi(u2, xgi) Cub u2ES, x EX).

The commuting relation

(4.5)R ( u )  0  T ( g ) = T ( g )  0  R  ( a )

is equivalent to the following relation between 1-cocycles for any A E
(E '),

(4.6)S ( a ,  x) • a(g, x a)=a(g, x ) .13(u, g - i x)
for vŒ,4 E -almost all xEA .

Assume that a satisfies s„( ,) =s, (jE N ), or equivalently, aN (k )=N (k ) (k
E K ). Then, putting
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$ ( 0 ;  x )  _  r (x a )   n H d ,t t ,7  ic o (x J ) ) , s(k)

y(x )  k E N  jE N (k ) d i - i j ( X j )

we get a 1-cocycle /3 for which the commuting relation (4. 5) holds.
The subgroup S-((s,),E N )  of S. consisting of all a such that s, ( ,) =s,

(VjEN), is equal to the restricted direct product TT....k/ E K S N ( k ) ,  where, for a
subset J of N , S i = faE ; supp (a) Œfi.

The above results give us the following

Lemma 4. 1. The group of unitary intertwining operators f  (71) for the
representation 71 contains a subgroup {R (a) ; aE S .(s)} , s=(s,),E N , or in
another expression, 71(G )'D R (S .(s))".

4. 4. More general permutations acting as intertwining operators.
Hereafter it is convenient for us to take the realization of T  originally
given as infinite tensor product of T i's : T =7 "= 0,EN T;) on H(T ) = Of.for,
with ita,=L 2 (x,, a y , ,u). We may and do assume that r, =1 for jEN.

Now take a permutation a on N : GrE ,  and let us examine if one can
define an intertwining operator  R (a ) on H (T )  through permutation of
components by the formula equivalent to (4. 4). The commuting relation
(4. 5) of R (a) with the representation T1,  gave us the expression (4. 7) of
the 1-cocycle So, in particular, we have the invariance s,-1( ) =s,(jEN).
We denote by s= (s,),EN, the subgroup o f  . consisting of all such
a's.

Our problem here is to examine if a bounded intertwining operator
can be given canonically through th e  following formula. Take a
decomposable element f = 0 f , such that, for j>0, .1.2=x,= xE,11;),xE,, in
H(T ) = OfENfej with x= (x,),E N . Then it should be mapped to a  decom-
posable h = 0 1ENh, with

k ( x ) = (
d ic i o- i co 

 ( x )
r isi

f , - 1 ( ; ) ( x )dui

We discuss as in § 1. 3. The decomposable element h belongs to H(T )
= 010;Eat', if and only if (h 1)EN is cofinal with the reference vector X=
(x,),EN, that is,

( 4 .8 ) E'EN I < h,, <

Since E  is ii-unital, we have LIEN I X E I  2)r, <  0 0 ,  and so the above
condition is equivalent to

(4. 9) E  I 1— <h;, xEi >
jE N

(4. 7)
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where, since s--1(; )=.si ,

1-0) is .
121(xj ) = ( (x;))

++  
xE,,,-1( ) ) (x1).

Furthermore it is also equivalent to the following condition :

(4.10)E  III xE;  112 — <111, zEj > = E 1 <xEi
— l'ili, zE

J
.>

j  
<

ie  N jE N

Thus we have next

Lemma 4. 2. A permutation CIE gives a unitary operator R (a) on
H (T ) by the formula stated above if and only  if  the condition (4. 9) or the
equivalent one (4. 10) h o ld s . This operator R (a) intertw ines the infinite
tensor product representation T  of G.

Denote by S„ E,, with s= (s,),EN the set of all elements clE ' - os(s) for
which an operator R (a) is defined by the above formula. Then it contains
S - (s )  and forms a  group a s  we can see without difficulty using the
convergence E,EN 111 xE, 112,, — II 125 112, <00 .

The important thing is that R (a) gives an intertwining operator for
the representation T , that is,

R (S„ E  )  " L  T (G) .

So, we are interested in determining the structure of the group S i, E. s
and also in the following problem.

Problem 4. 3. Does the equality hold in the above inclusion relation ? In
other words, is the algebra of all intertwining operators for the infinite tensor
product representation T  is generated (w eak ly ) by  R  E  s )  =  ( 0 )

?

Let us introduce in the group V (H (T )) of all unitary operators on
H (T ) the strong convergence topology, which is equivalent to the weak
convergence topology. Introduce on it a compatible metric given by

d ( u i ,  u2)=E 2' II U1hi—U2hi II +E 2' II UV hi II
ie N N

for U1, U2EO1I(H(T)), where {h; iE  N } is a fixed complete orthonormal
system of H (T ) . Then the group qi(H (T )) is a complete separable metric
group, and accordingly so is the g ro u p  (T )= T (G)' n v (H (r ) .  Induce
the topology and the metric onto the group y of permutations through
the representation R .  We call this topology as s• w-topology and denote
the metric again by d . Then there occurs a natural question :
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Problem 4. 4. W hen the subgroup S . (s )  is everywhere dense in S„,E s?

4. 5. Some generalities on the permutation group S„,, Note that
any element 0, EG'. is expressed uniquely as a  (possibly infinite) product
of mutually disjoint cyclic permutations as

(4 . 11) U= H kEK

where ak 's are cyclic and supp (ak)'s are mutually disjo int. Denote by f

the subgroup of Zoo consisting of all a with cyclic components O k  from S-.

Proposition 4. 5. ( i )  L et E=II,ENE, and  F= II,E N F , be tw o g-unital
subset of  X  such that ELI - F .  T h e n  „, E, s

=
 F  s  •

(ii) For an element aES„ E, „ let (4. 11) be its canonical decomposition
into cyclic perm utations. Then, for any subset IC ŒK, the product a nK' k EK  - k

is again an element of  S„ E,

(iii) A ny element of  Z  E  • n f  is a limit of a sequence in S . (s ) i E  s

in s • w-topology.

Pro o f . ( i )  We apply the  criterion (4. 9). Denote by a ,(E ) the  inner
product <k , xE ,>  and  by a • (F ) the  corresponding inner product for the
unital subset F . Then we see from (4. 9) that it is sufficient for us to prove

I 1—a1 (E )  < 0 0 E'EN I 1—a1 ( F )  < 0 0 •

From the equality

XEr c o  Xs, +XF, ( j ) XF, — (XF, ( ,) X E r ( ) ) ) ( X F ,  XE) +XE7 0 ) XF1 + X E1 XFr o ) ,

we have

{1 — (E)} + {1 — (F)} =.11, +/2. +Ia
where, with z- =0 - 1 ,

( d,cui gr(; ),_ \ A,F A,DE r ( j ) h E i J u ,

j —  1
f dxj(dgii, (; ) ) i s i++

Er c o XF; d1ii,

j i x Ei 4 F r(j) —"" i'

Applying Schwarz inequality for /L i , we have I - 41,-(i)(Er(DeFr(i)) +

(E ie F j) +, whence EjEN j  <

N ote th a t E jEN — <h:, xEi >  I  <c o  a n d  EjEN < X Fi r X E i > <
im ply E jEN <h;, xEf >  I < 0 9 . Then, applying the  last inequality, we
get EjEN < c)c).
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Replace r by z - 1  in the above discussion, then we have

E 1— r 
J.,„ du; X E,-1(DX Fiditj

iE N

Replace indices j  by r( j )  and take into account s r ( j ) =s,, Then the left hand
side equals

1_ r dktrwy
x, \ dg, I E  I h., I.,E N IXE,XF,cod1-11 =

)EN

Thus we get finally E I EN 1 — a ,(F ) <
(ii) For this, we apply the criterion (4. 10). Then the assertion is

clear.
(iii) It is enough to note that < R (GOA, f2 >—> < R (a)fi, f2> as K ' K ,

K ' I <00, for any fi, f2 from the canonical dense subset of H (T )  used in
§ 4. 4. This is a consequence of the condition (4. 9).

The proof of Proposition 4. 5 is now complete. Q. E. D.

Proposition 4. 6. The set of unitary operators {R (u) ; aE5„, E  j  is closed
in the group 011(H(T)) of all unitary operators on H(T) in the strong operator
topology.

The group S„, E, is a complete separable metric group with the metric d.

Proof . The second assertion follows from the first one because 0/1(H
(T ) )  with d is a complete separable metric group. So we prove here the
first assertion.

Assume that R(a„)—>U, a„E e„E ,s in 0/ / (H (T ) ) . Then R(a,„o 1)—>I (m, n
—.co). In particular, for the standard vector vo= 0,ENx,EH(T) with )6=

xE, Xs, = iii(E,) - 1 / 2 xE) ,  we have <R(a„,o)vo, vo> — >1, that is,

fm

1(j) 
(P) (1)) —> 1.

Denote by a7" the j-th term in the product on the left hand side. Then
EjEN log ar "—> 0 (m, n—> 00). Since —log(1—x) >2 - 1 x for sufficiently small x
>0, we have E jEN 1 — a7" —>0 n—>00). Therefore, for any e> 0, there
exists N > 0 such that, for any m, n >N,

(4.12)
d tion (i) 

da da( P )  X D (P ) (P ) X i)(P ) 2( p )

where A /H(M ) is a fixed standard measure.
Now fix j ,  and consider the set of natural numbers E, = { a„(j) ; n E N } .

We assert that this is a finite set. In fact, assuming the contrary, we can

< 0 0 .
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take a series of integers ni , n2, •••, such that a(j)—>C<D. Then, since

(X / )(P ))2
c12.

 ( P ) '  3P ( P )  in L l (M; A ),

the following limit exists for any Borel subset BOEM : for rk =a k ,

ii, k (j)(Erk (j) n B )
lim
k—oo /irk (?) ( E r k (1))

Put this limit as v(B ), then v is a probability measure on M  On the other
hand, we assumed the condition (MU2) on the ,a-unital subset E = ILE N E,.
Hence v(K)= 0 for any compact suset K  of M  Making K /M , we come to
a contradiction 0=1.

Since Ei is finite as just proved, there exists at least one element .iiE
Ei such that Si := la „ ;  a „ (1 )= .0  is infinite. Similarly, since :=  fa(2) ; a
ES 1) C  E2 is finite, there exists a j 2 E E  for which S2 =  {O E S1 ; u(2) =12} is
infinite. Successively, we define a series of integers J ,  j 2 , j3 , •••, and a series
SI DS 2 DS 3 D •••, of infinite subsets of e„ such that u ( i)=j, for u E
S k .

Put ao(i)=j, ( iE N ), then ao is an injective transformation on N, and
s  ( )=s  ( jE N ).  In the evaluation (4. 12), replace the infinite sum E j EN by a
finite sum and take u„, from S k .  Then, c l . ( i )= G ro ( i )  for 1 and so
we get

k r d140(1) d1-10.(2) 
(P) X 4 (,)(P) (P)

c lA
X „ ( , ) ( P ) dA ( p ) E.

Letting k  CXD, we obtain

      

From this we can get

citt‘,0 (.7)

c12. (P) X ,,(2)(P) ( P )  X X i ( P )clA
2 d ( p )  < 00,im

by applying (4. 14) below, or E,ENL(a)< co for any a E S „  s  in the notation
there.

Discussing as in  § 4. 4, we see that the above evaluation guarantees
that the following correspondense defines a bounded linear oparator on
H (T )= O jE at9 i

R(u0) : f =  j e k i h =  JENh;



d g ,  
=  fx j( x i )

dg ;
(x,) X 0(i) (x)x.,(i) (x,)dg, (xi ).dg,

df..to(i)
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with

h i ( x ) = (

citeg
°
co 

 ( x )

y -+

 f 0()d z •  ( x . )0.7

Furthermore, for an element of the form

f = fl(xi).f2(x2) • • k(xk) ( 0 + o c i ( x ) ) ,  II f  II =
we have, for gESk,

Il(0"0) —  R  (a - 1 ) }  f  2 = 2 — 2  fi
j=k +1

with

On the other hand, we have, from (4.13), E7=k+12(1 — r,) < E. Since 2x>
—log(1 —x) for sufficiently small x>0, we have, for p= 2 — 2 1-17=k+ir,

E 2(1 — rJ) — log ri = —log 0 — v  
2
—PP .

1=1+1 j=k +1

Thus we get

II 1R (go) — R (0- 1 )) f I1 22 8 ,

for gES k  with sufficiently large k .  Hence R (un) =
Similar argument shows that there exists an injective transformation

on N such that R (o )  =U . Accordingly, R (anon') =R  (00)R (gD =/, and also
R(G(') o-

o) =I. Thus we see that gogoi =docro= id, and so goi E The element go'
belongs to e„ E , s  and U=R (cro'). This is what we want to prove. Q. E. D.

Denote by - -, f (s)  the subgroup consisting of gE which satisfy s, (,)

=s, ( jE N ) .  Then, in general, we have

Proposition 4. 7. Assume s= (s,),EN be such that - - ( s )  is not completely
contained in f. Then the group S,. E , . contains neither the whole of f (s),
nor of f (s).

Proo f . Taking into account Proposition 4.5(i), we can assume from
the beginning that the g-un ital subset E = ILENE, satisfies the condition
(MU2str), that is, for any compact K CM , K  nE,=0 for j> 0 .  Replacing E
by its kt-cofinal one if necessary, we may also assume that each E , is
relatively compact.

For a subset JE N, denote by S j  (resp. the group o f all finite
permutations (resp. all permutations) on J, and consider it as a subgroup
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of S.(resp. The assumption on s means that there exists an infinite
subset /OE N for which for i, i' E L  This means that Then,
there exists an infinite subset JC/ such that E,, jEJ, are mutually disjoint.
By the criterion (4. 9), we see that

E n := fuE a, ; s, ( ,) =s, ( iE N ) ) .

This proves the assertions of the proposition. Q. E. D.

Let us give another important consequence of the condition (4. 9).
This clarifies the situation for "oES„, E  •

Proposition 4.8. A ssum e that o.E . ( s )  belongs to g E , s.
(i) EnEua l is g-cofinal with E, and also is ,ua- 1 -cofinal with Ea - 1 , where

E a"=1 -1, E,--1( ,) and Éga - l = (g, - 1 (.0),EN.
(ii) Let F=1 -1,ENF, with F,=E,nE„--i ( ,) if  E, fl E„-1 ( ,) ( t ru e  e x c e p t  for a

finite number of Fs), and F,EX,=M , a relatively compact open set, otherwise.
Then F  E  and F u° E a - 1 .  Furthermore the following two product measures
on F are mutually equivalent :

H (11,1 F A II 02,-1(j) F J ).
j E N j E N

Proof . We study the condition (4. 9). Then, first we have

III h.;X E 1M  h1— x5; 1r;

I 1—  II h M.I + I 1— 11 xE;  M. 1 +2 I 1—  <45, xE.; >,r,

and so

(4. 14) E  III h ;  — XE.112.e
i  

<  0 ° .
j E N

The j-th term is the integral

j . ( 0 )  =  f  (Xi))+XE,,-1(i) (X/) XEi  (xi) 
2

(X j).

Separate the integral on X, into the sum of those on EAE,-1 ( ,) , E,-1 ( . 0 \EJ , and
on Ei rlE-1 ( ,) . Then,

11 (0) = g,(E,\E„-i ( D ) te -1 ( ,) (E,-1 ( . 0 \EJ )

fEj  n 
( x j ) 1„) (x )-x E ; (x ) dgi(x .i).

Since J EN/,(a)< co, we get

(A ) EiENtii(EAE0-1(J)) < 0 0 ,



290 Takeshi Hirai and Hiroak i Shim om ura

(B) EJEN/zu 1(J )(Es i(D \E; ) <  co,

(C) E  r  ( d,a,-,„,  ( x ) ) _  1 2 d (x )  <  cc.
E  N  4 dg, '

The first inequality shows that E F1E0' is gcr- 1 -cofinal with Ea - 1 .  The
third one is rewritten in a symmetric from as follows by means of a fixed
measure E119,11(M) :

(

4 0 -1 (.0 j ) ) +
 ( d g ' (x4dA j

2 D. (x,) < co.

By Kakutani's theorem [7], this is a necessary and sufficient condition
for that the two product measures on F in the proposition are mutually
equivalent.

Thus the proposition is now completely proved. Q. E. D.

Proposition 4. 9. Assume that all s, 's are equal to zero : s= (s,),EN= (0).
Then, for a a E  =  (s), the conditions (A), (B) and (C) are necessary and
sufficient for that a belongs to a„ E.

A  proof can be given by examining the proof of the preceeding
proposition.

4. 6. Examples. We give here several typical examples.

Example 4. 10. Assume that all E, 's are mutually disjoint. Then, we
see from the criterion (4.9) that S„ E s

= S — (s ). Furthermore, in this case,
as will be seen in the next section, we have R (S -(s))" = T (G)' , that is, any
intertwining operator fo r  T  can be weakly approximated by linear
combinations of R (u ), u (s). In  another terminology, the group G=
Diffo (M ) and a permutation group S-(s) form a dual pair.

Example 4.11. Assume that, for any N> 0, there exists an integer iN>
N such that U,,,N E, and U,>,,E, are mutually disjoint. Then, again from (4.
9), we see that any cyclic permutation in with infinite length cannot
comes into Su, E. s. This means that Su, E, 1(s). Furthermore, the group
S -(s ) is dense in S„ E s in s w-topology. In this sense, as will be seen in
§ 5, we can say that the groups G and S. (s ) form a dual pair.

Example 4. 12. Let us give an example of S,. E  which contains a cyclic
permutation with infinite length. This gives also an example for which
the subgroup S-(s) =S. n sp, E. s is not dense in Su. E ,  in s • w-topology.

Put M =R  and consider X=1-1,EzX,, X , = M .  Let a -  be a  cyclic
permutation given by a. ( j )  =1+1 (jE Z ). For JE N, put c,=1+1/2 + 1/3+
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+1/1, and co=0. We define measures t• X , as follows. First take a
positive function p on [0, 00) which satisfies

pu,
( 1 )  f  P(t)dt = 1, (2) E p(t)dt<cc,

JON o
(3) ( ) /  ( t )  E L 2 ( CO, oe) ; A) with usual Lebesgue measure A.

As an example of such a  function p , we have p (t)=C 0 (1 +e ) - 1  with a
normalization constant C >0. We put d,u,(t) = p,(t) d t  for 0, and d,u-,(t)
= g — t)  d t  for 1>0 with

P (t (t C,)
(t) =

1t1(t) (t

for 0, where r,(t)>0  are locally summable functions, arbitrarily chosen.
TakeE,cX, as follows : E,=[c,, co) for 0, and E_,=(—  0 0 , — c,] for j >

0. Then ,u,(E,)=1, and E=II,ez E, is a kt-unital subset of X  which satisfies
the condition (MU2str), e., for any compact KCM, KFIE5 = 0 (  j  >>0).

We put s=(s,),Ez= (0) with s,=0(V./).
Let us check the conditions (A), (B) and (C) in Proposition 4. 9. For

(A), E,\E„,; ( ,) =E,\E,-1 and is equal to 0 for 1> 0. Moreover for j E N
1/u+Dc.f+1

_ J (E _AE _ 1) = LI;  (EA EJ+1) = f  P  —  ci)dt= f p(t)dt.

Therefore we have

E ii i (EAE,- , ( ; ) ) =E gi(EAE.f+i) < 00.
jE Z

Similarly we see that the condition (B) holds.
Let us now prove the condition (C). Put F i -- - E,r1E0z1( D , then F,=

co), F_1 =(—••0, —ci + 1 1 for 1> 0, and it is enough to prove

E f I ito i( t)— IP i-i( t)  12 d t  < co.
jE N

Then,
- 

j-th term= f  p (t + —  ( t ) )  dt.
0

On the other hand,

ip(t+a)— ,Ip(t)=a • f  („16)/(t+sa)ds,

119(t+a) - 119(t) 2 ,g2 • j ( t+s a )  I 2 ds.
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Hence

fo I  110 ( t + a )  /P(t)  2  d t _.a 2 • f o
- ( t )  2 dt.

Put a= 1/j, then we see that the sum over jE N  converges. This proves
that the condition (C) holds, and so the cyclic permutation u. with infinite
length does belong to the group E , s.

Finally we prove that S-(s) ( = S. here) is not dense in S„,E, s with
respect to  s. w-topology in  th is  case. Consider th e  infinite cyclic
permutation a.ES,, E Take crE S .  and put

: = f d a ( k ) dx ,(k ) 
(t) zE,. ( k ) (t) (t) xE,,0 0 (t)dt dt

dt

and I(a) :=E k Ez rk . Assume that the element a .  can be approximated by
elements of S-, then 1(a) can become smaller and smaller without limit.

On the other hand, note that u- ( - 1 )=0 . Then, if u( - 1)< 0, we have
1 ( u )  ./̀'_1=2. If u( - 1) 0, then there exists a k such that o- (k )<  0. Since
u ( k )  >0, we have again 1 ( 0  ../°k=2 . Thus we come to a contradiction.

Remark 4. 13. If the condition (C) is replaced by a stronger one

(C')
jEZ

du,-1(.) 1 (x
'

) d,u; (x ) < co.

Then, we have no cyclic permutation uE with infinite length which
satisfies the conditions (A), (B) and (C').

In fact, let a  be an  infinite cyclic permutation, and take a Borel
measurable set B C M . Then for r=o - 1

kt,( ; ) (B nEru,) — ja i (B nE)
,ti r ( ; ) (E r ( ; ) \B; )+ ,u ; (EAE, ( ; ) ) + I  11r( j ) (B rIE 5FIE, ( 0)—g i (B  fl E5 FIEr( D )  I

_ gr( f)(E-,-(D\E; ) (EAE,(D ) + 1 1 d 'a r ( 1 ) (x.)
"E‘ in Er w da;

Therefore E,ez tirco(B nEr(,)) n E ,)  I  < 0 0 .

Hence, there exists a limit limk--iirkco(BnErkco), where j  is so chosen
that v(j) 0 j .  Denote this limit by w(B), then, by a general theorem, w is a
measure on M  From the condition (MU2) for ( a, E), we see that w (K )=
0 for any compact K CM , whence w(M) =0. But, this contradicts the fact
that limk—ii,A( 5 ) (E ( J ) ) =1.

4. 7. Relation t o  quasi-invariance of the product m easure v„ E.
When a  permutation a E S .(s ) is addmitted to have a unitary operator
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R(o), or a belongs to e„ E  s , it acts on the product measures on X = II,ENX,
X,=M, as shown in Proposition 4. 8. Here we study from another point of
view the quasi-invariance under a of the product measure i ,  itself. In this
study we find that for the vectors

d( x , )  •  z E , - - 1 0 ) (x,) ( jE N ) ,
u,

two multiplicative factors, the square-root of the density and a trans-
formed function xE- 1 ( ), cannot be separated in general, or they should be
considered together, not separated, in connection with the tensored space
o f E N d r , .  In other words, for a permutation a, leaving the tensored space
( D I E N i € 9 2  invariant and leaving the measure ( E, E ) )  quasi-invariant
are different things.

The following example explains the situation.

Example 4. 14. In Example 4. 12, we have treated (g, E ) on X = H,E,x„
x, =m= R . Assume in this example that Ea= II,E,E, ( ,) isg-cofinal with E,
and accordingly that 0,EzxE c0 E 0.;Ez.Ye„ for an element a E Z„E s . The
assumption means the following :

Efez 1 — 11.i(Eo(D ) < °°, Eiez,u.i(EJOEcc)) <

Now let us take as u the infinite cyclic permutation a - ( j )= j+ 1 ( jE Z ).
Then, for 1>0, E(_;)\E_)=E_J+1\E-J= ( — c„ — c1 1, and

f  
1

ri (t)dt.
9-

Since locally summable functions z-, >0 can be chosen arbitrarily, we
take them in  such a  w ay that l c ,  z- (t)dt =  1 ( jE N ) .  Then we have
E,Ez,u,(E,CE (,) ) = co, and so E a  is not kt-cofinal with E . Accordingly the
a-ring d f(g, E) is not stable under the action of a . :  x=  x a . =

on X , whereas a .  belongs to S„ E • as shown in Example 4. 12.

Here we give a good sufficient condition for the invariance of a-ring
E ) and the quasi-invariance of the product measure p„, E, under a

permutation, as follows.

Proposition 4. 15. Let GE Assume, for (it, E) on X= II,ENX,, X,—M,
that the next three conditions hold :

(1) E ) EN ui(E;CDE„())) < co,
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(2) E
dx,-1(i)

(xi) — 1d i i

2
C iiij(X j)  < C°,

(3) E,Efig,(N))< 0 0  E ,E ,, t i ,( N , ( ,) )< co.

Then, (i) for any  ,u-unital subset F=II,ENF„ g-cofinal w ith E: F'-E , Fa
is ,u-unital and Fa E . A cco rd ing ly  the ring of measurable sets .11(g, E) is
stable under S(a) : x X0-1 (X EX).

(ii) S (0 )L1g 11g E .

Proof . Firstly it follows from the condition (1) that Ea is ii-unital, and
Ea -(1- E. Secondly, if  F  E ,  then putting N ,=E ,eF, in  (3 ), we have
E,EN,11,(E,,o)OFK7))< 0 0 , e., E a  E a .  Hence Fa 4 - E.

Thus the transformation S (a) on X  is .11 u, E)-measurable.
For the assertion (ii), the condition (2) means by Kakutani's theorem

that v,,E1E S (o )v ,. El E. So that it is enough for us to see that the
condition (2) holds also for any F'-'E. To see this, we have

2 du, 1dg,
2 d,uf +1/

, , ( ; )  

,,u,

+ 2 Ca,,-- 1(i)(FAE)+,(2)(FAE)) ,

and so the condition (2) for F is obtained.

Example 4. 16. Eventhough the situation where the above conditions
(1) — (3) hold is rather general, we give such examples in the framework of
Example 4. 12. Assume that locally summable functions (z-,),EN there satisfy

E f zM d t < CO.
.j 1)

Then the conditions (1) —(3) hold for a=o ., in this choice of g =
In fact, (1) and (2) are easy to prove, and (3) is essentially equivalent

to the following : for MkC [0, œ), k E N,

E f p(t)dt < 0 0 < >  E f p (t+ 
1  

)d t < with p(t)=C .
kEN  Mk kEN 1+e

For we remark that there exists a constant y > 0 such that p  +

rp(t) for t>0, kEN.
For we see that the essential part is to prove
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E f  -dt < 00.-rkEN M k  i t

By Holder's inequality for (p, q )=  (4, 4/3),

kEN 13)1/4 C,N ( fMk 1
t
+

3 dtrp .
Again by Holder's inequality

(f t34 / 3
mkt 6  dt) a • f m k p ( t )d t  (a> 0, constant).

§ 5. Dual pairs between Diff (M ) and certain permutation groups

5. 1. Dual pairs. Let us first introduce the notion of a dual pair.
Assume a unitary representation (T , H (T )) of a certain group G is given
together with such a one R of another group U on the same Hilbert space
H (T ). If there holds the relation T (G) / =R (U)", then we call G and U form
a dual pair (through T and R ). Here T(G )' denotes the commuting algebra
for T(G).

If the group U is compact, a dual pair gives a 1-1 correspondence 7r 1-->
T,, from a subset of CI into C by decomposing the representation T • R : G
X UD (g, u) T ( g )  o  R (u), of G X U into irreducibles : T • R „E o r  x T,.
Here CI denotes the set of all equivalence classes of irreducible unitary
representations of U, and T, is realized naturally in the space Homu(H(z),
H (T )), with H(7r) the space for 7r. In this case, U is also called a sym m etry
group  of T[14].

In our present case, we take as G the group Diffo(M ) and as T one of
the tensor product representations T or their equivalents 71` , in § 3. Then
there appear the infinite symmetric group S. or related permutation
groups as a symmetry group U. Here the group U is turned out to be non-
compact, and accordingly the situation is not so simple as in the compact
group case. However, we will show in another paper that, at least in case
UC Z., an IUR T, can be constructed, for every IURs it of U, and that the
representation T can be decomposed into these IURs T, 's.

We remark here that representations of the infinite symmetric group
S . are studied from many different points of views, for instance, in [2],
[81, [13] and [15].

5. 2. Dual pair relations between G and subgroups of S.. Here we
assume dimM L e t  u s  first treat a simple case where a certain
disjointness condition on E 's is assumed. The following theorem is one of
our main results in this paper, and it explains well a background of our
method of constructing IURs of G given in the previous paper [4].
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Let /2= (a),EN be as in § 3. 1 a system of measures on X j - M  taken from
..T i1 ( M ) ,  and E=11 ; ,NE, be a ii-unital subset of X = Il i ENX;  for which the
conditions (MU1)-(MU2) hold. Consider the infinite tensor product 7'r=
OjENT ,  of representations (Tyi, JE N, with x = X i =  11 Xs;  11;r1

1

16=L 2 (X„ and ce;  given in (4. 2) with parameter s,.

Theorem 5. 1. Let dim 2, and assume that E is ,a-cofinal with another
g-unital subset F=II,ENF, f o r which F, nFk = for j O k .  Then the group of
perm utations S , E, s is equal to the subgroup S .( s )  of  the infinite symmetric
group e „  where s= (s,),EN . The dif feom orphism  group G=Dif f o (M ) and
S - ( s ) C S . form a dual pair:

T (G )"  =R (S -(s) ) ' , M G Y  = R  (S -(s))" .

In particular, when all the parameters s,, jEN , are equal to each other and
all E, 's are mutually disjoint, the groups G and S. form a dual pair.

Put S = Soo(s) and (e=R (S )"= { R (u ); aE S } ", the weakly closed
operator algebra generated by R (a)'s. Then, ceE 71(G)', by Lemma 4.1.
Therefore, to prove the theorem , it is enough to show the converse
inclusion 'D M G ) ' .  To do so, we apply several lemmas given in the
succeeding subsections.

5. 3. A general lemma on a commuting operator. Let Ye be a Hilbert
space, .4 (1 f )  the set of all bounded linear operators, and ceC.1(1/9 )  a
weakly closed subspace. Further let P ,  nEN, be a sequence of orthogo-
nal projections on Ye approximating the identity operator I on ye strongly.

Lemma 5. 2. A ssum e that an operator A E . ( )  satisfies the following
condition
(P) there exists a sequence of operators A„ E ce, nE N, such that

(a) P„A P„=P„A „P„ (nEN),
(b) M A „M  Mo (Vn) for some constant M0>0.

Then A  belongs to ce A Ece.

Proof. Denote by < , . > the inner product on f t9 .  Then, for any 0, OE

I < A 0, >  <  A 45, ç >  I I <AO, (I — P.)0 > I +
+ <A a—POO, P,4 >  +  I <ILA (I — P O O >  +
+ <11,([ - POO, P 4 >  _.<_( II A  II +MO { 11 0 M 11 (I -  P„)0
+ -  POOM II M }  - O

5. 4. Lem m as for finite tensor products o f representations. To
apply the above general lemma to our situation, we prepare the following
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'so-called' dual pair relation for finite tensor products.
Take a finite number of representations (TA  L 2 (X „ .4,, ,u,)), jEJ, of G

—Diff o (M ), where a, is a 1-cocycle in (4. 2) with parameter s,E R, andJ is a
finite index set. Let s (k ) , k E K J ,  be all the different numbers in s, 's, and
put J(k ) = {jEJ; s ,=s ( k ) } .  Then the subgroup S J ((s,),../) =  E SJ ;
(jE D I of S i  is equal to TT Ak e l f j  —  J(k) • Consider the tensor product T i = 0,E,TP
on the space .16= ®,E f f e , with .1t9 , =L 2 (X 5 , 4 , l a  Then

T I ( g ) h ( X j)  rj ( g - 1  X j )  

ri (x,)
H

\ ,

d,u,(g-1 x,))+±.(k)
k E K ,  J E J ( k ) d ‘ t i l ( x i )

for hEY e J  and gE G , where r.,(x.,) (x,),EJE II,E,X, with X ,=M ,
and g - i x f = (g - i x ; ),EJ . On the other hand, we can define an action of
S j ((s,) ; EJ )  as follows :

7.f(xfo)d u  -1(  ) (x )  -1-+,s(k)
,

T j
R 1 (a)h (x ) n ; ) h (x,(1),

k ex, (  I E J ( k )

where xj a= (x, u ) ),El .
The dual pair relation is claimed as in

Lemma 5. 3. The tensor product representation T, of G = Diffo (M) and the
representation R I of the subgroup S =S J ( ( s )  )  TT/EL, of S J  form a dual
pair, or

T J(G )" = R J(S )', T i(G )' —R J(S )" .

For the sake of reference, we remark, at this point, about the relation
between different finite tensor product representations. Denote by I JI
the number of elements in J.

Lemma 5. 4. Let Ji and 12 be two finite subsets of N. Assume that I
I 1 2  .  Then, the tensor product representations T J 1 and T 12 are mutually

disjoint, or any intertwining operator between them is identically zero.

For completeness, proofs of these lemmas are given in Appendix.

5. 5. Fundamental Lemmas. The following observation is a key for
our proof of dual pair. Let T1 on ®;EN.ito„ ye,=L2(x,, ,u,), be the infinite
tensor product representation of G in question. Let U be a connected open
subset of M  and put V =M W , and take a subspace IV of the infinite tensor
product space OfE N AP, given as follows : for a finite subset J  of N  and a
series of vectors f ,E .Y e ,(j J), 1V  is expressed as

(5. 1) IV= ( 0 e1 (0)0 (0 ,Eu.f i)
with le ,(U ) =LA U, A I U, g i U) -̀*
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where f i E,Y 6(V ) (J J )  are such that IIiEu f i  Jej  is unconditionally conver-
gent and E iv  I 1—  < fi, xi > I <co. Then we have the following simple
lemma.

Lemma 5. 5. Take a subspace 117 . of OfEr.i.g, of the form  in (5.1), and let
Pi, be the orthogonal projection onto IV . Then, for any intertw ining operator
A E T (G )', =  A' 13 , w ith  an A 'Ec' = R (S„, E. s)" such that 11 A' M

A

Proof . Let G (U) =Diff o (U) C G . Then, for gEG(U), 7;1 (g) f, = f, for j
J ,  b ecau se  =0 o n  U. Therefore the subspace IV  is  invariant under
T (G  (U)), and so

(5. 2) T(g)P,,- = PirTc; (g )  =P T (g )P , v  (gEG  (U )).

Using this, we get from TI(g)A  = A  T(g),

(5. 3) P T ( g ) P ,-  o  P,A P,,-=Piv A P,o P„T 1(g)Pir(gEG(U)).

O n the other hand, the representation of G (U ) induced on is
isomorphic to the finite tensor product of (TP  G (U), d r, ( 0 ) ,  JE J ,  that is,
P,T 1(g)P,111/ is equivalent to T i (g), gE G (U ), in the notation in § 5. 4 01/
and G =G (M ) are replaced by U and G (U ) here). Thus we can apply
Lemma 5. 3 and see that P A P ,  is a linear combination of P.,,R ,(o)Pi,„ aE
S f (s ,) , where s1 = (s,),..1. This means that P,,-A P,,--PlrA 'Pw, with A 'E
<R (a) ; crES J (s,) >, the finite dimensional algebra generated by these
R (a )'s . Further we have M A' M = M PirA'Py,-M = MPAPIr M M  A  M.

Thus the proof of the lemma is now complete.

Applying this lemma, we obtain the following fundamental result.

Lemma 5. 6. A ssume that there exists an increasing sequence Un of open
subsets of M  such that

(a) U tt E N  U, =M  and each U,, is connected, and
(b) for each n, E,OEUn(jEJ„) and E,n un= J>,) with a f inite subset

Jn c  N.
Then, under representations 7" and R , the diffeomorphism group G and the
permutation group  S .(s)c  S - f o rm  a dual pair, and also the groups G and

E  form  a dual pair too :

T (G ) / =R  (S  -(s))" =R (a „  s ,  T 1(G)" =R  (S -(s)) / = R (S„, E. s Y  •

Proof . First note that WEN G (Un) = G, which comes from U „/M . Fix n.
Then each space AP, is decomposed into a direct sum as

=  (U„)0,Y e, ( V „)  with V „=M\U„.
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Put lif„— (0 ,.,, ,e ,(U „))  (0A/„X.,) and P„=/3 . Then, P„J'I the identity
operator, or U„eNIV„ spans topologically the total space 0;eaf,. Since E5 fl
U„=q5(jEJ„) by assumption, we have x,Edr,(V O (.1S.L), and so we can
apply Lemma 5.5 to G (U„) and IV „. Hence, for any intertwining operator
A ET I(G)', we have P„AP„—P„A„P„ with an A „E(e=R (S„.E,  ) "  such that
II A „ 1 1  A  11 .

Thus we come to the situation where Lemma 5. 2 can be applied and
conclude that A E '  or M G ) /CR ( z ,)" . Since the converse inclusion is
clear, the dual pair relation between G and Sp, s is now established. Q. E. D.

Note that, in the case of Lemma 5. 6, the subgroup S-(s)c S- is
everywhere dense in the permutation group E , . in s- w-topology, and the
latter is a subgroup of S'

5. 6. Proof o f Theorem 5. 1. By assumption on (g , E ), we have a
g-unital subset F = ILE N F, such that F Z E  and F„ jE N, are mutually
disjoint. Here we normalize F to get a g-unital subset, g-cofinal with E, for
which Lemma 5. 6  is  applicable. C f .  [4, § 1. 81 f o r  another kind of
normalization of E.

Lemma 5.7. ( i)  There exists a g-unital subset E' =II,ENE'„ g-cofinal with
E, such that the condition (M U2str) holds, and E', 's are mutually disjoint,
each relatively com pact, open and with finite number of  connected compo-
nents.

(ii) There exists a g-unital subset E''=11,ENE;'^-E f o r which E;''s are
relatively compact, not necessarily mutually disjoint but satisfy the following
condition :

(A B )  there exists a n  increasing sequence U„, n E N, o f  connected,
relatively compact, open subsets of M such that U „ENU„=M and that, for each
n, there exists a finite subset J„CN for which E'Œ U. or r  n un —0 according
as jE J „  or not.

Proof. (i) T ak e  an increasing sequence o f connected, relatively
compact, open subsets W„ (n E N) of M such that U  ” E N  = M , and put K„=
Cl(W„). Fix a small constant e >0.

For each F,, there exists a W,„i such that ,u,(FA 147„)<E/2'+'. Further,
since E  satisfies the condition (MU2), so does F, and so there exists an
increasing sequence N „E  N such that E,>bio u5 (F,nic„)<E/2"+ 1.  Put .E;') = (F,
n w,„,)\ un ,,, and E (') = LI NE

°
. T h e n  .E(' E , and E (°) satisfies the

condition (MU2str) : for any compact subset K  of M , KnE;' ) =0(i>0).
The sets E.;°) are mutually disjoint and relatively compact.

Hereafter, we consider only such open subsets U that their boundaries
au=ci(u)w are null sets :11,0 0 = 0  for any g , .  For each E,P), we take a
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relatively compact, open subset EP such that

(5. 4) gi(E,weEl")+ Ek*hak (EP nE l")  <E/2'.

Then, E ( 1 ) =ILE N E?) ^- E( '). Further, put inductively for 1=1, 2, •••,

EP) =E 1 \ ( U k<; Cl(ET))=EP\U k < jC l ( E 1 1) ) .

Then, EP) are mutually disjoint, open subsets. Note that

EPGEP =E 1  n (U  k<;  Cl (E ') )  E P ) n (U  k<JE11))
E (EnE,P) u (E,P) n uk<JE, 1)) (modulo null sets),

Then we get A ti(E ,Pe E ,9  ,11,(E,PC)E,P))+ Ek<h ui (E,Pn E',1) ), and so

(5. 5) E ,tii (E ,P)O fir) E  g i (E,PeE,P))+ E  E  AL1 (E? n <E.
jEN jE N k E N  j=k+1

This gives us E 2 = I1f ENE, 2 'LE '. F inally, p icking up fin ite num ber of
connected components of each E;2) appropriately, we get E; and then E'=
ILENE; demanded in the assertion (i) in the lemma.

(ii) We start with E' in (i) but take a new increasing sequence 147„/
M(n—>••0) of relatively compact, connected, open subsets. W e note here
the following elementary fact which will be repeatedly applied in the
discussions below. Let C c W, be a closed subset of M and p a point outside
of W,, then a path connecting p with C meets necessarily with WAG before
meeting C itself, and so we can connect p w ith W, by a small open path
without touching C inside of W„.

We proceed inductively as follows. First consider E and take a W,,,1

containing its closure. Put 11 = fi ; ti e r, ;.Ec W„,11. For i
E j i ,  put E :'=E :. For j's in I 1V 1, consider first the union =  W m i U
ED. We can make it connected (since dim 2) by adding small open
pathes appropriately to E;, jEIAJ i , to connect their connected components
outside of W,„ 1 to so that we get E;', jE/ I \ Ji , and a connected open U1

= W„,,U (U,./1E;') satisfying

(5. 6) iii(E'/GE;)+ E  uk (E/n <E /2 i (jE li\JO .

Note that the above sum is actually a finite sum. Put A 1 = {k I1 ,
0( 3jE /i \ JO} and

(5. 7) (kEA).

Thus r are determined for i EB 1 := I 1 UA 1 .  Note that E"Œ U, for iEL, and
that (kEA 1) and E ; ( i  B i ) are disjoint with U1. Thus the first step of the
induction is completed.

For the second step, w e take a W„,2, m 2 >m i , which contains all of
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C l(r ), iE B I . Then, UI C W. 2 . Pu t 12= B 1  ;  E:nw. 2 o951 and 12= {iE/2 ;
E:c W. 2} .  For iEf2 , put E"=E :. For j 's in 12V 2 , consider first the union LIZ
=  W . 2 U ( U , E /2 E :). We can make U connected by adding small open pathes
to E5, jEI2\12 , to connect their connected components outside of W. 2 (finite
number by (i)) to W„, 2 , not touching rc iEBI, already determ ined in
the previous step (cf. the note at the beginning of the proof for (ii)), so
that we get E", jE/ 2\ J2 , and a connected open U2 =  Wm2 U  U iE / 2 E5

' ) ,  such
that

(5. 6')

Put A2 =  {k

(5. 7')

kti(EaDED+ kt,(E;'nE,) < E/2' ( i E L V 2 ) .
ke03,U12

BI LJ/2 ; Eik FIE1'*0(jE/2\J2)}, and

E7=E /A(U,E/2v2 r )  (kEA 2).

Thus r  are determined for iEB 2 :=BIU/2UA2. Note that E :t  U2 (iEBI
/A and that r ( iE A 2 ) and E:(iEB 2)  are disjoint with U2.

For the third step, we take a W„,3 , m3 >m2 , containing all Cl(r), i EB 2 .
Put 13=  {iEB2 ; E:n w„,, 0}, and j3 = {i /3 ; EC W. 31. For iEJ3, put E"=E ii.
For j's in 1 3 \ J 3 , consider M = W.» (U,E/ 3 E:), and so on. We omit to state
the n-th step since it is now clear.

Finally, thus obtained E", jE  N, give a ,u-unital subset E"LE, as is seen
by an evaluation similar to (5. 5), and satisfies the condition (AB).

The proof of the assertion (ii) of the lemma is now complete.

Proof of Theorem 5. 1. Now let us return to the proof of Theorem 5. 1.
From E "L E , we see that the representations 71 and 7'; are unitary
equivalent in a natural fashion, and that the permutation groups Sy, s and
Z„ z s coincide with each other (cf. Proposition 4. 5 (i) ). So the proof of the
theorem is transferred from E to E".

To establish the dual pair relation, we apply Lemma 5. 6. The
condition (AB ) established in  Lemma 5. 7(u) is  n o th in g  but the
assumptions (a ) and (b) in Lemma 5. 6. So we can apply Lemma 5. 6 and
see that the groups G and Sos(s) = S,, E s form a dual pair.

Thus the proof of Theorem 5. 1 is now complete.

5. 7. Cases of E satisfying a weaker disjointness condition. In our
general situation where only the tw o conditions (MU1)—(MU2) are
assumed for (u, E), there gives rise to an interesting problem as

Problem 5. 8. Under the tensor product representation T ,  do the
diffeomorphism group G=Diff o (M ) and the permutation g ro u p  „, E y C  (s)
form a dual pair ?
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At this stage, we have no definite answer. However, if we assume a
certain weak disjointness condition on E, the answer is yes and we have
even more as is given in Theorem 5. 9 below.

Let us introduce the following disjointness condition on E= H EN :

(w D IS ) there exists an increasing sequence /„ of finite subsets of N
such that L 7 N  and, for any n E N , U,E1,E, and Ukvn Ek are mutually
disjoint.

Then we have another main result in this paper as in

Theorem 5. 9. L et T2-, be the infinite tensor product representation of G
determined from (,u, E) as in the preceeding theorem.

L et dimM__2. A ssum e that the ,u-unital subset E is Lt-cofinal to another
,u-unital subset F which satisfies the condition (wDIS).

(i) The group S „ , E , s  is contained in f .  The subgroup s. n s i ,E , s =

S . ( s )  of  S. is everywhere dense in S u E s with respect to s • w-topolygy.
(ii) T he groups G  an d  S„, E s form a  dual pair:s r  = M G ) '.

Furthermore the groups G and S - (s )C S  E s form also a dual pair in the sense
th a t R (S .(s ))"= T (G )'.

5. 8. Proof of Theorem 5. 9. As in the proof of Theorem 5. 1, we can
replace E by F .  For the first assertion (i), it is enough to see that E

thanks to Proposition 4. 5(iii). In turn, this inclusion relation is not
difficult to prove under the condition (wDIS) on F.

To prove the second assertion (ii), we apply Lemmd 5. 6. Therefore
the main part of the proof is to discuss a normalization of the g-unital
subset E, that is, a replacement of E by another good g-unital subset to
which Lemma 5. 6 is applicable.

Lemma 5. 10. L et (g, E) be a pair satisfying the conditions (M U 1 )-(M U
2 ). A ssum e that the condition (wDIS) holds for E.

(i) There exists a a-unital subset E' =11,ENE; su ch that E
/

'-'E  an d  E'
satisfies the conditions (wDIS) and (MU2str), and that each E', is a relatively
compact, open subset of X,=M, with finite number of  connected components.

(ii) In case dim 114>2, there exists a ,u-unital subset E" =II,ENE;'
with relatively compact E 's  f o r which the condition (A B ) in  Lemma 5. 7
holds.

Proof. ( i )  From the condition (wDIS), there exists an increasing
sequence LŒ N, I,,/N, such that U,EL.E,CM (m  .1), with 1,,,=1„,\1.-1, Li=

are mutually disjoint. We construct E ( ' ) = LI,EN E,(°)E ,  and then Ew=
11,ENE,G )E ( ' ) , just as in the beginning of the proof of Lemma 5. 7, but
starting with E here in place of F there. Then, Q;,')  : = mEN, are
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mutually disjoint, and E,(1 ) 's are relatively compact and open.
Put, for jE L i , E .;') =E; 1), and put, for jE L „ „  M >  2, inductively on m,

Ey2) Ep) "h' U ,ELk C l(V ) ) = E n  U ,7-711 UieLk C1(EP).

Then, OP := UEL E 2 , m EN, are mutually disjoint, relatively compact and
open. Similarly as in the proof of Lemma 5. 7(i), we have an evaluation

gi(Ep
) 0E1( 1 ) ) E  g1(EF nEP) (1 E L , , ) .

j e  U rjiLk

Sum m ing up  th is inequality , w e get E,e1.,,u,(E,(2 ) 0 E ,( 1 ) ) <E  as in (5. 5),
whence E (2 ) LE (1 ). Picking up finite number of connected components from

appropriately, we obtain E.', and E' 'I-4(2)-44 in (i) of the lemma.

(ii) Just as in the proof of (ii) in Lemma 5. 7, we start with E' given
above, and with a new increasing sequence W  M (n— > 00) having the
same properties as there. However we discuss here not according to
individual E , i EN , but according to families {E; m E  N.

Put q,„= U,ELm E:, mEN. First consider V, and take a W„,1 containing
its closure. Put I'= fm  ; Q, fl 0}, and J =  ImEir ; Q,,C W„, 11. For i EL .

with m ER', put r = g .  For j 's in L „„ m EIr\Jr, consider first the union
=W„, 1 U (U Q „). We make it connected by adding small open pathes
appropriately to E ;, jE L „„ m E In Jr, to connect their connected compo-
nents outside of W„, 1 t o  W„,1 , so that w e get E;', jE L „„ m E Ir\Jr, and a
connected open U1 = W,, 1 U (U„,E,r Q ) with Q:„'= U,EL satisfying

(5. 6") iii(E;/(DED+ E  ,uk(E1'n.E) < E/2' ( jE L . ,  mann\jr).

Put AT= {a;  v , n ( u . . , r„rv,:)00}, and

(5. 7") E'k'=E'k\(U.Eir\,14,/,) ( k  EL“, a E AT) .

Thus r  are determined for i EL„„ mEBr UAT. Note that Q C  U1 for m
Eir, and that V,:(mEA1) and V.(mEBT) are disjoint with U1. Thus the
first step of the induction is completed.

Now we state the n-th step. Assume that E:' have been determined for
iEL„„ mE.B;;_i, by the help of W„, i c W„,2 c ••• c 147„„ . Take a
containing all C l(r ) ,  i EL„„ mEB,T_i, and put I,'= tmErB,T-i; Q, fl w„,„*01,
and J,"= {mE/: ; Q ,c W„,). For i EL„, with mEJ„, put E '=E '.  For j's in L„„
m E In f ,T , consider first the union tr„= (U.,./:(20. W e m ake it
connected by adding small open pathes appropriately to E;, jEL ., m ER A
In to connect their connected components outside of W,, W„,,, (not
touching jEL ,,, already determined until the last step), so that
w e get E ;: jE L „, mELTV,T, and a connected open U„=



304 Takeshi Hirai and Hiroaki Shimomura

satisfying

(5. 6'") /.1,(EM E ; ) + < E/2' (iEL.,
kEr.L.,„ mEB:-ILW

Put A ,T= ta ; Q'.n ool, and

(5. T") (kELa, aEAL9.

Then r  are determined for i EL ,„ mEB,T ULT UAL'. Note that q„:c
for mEX_ i ULT, and that (2::(mEAT) and V.(mEBT) are disjoint with Un.

Repeating this process inductively on n , we obtain finally jE N ,
which satisfy the condition (AB) in Lemma 5. 7 for the sequence U„ nEN,
because (gŒUn or q,:r- -1u„= çb for any m , nEN.

This complete the proof of the lemma.

Proof o f  Theorem 5 .  9 ( i i ) .  Since we have constructed E "^ -E  which
satisfies the condition (AB) in Lemma 5. 7, we are now ready to apply
Lemma 5. 6. Then the assertion ( i i )  of the theorem follows from this
lemma.

The proof of Theorem 5. 9 is now complete.

§ 6. Groups of volume-preserving diffeomorphisms

Assume that a connected C'-manifold M, is equipped with a
measure co EYar-di(M ). We consider here an important subgroup G„=
Diffo(M ; co) of G =D if f o(M ) consisting of volume-preserving gEG :cho(gp)
—dw (p), p Em.

6. 1. The extension 6,„ of the group G„,. Denote by .4%, the group of
all measurable transformations on M  which are equal to the identity
outside some compacts and preserve the volume co, and also denote by
its subgroup consiting of all elements g E .IL  which can be approximated
by nets g„ E >0, in G ,„ Here, by definition, a net gn EG., E>0, approximates
g E d i r„ i f  (i) o i({ p E M ; g ,p  gp} ) 0  as e  0 ,  and ( i i )  there exists a
compact K C M  such that g,= id outside K.

Note that the fact that G,0 becomes actually a group is seen from the
following

Lemma 6. 1. Assume that two nets g„ h,, E > 0, in  G,0 approximate g, h E
./11,, respectively. Then the products g. h, E  G,. approximates the product gh, and
the inverse g »  approximates the inverse g - 1 .

In this section we investigate firstly what kind of transformations are
contained in the extended group G„, and secondly whether or not the
natural representations of the group G,. or their tensor products can be
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extended to the group extension G .

6. 2. Rotation of a cu b ic  body. In  th is and the succeeding two
subsections, we treat the local case or the case where M  is a connected
open submanifold of Rd ( d  2 ) .  Consider the measure

dco(x) = dx 1dx 2•• .dxd (x=(x i)=1ER d).

Let D =Jd with closed interval J  be a cubic body in MŒRd. Intoduce
coordinates for which J= [—a, a], a > 0, so that the center of D is the origin
O . We devide D into two pieces by D +=J± X J"  with 1+= [0, a], J - = [ — a,
O. Denote by hD, D (resp. gD) the measurable transformation on M  which
exchanges D+ and D_ (resp. rotates D arround the center 0  by the angle 7r)
and equals to the identity outside of D . We prove here that the transfor-
mations hp + D  and g0 can be respectively approximated by a net g,EG., E

>0, as e  0, where the support of g , is contained in D ,=P C M  with J,=
[—a—E, a + e l .  To do so, it is enough to show it for the rotation gp.

6.2. 1. First we assume d=2 and follow the result of Neretin
Introduce the polar coordinates (r, 0) for (x1, x2)ER 2. Take a smooth curve
r=A (0 ) contained in the inside of DAD such that 2, (0+70 =A (0 )(V 0), and
also take a monotone smooth function r( s )  such that r( s ) =n - for s < 0 and
z- (s) =0 for s s o >0, with a sufficiently small number s o so that the curve r
=,/À (0) 2 +s o is contained in D ,. We define a transformation g,ED if f o(M , (o)
as follows. Let g,(r, SO= OD and, for s=r 2 — ?.(95) 2,

(r, 0 + rc) for s <0,
(1.

0 , 950 = 0.(951) 2 +s, çb + r(s)) for ()<s_ so ,
(r, 0) for s so.

Note that, in the region between two curves r =2. W  and r = ( 0 ) 2 +s o,
we h ave  2r dr c/q5=ds (10 —27- idrickbi.

6. 2. 2. Next we proceed to the general case. For x= (xi , x2, x3, xd)
ERd, we put x= (x3, ••., xd) and distinguish first two components (x i , x2),
introducing for it the polar coordinates (r, q5) as in the case of d=2. Our
transformation g,EDiffo (M, (0), E >0, is given in the following form : for x
= x 2 ,  • • • ,  x d ) ,  use the coordinates (r, çb ; X- ), then

g,(r, ;.t)=(ri, 01; je)

with (7'1 , 0 1 )=g,, Î (r, 0), where g,,Î is a transformation depending on (x3,
x d )  with a similar form as g , in the case of d = 2 . To give g, ,  we

introduce two monotone smooth functions (t), 77(t), 0, as

(t) =1 (0  t a), (d +8/3)=0,
(t)  = 1  (0  t +2e/3), 77(a +e) =0,
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and put (i -)= E (— t ) ,  (t) =77(—  t) for t_0, and

EU)= (x.), (±) = ft 77(x).
i = 3 i = 3

Define (r1, 0 1)=g, ,(r, 0 ) as follows : put first

A (0) A CO• je) =' + (1— '))A CO) '
and then, for s=r 2 — A  ;

(r, 0+ 77 ( is ) 71") for s <0,
(7'1 , 01) = (01; g) 2 + s , 0 + 7 7 (g )r (s )) for 0  s so,

(7', 0) for s so.

Note that, for a fixed g, the curve r=A (95 ;±), 0 271-, equals to a unit
circle if x, ad-E/3 for some and then the curve (7-1, 01), 0 27r,
for a fixed parameter s, is a circle r=  il+s, and the rotation of
angle 77(g)z- (s ) on the circle is sm oothly consistent a t  s=s 0 w ith  the
rotation of angle n(g)n- of the unit disc in the center, as it should be.

Note fu rth e r  th a t the transformation g ,  keep s th e  l a s t  (d - 2)
com ponents of x alw ays invariant and, for each g, it equals a volume-
preserving transformation on (x1, x2)EIV w hose angle of rotation
dicreases smoothly along with  This implies in  particular that the
transformation g, on MC Rd preserves the volume element co.

6. 3. More general transformations in We assume still MLR'.
L e t u s  div ide M  b y  th e  fam ily  o f hyperplanes x,=n6 (n E Z ) with
sufficiently sm all >0. Then, speaking about the cubic bodies cut off by
these hyperplanes, we arrive at the following situation. Two cubic bodies
are called adjacent to each other if they have in common one of their
surfaces. Any two cubic bodies D 1 and D 2  inside of M  can be connected by
a chain of cubic bodies in M, CI=

D i ,  C 2 ,  • • ' ,  C, 
=

D2, in such a way that C,
and CHA are adjacent for Then any permutation of C, 's can be
given as a product of the transposition he,, c 1 E6. of C, with C,+1 through
the common surface, since this is well-known for the permutation group
e „ .  More in detail we have

Lemma 6. 2. For any two cubic bodies D I , D 2 in M given as above, there
exists a permutation 1201, D2 of D 1 and D 2  belonging to 0,0. Here, by definition,
1201 , 02 =id outside o f  D 1 UD 2 . M ore exactly, take a n  arcwise-connected,
relatively compact negighbourhood U of D1U D2 , then there exists a net g,E G.,
E > 0, and a permutation 1201 , D2 such that g, approximates h01,02 and supp(g,)c
U.
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Proof . According to the size of the narrowest neck of U, we devide M
finer by hyperplanes :=5/N with sufficiently big N .  Then new
smaller cubic bodies D:c D, (i =1, 2) can be connected by a chain of (new)
cubic bodies contained in  U. Then, the explicit form o f  measure-
preserving transformations in § 6. 2 and the argument just above show
that we can do everything inside of the open submanifold U . This means
that a permutation hp i , D2 c an  b e  approximeted b y  a net g s EG„ with
supp(g,) C U . Take K= Cl(U), then g-,= id outside K, and so we see that

D2 E G .

6. 4. Exchange of two equi-volume open sets. Let MC Rd, d -2 . Take
two relatively compact open sets 01, 02 with the same volume. Then we
have

Proposition 6. 3. There exists in G  a measurable transformation h01, 02

which maps 01 onto 02, 0 2 onto 0 1 (m odulo null sets), and equals to the
identity outside of 0 1 U 0 2 .  More exactly, for an arcwise-connected relatively
compact open set U containing C1(0 1 U 02), there ex ists a net g „  E >0, in
G„(U) := {gEG,„; supp(g)OEU} , which approximates h01 , 0 2 . We can choose
h01,

 °2
 in such a way that, for certain open subsets V, of 0, with w(V1)=c0(01),

it  m ap s  V1 o n to  V 2 ,  V 2  onto V 1 , homeomorphically o n  each connected
components.

Proof . STEP 1. Let r> 0. Then there exists a sufficiently fine decom-
position of M by hypersurfaces x,=n6 (n E Z) such that, for j = 1, 2, let W, be
the set of cubic bodies for this decomposition contained in 02, then the
union F,= U D E,,, D approximates 0, as to (0,\F,)<r. Let n, be the number of
elements in (9,. Assume that ni D is c u rd in g  (n 2 —n1) elements in (6'2 , we
get ce'. Put C=Wi . Then to (0\F') <r for F,',= U D ew ' D . Make pairs (D1, D2),
A E C , D2EC, bijectively, and take hoi , Di E a. in Lem m a 6. 2, then the
product /41, Fi of hpi , D2 over these pairs, maps F onto F, .r2 onto Pi, and
equal to the identity outside of Fi UF'2, and so it approximates in a sense
the desired transformation h01 , 02 .

Note that hF i, F i maps I/ onto V homeomorphically on each connected
components, where V =  U D E C ; Int(D), Int(D) =the interior of D, and that

(F;\171') = 0.
S T E P  2. Now we construct a net in 0,„, of certain hFi,Fi's which

'converges' to an ho i , 02 • Then we guarantee, by Lemma 6. 4 given below,
the exixtence of a net g„ e >0, in the group G,0, converging to hoi , 02 .

Take e =E k = 1, and put 7 = E . We discuss by induction on k and
give a convergent series in O,0. For k =1, we follow the process descrived
in Step 1 and put
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OP =0 ; , = F ; ,  VP =V; (j = 1, 2), hFp),Fp.

For the next step k= 2, we take E=E 2 , 7=E, and OP) =0,ÇDVP) for 0 ; in
the discussion in Step 1. Then, we obtain FP) c 0;2),  V12 ) OEFP) (j=1, 2), and
/412), 42).

In general, for the k-th step, we take 10V =
Q ( k - D \ F

j
( k - D  

for 0;  in the
discussion in Step 1. Then we get F?) c 01k), VywCF5k) and hq, 4k).

Let us now put

h„= F?) on F r U n ) for 1 <k <n, = id  elsewhere,
h=hFlo, 1) on Plk ) UPV ) for 1<k< co, = id  elsewhere,

Put Wy = U=ifir, Vy = Ùk"=1V,( k ). Then, h,,EG„ approximates the tansfor-
mation hE.I/L which is equal to the identity outside of 0 1 UO2 , and maps
Wic 0 1 on to  W 2C  0 2 , W 2  onto W 1 . Note that w (OA V,) =0 and that h
exchanges V I C Wy and V 2 Œ W2 homeomorphically on each connected
components. We take this h as the transformation ho l , 0 2 desired.

STEP 3. The 'convergence' of h„ in G„, to h shows us the existence of a
net g„ E >0, in G. converging to h, by the help of the lemma below. To
apply this lemma, we take K = K o =C1(U).

For the assertion on the existence of a convergent net in G (U ) , we
apply Lemmas 6. 2 and 6. 4. Q. E. D.

Lemma 6. 4. A ssume that an element gE.,C, is approximated by a net g„
E > 0, in ao in such a way that (a) for a compact K , supp(g-,) cK, (b) w (p E
M ; g43, g P } ) — ). 0 as E  0. Then g belongs to the extended group O. if  there
exists another compact K o such that each g.,E a°, is approximated by a net g,6,
5> 0, 5  0 ,  in G. such that supp(g6) cKo.

We omit the proof of this lemma.

6. 5. The group extension G„ in the general case. Let us treat now
the general case. Let M  be a connected C-manifold, 1<n< co, and w  a
measure on M  taken from ..T F.A (m ). For eack local chart (U, (1,), in the
co-ordinates (p) =x= (x)'=1, d = dim M , we have do) (P) =P(x)dxidx2 .  • •dxd
w ith  a  locally integrable, positive density p. Assume the following
condition holds :

(Den) the density p  is of class C( ' ) in every local chart.

Then we can transfer the results in § 6. 4 for local case to this general case,
as shown below.

Define new local co-ordinates (y ) =i as y1 = f ' 1,0(ti, x 2, x 3, • •., x d)dti, and
y i —xi for i >1, then we have a standard expression of w as

dw(p)=dyidy2.••dyd.
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A local chart (U, 0) is called admissible if the measure co is expressed in the
standard form. For such a chart (U, 0), consider U as an open subset of Rd
through (/): U " ›  Rd, and apply for U the results in § 6. 4. Put

G,,(U) = {g ; supp(g)E U).

Theorem 6 .5 . A ssume that a measure co on M  satisf ies the condition
(Den). Let 0 1 and 02 be two relatively compact, open subsets of M  with the
same volume. Then there exists an element h01 , 02 E0o, which maps 0 1 onto 02,
0 2 onto Oi (modulo null sets), and equals to the identity outside of 01U 02.

Furthermore, let U be an arcwise-connected open subset of M containing
C1(01 U 02). Then there exists a net g„ E> 0, in G (U ),  converging to /icy  02.
Moreover h01, 02 can be so chosen that there exist open subsets V,C 0, such that

(0 1\V,) =0 and it m aps Vi onto V 2, V 2 onto V1, homeomorphically on each
connected component.

Proof . Devide 0, into small open subsets 0,. (up to subsets
of smaller dimensions) in such a way that each 0, „, is contained in an
admissible chart U,,,,  that to (01,.) =w(02. . )  and w(0,\U=10, „,) =O.

Fix an m. Then there exists a chain of admissible charts Wi = U1 „„ W2,
••*, such that WE U, w, n Q(1 D e v i d e  a g a i n  the
pair Oh „„ O z „, into pairs of equi-volume open subsets, sufficiently small
compairing to the sizes of W„ W, n 147,+1. Take one of these pairs and let it
be Q, 0 . Choose a chain of open subsets V1= M  V2c  w 1 n W 2, V3C 1472n

W 3, ••*, V„=  I% all with the same volume. Then, by Proposition 6. 3, V, and
V1+1 are exchanged by an h, v ,E G .(W ,). Therefore 171 and V. are
exchanged by an appropriate product of transposition h,,, + 1 , just as in the
symmetric group e„. Thus we see that 0 1 . and 02 „, are exchanged by an
element in G , and finally so are the original 0 1 and 02.

Remark 6. 6. Take an arbitrary oi 0E2. (M ), or a locally finite
measure on M  which is locally equivalent to Lebesgues measures. Then
there exists, for any E >0, a measure coE..r.a".11(M) satsifying the condition
(Den) and I w —coo (M ) <  e .

6. 6. Representations of G=Diffo(M, co) and of 0„,. On the Hilbert
space If0=L 2 (/1//, w), we have a natural representation To of G=Diff0(/1,
co) in the form

T o (g ) f ( x )=f (g - lx ) (gEG ., XEM, fEY eo).

This representation can be extended by continuity to a representation
of the group extension 60, consisting of measurable transformations ap-
proximated by a net in G„,. In fact, suppose that g , E  0, in G„, converges
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to g E 0 , ,  as E  0, then it induces a strong convergence of operators To(a
and the limiting operator can be attributed to g and gives T o (g ) , which is
expressed by the same formula as above. Assume the condition (Den) for
co, then the group Ô. contains a transformation which exchanges two
equi-volume open subsets 0 1 and 0 2 in a compact, and equals to the
identity outside of them. Even if there exist several such transformations,
we denote any of them simply by h01, 02.

The irreducibility o f th e  representation To o f  th e  group G . is
equivalent to the irreducibility under the bigger group C., and the latter,
even it is rather clear, is proved here in the simplest way.

Theorem 6. 7. Let dim 2, and assume, for a measure w E.29 .F.Il(M ),
that the condition (Den) holds.

(i) In case w ( M )  +  co, the natural representation T o of the group G.=
Diff o (M , to) is irreducible, and so is its extension to the group G..

(ii) In  case  w (M )< + co, the  1-dim ensional subspace consisting of
constant functions on M  is G.-invariant, and its orthogonal complement in Ye°
is irreducible under G. The same is true also for

Proof  Enough to prove the assertions for the extended group Ô . L et
A  be an intertwining operator of To. Take  an open subset U with finite
volume and its indicator function f =x u E Ye° .  Put /5 = A f .  Take any two
relatively compact, open subsets 0 1 and 0 2 with the same volume, both
contained in U or in M \U , and take h=h0 1, 02,  then T o (h )f =f  and so we
have To(h )0 =çb, that is,

(hoi , 02x) =q 5 (x )  for almost all x EM .

Since the pair 01, 02 are arbitrary both inside or outside of U, the
function q should be constant separately inside or outside of U. Therefore
we have 15 -A (X 0=eux u+dux m  with constants cu, duEC. In case co(M) =
+ 00, the constant function xm does not belong to if o , and so du= 0 or A (X0)
=c u x u . In case co (M ) < + 0 0 ,  we have, in particular, A (xm) =a • xm with a
constant a EC.

The formula A ( X 0 ) = c u x u + d u x m  can be extended to a  measurable
subset U  with finite volume such that (DOM  =0, where OU:=C1(U) \Int
(U )  is the boundary of U . Now, for such a subset U  with co (M W ) >0,
devide it into two disjoint, non-null, such subsets as U= U1LJU2. Then, we
see easily that cu=cu 1=cu2 .  Therefore cu=cu , for any two open sets U and
1/' with finite volumes and T h i s  means that cu =c , a constant.

In case co (M )= + 00 , we have A f i =c f i fo r  any fi E l f o and so the
representation To is irreducible.

In case co (M ) < + co, the 1-dimensional subspace A9
00 = Cxm is invariant
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under and so is its orthogonal complement Yeoi= (Yeao) i
• Put Ou=xu -

(w (U )/w (M ))x m . Then, OuE.Yfoi and so A ( 0 )  E . Since cu =c , we get
from this that A (0 ) =c • Ou and so A  I ' oi =c  • I .  Th is  means that the
representation To I Yeoi is irreducible.

Note 6.8. For the bigger group G=Diffo(M), its natural representa-
tions Ts, sER, on le o are always irreducible even when w (M )< +00. (The
explicit form of T , is given at the beginning of Appendix below, and its
restriction for G. is nothing but To.) In fact, the subspace /foci consisting of
constant functions on M  is Gm-invariant, but not G-invariant.

The same kind of arguments as in the above proof of Theorem 6. 7 can
be used for the irreducible decompositions of finite tensor products of the
natural representations, and similar results are obtained for the small
subgroup G .=D if f o (M , co) as those for the whole group G =D if f o (M ) .  Let
Tee)  = V =iT , with T ,= To be the k-th tensor product of To on the space f f r
= l e , = . 1 e o .  The symmetric group ek acts on Ye?)  naturally as
permutations of the components of decomposable vectors.

Theorem 6. 9. The k -th tensor product Te')  of  the natural representation
To o f  th e  group G. can be ex tended to the bigger group G. by  continuity .
A ssume dim 2, and w (M ) .= + co. Then, on the representation space Y ter,
the groups G. and Sk form  a dual pair, and so does the groups G. and Sk.

The assertion for G. and that for the extended group G. are mutually
equivalent. The proof is quite similar as for the group G itself and is based
on the irreducibility of natural representation given in Theorem 6. 7.

6. 7. Infinite tensor products and dual pairs of Gs, x  S -. Let g =
( t)E N  with g ,-  co on X, =M , and also let E = II,ENE„ E ,C X „  be a g-unital
subset of X  X , .  Assume the condition (MU2) for (it, : for any
compact subset K  of M , E,ENw(KnE,)< co. T h e n  the infinite tensor
product TE of natural representation To of G. is given as in Theorem 3. 1.
Moreover the a-ring di (g , E ) and the product measure E are Q0-invariant
by the discussions in § 3. 5. So an explicit form of TE is given as

T E (g )f(x ) = f ( g 'x )  ( g E G .,  x  F  X , f  EL 2 (X, .11 (g, E), E ) ) .

Note that any element g  in the extended group G . has compact
support, then we see easily that the above formula can be extended to give
an infinite tensor product of the natural representation of the group
This representation is an extension by continuity from G. to G., as shown
by the following lemma, and is denoted again by the same symbol TE.

Lemma 6. 10. A ssume that a net g„ e>0, in G. converges to an element g
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E a,. T h e n  the net of operators T E( g )  converges strongly  to T ag).

We make the infinite symmetric group S. act on the space L 2 (X, .11(g,
E), ii„,E) as

R (o-)f (x) = f (xa) (a E S ., fE L 2 (X , J( E), 24,E)),

where xo- = (x,(0),./.1 for x= (x,)ENEX.
Similarly as for the infinite tensor product representations 71`. or 7';,

for G=Dif f o (M ) in § 5, we have a dual pair relation for the group G„, of
measure preserving diffeomorphisms and the symmetric group S. as
given in

Theorem 6. 11. Let M  be a connected C-m anifold, n> 1, w ith dimM>
2, and co be a  m easure on M  locally  f inite, locally  equivalent to Lebesgue
measures, with C'-class densities, and with to (M) = + 00•  Put g = (g,),EN, 11.=
co, and tak e a ii-unital subset E= IL EN E,. A ssume that E ,'s are mutually
d is jo in t. Then, on the Hilbert space L 2 (X, (,u,E), v „,E), the representation
TE • R of the product groups G. X Z. gives a dual pair relation, and a sim ilar
fact holds also for 0,,, x S. :

TE(G.)' =R ( S . ) " ,  TE(G. ) '  =R (S .)".

The proof is similar as for the case of G  x  S  (s) in §§ 5. 3- 5. 6, but for
a special s= (s,) ,EN with all s,= 0 in Theorem 5. 1. It is based on Theorem 6. 9
for the k-th tensor product T ? ) of To and the symmetric group Sk. We omit
the details here.

Remark 6. 12. In the case where the disjointness condition (wDIS) on
the g-unital subset E  is assumed, we can give a similar result as Theorem
5. 9 in § 5. 7. Further, its proof is also similar.

Appendix. Finite tensor products o f  natural representations o f a
diffeomorphism group

Let M  be a connected C ( ") -manifold with n> 1, and G=Diff o(M) the
group of diffeomorphisms on M  with compact supports. Consider finite
number of representations (TA ye,=L2(x,, ,4„ ,a,) with X ,=M , given
by (4. 1)— (4. 2) in § 4. 2. Within the unitary equivalence, we may assume
that 7, 1 in (4. 2) and all the g,'s are equal to the same one co EY.F.It(M).
We can assume that co has C-class density. Thus the representation Tp is
determined uniquely by the parameter s,ER in the 1-cocycle a,, and it is
denoted also by :
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Tsi (g )h (p ) — ( d w
d w

( g
( p

iV h (e P ) .

At first we give the following simple lemma.

Lemma A. 1. A ny  representation Ts, sER, of G is irreducible. T w o
represbntations Ts l and Ts2 are mutually  equivalent if and only if s1=s2.

Pro o f  For the irreducibility, it is enough for us to quote Note 6. 8. Let
us prove the second assertion. Take a coordinate neighbourhood U of M
We may assume that the measure co is given in this coordinates p = P2,
••., Pd) as cico(p)=dpidP2 . - dpd. Take a relatively compact, open subset Uo
o f U  such that C l(U 0)C U T h e n , there exists an element g E G (U )=
Diffo (U) C G such that g - 1 P= (7Pi, 7P2, 7 P d )  --rp for p E Uo with a positive
constant 701.

Decompose the representation spaces Ye', =L 2 (M , w )(j=1 , 2) as ..e ,=
L 2 (U )O L 2 (M \U ). Then, the restrictions T. I G (U) are both irreducible on
L 2 (U ), by Note 6. 8, and trivial on L 2 (M \ U ). Therefore an intertwining
operator A : fe,—..e 2 , leaves L 2 (U) and L 2 (M \U) stable, and A I L 2 (U ) is
zero or invertible. Note that restrictions 7's.  to the subgroup G (U )
= G f l G (U ) are both identical on L 2 (U ) and irreducible on its subspace
{x u } and so A is a scalar multiplication operator on L 2 (U ) and maps L 2 (M
\U) onto itself.

Thus, for any hEL 2 (U), Ah=ah with a constant aE C . So, taking the
above element gE G (U ), we have, for hEL 2 (U0),

Tsi (g)h (p) = r(i-±-od h (7-p), T ,2 (g ) (Ah) (p )= 7 6- '2)dah (7p).

Since AT, 1 (g )=Ts 2 (g )A , we have a= 0 if s1 0s 2.

Lemma A. 2. Let dim 2. Take a finite number of representations T y

jEJ, with the parameters s, E R of G, and the same number of T s
,,, j E j ,  with s;

E R . Then an intertwining operator between the tensor products 0,,,Ts, and
is a linear combination of the permutation operator R (a) w ith aES,

satisfying S, (,) = s ( jE J ) .  Here R(a)(0,E,f,) := 0,E,f,-1 (,) , for decomposable
element 0,E,f,E Of.,49 , with f,EYe9,.

In particular, if the sets of param eters { s, ; jE J } and {s; ; jEJ} are
different, these two tensor product representations are mutually  disjoint.

Pro o f  For a subset V of M, put fe,( V) =L 2 (V, I V , 1i11 V ) c i f , .  Take
connected open subsets U„ jEJ, of M which are mutually disjoint, and put
U. =M\ U,E,U,. Then we have an orthogonal decomposition of each A ', as

(A. 1) E&J.,Ye,(Uk), with Jo. =JU {co } .
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Consider the subgroup G'=1 -1,,,G(Uk) of G and its representation under
the tensor product 0,E,Ts, on the space l e i = 0,e,Ye5 . Then, inserting the
decomposition (A. 1) in each ye,, we get a decomposition of Ye, as follows :

ye,= E,Lo .or [ Q ]  w ith  le [Q ]=  0 ,. » Ye,(Ug1),

where the sum  runs over Q= (q,),EJ E (J.)J. As G'-modules, on each
component Ye [Q], there acts a tensor product representation

G (U), Ye,(11„) ) ) ,

with L= {jEJ; q, 00} on the factor 0,E,0 X ',(U ai ) ,  and the other factor
0, s ,0 Ye,(U -) gives the multiplicity.

All the components which carry an irreducible tensor product of G '=
n,E,G(u,), not containing the trivial representation of any of G(U 7)'s, are
given as

Olei(Ts, G (U,co), Ye,(U,(o)),

w here °ES,. On any other component, some of G(U,)'s acts trivially.
Take an intertwining operator A  of 0,E,T,, with 0,Ej Te.7. Then the

above fact means that A  maps 0,E,Ye,(U,) onto some of 0,E,Ye,(U, 0 ) ). If
this is not zero, the representations of G' on these subspaces should be
equivalent. By Lemma A.1, applied to each of G (U ), we see that s,(,) =s i,
(jE J ) in that case. If this does not happen for any aES,, then A should be
zero on 0,E,Ye,(U,).

Now let us study the way of changing when V= is replaced by
another V= ( M E , .  Put Ye(V) = ®,E,ye(u,) anew and denote by P . the
orthogonal projection of Ye, onto Ye( 0/1). For a aES J , put Va= (U„ ( ,) ),EJ ,
then  Ye ( 011a) = R (a) Ye (V). Define S f ((s,),E,)= {GE S j  ; so c o =s, (jE J )}.
Then the above argument shows that

A 0 P . =  E  a(a, qt) • R ( a )  o P .=  E  a(a, 01.1) • P . ,  R (a ) 0 P.,
uEsms,),,,)

where a(a, olt) EC are constants.
Let us prove that these constants do not depend on V. To do so, we

introduce an equivalence relation in the set of all V= (U )0 i  with mutually
disjoint, connected open U, 's . Two elements l i  and 0/1/ = (M . ,  are called
adjacent to each other and denoted as i f  U,n ( i E j ) .  Further qi
and a r e  called equ iva len t and denoted as U— C, if there exists a finite
number of elements V D , V 2 ) ,--, V ” ) such that J-/P ) - --:a/ ( k +1 ) (1 < k <
n),

Assume now V. For jEJ, take a connected component r_I;' of U, n
0, and put 0/1"= (U,"),. J . Then, and Ye(Va) n ye ( / 0 ) D

(V "a ) for any aE S J . It can be seen from this that a(a, V )=a(a , V") —
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a(a, all') for o E S J ((s,),..1) .  Therefore we get a(cr, 011)--- a(a, V ') if V - 0/1'.
On the other hand, in case d=dim 2, any two elements

 l l
 and V'

are mutually equivalent, as we can see without difficulty. This means
that, on the dense subspace of Yej  spanned by V ) ' s ,  the operator A  is
expressed as A = E.,Ev (s ,),„ ) a (a) R (a)  with a(u) = a (a, 011). This expression
holds also on the whole space

Remark A. 3. In case d = 1,, take M = R. Then f e L 2 (Rk, HA) with k
J  I and À a Lebesgue measure on R. In this case, there exist k! number of

equivalence classes of V's. In fact, consider the order of elements in V =
(M I  :  for x = (x,), U, (1 k),

Xr ( 1) < X ,(2 )<  •  •  •  <X,(k ),

with a certain rES,,. Then each r represents an equivelence class of Vs.
On the other hand, put D = tx — (x ,)E ll k ; x l <x 2<•••<x k l, and xz-=

T E  S k .  Denote by Q, the restriction on DTC Rk of function f E ,Y 6:

Q rf (x )=f (x ) (X E D,) ; = 0  ( x  Dr).

Then we have

Lemma A. 4. Let M = R . T hen for the  tensor product ® 1T, .

representations (T 5 , .Y (,), f 1 =L 2 (R , A ) o f  G =D if f o ( R ) ,  the algebra of
intertwining operators is generated by  { R (a); oESk((sY ;=1)}  and (Q,; TE Skl•
In case w here all the s,'s are m utually  equal, this algebra is isom orphic to
gl(k!, C) algebraically.

It may be interesting to investigate the situation in case k =  j co.
Returning to the general case, we remark here

Lemma A. 5. Let J and f  be two finite sets of indices. Assume that I J
0  f  I .  Then any two tensor product representations 0 , E I T s , a n d  kef Ts‘k of
G are mutually disjoint.

A proof can be given by a similar method as that in the proof of the
above lemma.
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