Relations between unitary representations of diffeomorphism groups and those of the infinite symmetric group or of related permutation groups

By
Takeshi Hirai and Hiroaki Shimomura

Introduction

In this paper, we study interrelations between unitary representations of two kinds of groups. The one is the group $G=\operatorname{Diff}_{0}(M)$ of diffeomorphisms with compact supports on a manifold of class $C^{(n)}, 1 \leq n \leq \infty$, and the others are certain permutation groups S contained in $\tilde{\mathcal{E}}_{\infty}$ of all permutations on the set \mathbf{N} of natural numbers. In certain typical cases, the latter are equal to the infinite symmetric group \mathfrak{S}_{∞} of all finite permutations or its standard subgroups.

Let us expain in more detail. The representations treated here are principally infinite tensor products of natural representations $T_{j}^{s_{j}}, s_{j} \in \mathbf{R}$, of G on L^{2}-spaces $\mathscr{H}_{j}=L^{2}\left(X_{j}, \mathscr{B}_{j}, \mu_{j}\right)$, with $X_{j}=M, \mathscr{B}_{j}=\mathscr{B}(M)$ the σ-algebra of Borel subsets of M, and μ_{j} locally finite measures on M which are locally equivalent to Lebesques measures with respect to local coordinates. (The set of all such measures on M is denoted by $\mathscr{L} \mathscr{F} \mathscr{M}(M)$. Here T_{j}^{s}; is given as

$$
T_{\tilde{j}_{j}}(g) f(p)=\left(\frac{d \mu_{j}\left(g^{-1} p\right)}{d \mu_{j}(p)}\right)^{t+i s_{j}} f\left(g^{-1} p\right) \quad\left(g \in G, f \in \mathscr{H}_{j}, p \in M, i=\sqrt{-1}\right)
$$

To have an infinite tensor product, we should fix a reference vector χ $=\left(\chi_{j}\right)_{j \in \mathrm{~N}}$ consisting of unit vectors $\chi_{j} \in \mathscr{H}_{j}$. As we see in $\S 1$, it is enough for us to treat the cases where χ_{j} 's are of the form $\chi_{j}=\left\|\chi_{E_{j}}\right\|_{x_{j}}^{-1} \chi_{E_{j}}$ with $\chi_{E_{j}}$ the characteristic function of $E_{j} \in \mathscr{B}(M)$. Put $\mu=\left(\mu_{j}\right)_{j \in \mathrm{~N}}, E=\Pi_{j \in \mathrm{~N}} E_{j}$ and $X=$ $\Pi_{j \in \mathrm{~N}} X_{j}$, and assume two conditions (MU1) and (MU2) on (μ, E). Then we see as in $\S 2$ that the infinite tensor product space $\otimes_{j \in \mathrm{~N}}^{\chi} \mathscr{H}_{j}$ with respect to $\chi=\left(\chi_{j}\right)_{j \in N}$ can be realized as an L^{2}-space for a measure given as infinite direct product of measures μ_{j} with respect to E_{j} 's constructed as in [4, §1] or in [5]. This realization of tensor product representations by means of
product measures gives, together with the actions of the infinite symmetric group \mathfrak{S}_{∞} on the infinite tensor product space, a background of our method of constructing irreducible unitary representations (=IURs) of the diffeomorphism group G in [4].

On the other hand, we ask if a permutation $\sigma \in \tilde{\mathfrak{S}}_{\infty}$ can work on the infinite tensor product space $\otimes_{j \in \mathbb{N}}^{x} \mathscr{H}_{j}$ by permuting the components as an intertwining operator of the tensor product representation $T \equiv T_{\mu, E, s}=$ $\otimes_{j \in \mathbb{N}}^{\chi} T_{j}^{s} . \quad$ More neatly, put $s=\left(s_{j}\right)_{j \in \mathbb{N}}$ and $\tilde{\Xi}_{\infty}(s)=\left\{\sigma \in \tilde{\Xi}_{\infty} ; s_{o(j)}=s_{j}(j \in \mathbf{N})\right\}$. Then we ask, for an element $\sigma \in \tilde{\mathcal{S}}_{\infty}(s)$, if the following formula defines a bounded operator $R(\sigma)$ on $\otimes_{j \in \mathbb{N}}^{\chi} \mathscr{H}_{j}$: for a decomposable element $f=\otimes_{j \in \mathrm{~N}} f_{j}$, with $f_{j} \in \mathscr{H}_{j}, f_{j}=\chi_{j}(j \gg \mathbf{N})$, put $R(\sigma) f=\otimes_{j \in \mathrm{~N}} h_{j}$ with

$$
h_{j}\left(x_{j}\right)=\left(\frac{d \mu_{o}-1_{(j)}\left(x_{j}\right)}{d \mu_{j}\left(x_{j}\right)}\right)^{t+i_{j}} f_{o}-1_{(j)}\left(x_{j}\right) \quad\left(x_{j} \in X_{j}\right) .
$$

If $R(\sigma)$ is well defined, it gives an intertwining operator for T, that is, $R(\sigma) \in T(G)^{\prime}$. The set of all such σ 's is denoted by $\mathfrak{G}_{\mu, E_{s},}$.

The structure of this important subgroup of the permutation group $\tilde{\mathfrak{S}}_{\infty}$ is studied in §4. The group $\mathfrak{S}_{\mu, E, s}$ contains $\mathfrak{S}_{\infty}(s)$ and is properly contained in $\tilde{\mathfrak{S}}_{\infty}(s)$. In an interesting case where the μ-unital subset $E \subset X$ is μ-cofinal with another one $E^{\prime}=\prod_{j \in \mathbb{N}} E_{j}^{\prime}$ such that each $E_{j}^{\prime \prime}$ s are mutually disjoint, the group $\mathfrak{S}_{\mu, E_{s}}$ is exactly equal to the subgroup $\mathfrak{S}_{\infty}(s)$ of the infinite symmetry group $\mathfrak{\Im}_{\infty}$.

In the above case, we have Theorem 5.1 , one of our main results in this paper, which says that, under the infinite tensor product representation T, the diffeomorphism group G and the standard subgroup $\mathfrak{S}_{\infty}(s)$ of the symmetric group \mathbb{S}_{∞} form a so-called dual pair, that is,

$$
T(G)^{\prime}=R\left(\Im_{\infty}(s)\right)^{\prime \prime}, \quad T(G)^{\prime \prime}=R\left(\Im_{\infty}(\mathrm{s})\right)^{\prime}
$$

This case corresponds to the case of our previous work [4]. Further, the above result on dual pair expains well the meaning of our method of constructing IURs of G employed in [4] and [5], in connection to an irreducible decomposition of T through the action R of the so-called symmetry group $\mathfrak{S}_{\infty}(s)$ of T (cf. §5.1).

Another interesting case is also studied in §§5.7-5.8 and we get Theorem 5.9, where the μ-unital subset E is assumed to satisfy a weaker disjointness condition (wDIS) (see § 5.7). These results on dual pairs for $G=\operatorname{Diff}_{0}(M)$ and certain permutation groups are, in a sense, analogous to Weyl's reciprocity law between k-times tensor product of the natural representation of $G L_{n}(\mathbf{C})$ and the k-th symmetry group \mathfrak{S}_{k}.

Now take a measure $\omega \in \mathscr{L} \mathscr{F} \mathscr{M}(M)$ and consider the subgroup $\operatorname{Diff}_{0}(M ; \omega)$ of $\operatorname{Diff}_{0}(M)$ consisting of g which preserve the measure ω. Then, in the case where ω has densities of class $C^{(n)}$ with respect to local
coordinates, the group $\operatorname{Diff}_{0}(M ; \omega)$ is sufficiently big and contains many elements as is seen in Theorem 6.5. In such a case, similar results as for the whole group $\operatorname{Diff}_{0}(M)$ can be given. Some of them are given as Theorems 6.7 and 6.9.

We omit historical comments here, but cite simply [9] and [10], along with the classical work [18], among the studies on irreducible unitary representations of diffeomorphism groups.

Let us now explain the organization of this paper.
In $\S 1$, we discuss infinite tensor product of Hilbert spaces, and especially pay attention on a normalization of reference vectors in case of L^{2}-spaces.

In § 2, first we discuss a product measure $\nu_{\mu, E}$ on $X=\prod_{j \in \mathrm{~N}} X_{j}, X_{j}=M$, of measures μ_{j} on $X_{j}(j \in \mathbf{N})$ with respect to a subset $E=\prod_{j \in \mathbf{N}} E_{j} \subset X$ satisfying the condition (MU1) (such an E is called μ-unital). Next we discuss a realization of infinite tensor product of $\mathscr{H}_{j}=L^{2}\left(X_{j}, \mathscr{B}_{j}, \mu_{j}\right)$ with a reference vector $\chi=\left(\chi_{j}\right)_{j \in \mathrm{~N}}$ of the form $\chi_{j}=\left\|\chi_{E_{j}}\right\|_{\boldsymbol{x}_{j}^{-1}} \chi_{E_{j}}$ as L^{2}-space $L^{2}(X, \mathscr{M}(\mu, E)$, $\nu_{\mu, E}$) for the product measure. Then we introduce infinite tensor product $\otimes_{j \in N}^{\chi} T_{j}$ of representations T_{j} on \mathscr{H}_{j} of a group of measurable transformations on M.

In § 3, we concentrate ourselves to the case of diffeomorphism group $G=\operatorname{Diff}_{0}(M)$. At this stage, to get an infinite tensor product $T=\otimes_{j \in \mathrm{~N}}^{x} T_{j}^{s} ;$ of representations, we should ask that (μ, E) satisfies one more condition (MU2) in §3.2. We study the G-quasi-invariance of the product measure $\nu_{\mu, E}$. Then we see that, to have such a quasi-invariance in a general setting, it is necessary to choose an appropriate μ-unital subset E^{\prime}, μ-cofinal with E, and to restrict the σ-ring of measurable subsets to much smaller one, and thus we come to a product measure $\nu_{0 . \mu, E^{\prime}}$ to replace $\nu_{\mu, E}$ (for details, see $\S \S$ 3. 2-3.3).

In $\S 4$, we study the subgroup $\mathbb{S}_{\mu, E, s}$ of $\tilde{\mathbb{S}}_{\infty}$ consisting of elements σ which give canonically intertwining operators for the representation T of G. We give some general properties, some interesting examples and propose open problems.

In $\S 5$, we establish a dual pair relation between the diffeomorphism group G and a permutaion group $\mathfrak{S}_{\infty}(s) \subset \mathfrak{S}_{\infty}$ through representaions T and R, in case where all E_{j} 's are mutually disjoint or in case where $E=$ $\Pi_{j \in N} E_{j}$ satisfies a weaker disjointness condition (wDIS).

In $\S 6$, we study the group of measure preserving diffeomorphisms $\operatorname{Diff}_{0}(M ; \omega)$ and its representations. We obtain some results parallel to the case of the whole group G.

At last, in Appendix, we give, only for completeness, proofs of several facts in the case of finite tensor products of natural representations of G on $L^{2}(M)$'s.

A part of the results in this paper has been reported in [3] and [6].
Acknowledgements. The authors express their hearty thanks to Prof. K. Nishiyama, Prof. H. Yamashita, Prof. A. Hora and Mr. T. Yoshinaga for their kind discussions and suggestions.

§ 1. Infinite tensor products of L^{2}-spaces

1.1. Infinite tensor product of Hilbert spaces. Let $\left(\mathscr{H}_{i}\right)_{i \in \mathrm{~N}}$ be a countable system of separable Hilbert spaces. We define an infinite tensor product of these Hilbert spaces according to von Neumann [12], and understand it through the interpretation by Guichardet [1]. For this, we take a unit vector $\phi_{i} \in \mathscr{H}_{i}$ for each $i \in \mathbf{N}$. Then we form the infinite tensor product $\mathscr{H}^{\phi}=\otimes_{i \in \mathrm{~N}}^{\phi} \mathscr{H}_{i}$ of Hibert spaces \mathscr{H}_{i} with a reference vector $\phi=\left(\phi_{i}\right)_{i \in \mathrm{~N}}$ as the limit of the inductive system of Hilbert spaces :

$$
\otimes_{i=1}^{n} \mathscr{H}_{i} \ni w \mapsto w \otimes \phi_{n+1} \in \otimes_{i=1}^{n+1} \mathscr{H}_{i} \quad(n=1,2, \ldots) .
$$

A complete orthonormal base ($=$ CONB), called standard with respect to ϕ, is defined as follows. Take a CONB $\phi_{i, j}(j \in \mathbf{N})$ containing ϕ_{i} as $\phi_{i, 1}=\phi_{i}$, for each \mathscr{H}_{i}, and then form a set of vectors $\otimes_{i \in N} \phi_{i, j_{i}}$, where the sequences $\left(j_{i}\right)_{i \in \mathrm{~N}}$ of natural numbers run over such ones that $j_{i}=1$ for almost all (or except a finite number of) $i \in \mathbf{N}$.

A vector $u=\otimes_{i \in \mathrm{~N}} u_{i}$ with $u_{i} \in \mathscr{H}_{i}$, for which $\Pi_{i \in \mathrm{~N}}\left\|u_{i}\right\|$ is unconditionally convergent, belongs to the space $\otimes_{i \in \mathscr{H}_{i}}$ if and only if

$$
\sum_{i \in N}\left|1-<u_{i}, \phi_{i}>_{x_{i}}\right|<+\infty,
$$

where $<.,.\rangle_{\varkappa_{i}}$ denotes the inner product in \mathscr{H}_{i}. The above relation is written as $u \sim \phi$, and this kind of vectors u are called decomposable. Note that a product $\prod_{i \in \mathrm{~N}} c_{i}, c_{i} \in \mathbf{C}$, is called unconditionally convergent if $c_{i} \neq 0(i \in$ $\mathbf{N})$ and $\sum_{i \in N}\left|c_{i}-1\right|<\infty$.

For two such decomposable vectors $u=\otimes_{i \in \mathrm{~N}} u_{i}$ and $v=\otimes_{i \in \mathrm{~N}} v_{i}$, their inner product is given by

$$
<u, v>=\prod_{i \in \mathrm{~N}}<u_{i}, v_{i}>_{x_{i}} .
$$

Note that if $v_{i}=a_{i} u_{i}$ with $a_{i} \in \mathbf{C}$ for $i \in \mathbf{N}$, then $v \sim u$ means that product $a=$ $\Pi_{i \in \mathrm{~N}} a_{i}$ is unconditionally convergent and $\otimes_{i \in \mathrm{~N}} v_{i}=a \cdot \otimes_{i \in \mathrm{~N}} u_{i}$.

Note further that if $\psi=\left(\phi_{i}\right)_{i \in \mathbb{N}}, \psi_{i} \in \mathscr{H}_{i},\left\|\phi_{i}\right\|=1$, satisfies $\psi \sim \phi$, then the Hilbert spaces $\otimes_{i \in \mathcal{N}}^{\phi} \mathscr{H}_{i}$ and $\otimes_{i \in \mathbb{N}}^{\phi} \mathscr{H}_{i}$ are naturally isomorphic, since, for a vector $u=\otimes_{i \in \mathrm{~N}} u_{i}$, the relation $u \sim \phi$ is equivalent to $u \sim \phi$. We denote by $I_{\phi, \phi}$ the natural isomorphism from the former to the latter.
1.2. Case of L^{2}-spaces. Now let us discuss the case where each space \mathscr{H}_{i} is an L^{2}-space. Let $\left(X_{i}, \mathscr{B}_{i}, \mu_{i}\right), i \in \mathbf{N}$, be measure spaces, where \mathscr{B}_{i}
denotes a σ-ring of subsets of a space X_{i} on which a measure μ_{i} is defined. According to Halmos, \mathscr{B}_{i} is a σ-ring if $A_{k} \in \mathscr{B}_{i}(k \in \mathrm{~N})$, then $\cup_{k \in \mathbb{N}} A_{k} \in \mathscr{B}_{i}$, and if $A, B \in \mathscr{B}_{i}$, then $A \backslash B \in \mathscr{B}_{i}$. Put $\mathscr{H}_{i}=L^{2}\left(X_{i}, \mathscr{B}_{i}, \mu_{i}\right)$, the Hilbert space of L^{2}-functions on X_{i}. We assume in this paper that these L^{2}-spaces are all separable.

For the infinite tensor products of L^{2}-spaces, we have several natural isomorphisms in addition to $I_{\phi, \phi}$. Firstly put for $\phi_{i} \in \mathscr{H}_{i}=L^{2}\left(X_{i}, \mathscr{B}_{i}, \mu_{i}\right)$,

$$
\xi_{i}(p)= \begin{cases}\phi_{i}(p) /\left|\phi_{i}(p)\right| & \text { for } p \in \operatorname{supp}^{\prime}\left(\phi_{i}\right) \\ 1 & \text { for } p \notin \operatorname{supp}^{\prime}\left(\phi_{i}\right)\end{cases}
$$

where $\operatorname{supp}^{\prime}(f)=\left\{p \in X_{i} \mid f(p) \neq 0\right\}$ for a measurable function f on X_{i}. Further put $\eta_{i}=\left|\phi_{i}\right|$ and

$$
\eta_{i}^{\prime}(p)= \begin{cases}\eta_{i}(p) & \text { for } p \in E_{i} \\ 1 & \text { for } p \notin E_{i}\end{cases}
$$

with $E_{i}=\operatorname{supp}^{\prime}\left(\phi_{i}\right)$. Denote by $\chi_{i}=\chi_{E_{i}}$ the indicator function of the set E_{i}. Then,

$$
\phi_{i}=\xi_{i} \cdot \eta_{i}, \quad \eta_{i}=\eta_{i}^{\prime} \cdot \chi_{i} \quad(i \in \mathbf{N})
$$

Put $\xi=\left(\xi_{i}\right)_{i \in \mathrm{~N}}, \eta=\left(\eta_{i}\right)_{i \in \mathrm{~N}}$, and $\chi=\left(\chi_{i}\right)_{i \in \mathrm{~N}}$, then we can write the above relations symbolically as $\phi=\xi \cdot \eta, \eta=\eta^{\prime} \cdot \chi$.

Let $M_{\varepsilon_{i}}$ be the operator of multiplication by ξ_{i} on the space $\mathscr{H}_{i}=L^{2}\left(X_{i}\right.$, $\left.\mathscr{B}_{i}, \mu_{i}\right)$. Then it sends η_{i} to ϕ_{i}, and therefore we have a natural unitary operator $M^{\xi}:=\otimes_{i \in \mathrm{~N}} M_{\varepsilon_{i}}$ from the Hilbert space $\otimes_{i \in \mathrm{~N}}^{\eta} \mathscr{H}_{i}$ onto $\otimes_{i \in \mathrm{~N}}^{\phi} \mathscr{H}_{i}$, which sends a decomposable vector $\otimes_{i \in \mathrm{~N}} u_{i}$ to $\otimes_{i \in \mathrm{~N}}\left(\xi_{i} \cdot u_{i}\right)$.

To give another natural isomorphism between the tensored Hilbert spaces, let us define a new set of measures $\left(\mu_{i}^{\prime}\right)_{i \in N}$ as

$$
d \mu_{i}^{\prime}(p)=\eta_{i}^{\prime}(p)^{2} \cdot d \mu_{i}(p) \quad\left(p \in X_{i}\right)
$$

Then, the multiplication operator $M_{n_{i}^{\prime}}$ sends the vector χ_{i} in $\mathscr{H}_{i}^{\prime}=L^{2}\left(X_{i}, \mathscr{B}_{i}\right.$, $\left.\mu_{i}^{\prime}\right)$ to η_{i} in $\mathscr{H}_{i}=L^{2}\left(X_{i}, \mathscr{B}_{i}, \mu_{i}\right)$, and they give naturally a unitary operator $M^{\prime \prime}:=\otimes_{i \in \mathrm{~N}} M_{n_{i}^{\prime}}$ from $\otimes_{i \in \mathrm{~N}}^{x} \mathscr{H}_{i}^{\prime}$ onto $\otimes_{i \in \mathrm{~N}}^{n} \mathscr{H}_{i}$.

Note that $\chi_{i}=\chi_{E_{i}}$ with $\mu_{i}^{\prime}\left(E_{i}\right)=1$. Then, for the tensored Hilbert space $\otimes_{i \in \mathrm{~N}}^{x} \mathscr{H}_{i}^{\prime}$, we can give a realization of it as an L^{2}-space, with respect to an infinite product of measures μ_{i}^{\prime} on $X_{i}(i \in \mathbf{N})$ which is defined with reference to the system of sets $\left(E_{i}\right)_{i \in \mathrm{~N}}$. This is done in the next section.
1.3. Tensor products of linear operators. Let T_{i} be a bounded linear operator on \mathscr{H}_{i} for each $i \in \mathbf{N}$. We ask under what condition a tensor product $\otimes_{i \in \mathrm{~N}} T_{i}$ can be defined as a bounded linear operator on the tensored
space $\otimes_{i \in \mathrm{~N}} \mathscr{H}_{i}$, where $\phi=\left(\phi_{i}\right)_{i \in \mathrm{~N}}$ is the reference vector. To give a useful sufficient condition, we introduce the following definition.

Definition 1.1. A sequence $\left(u_{i}\right)_{i \in \mathbb{N}}$ of vectors $u_{i} \in \mathscr{H}_{i}(i \in \mathbf{N})$ is said to be cofinal with the reference vector ϕ if the product $\prod_{i \gg 0}\left\|u_{i}\right\|$ is unconditionally convergent and

$$
\sum_{i \in \mathrm{~N}}\left|1-<u_{i}, \phi_{i}>_{\pi_{i}}\right|<+\infty .
$$

Lemma 1.1. Let T_{i} be a bounded linear operator on $\mathscr{H}_{i}(i \in \mathbf{N})$. Assume that $\Pi_{i \gg 0}\left\|T_{i}\right\|$ is unconditionally convergent, and that $\left(T_{i} \phi_{i}\right)_{i \in N}$ is cofinal with the reference vector ϕ. Then a tensor product $T=\otimes_{i \in N} T_{i}$ is well defined on $\otimes_{i \in \mathrm{~N}}^{\phi} \mathscr{H}_{i}$ in such a way that

$$
u=\otimes_{i \in \mathbf{N}} u_{i} \mapsto T u=\otimes_{i \in \mathbf{N}}\left(T_{i} u_{i}\right)
$$

for any decomposable vector $u=\otimes_{i \in \mathrm{~N}} u_{i}$ in $\otimes_{i \in \mathrm{~N}}^{\phi} \mathscr{H}_{i}$.
Proof. Let $T^{(n)}$ be a linear operator of the subspace $\otimes_{i=1}^{n} \mathscr{H}_{i}$ to the whole space $\otimes_{i \in \mathrm{~N}}^{\phi} \mathscr{H}_{i}$ given as

$$
\otimes_{i=1}^{n} \mathscr{H}_{i} \ni w \mapsto\left(\otimes_{i=1}^{n} T_{i}\right) w \otimes\left(\otimes_{i>n}\left(T_{i} \phi_{i}\right)\right) \in \otimes_{i \in \mathrm{~N}}^{\phi} \mathscr{H}_{i} .
$$

Then, the system of $\left(T^{(n)}\right)_{n \in \mathrm{~N}}$ is consistent with the inductive system ($\left.\otimes_{i=1}^{n} \mathscr{H}_{i}\right)_{n \in \mathrm{~N}}$ and further

$$
\left\|T^{(n)}\right\| \leq \prod_{i \in \mathrm{~N}}\left\|T_{i}\right\|<\infty .
$$

This means that the inductive system $\left(T^{(n)}\right)_{n \in \mathbb{N}}$ defines a linear operator T and $\|T\| \leq \prod_{i \in \mathrm{~N}}\left\|T_{i}\right\|$.

§ 2. Infinite products of measures and their L^{2}-spaces

2.1. Definition of infinite products. Let $\left(X_{i}, \mathscr{B}_{i}, \mu_{i}\right), i \in \mathbf{N}$, be measure spaces as in §1.2. To define an infinite product of measures $\left(\mu_{i}\right)_{i \in \mathrm{~N}}$ on the product space $X=\prod_{i \in \mathrm{~N}} X_{i}$, we first fix a system $\left(E_{i}\right)_{i \in \mathrm{~N}}$ of mesurable sets $E_{i} \in \mathscr{B}_{i}$, with reference to which the infinite product is defined. We put $\mu=\left(\mu_{i}\right)_{i \in \mathrm{~N}}$ and introduce some definitions.

Definition 2.1. A direct product subset $E=\prod_{i \in \mathrm{~N}} E_{i}$ of X with $E_{i} \in \mathscr{B}_{B_{i}}$ is called μ-unital if the product $\prod_{i \in N} \mu_{i}\left(E_{i}\right)$ is unconditionally convergent.

According to the definition, $E=\prod_{i \in \mathbb{N}} E_{i}$ is μ-unital if the following condition holds:

$$
\left\{\begin{array}{l}
0<\mu_{i}\left(E_{i}\right)<+\infty, \quad(\forall i) \tag{MU1}\\
\sum_{i \in \mathrm{~N}}\left|1-\mu_{i}\left(E_{i}\right)\right|<+\infty .
\end{array}\right.
$$

Definition 2.2. Two unital subsets $E=\prod_{i \in \mathbb{N}} E_{i}$ and $F=\prod_{i \in \mathrm{~N}} F_{i}$ of X are said to be μ-cofinal (Notation: $E \stackrel{\mu}{\sim} F$) if $\sum_{i \in \mathrm{~N}} \mu_{\mathrm{i}}\left(E_{i} \ominus F_{i}\right)<+\infty$. They are strongly cofinal (Notation $E \approx F$) if $E_{i}=F_{i}$ for $i \gg 0$ (i. e., for sufficiently large $i)$.

Let $\mathscr{M}_{0}(E)$ (resp. $\left.\mathscr{M}(\mu, E)\right)$ be the σ-ring of subsets of X which is generated by the family $\mathscr{E}_{0}(E)$ (resp. $\mathscr{E}(\mu, E)$) of unital subsets F such that $F \approx E$ (resp. $F \stackrel{\mu}{\sim} E$). We define a product measure $\nu_{0, \mu, E}$ (resp. $\nu_{\mu, E}$) by patching together the standard product measure $\prod_{i \in \mathrm{~N}}\left(\mu_{i} \mid F_{i}\right)$ on each $F=$ $\Pi_{i \in \mathrm{~N}} F_{i}$ in $\mathscr{E}_{0}(E)$ (resp. in $\mathscr{E}(\mu, E)$), where $\mu_{i} \mid F_{i}$ denotes the restriction of μ_{i} on F_{i}. Then we have

$$
\mathscr{M}(\mu, E)=\cup_{F \sim E}^{\mu} \mathscr{M}_{0}(F), \quad \nu_{0, \mu E}=\nu_{\mu, E} \mid \mathscr{M}_{0}(E) .
$$

Furtheremore it may be considered that the mesure $\nu_{\mu, E}$ on $\mathscr{M}(\mu, E)$ is a kind of completion of the one $\nu_{0, \mu E}$ on $\mathscr{M}_{0}(E)$. In fact, any $F=\prod_{i \in \mathbb{N}} F_{i}$ in $\mathscr{E}(\mu, E)$ can be approximated, with respect to $\nu_{\mu, E}$, by a series of elements in $\mathscr{M}_{0}(E)$ as shown below. Put, for $N \in \mathbf{N}, F^{(N)}=\left(\Pi_{i=1}^{N} F_{i}\right) \times\left(\Pi_{i>N} E_{i}\right)$, then $F^{(N)} \in \mathscr{M}_{0}(E)$, and $F \cap F^{(N)}=\left(\prod_{i=1}^{N} F_{i}\right) \times\left(\prod_{i>N} F_{i} \cap E_{i}\right)$, and therefore

$$
\begin{aligned}
\nu_{\mu, E}\left(F \ominus F^{(N)}\right) & \leq\left(\prod_{i=1}^{N} \mu_{i}\left(F_{i}\right)\right)\left\{\prod_{i>N} \mu_{i}\left(F_{i} \cup E_{i}\right)-\prod_{i>N} \mu_{i}\left(F_{i} \cap E_{i}\right)\right\} \\
& \rightarrow\left(\prod_{i \in \mathrm{~N}} \mu_{i}\left(F_{i}\right)\right)\{1-1\}=0 .
\end{aligned}
$$

Concerning the relationship between two direct product mesures such as ($\nu_{\mu, E}, \mathscr{M}(\mu, E)$), we have the following

Lemma 2.1. Suppose that two unital subsets E and E^{\prime} are not μ-cofinal. Then, for any subset A in $\mathscr{M}(\mu, E) \cap \mathscr{M}\left(\mu, E^{\prime}\right)$,

$$
\nu_{\mu, E}(A)=\nu_{\mu, E^{\prime}}(A)=0 .
$$

2.2. Relation to infinite tensor products of \boldsymbol{L}^{2}-spaces. Let us consider an infinite tensor product of L^{2}-spaces $\mathscr{H}_{i}=L^{2}\left(X_{i}, \mathscr{B}_{i}, \mu_{i}\right)$ and study a relation to an infinite product of measures μ_{i}.

Take a unital subset $E=\prod_{i \in N} E_{i}$ of $X=\prod_{i \in N} X_{i}$. Then $\chi_{i}=\left\|\chi_{E_{i}}\right\|_{\boldsymbol{x}_{i}}^{-1} \chi_{E_{i}}$ is a unit vector of \mathscr{H}_{i}. So we get a tensor product $\otimes_{i \in \mathrm{~N}}^{x} \mathscr{H}_{i}$ of Hilbert spaces, with reference vector $\chi=\left(\chi_{i}\right)_{i \in \mathrm{~N}}$.

On the other hand, we have product measures ($X, \mathscr{M}_{0}(E), \nu_{0, \mu, E}$) and ($\left.X, \mathscr{M}(\mu, E), \nu_{\mu, E}\right)$ for $\mu=\left(\mu_{i}\right)_{i \in N}$ with respect to the unital subset E. Hence we obtain two L^{2}-spaces $L^{2}\left(X, \mathscr{M}_{0}(E), \nu_{0 \mu \varepsilon}\right)$ and $L^{2}\left(X, \mathscr{M}(\mu, E), \nu_{\mu, E}\right)$, which are naturally isomorphic, because the latter measure is a 'completion' of the former one. However the expression $L^{2}\left(X, \mathscr{M}_{0}(E), \nu_{0 \mu_{E}}\right)$ is the most intimately related one to the tensor product $\otimes_{i \in N}^{\chi} \mathscr{H}_{i}=\otimes_{i \in \mathbb{N}}^{\chi} L^{2}\left(X_{i}, \mathscr{B}_{i}, \mu_{i}\right)$.

In fact, a natural isomorphism from the latter to the former can be given as follows. Arbitrary element of a standard basis of $\otimes_{i \in \mathrm{~N}}^{x} \mathscr{H}_{i}$ is of the form $f=\left(\otimes_{i=1}^{N} f_{i}\right) \otimes\left(\otimes_{i>N} \chi_{i}\right)$ with $f_{i} \in \mathscr{H}_{i}=L^{2}\left(X_{i}, \mathscr{B}_{i}, \mu_{i}\right)$. Since $\chi_{i}=\left\|\chi_{E_{i}}\right\|_{\boldsymbol{\mu}_{i}^{-1}}$ $\chi_{E_{i}}$, and the product $\Pi_{i>N}\left\|\chi_{E_{i}}\right\|_{\boldsymbol{x}_{i}}^{-1}=c_{N}$ (put) is convergent, the vector f can be interpreted as a function on X according to the expression

$$
\left(\Pi_{i=1}^{N} f_{i}\left(p_{i}\right)\right) \times\left(c_{N} \cdot \Pi_{i>N} \chi_{E_{i}}\left(p_{i}\right)\right) \quad \text { for } x=\left(p_{i}\right)_{i \in N} \in X .
$$

Denote this function on X by $U f$, then $U f$ is clearly measurable with respect to $\mathscr{M}_{0}(E)$ and belongs to the L^{2}-space $L^{2}\left(X, \mathscr{M}_{0}(E), \nu_{0, \mu, E}\right)$. Let $\mathscr{H}(E)$ denote the linear span of vectors in $\otimes_{i \in \mathrm{~N}}^{x} \mathscr{H}_{i}$ of the form $\left(\otimes_{i=1}^{N} f_{i}\right) \otimes\left(\otimes_{i>N} \chi_{i}\right)$ with $f_{i} \in \mathscr{H}{ }_{i}$. Then this is a dense subspace containing the CONS and U is defined on it as a linear map.

Lemma 2.2. The above map U on $\mathscr{H}(E) \subset \otimes_{i \in \mathrm{~N}}^{x} \mathscr{H}_{i}$ is uniquely extended to a unitary operator and it gives a natural isomorphism between two Hilbert spaces as

$$
U: \otimes_{i \in \mathbb{N}}^{x} \mathscr{H}_{i} \longrightarrow L^{2}\left(X, \mathscr{M}_{0}(E), \nu_{0, \mu E}\right) \cong L^{2}\left(X, \mathscr{M}(E), \nu_{\mu, E}\right),
$$

where $\mathscr{H}_{i}=L^{2}\left(X_{i}, \mathscr{B}_{i}, \mu_{i}\right)$ and $\chi_{i}=\left\|\chi_{E_{i}}\right\|_{\mathscr{\varkappa}_{i}}^{-1} \chi_{E_{i}}$.
Let us now consider a non-zero decomposable element of $\otimes_{i \in \mathbf{N}}^{x} \mathscr{H}_{i}$ of the form $\otimes_{i \in \mathrm{~N}} \chi_{F_{i}}$ with $F_{i} \in \mathscr{B}_{i}$. Then we see that $F=\prod_{i \in \mathrm{~N}} F_{i}$ should be a unital subset of X, and be μ-cofinal with E. In fact, to see $F \stackrel{\mu}{\sim} E$, we check the criterion for $\otimes_{i \in \mathrm{~N}} \chi_{F_{i}} \in \otimes_{i \in \mathrm{~N}}^{\chi} \mathscr{H}_{i}$, that is,

$$
\sum_{i \in N}\left|1-<\chi_{F_{i}}, \chi_{i}>_{\varkappa_{i}}\right|<\infty .
$$

Since $\chi_{i}=\left\|\chi_{E_{i}}\right\|_{\boldsymbol{x}_{i}}^{-1} \chi_{E_{i}}$ and the product $\prod_{i \in \mathrm{~N}}\left\|\chi_{E_{i}}\right\|_{\boldsymbol{\varkappa}_{i}}$ is convergent, the above inequality is equivalent to

$$
\sum_{i \in \mathrm{~N}}\left|1-<\chi_{F_{i}}, \chi_{E_{i}}>\varkappa_{\varkappa_{i}}\right|<\infty .
$$

This in turn is equivalent to $\sum_{i \in N} \mu_{i}\left(E_{i} \ominus F_{i}\right)<\infty$, or $F \stackrel{\mu}{\sim} E$, because F and E are both μ-unital.

Note that if we make correspond to $f=\otimes_{i \in \mathrm{~N}} \chi_{F_{i}} \in \otimes_{\mathcal{T}_{i \in \mathrm{~N}}}^{x} \mathscr{H}_{i}$ a function on X as $f^{\prime}(x)=\prod_{i \in \mathrm{~N}} \chi_{F_{i}}\left(p_{i}\right)$ for $x=\left(p_{i}\right)_{i \in \mathrm{~N}} \in X$, then it is $\mathscr{M}(\mu, E)$-measurable but not necessarily $\mathscr{M}_{0}(E)$-measurable.
2.3. Group of measurable transformations. Let G be a topological group consisting of measurable transformations g , which act on each X_{i} in such a way that the transformed measure ${ }^{8} \mu_{i}$ is equivalent to μ_{i}, where ${ }^{8} \mu_{i}(A):=\mu_{i}\left(g^{-1} A\right)\left(A \in \mathscr{B}_{i}\right)$. From now on we assume that all the measures appearing are σ-finite, so that there exists the Jacobian between mutually equivalent measures.

We have a unitary operator $T_{i}^{a_{i}}(g)$ on $\mathscr{H}_{i}=L^{2}\left(X_{i}, \mathscr{B}_{i}, \mu_{i}\right)$ given as

$$
T_{i}^{\alpha_{i}}(g) f(p)=\alpha_{i}(g, p) \sqrt{\frac{d \mu_{i}\left(g^{-1} p\right)}{d \mu_{i}(p)}} f\left(g^{-1} p\right) \quad\left(f \in \mathscr{H}_{i}, p \in X_{i}\right) .
$$

Here $\alpha_{i}(g, p)$ is a so-called 1-cocycle, i. e., a function on $G \times X_{i}$, measurable in $p \in X_{i}$ and satisfying $\left|\alpha_{i}(g, p)\right|=1$, and for $g_{1}, g_{2} \in G$,

$$
\alpha_{i}\left(g_{i} g_{2}, p\right)=\alpha_{i}\left(g_{1}, p\right) \alpha_{i}\left(g_{2}, g_{1}^{-1} p\right) \quad \text { for a. a. } p \in X_{i}
$$

Then we have $T_{i}^{\alpha_{i}}\left(g_{1} g_{2}\right)=T_{i}^{\alpha_{i}}\left(g_{1}\right) T_{i}^{\alpha_{i}}\left(g_{2}\right)$ for $g_{1}, g_{2} \in G$. Let ξ be a measurable function on X_{i} such that $|\xi(p)|=1\left(p \in X_{i}\right)$, and M_{ξ} the multiplication operator on \mathscr{H}_{i} as in $\S 1.2$, then the transformed operator $M_{\xi} T_{i}^{a_{i}}(g) M_{\xi}^{-1}$ has a similar form as $T_{i}^{\alpha_{i}}(g)$ with a different but equivalent 1-cocycle.

To have a representation of G, we need the continuity $G \ni g \mapsto T_{i}^{\alpha_{i}}(g)$. For this we have the following necessary and sufficient condition.

Lemma 2.3. Let \mathscr{A} be a subfamily of \mathscr{B}_{i} consisting of elements with finite measures. Assume that every element in \mathscr{B}_{i} with a finite measure can be approxinated by elements of the σ-ring generated by \mathscr{A}. Then the map $g \mapsto$ $T_{i}^{a_{i}}(g)$ is continuous if and only if the following conditions hold : for any fixed $A \in \mathscr{A}$, and as $g \rightarrow e$,
(a) $\int_{M}\left|\sqrt{\frac{d \mu_{i}\left(g^{-1} p\right)}{d \mu_{i}(p)}} \chi_{A}\left(g^{-1} p\right)-\chi_{A}(p)\right|^{2} d \mu_{i}(p) \rightarrow 0$,
(b) $\int_{A}\left|\alpha_{i}(g, p)-1\right|^{2} d \mu_{i}(p) \rightarrow 0$.

Furthermore the condition (b) is equivalent to the continuity in probability of the map $\mathrm{g} \rightarrow \alpha_{i}(\mathrm{~g}, \cdot)$ at $\mathrm{g}=e$, that is,
(b^{\prime}) for a fixed finite measure $\omega \simeq \mu_{i}$ on M,

$$
\forall \varepsilon>0 \text { fixed, } \quad \omega\left(\left\{p ;\left|\alpha_{i}(g, p)-1\right|>\varepsilon\right\}\right) \rightarrow 0(g \rightarrow e) .
$$

Proof. We prove here only the necessity of the conditions (a) and (b). The continuity of the representation $T_{i}^{\alpha_{i}}$ is equivalent to $\Phi(g):=\| T_{i}^{\alpha_{i}}(g) \chi_{A}$ $-\chi_{A} \|_{L^{2}\left(\mu_{i}\right)} \longrightarrow 0(g \rightarrow e)$ for any $A \in \mathscr{A}$. Taking into account $\left|\alpha_{i}\right| \equiv 1$ and $||a|-|b|| \leq|a-b|$, we obtain from $\Phi(g) \rightarrow 0$,

$$
\Psi(g):=\int_{M}\left|\sqrt{\frac{d \mu_{j}\left(g^{-1} p\right)}{d \mu_{j}(p)}} \chi_{A}\left(g^{-1} p\right)-\chi_{A}(p)\right|^{2} d \mu_{i}(p) \rightarrow 0(g \rightarrow e)
$$

From these two formulas, we have

$$
\begin{aligned}
& \int_{A}\left|\alpha_{i}(g, p)-1\right|^{2} d \mu_{i}(p)=\left\|\alpha_{i} \chi_{A}-\chi_{A}\right\|^{2} \leq \\
& \quad \leq 2\left\|T_{i}^{\alpha_{i}}(g) \chi_{A}-\chi_{A}\right\|^{2}+2\left\|T_{i}^{\alpha_{i}}(g) \chi_{A}-\alpha_{i} \chi_{A}\right\|^{2}= \\
& \quad=2 \Phi(g)^{2}+2 \Psi(g) \rightarrow 0 \quad(g \rightarrow e) .
\end{aligned}
$$

Let us now prove the equivalence of (b) and (b^{\prime}). For $(\mathrm{b}) \Rightarrow\left(\mathrm{b}^{\prime}\right)$, it is enough to approximate the density function $\frac{d \omega}{d \mu_{i}}(p)$ on M by linear combinations of $\chi_{A}, A \in \mathscr{A}$.

For $\left(\mathrm{b}^{\prime}\right) \Rightarrow(\mathrm{b})$, put $A_{\mathrm{g}, \varepsilon}:=\left\{p \in M ;\left|\alpha_{i}(\mathrm{~g}, p)-1\right|>\varepsilon\right\}$. Then

$$
\int_{A}\left|\alpha_{i}(g, p)-1\right|^{2} d \mu_{i}(p) \leq \varepsilon^{2} \mu_{i}(A)+4 \mu_{i}^{A}\left(A_{g, t}\right),
$$

where μ_{i}^{A} denotes the restriction of μ_{i} onto $A: \mu_{i}^{A}(B)=\mu_{i}(B \cap A)$. Since μ_{i}^{A} is a finite measure and $\mu_{i}^{A} \leq \omega$, we obtain $\mu_{i}^{A}\left(A_{g, \varepsilon}\right) \rightarrow 0$ from $\omega\left(A_{g, \varepsilon}\right) \rightarrow 0$. This gives (b).
Q. E. D.

Note that the condition (a) in Lemma 2.3 means the continuity of the representation in case of the trivial 1-cocycle : $\alpha_{i} \equiv 1$.

We have also the next sufficient condition.

Lemma 2.4. Let $\mathscr{A} \subset \mathscr{B}_{i}$ be as in Lemma 2. 3. Then the map $g \mapsto T_{i}^{\alpha_{i}}(g)$ is continuous if the following three functions in g are continuous at $g=e$ for any fixed $A \in \mathscr{A}$:

$$
\mu_{i}(A \ominus g A), \quad \int_{A}\left|\sqrt{\frac{d \mu_{i}\left(g^{-1} p\right)}{d \mu_{i}(p)}}-1\right| d \mu_{i}(p), \quad \int_{A}\left|\alpha_{i}(g, p)-1\right| d \mu_{i}(p)
$$

Proof. It is sufficient for us to prove the continuity at $g=e$ of the map

$$
G \ni g \mapsto<T_{i}^{\alpha_{i}}(g) \chi_{A}, \chi_{B}>(=: \Phi(g)),
$$

for any $A, B \in \mathscr{A}$. Then, the difference $|\Phi(g)-\Phi(e)|$ is majorized by the sum

$$
\mu_{i}(A \ominus g A)+\int_{B}\left|\sqrt{\frac{d \mu_{i}\left(g^{-1} p\right)}{d \mu_{i}(p)}}-1\right| d \mu_{i}(p)+\int_{B}\left|\alpha_{i}(g, p)-1\right| d \mu_{i}(p) .
$$

For a particular case, we have a simple criterion for continuity as follows.

Lemma 2.5. Assume that the indicator function $\chi_{E_{i}}$ of a set $E_{i} \in \mathscr{B}_{i}$, with $0<\mu_{i}\left(E_{i}\right)<\infty$, is cyclic under G, that is, the set of vectors $\left\{T_{i}^{\epsilon_{i}}(g) \chi_{E_{i}} \mid g \in G\right\}$ is total in \mathscr{H}_{i}. Then the map $g \mapsto T_{i}^{\alpha_{i}}(g)$ is continuous if the function

$$
<T_{i}^{\alpha_{i}}(g) \chi_{E_{i}}, \chi_{E_{i}}>x_{\varkappa_{i}}=\int_{E_{i} \cap g \varepsilon_{i}} \alpha_{i}(g, p) \sqrt{\frac{d \mu_{i}\left(g^{-1} p\right)}{d \mu_{i}(p)}} d \mu_{i}(p)
$$

is continuous in g.
Now let us examine a condition for the existence of the product $\otimes_{i \in \mathrm{~N}}^{x} T_{i}^{\alpha_{i}}(g)$ as an operator on $\otimes_{i \in \mathrm{~N}}^{x} \mathscr{H}_{i}$, where $\chi=\left(\chi_{i}\right)_{i \in \mathrm{~N}}, \chi_{i}=\left\|\chi_{E_{i}}\right\|_{\boldsymbol{x}_{i}}^{-1} \chi_{E_{i}}$, be as in §2.2. By Lemma 1.1, a necessary and sufficient condition is given for the existence of the product as

$$
\begin{equation*}
\sum_{i \in N}\left|1-<T_{i}^{\alpha_{i}}(g) \chi_{i}, \chi_{i}>\right|<\infty . \tag{2.1}
\end{equation*}
$$

The left hand side is majorized by a constant multiple of

$$
\begin{gathered}
\sum_{i \in \mathrm{~N}} \int_{E_{j}}\left|1-\alpha_{i}(\mathrm{~g}, p) \sqrt{\frac{d \mu_{i}\left(\mathrm{~g}^{-1} p\right)}{d \mu_{i}(p)}} \chi_{E_{i}}\left(g^{-1} p\right)\right| d \mu_{i}(p) \\
\leq C \sum_{i \in \mathrm{~N}}\left\|\chi_{E_{i}}-T_{i}^{\alpha_{i}}(g) \chi_{E_{i}}\right\|_{L^{2}\left(E_{i}\right)}
\end{gathered}
$$

where $C>0$ is a constant and $\|f\|_{L^{2}\left(E_{i}\right)}=\left\|f \mid E_{i}\right\|_{L^{2}\left(X_{i}, \mu_{i}\right)}$.
According to the natural isomorphisms of Hilbert spaces, $\otimes_{i \in \mathrm{~N}}^{x} \mathscr{H}_{i} \cong$ $L^{2}\left(X, \mathscr{M}_{0}(E), \nu_{0, \mu, E}\right) \cong L^{2}\left(X, \mathscr{M}(\mu, E), \nu_{\mu, E}\right)$, we can give, from another point of view, a sufficient condition for that a transformation of each $g \in G$ can be given on the Hilbert space. This is nothing but the so-called absolute continuous action of G on the product measures.

Lemma 2.6. Assume that the σ-ring $\mathscr{M}_{0}(E)$ (resp. $\left.\mathscr{M}(\mu, E)\right)$ is invariant under G, and that the measure ${ }^{8} \nu$ transformed by $g \in G$ of $\nu=\nu_{0, \mu E}\left(\right.$ resp. $\left.=\nu_{\mu, E}\right)$ is absolutely continuous. Then we have a unitary operator on the corresponding L^{2}-space \mathscr{H} as

$$
f \mapsto \alpha(g, x) \sqrt{\frac{d \nu\left(g^{-1} x\right)}{d \nu(x)}} f\left(g^{-1} x\right)=: T^{\alpha}(g) f(x) \quad(x \in X, f \in \mathscr{H}),
$$

for $g \in G$, where $\alpha(g, x)$ is a 1 -cocycle. The case where $\alpha(g, x)=\prod_{i \in \mathrm{~N}} \alpha_{i}\left(g, p_{i}\right)$ for $x=\left(p_{i}\right)_{i \in \mathbb{N}}$, which is assumed to exist ν-almost everywhere, corresponds to the case of tensor products.

To get a tensor product of representations $T_{i}^{\alpha_{i}}$ of G, we should have the continuity of the map $g \mapsto \otimes_{i \in \mathrm{~N}}^{x} T_{i}^{\alpha_{i}}(g)$, which is not automatic from that of each map $g \mapsto T_{i}^{\alpha_{i}}(g)(i \in \mathbf{N})$. From the view point of Lemma 2. 6, the continuity needed is that of the $\operatorname{map} G \ni g \mapsto T^{a}(g) f \in \mathscr{H}$ for any fixed $f \in \mathscr{H}$.

These representations will be discussed more in detail for cetain choice of G, in the next section.

§ 3. Tensor products of natural representations of diffeomorphism groups

3.1. Diffeomorphism groups and their natural representations. Let M be a non-compact, σ-compact, connected differential manifold of class $C^{(n)}, 1 \leq n \leq \infty$, and $G=\operatorname{Diff}_{0}(M)$ the group of all diffeomorphisms g on M such that the support $\operatorname{supp}(g):=\mathrm{Cl}\{p \in M \mid g p \neq p\}$ is compact. We introduce a so-called $C^{(n)}$-topology in G and consider its unitary representations. By definition, a net g_{β} in G converges to $g \in G$ if $\operatorname{supp}\left(g_{\beta}\right)$ are contained in a fixed compact set and every differential of g_{β} converges to that of g.

Denote by $\mathscr{L} \mathscr{F} \mathscr{M}(M)$ the set of all locally finite (i. e., finite on every compact subset) measures on M which are equivalent locally to a Lebesque measure with respect to the local co-ordinates.

For $i \in \mathbf{N}$, put $X_{i}=M$ and take a measure $\mu_{i} \in \mathscr{L} \mathscr{F} \mathscr{M}(M)$ on it. Then we call a natural representation of G the representation of the form $T_{i}^{a_{i}}$ on the L^{2}-space $\mathscr{H}_{i}=L^{2}\left(X_{i}, \mathscr{B}_{i}, \mu_{i}\right)$, where \mathscr{B}_{i} is the σ-algebra of all Lebesgue measurable subsets of X_{i}. Let us study when and how a tensor product of these representations can be defined.
3.2. Reference vectors for tensor product representations. To form a tensor product Hilbert space of $\mathscr{H}_{i}(i \in \mathbf{N})$, we fix a reference vector $\phi=$ $\left(\phi_{i}\right)_{i \in \mathrm{~N}}$. Note that under the replacement in $\S 1.2$ of ϕ_{i} by χ_{i}, and μ_{i} by μ_{i}^{\prime}, the representation $T_{i}^{\alpha_{i}}$ on $L^{2}\left(X_{i}, \mathscr{B}_{i}, \mu_{i}\right)$ is transformed to a similar one $T_{i}^{\alpha_{i}}$ on $L^{2}\left(X_{i}, \mathscr{B}_{i}, \mu_{i}^{\prime}\right)$ with another 1 -cocycle α_{i}^{\prime}. Therefore, taking also into account the results in §§ 2. 1-2.2, we may assume from the beginning that the reference vector is of the form $\chi=\left(\chi_{i}\right)_{i \in \mathrm{~N}}, \chi_{i}=\left\|\chi_{E_{i}}\right\|_{\boldsymbol{x}_{i}}^{-1} \chi_{E_{i}} \in \mathscr{H}_{i}=$ $L^{2}\left(X_{i}, \mathscr{B}_{i}, \mu_{i}\right)$, with a μ-unital product subset $E=\prod_{i \in \mathrm{~N}} E_{i}$ of $X=\prod_{i \in \mathrm{~N}} X_{i}$, where $\mu=\left(\mu_{i}\right)_{i \in \mathrm{~N}}$ as before.

Let us consider which conditions should be put on the μ-unital set E to get a tensor product representation of G.

We introduce the following condition on (μ, E):
(MU2) for any compact subset K of $M, \sum_{i \in N} \mu_{i}\left(K \cap E_{i}\right)<\infty$.
As in § 2, denote by $\mathscr{H}(E)$ the linear span of vectors of $\otimes_{i \in \mathrm{~N}}^{x} \mathscr{H}_{i}$ of the form

$$
\left(\otimes_{i \leq N} f_{i}\right) \otimes\left(\otimes_{i>N} \chi_{i}\right)=\text { const. }\left(\otimes_{i \leq N} f_{i}\right) \otimes\left(\otimes_{i>N} \chi_{E_{i}}\right)
$$

for some $N>0$ with $f_{i} \in \mathscr{H}_{i}=L^{2}\left(X_{i}, \mathscr{B}_{i}, \mu_{i}\right)$. Then $\mathscr{H}(E)$ is a dense subspace containing a CONS which is standard with respect to $\chi=\left(\chi_{i}\right)_{i \in \mathrm{~N}}$ or rather to $E=\prod_{i \in \mathrm{~N}} E_{i}$. Let us define, for $g \in G$, a map from $\mathscr{H}(E)$ to $\otimes_{i \in \mathrm{~N}}^{\chi} \mathscr{H}_{i}$ as

$$
\otimes_{i \in \mathrm{~N}}^{x} f_{i} \longmapsto \otimes_{i \in \mathrm{~N}}\left(T_{i}^{a_{i}}(g) f_{i}\right),
$$

where $f_{i} \in \mathscr{H}_{i}$ and $f_{i}=\chi_{i}(i \gg 1)$. Suppose that $\alpha_{i}(g, p)=1$ if $p \notin \operatorname{supp}(g)$. Then we see that, under the condition (MU2) above, the element in the right hand side is actually in $\otimes_{i \in \mathrm{~N}}^{\mathrm{N}} \mathscr{H}_{i}$, and the above formula defines a unitary operator on $\otimes_{i \in \mathrm{~N}}^{x} \mathscr{H}_{i}$, denoted by $T_{E}^{\alpha}(g)$ with $\tilde{\alpha}=\left(\alpha_{i}\right)_{i \in \mathrm{~N}}$. In fact, by Lemma 1.1, it is sufficient to check that

$$
\sum_{i \in \mathrm{~N}}\left|1-<T_{i}^{a_{i}}(g) \chi_{i}, \chi_{i}>\left|=\sum_{i \in \mathrm{~N}}\right|<\chi_{i}-T_{i}^{\alpha_{i}}(g) \chi_{i}, \chi_{i}>\right|<\infty .
$$

This is equivalent to $\sum_{i \in \mathrm{~N}}\left|<\chi_{E_{i}}-T_{i}^{a_{i}}(\mathrm{~g}) \chi_{E_{i}}, \chi_{E_{i}}>\right|<\infty$. Put $K_{g}=\operatorname{supp}(\mathrm{g})$. Then, since $\alpha_{i}(g, p)=1\left(p \notin K_{g}\right)$ by assumption, each term is evaluated by

$$
\begin{aligned}
& \int_{K_{g}}\left|\chi_{E_{i}}(p)-\alpha_{i}(g, p) \sqrt{\frac{d \mu_{j}\left(g^{-1} p\right)}{d \mu_{j}(p)}} \chi_{E_{i}}\left(g^{-1} p\right)\right| \cdot \chi_{E_{i}}(p) d \mu_{i}(p) \\
& \quad \leq \mu_{i}\left(K_{g} \cap E_{i}\right)+\left\|\sqrt{\frac{d \mu_{j}\left(g^{-1} p\right)}{d \mu_{j}(p)}} \chi_{E_{i}}\left(g^{-1} p\right) \cdot \chi_{E_{i}}(p)\right\|_{L^{2}\left(K_{g}\right.} \cdot\left\|\chi_{E_{i}}\right\|_{L^{2}\left(K_{g}\right)} \\
& \quad \leq \mu_{i}\left(K_{g} \cap E_{i}\right)+\mu_{i}\left(K_{g} \cap E_{i} \cap g^{-1} E_{i}\right)^{1 / 2} \mu_{i}\left(K_{g} \cap E_{i}\right)^{1 / 2} \leq 2 \mu_{i}\left(K_{g} \cap E_{i}\right),
\end{aligned}
$$

where $\|$ - $\|_{L^{2}\left(K_{g}\right)}$ denotes the norm in $L^{2}\left(K_{g}, \mu_{i} \mid K_{g}\right)$. Thus the condition (MU2) guarantees the convergence of the infinite sum in question.

Now we state the following
Theorem 3.1. Assume that a μ-unital subset E satisfies, together with μ $=\left(\mu_{i}\right)_{i \in \mathrm{~N}}$, the conditions (MU1)-(MU2), and that $\alpha_{i}(\mathrm{~g}, \mathrm{p})=1$ if $p \neq \operatorname{supp}(\mathrm{g})$. Then a system of unitary representations $\left(T_{i}^{\alpha_{i}}, \mathscr{H}_{i}\right), \mathscr{H}_{i}=L^{2}\left(X_{i}, \mathscr{B}_{i}, \mu_{i}\right)$, gives naturally a tensor product representation $T_{E}^{\tilde{\alpha}}$, with $\tilde{\alpha}=\left(\alpha_{i}\right)_{i \in \mathrm{~N}}$, on the tensored Hilbert space $\otimes_{i \in \mathrm{~N}}^{x} \mathscr{H}_{i}$.

By Lemma 1.1, we can prove $T_{E}^{\alpha}\left(g_{1} g_{2}\right)=T_{E}^{\alpha}\left(g_{1}\right) T_{E}^{\alpha}\left(g_{2}\right)\left(g_{1}, g_{2} \in G\right)$. To prove the strong continuity of the map $G \ni g \mapsto T_{E}^{a}(g)$, and also to write down more neatly the operator $T_{E}^{a}(g)$, we apply the following

Lemma 3. 2. Under the conditions (MU1)-(MU2), there exists a μ-unital subset $E^{\prime}=\Pi_{i \in \mathrm{~N}} E_{i}^{\prime}$ which satisfies $E^{\prime} \stackrel{\mu}{\sim} E$ and the condition
(MU2str) for any compact subset K of $M, K \cap E_{i}^{\prime}=\phi(i \gg 0)$.
Furthermore E^{\prime} can be so chosen that each E_{i}^{\prime} is a relatively compact, open subset, and moreorer is connected in case $\operatorname{dim} M \geq 2$.

Proof. Step 1. Since M is σ-compact, there exists an increasing sequence of relatively compact, open subset $U_{k}, k \in \mathbf{N}$, such that $\cup_{k \in N} U_{k}=$ M. Put $K_{k}=\mathrm{Cl}\left(U_{k}\right)$. Choóse an increasing sequence of integers $N_{k}(k \in \mathbf{N})$ such that

$$
E_{i} \backslash K_{k} \neq \phi\left(i>N_{k}\right) \text { and } \sum_{i>N_{k}} \mu_{i}\left(E_{i} \cap K_{k}\right)<2^{-k} .
$$

and put $E_{i}^{\prime}=E_{i} \backslash \cup_{k: i>N_{k}} K_{k}$. Note that $\left\{k: i>N_{k}\right\}$ is finite. We have, for any $k, E_{i}^{\prime} \cap K_{k}=\phi$ if $i>N_{k}$, and further $\phi \neq E_{i}^{\prime} \subset E_{i}$ and $E_{i} \backslash E_{i}^{\prime}=\cup_{k: i>N_{k}}\left(E_{i} \cap K_{k}\right)$. So we have $E^{\prime} \stackrel{\mu}{\sim} E$ because

$$
\begin{gathered}
\sum_{i \in \mathbb{N}} \mu_{i}\left(E_{i} \ominus E_{i}^{\prime}\right) \leq \sum_{i \in \mathbb{N}} \sum_{k: i>N_{.}} \mu_{i}\left(E_{i} \cap K_{k}\right) \\
\leq \sum_{k \in \mathbb{N}} \sum_{i>N_{.}} \mu_{i}\left(E_{i} \cap K_{k}\right) \leq \sum_{k \in \mathbb{N}} 2^{-k}=1 .
\end{gathered}
$$

Step 2. To see that the additional conditions can be put on E^{\prime}, we renormalize E^{\prime} above satisfying (MU2str). Assume, in case $\operatorname{dim} M \geq 2$, that E^{\prime} is obtained using such a sequence U_{k} that $M \backslash K_{k}$ is always connected.

Put $K_{k}=\phi$ for $k=0$, and for each $i \in \mathbf{N}$, let J_{i} be the maximum of $\{k \in \mathbf{N}$; $\left.K_{k} \cap E_{i}^{\prime}=\phi\right\}$. Put $D_{i}:=M \backslash K_{J_{i}}$, then $D_{i} \supset E_{i}^{\prime}$, and so there exists a relatively compact, open subset $E_{i}^{\prime \prime}$ of D_{i} such that $\mu_{i}\left(E_{i}^{\prime} \ominus E_{i}^{\prime \prime}\right)<2^{-i}$. In case $\operatorname{dim} M \geq 2$, since D_{i} is connected, $E_{i}^{\prime \prime}$ can be chosen as connected. Put $E^{\prime \prime}=\prod_{i \in \mathrm{~N}} E_{i}^{\prime \prime}$, then $E^{\prime \prime} \stackrel{\mu}{\sim} E$, and $E^{\prime \prime}$ satisfies the additional conditions demanded. Q. E. D.

Let us now consider a new dense subspace $\mathscr{H}\left(E^{\prime}\right)$, in place of $\mathscr{H}(E)$, for $E^{\prime} \stackrel{\mu}{\sim} E$ chosen above. Then we can define a unitary operator for any g $\in G$ on $\mathscr{H}\left(E^{\prime}\right)$ which corresponds to a tensor product of representations ($T_{i}^{\alpha_{i}}, \mathscr{H}_{i}$) as follows. For a $g \in G$, put $K_{g}=\operatorname{supp}(g)$, then by Condition (MU 2 str) there exists an integer $N_{g}>0$ such that $K_{g} \cap E_{i}^{\prime}=\phi$ for $i>N_{g}$. Then, taking $N \geq N_{g}$, we have $g p=p$ for $p \in E_{i}^{\prime}$ if $i>N$, and $T_{i}^{\alpha_{i}}(g) \chi_{E_{i}^{\prime}}=\chi_{E_{i}^{\prime}}$, and so the map

$$
\begin{equation*}
\left(\otimes_{i \leq N} f_{i}\right) \otimes\left(\otimes_{i>N} \chi_{E_{i}^{\prime}}\right) \longmapsto\left(\otimes_{i \leq N}\left(T_{i}^{\alpha_{i}}(g) f_{i}\right)\right) \otimes\left(\otimes_{i>N} \chi_{E_{i}^{\prime}}\right) \tag{3.1}
\end{equation*}
$$

is well-defined on $\mathscr{H}\left(E^{\prime}\right)$ and is unitary, i. e., isometric onto. This unitary operator on $\mathscr{H}\left(E^{\prime}\right)$ can be extended uniquely to such a one on the whole space $\otimes_{i \in N}^{x} \mathscr{H}_{i}$. Denote it by $T_{E}^{\dot{z}}(g)$, then we have naturally $T_{E}^{\dot{a}}\left(g_{1} g_{2}\right)=$ $T_{E}^{\dot{\alpha}}\left(g_{1}\right) T_{E}^{\dot{\alpha}}\left(g_{2}\right)$ for $g_{1}, g_{2} \in G$. In this way we obtain the following theorem which is a version of Theorem 3.1.

Theorem 3.3. Assume that a μ-unital subset E satisfies, together with μ, the conditions (MU1)-(MU2). Then there exists a μ-unital set $E^{\prime} \stackrel{\mu}{\sim} E$ satisfying Condition (MU2str). Assume that $\alpha_{i}(g, p)=1$ for $p \notin \operatorname{supp}(g)$. Then the formula (3.1) above defines the tensor product ($T_{E}^{\alpha}, \otimes_{i \in \mathrm{~N}}^{\alpha} \mathscr{H}_{i}$) of unitary representations $\left(T_{i}^{a_{i}}, \mathscr{H}_{i}\right), \mathscr{H}_{i}=L^{2}\left(X_{i}, \mathscr{B}_{i}, \mu_{i}\right)$.

Proof. It rests only to prove the continuity of the map $G \ni g \mapsto T_{E}^{\dot{\alpha}}(g)$ f for any fixed $f \in \otimes_{i \in \mathrm{~N}}^{x} \mathscr{H}_{i}$. However, since the operators are all unitary, it is enough to check it for any f in the dense subspace $\mathscr{H}\left(E^{\prime}\right)$. In turn, this
f is of the form $\left(\otimes_{i \leq N} f_{i}\right) \otimes\left(\otimes_{i>N} \chi_{E_{i}}\right)$. For a relatively compact open set V of G containing e, the set $U_{V}=\left\{g \in G ; K_{g} \subset V\right\}$ is an open neighbourhood of e in G. On the other hand, we can choose an integer $N_{V}>0$ such that $V \cap E_{i}^{\prime}$ $=\phi$ for $i>N_{V}$. Then, for any $g \in U_{V}$, choosing an $N>N_{V}$, the vector $T_{E^{e}}^{d}(g)$ f is expressed by the formula (3.1). This means that the continuity of the map $U_{V} \ni g \mapsto T_{E}^{a}(g) f$ comes from that of the maps $g \mapsto T_{i}^{\alpha_{i}}(g)$ for $i \leq N$.
3.3. Properties of product measures. In $\S 1$, with reference to a given μ-unital set $E=\prod_{i \in N} E_{i}$, we defined two kinds of product measures ($\left.X, \mathscr{M}_{0}(E), \nu_{0, \mu E}\right)$ and $\left(X, \mathscr{M}(\mu, E), \nu_{\mu, E}\right)$ on $X=\Pi_{i \in \mathrm{~N}} X_{i}$. We discuss about the G-quasi-invariance of these measures. The first point is the invariance under G of the σ-ring $\mathscr{M}_{0}(E)$ or $\mathscr{M}(\mu, E)$, and the second point is the existence of Radon-Nikodym derivatives.

By an example given later, we know that the condition (MU2) on (μ, E) is not sufficient to guarantee these two points affirmatively. Our primary answer coming from the results in $\S 3.2$ is the following.

Lemma 3. 4. Assume that (μ, E) satisfies Conditions (MU1)-(MU2). Let $E^{\prime}=\prod_{i \in N} E_{i}^{\prime}$ be a μ-unital set such that $E^{\prime \prime \mu} \sim E$ and that Condition (MU2str) holds. Then, the o-ring $\mathscr{M}_{0}\left(E^{\prime}\right)$ is invariant under G, and the product measure $\nu_{0, \mu, E^{\prime}}$ is G-quasi-invariant with the Radon-Nikodym derivative given for $g \in G$ by

$$
\begin{equation*}
\frac{d \nu_{0, \mu, E^{\prime}}\left(g^{-1} x\right)}{d \nu_{0, \mu E^{\prime}}(x)}=\prod_{i \in \mathrm{~N}} \frac{d \mu_{i}\left(g^{-1} p_{i}\right)}{d \mu_{i}\left(p_{i}\right)} \tag{3.2}
\end{equation*}
$$

for $x=\left(p_{i}\right)_{i \in \mathrm{~N}}$ on every set of $\mathscr{M}_{0}\left(E^{\prime}\right)$. Here the product is actually a finite product on each $F \in \mathscr{E}_{0}\left(E^{\prime}\right)$.

Proof. Note that any set $A \in \mathscr{M}_{0}\left(E^{\prime}\right)$ is covered by a countable infinite number of $E^{\prime(k)} \in \mathscr{E}_{0}\left(E^{\prime}\right): A \subset \cup_{k \in N} E^{\prime(k)}$. Then, we see that, to prove the assertion for A, it is sufficient to prove it for each $A \cap E^{\prime(k)}$ or rather for $E^{\prime(k)}$ itself. Since $E^{\prime(k)} \in \mathscr{E}_{0}\left(E^{\prime}\right)$, it has the form $E^{\prime(k)}=\left(\Pi_{i \leq N_{k}} E_{i}^{\prime(k)}\right) \times\left(\Pi_{i>N_{k}} E_{i}^{\prime}\right)$ for some $N_{k}>0$. For a $g \in G$, put $K_{g}=\operatorname{supp}(g)$. Then, by (MU2str) for E^{\prime}, there exists an $N_{g}>0$ such that $K_{g} \cap E_{i}^{\prime}=\phi$ for $i>N_{g}$. Hence, taking $N>\max \left(N_{k}\right.$, $\left.N_{g}\right)$, we have, for $i>N, g p_{i}=p_{i}\left(\forall p_{i} \in E_{i}^{\prime}\right)$ and so, on the set $E^{\prime(k)}$,

$$
\frac{d \nu_{0, \mu, E}\left(g^{-1} x\right)}{d \nu_{0, \mu_{E}}(x)}=\prod_{i \leq N} \frac{d \mu_{i}\left(g^{-1} p_{i}\right)}{d \mu_{i}\left(p_{i}\right)}=\prod_{i \in \mathbb{N}} \frac{d \mu_{i}\left(g^{-1} p_{i}\right)}{d \mu_{i}\left(p_{i}\right)}\left(x=\left(p_{i}\right)_{i \in \mathbb{N}}\right) .
$$

Thus we have the assertion.
Q. E. D.

In general, assuming Condition (MU1) apriori, we do not have the G-invariance of the σ-ring $\mathscr{M}_{0}(E)$ or $\mathscr{M}(\mu, E)$ by the condition (MU2) only. To show this we give the following example.

Example 3.5. Let $M=\mathbf{R}$, and put $E_{i} \subset M$ as $E_{i}=\left(0, a_{i}\right) \cup(i+1, i+2)$ with $0<a_{i}<1, a_{i} \downarrow 0$. Measures μ_{i} are given as $d \mu_{i}(u)=\rho_{i}(u) d u$ with positive functions ρ_{i} satisfying

$$
\sum_{i \in \mathrm{~N}} \int_{0}^{a_{i}} \rho_{i}(u) d u<\infty, \rho_{i}(u) \equiv \frac{1}{a_{i}} \text { on }[1,2], \rho_{i}(u) \equiv 1 \text { on }[i+1, i+2] .
$$

Take an element $g \in G$ such that

$$
g(u)=u+1 \text { on }(0,1), \text { and } g(u)=u \text { for } u \gg 0 .
$$

As is easily seen, $E=\prod_{i \in \mathrm{~N}} E_{i}$ is a μ-unital subset of $X=\prod_{i \in \mathrm{~N}} X_{i}$ with $X_{i}=$ M, and it satisfies Condition (MU2).

Consider the set $g E:=\prod_{i \in \mathrm{~N}} g E_{i}$. Then, for $i \gg 0, g E_{i}=\left(1,1+a_{i}\right) \cup(i+1, i$ $+2)$ and so $\mu_{i}\left(g E_{i}\right)=2$ and even $\mu_{i}\left(g E_{i} \cap[1,2]\right)=1$. This means that the set $g E$ is no longer μ-unital nor does it satisfy Condition (MU2) for a compact $K=[1,2]$. Furthermore we see that the set $g E$ can not be covered by a countable infinite number of μ-unital sets so that it does not belong even to $\mathscr{M}(\mu, E) \supset \mathscr{M}_{0}(E)$.

Thus, neither $\mathscr{M}_{0}(E)$ nor $\mathscr{M}(\mu, E)$ is G-invariant.
Furthermore, put $E_{i}^{\prime}=(i+1, i+2)$ and $E^{\prime}=\prod_{i \in \mathrm{~N}} E_{i}^{\prime} . \quad$ Then $E^{\prime} \stackrel{\mu}{\sim} E$ and Condition (MU2str) holds for E^{\prime}.
3.4. Another expression of tensor product representations. Assume Conditions (MU1)-(MU2) for (μ, E). Then by Lemma 3.2 there exists a μ-unital set $E^{\prime}=\prod_{i \in \mathrm{~N}} E_{i}^{\prime} \stackrel{\mu}{\sim} E$ which satisfies the condition (MU2 str). As is proved in Lemma 3.4, the σ-ring $\mathscr{M}_{0}\left(E^{\prime}\right)$ is G-invariant and a product measure $\nu_{0, \mu E^{\prime}}$ is G-quasi-invariant.

We express, in another form by means of this measure, the tensor product representation $\otimes_{i \in \mathrm{~N}}^{x}\left(T_{i}^{a_{i}}, \mathscr{H}_{i}\right)$ of G defined with reference to (μ, E), where $\mathscr{H}_{i}=L^{2}\left(X_{i}, \mathscr{B}_{i}, \mu_{i}\right)$ and $\chi=\left(\chi_{i}\right)_{i \in N}$ be as before.

Lemma 3.6. A 1-cocycle $\alpha(g, x)$ on X can be defined by the product of 1cocycles $\alpha_{i}(i \in \mathbf{N})$, if $\alpha_{i}\left(g, p_{i}\right)=1$ for $p_{i} \notin \operatorname{supp}(g)$. The product converges $\nu_{0, \mu} E^{-}$-almost-everywhere on every subset in $\mathscr{M}_{0}\left(E^{\prime}\right)$ in such a way that the right hand side of the following formula is actually a finite product on each $F \in$ $\mathscr{E}_{0}\left(E^{\prime}\right)$ for each fixed $g \in G$:

$$
\begin{equation*}
\alpha(g, x):=\prod_{i \in \mathbb{N}} \alpha_{i}\left(g, p_{i}\right) \quad\left(g \in G, x=\left(p_{i}\right)_{i \in \mathbb{N}}\right) . \tag{3.3}
\end{equation*}
$$

Proof. Take a compact subset K of M which contains supp(g) in its interior. Then, by (MU2str) for $E^{\prime}, E_{i}^{\prime} \cap K=\phi$ for sufficiently large i. For any fixed $F=\prod_{i \in N} F_{i} \in \mathscr{E}_{0}\left(E^{\prime}\right)$, we have $F_{i}=E_{i}^{\prime}$ for sufficiently large i, and accordingly $F_{i} \cap K=\phi$, and so, for an $x=\left(p_{i}\right)_{i \in \mathrm{~N}} \in F$,

$$
\alpha_{i}\left(g, p_{i}\right)=1(i \gg 0) .
$$

This means that the product in the lemma is actually a finite product on F.
Moreover every set in $\mathscr{M}_{0}\left(E^{\prime}\right)$ is covered by a countable number of sets in $\mathscr{E}_{0}\left(E^{\prime}\right)$. This proves completely the assertion of the lemma. Q. E. D.

Using the Radon-Nikodym derivative in (3.2) and the 1-cocycle α in (3.3), we can define a unitary representation T_{E}^{α} of G on the Hilbert space $L^{2}\left(X, \mathscr{M}_{0}\left(E^{\prime}\right), \nu_{0, \mu, E^{\prime}}\right)$ as

$$
\begin{equation*}
T_{E^{\prime}}^{a}(g) f(x)=\alpha(g, x) \sqrt{\frac{d \nu_{0, \mu E^{\prime}}\left(g^{-1} x\right)}{d \nu_{0, \mu E^{E}}(x)}} f\left(g^{-1} x\right), \tag{3.4}
\end{equation*}
$$

where $g \in G$, f is an $\mathscr{M}_{0}\left(E^{\prime}\right)$-measurable L^{2}-function, and $x \in \operatorname{supp}^{\prime}(f):=\{x \in$ $X ; f(x) \neq 0\}$.

This gives another expression of the tensor product representation T_{E}^{α} in $\S 3.2$ as stated in the following theorem.

Theorem 3.7. Let $E=\prod_{i \in \mathrm{~N}} E_{i}$ be a unital subset of $X=\prod_{i \in \mathrm{~N}} X_{i}, X_{i}=M$, which satisfies the conditions (MU1)-(MU2). Let $\chi=\left(\chi_{i}\right)_{i \in \mathrm{~N}}, \chi_{i}=\left\|\chi_{E_{i}}\right\|_{\boldsymbol{x}_{i}}^{1} \chi_{E_{i}}$, and take a μ-unital $E^{\prime} \stackrel{\mu}{\sim} E$ satisfying the condition (MU2str). Through the natural isomorphism of the tensor product Hilbert space $\otimes_{i \in \mathrm{~N}}^{x} \mathscr{H}_{i}, \mathscr{H}_{i}=L^{2}\left(X_{i}\right.$, $\left.\mathscr{B}_{i}, \mu_{i}\right)$, with the L^{2}-space $L^{2}\left(X, \mathscr{M}(\mu, E), \nu_{\mu, E}\right) \cong L^{2}\left(X, \mathscr{M}_{0}\left(E^{\prime}\right), \nu_{0, \mu, E}\right)$, we have a unitary equivalence of representations T_{E}^{α} with $T_{E^{\prime}}^{\alpha}$ of the group $G=\operatorname{Diff}_{0}(M)$.
3.5. Conditions for G-quasi-invariance of $\nu_{\mu, E}$ on $\mathscr{M}(\mu, E)$. As is shown by Example 3.5, we need some condition to have the G-invariance of the σ-ring $\mathscr{M}(\mu, E)$ and also the G-quasi-invariance of the product measure $\nu_{\mu, E}$ on it. As a reasonable sufficient condition we propose the following one on $\mu=\left(\mu_{\mathrm{i}}\right)_{i \in \mathrm{~N}}$:
(MK) For any $g \in G$ and any compact $K \subset M$,

$$
\sum_{i \in \mathbb{N}} \mu_{i}\left(A_{i} \cap K\right)<\infty \text { for } A_{i} \in \mathscr{B}(M), \text { implies } \sum_{i \in \mathbb{N}} \mu_{i}\left(g\left(A_{i} \cap K\right)\right)<\infty,
$$

where $\mathscr{B}(M)$ denotes the σ-algebra of all Borel subsets of M.
Under this condition we can prove the desired results as shown below. For $g \in G$ and $x=\left(p_{i}\right)_{i \in \mathrm{~N}} \in X$, we put $g x=\left(g p_{i}\right)_{i \in \mathrm{~N}}$, and so $g F=\prod_{i \in \mathrm{~N}} g F_{i}$ for F $=\prod_{i \in \mathrm{~N}} F_{i}, F_{i} \subset M$.

Lemma 3.8. Assume (MU1)-(MU2) for (μ, E), and (MK) for μ. Then the σ-ring $\mathscr{M}(\mu, E)$ is G-invariant.

Proof. It is sufficient to prove that, for any $F=\prod_{i \in \mathrm{~N}} F_{i} \in \mathscr{E}(\mu, E)$, we have $g F \in \mathscr{E}(\mu, E)$. Put $K_{g}=\operatorname{supp}(g)$. To prove that $g F$ is again μ-unital, it is sufficient to remark that $g F_{i}=\left(F_{i} \backslash K_{g}\right) \sqcup g\left(F_{i} \cap K_{g}\right)$, and therefore

$$
\left|1-\mu_{i}\left(g F_{i}\right)\right| \leq\left|1-\mu_{i}\left(F_{i}\right)\right|+\mu_{i}\left(F_{i} \cap K_{g}\right)+\mu_{i}\left(g\left(F_{i} \cap K_{g}\right)\right) .
$$

To prove $g F \stackrel{\mu}{\sim} E$, we note that $g F_{i} \ominus E_{i} \subset g\left(F_{i} \cap K_{g}\right) \cup\left(E_{i} \cap K_{g}\right) \cup\left(F_{i} \ominus E_{i}\right)$. Then this gives the assertion.

Lemma 3.9. Assume the conditions (MU1)-(MU2) for (μ, E) and (MK) for μ. Then, for any μ-unital set $F=\prod_{i \in \mathrm{~N}} F_{i} \stackrel{\mu}{\sim} E$, i.e., $F \in \mathscr{E}(\mu, E)$, the products

$$
\prod_{1 \leq i \leq N}\left(\frac{d \mu_{i}\left(g p_{i}\right)}{d \mu_{i}\left(p_{i}\right)}\right)^{1 / p} \text { for } x=\left(p_{i}\right)_{i \in \mathbb{N}} \in F
$$

converges on F in the space $L^{p}\left(F, \nu_{\mu, E} \mid F\right)$ as $N \rightarrow \infty$, for any $p, 1 \leq p<\infty$.
Proof. We see in [19, Chap. 2] that the convergence for any $p, 1 \leq p \leq$ ∞ is equivalent to the one for some p. So we prove it here for $p=2$. Put for $N<N^{\prime}$,

$$
I_{N, N^{\prime}}=\int_{\Pi_{i} \leq N^{F_{i}}}\left|\prod_{i \leq N} \sqrt{\frac{d \mu_{i}\left(g p_{i}\right)}{d \mu_{i}\left(p_{i}\right)}}-\prod_{i \leq N^{N}} \sqrt{\frac{d \mu_{i}\left(g p_{i}\right)}{d \mu_{i}\left(p_{i}\right)}}\right|^{2} \prod_{i \leq N^{\prime}} d \mu_{i}\left(p_{i}\right) .
$$

Then, we should prove $I_{N, N^{\prime}} \rightarrow 0$ as $N<N^{\prime} \rightarrow \infty$. On the other hand, $I_{N, N^{\prime}}=$ $\Pi_{i \leq N} \mu_{i}\left(g F_{i}\right) \times J_{N, N^{N}}$ with

$$
J_{N, N^{N}}=\prod_{N<i \leq N^{\prime}} \mu_{i}\left(F_{i}\right)+\prod_{N<i \leq N^{\prime}} \mu_{i}\left(g F_{i}\right)-2 \prod_{N<i \leq N^{\prime}} \int_{F_{i}} \sqrt{\frac{d \mu_{i}\left(g p_{i}\right)}{d \mu_{i}\left(p_{i}\right)}} d \mu_{i}\left(p_{i}\right) .
$$

Since the products $\Pi_{i \in \mathrm{~N}} \mu_{i}\left(F_{i}\right)$ and $\prod_{i \in \mathrm{~N}} \mu_{i}\left(g F_{i}\right)$ are both convergent, $I_{N, N^{N}} \rightarrow$ 0 is equivalent to

$$
\sum_{i \in \mathrm{~N}}\left|1-\int_{F_{i}} \sqrt{\frac{d \mu_{i}\left(g p_{i}\right)}{d \mu_{i}\left(p_{i}\right)}} d \mu_{i}\left(p_{i}\right)\right|<\infty .
$$

Moreover, since $\sum_{i \in \mathrm{~N}}\left|\mu_{i}\left(F_{i}\right)-1\right|$ and $\sum_{i \in \mathrm{~N}}\left|\mu_{i}\left(g F_{i}\right)-1\right|$ are convergent, this is equivalent to

$$
\sum_{i \in \mathbb{N}} \int_{F_{i}}\left|1-\sqrt{\frac{d \mu_{i}\left(g p_{i}\right)}{d \mu_{i}\left(p_{i}\right)}}\right|^{2} d \mu_{i}\left(p_{i}\right)<\infty .
$$

A sufficient condition for the above is given by

$$
\sum_{i \in \mathrm{~N}} \int_{F_{i}}\left|1-\frac{d \mu_{i}\left(g p_{i}\right)}{d \mu_{i}\left(p_{i}\right)}\right| d \mu_{i}\left(p_{i}\right)<\infty .
$$

Now put

$$
A_{i}=\left\{p_{i} \in X_{i} ; \frac{d \mu_{i}\left(g p_{i}\right)}{d \mu_{i}\left(p_{i}\right)}>1\right\}, B_{i}=\left\{p_{i} \in X_{i} ; \frac{d \mu_{i}\left(g p_{i}\right)}{d \mu_{i}\left(p_{i}\right)}<1\right\} .
$$

Then, $A_{i} \sqcup B_{i} \subset K_{g}$, and the above sum is evaluated as

$$
\begin{aligned}
& =\sum_{i \in \mathrm{~N}}\left\{\mu_{i}\left(g\left(F_{i} \cap A_{i}\right)\right)-\mu_{i}\left(F_{i} \cap A_{i}\right)+\mu_{i}\left(F_{i} \cap B_{i}\right)-\mu_{i}\left(g\left(F_{i} \cap B_{i}\right)\right)\right\} \\
& \leq \sum_{i \in \mathrm{~N}}\left\{\mu_{i}\left(g\left(F_{i} \cap K_{8}\right)\right)+\mu_{i}\left(F_{i} \cap K_{\mathrm{g}}\right)\right\}<\infty .
\end{aligned}
$$

This proves our assertion.
Q. E. D.

The p-th power of the limit as $N \rightarrow \infty$ of the products in Lemma 3.9 gives the same function for any p, and it gives the Jacobian of the product measures (cf. [19], or [7] for $p=2$).

Theorem 3.10. Let E be a μ-unital subset of X, and assume the conditions (MU1)-(MU2) for (μ, E), and (MK) for μ. Then the σ-ring $\mathscr{M}(\mu, E)$ is G-invariant, and the product measure $\nu_{\mu E}$ on it is G-quasi-invariant with the Jacobian given on each $F \in \mathscr{E}(\mu, E)$ as

$$
\frac{d \nu_{\mu, E}(g x)}{d \nu_{\mu, E}(x)}=\prod_{i \in \mathbb{N}} \frac{d \mu_{i}\left(g p_{i}\right)}{d \mu_{i}\left(p_{i}\right)} \quad \text { for } x=\left(p_{i}\right)_{i \in \mathbb{N}} \in F \subset X,
$$

where the infinite product converges in $L^{1}\left(F, \nu_{\mu \varepsilon} \mid F\right)$.
In the above case, the tensor product representation ($T_{E}^{\alpha}, \otimes_{i \in N}^{x} \mathscr{H}_{i}$) with $\mathscr{H}_{i}=L^{2}\left(X_{i}, \mathscr{B}_{i}, d \mu_{i}\right)$, is realized with a natural expression for representation operators on the L^{2}-space $L^{2}\left(X, \mathscr{M}(\mu, E), \nu_{\mu, E}\right)$, at least when all the 1 cocycles α_{i} are trivial.
3.6. Space of ordered configurations and Condition (MU2). A series $x=\left(p_{i}\right)_{i \in N}$ of mutually different points in M is called an ordered configuration if it has no convergent subsequence, i. e., the set of points $\left\{p_{i}\right.$; $i \in \mathbf{N}\}$ has no accumulation points in M. The set of all ordered configurations of points in M is denoted by \tilde{X}. We say that a measure (ν, \mathscr{B}) on the product space X is supported by \tilde{X} if, for any $A \in \mathscr{B}$,

$$
A \cap \tilde{X} \in \mathscr{B} \quad \text { and } \quad \nu(A)=\nu(A \cap \tilde{X}) .
$$

Then we have the following
Theorem 3.11. Let $\mu=\left(\mu_{i}\right)_{i \in \mathrm{~N}}$ be a system of measures on $X_{i}=M(i \in \mathbf{N})$ taken from $\mathscr{L} \mathscr{F} \mathscr{M}(M)$, and E a μ-unital subset of $X=\prod_{i \in \mathbb{N}} X_{i}$, so that (MU1) holds for (μ, E). Let $\nu_{0, \mu E}$ and $\nu_{\mu E}$ be the product measures on the σ-rings $\mathscr{M}_{0}(E)$ and $\mathscr{M}(\mu, E)$ respectively. Then they are supported by the space \tilde{X} of
ordered configurations if and only if the condition (MU2) holds for (μ, E).
Proof. For $\nu=\nu_{0, \mu_{E}}\left(\right.$ resp. $\left.\nu_{\mu, E}\right)$, it is supported by \tilde{X} if and only if for any $F=\prod_{i \in \mathbb{N}} F_{i}$ in $\mathscr{E}_{0}(E)($ resp. $\mathscr{E}(\mu, E))$, we have $F \cap \tilde{X} \in \mathscr{M}_{0}(E)($ resp. $\mathscr{M}(\mu, E))$ and $\nu(F \cap \tilde{X})=\nu(F)$.

Now take an increasing sequence $K_{k}, k \in \mathbf{N}$, of compact subsets of M such that $\cup_{k \in N} K_{k}=M$. Then the intersection $F \cap \tilde{X}$ is expressed as follows. Put $F_{n, k}=\left(\Pi_{i \leq n} F_{i}\right) \times\left(\prod_{i>n}\left(F_{i} \backslash K_{k}\right)\right)$, then $\cup_{n \in \mathrm{~N}} F_{n, k}$ is the set of points in F which has no accumulation points in $K_{k} \subset M$ and so

$$
F \cap \tilde{X}=\bigcap_{k \in \mathbb{N}} \bigcup_{n \in \mathbb{N}} F_{n, k} .
$$

On the other hand, since $\nu(F)<\infty$, we have

$$
\nu(F \cap \tilde{X})=\lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty} \nu\left(F_{n, k}\right)=\lim _{k \rightarrow \infty} \lim _{n \rightarrow \infty}\left(\prod_{i \leq n} \mu_{i}\left(F_{i}\right)\right) \cdot\left(\prod_{i>n} \mu_{i}\left(F_{i} \backslash K_{k}\right)\right) .
$$

This limit is positive if and only if

$$
\sum_{i \in \mathrm{~N}} \mu_{i}\left(F_{i} \cap K_{k}\right)<\infty \quad \text { for any } k \geq 1,
$$

and this condition is equivalent to (MU2).
In this case the limit is equal to $\Pi_{i \in \mathrm{~N}} \mu_{i}\left(F_{i}\right)=\nu(F)$. Q. E. D.
For the space of (non-ordered) configurations of points and quasiinvariant measures on it, we cite here the works [16] and [17].

§ 4. Permutations as intertwining operators for an infinite tensor product representation of G

4.1. Algebra of intertwining operators. Let T be a unitary representation on a Hilbert space $H(T)$ of a certain group G. A weakly closed subalgebra

$$
T(G)^{\prime}=(T(G))^{\prime}=\{L \in \mathscr{B}(H(T)) ; L \circ T(g)=T(g) \circ L(g \in G)\}
$$

of the algebra $\mathscr{B}(H(T))$ of all bounded linear operators on $H(T)$ is called the algebra of intertwining operators for T, and is essential to analyze the structure of the representation T. In fact, we may say that it governs irreducible decompositions of T. Actually, in case the algebra of intertwining operators $T(G)^{\prime}$ is of type I , a spatial irreducible decomposition of this algebra gives essentially an irreducible decomposition of the representation T of G.

Denote by $\mathscr{U}(H(T))$ the set of all unitary operators on $H(T)$. Then the algebra $T(G)^{\prime}$ is generated weakly by the group $\mathscr{I}(T):=T(G)^{\prime} \cap \mathscr{U}(H$ (T)). Therefore we are interested in determining explicitly a certain
subgroup of unitary intertwining operators which is weakly dense in the above group.

In our present case, we take as G the group $\operatorname{Diff}_{0}(M)$ and as T one of the tensor product representations T_{E}^{α} or their equivalents T_{E}^{α} in $\S 3$. Then there appear the infinite symmetric group \mathfrak{S}_{∞} or related groups of permutations which act as unitary intertwining operators on the space of infinite tensor product $H(T) \cong \otimes_{j \in \mathrm{~N}}^{\chi} \mathscr{H}_{j}, \mathscr{H}_{j}=L^{2}\left(X_{j}, \mathscr{B}_{j}, \mu_{j}\right)$, through 'permutations' of components. The study of structure of these permutation groups is the subject of this section.

The denseness in the group $\mathscr{I}(T)$ of the set of intertwining operators corresponding to such a permutation group will be treated in the next section.
4. 2. Representations of $G=\operatorname{Diff}_{0}(M)$. For the group G, we take one of the tensor products of its natural representaions. As in §3.2, we assume that the conditions (MU1)-(MU2) hold for (μ, E), and consider the tensor product T_{E}^{α} of $\left(T_{j}^{\alpha_{j}}, L^{2}\left(X_{j}, \mathscr{B}_{j}, \mu_{j}\right)\right), j \in \mathbf{N}$, with respect to a reference vector $\chi=\left(\chi_{j}\right)_{j \in \mathrm{~N}}$. Here

$$
\begin{equation*}
T_{j}^{q_{j}}(g) h(p)=\alpha_{j}(g, p) \sqrt{\frac{d \mu_{j}\left(g^{-1} p\right)}{d \mu_{j}(p)}} h\left(g^{-1} p\right) \quad(p \in M, g \in G), \tag{4.1}
\end{equation*}
$$

with a 1-cocycle $\alpha_{j},\left|\alpha_{j}(g, p)\right|=1$. For simplicity, we choose, in this and the next subsections, a realization of the tensor product by means of product measures, given in §3.4. So that $T=T_{E^{\prime}}^{\alpha}$ on the space $H(T)=L^{2}(X$, $\left.\mathscr{M}_{0}\left(E^{\prime}\right), \nu_{Q \mu E}\right)$:

$$
T_{E^{\prime}}^{\alpha}(g) f(x)=\alpha(g, x) \sqrt{\frac{d \nu_{0, \mu, E^{\prime}}\left(g^{-1} x\right)}{d \nu_{0, \mu, E^{\prime}}(x)}} f\left(g^{-1} x\right) .
$$

Here the 1 -cocycle α is defined in terms of $\alpha_{j}(j \in \mathbf{N})$ by the product

$$
\alpha(g, x)=\prod_{j \in \mathbb{N}} \alpha_{j}\left(g, x_{j}\right) \quad \text { for } x=\left(x_{j}\right)_{j \in \mathbb{N}}
$$

which is essentially a finite product on every subset $F=\prod_{j \in \mathrm{~N}} F_{j}$ in $\mathscr{E}_{0}\left(E^{\prime}\right)$, and so converges $\nu_{0, \mu, E^{-}}$-almost every where on each $A \in \mathscr{M}_{0}\left(E^{\prime}\right)$ (cf. Theorem 3.7).

With a sufficient generality, we study from now on the case where each α_{j} is given as

$$
\begin{equation*}
\alpha_{j}\left(g, x_{j}\right)=\frac{\gamma_{j}\left(g^{-1} x_{j}\right)}{\gamma_{j}\left(x_{j}\right)}\left(\frac{d \mu_{j}\left(g^{-1} x_{j}\right)}{d \mu_{j}\left(x_{j}\right)}\right)^{i s_{j}} \tag{4.2}
\end{equation*}
$$

with $i=\sqrt{-1}, s_{j} \in \mathbf{R}$, and $\gamma_{j}\left(x_{j}\right)$ a measurable function in $x_{j} \in X_{j}=M$ such that
$\left|\gamma_{j}\right|=1$. Put, for $F=\prod_{j \in \mathrm{~N}} F_{j} \in \mathscr{E}_{0}\left(E^{\prime}\right)$,

$$
\gamma(x)=\prod_{j \in \mathbb{N}} \gamma_{j}\left(x_{j}\right) \quad \text { for } x=\left(x_{j}\right)_{j \in \mathbb{N}} \in F,
$$

which converges $\nu_{0, \mu E^{-}}$-almost everywhere as above. Then, we have the following expression of α :

$$
\alpha(g, x)=\frac{\gamma\left(g^{-1} x\right)}{\gamma(x)} \prod_{j \in \mathrm{~N}}\left(\frac{d \mu_{j}\left(g^{-1} x_{j}\right)}{d \mu_{j}\left(x_{j}\right)}\right)^{s_{j}} \quad \text { for } x \in F .
$$

Here the first fractional part containing γ is a non-essential part.
Now choose all different values from $\left\{s_{j} ; j \in \mathbf{N}\right\}$ and let them be $s(k)$, $k \in \mathbf{K}$, and put $\mathbf{N}(k)=\left\{j \in \mathbf{N} ; s_{j}=s(k)\right\}$ for $k \in \mathbf{K}$. Then the above expression for α gives us

$$
\begin{equation*}
\alpha(g, x)=\frac{\gamma\left(g^{-1} x\right)}{\gamma(x)} \prod_{k \in \mathbf{K}}\left(\prod_{j \in \mathbb{N}(k)} \frac{d \mu_{j}\left(g^{-1} x_{j}\right)}{d \mu_{j}\left(x_{j}\right)}\right)^{i s(k)} \quad \text { for } x \in F . \tag{4.3}
\end{equation*}
$$

4.3. Infinite symmetric group \mathfrak{S}_{∞} and commuting relations. Let \Im_{∞} be the group of all finite permutations on the set \mathbf{N} of natural numbers. For a permutation σ on \mathbf{N}, put $\operatorname{supp}(\sigma)=\{k \in \mathbf{N} ; \sigma(k) \neq k\}$, then by definition σ is called finite if $\operatorname{supp}(\sigma)$ is finite. We define an action of \mathfrak{S}_{∞} or its subgroup S on the space $H(T)$ as follows. For $\sigma \in \mathfrak{S}_{\infty}$ and $x=\left(x_{j}\right)_{j \in \mathrm{~N}}$ $\in X$, put $x \sigma=\left(x_{\sigma(j)}\right)_{j \in \mathrm{~N}}$. Recalling the isomorphism $H(T) \cong \otimes_{j \in \mathrm{~N}}^{x} \mathscr{H}_{j}$ in Theorem 3.3, we put for $\sigma \in S \subset \mathfrak{S}_{\infty}$

$$
\begin{equation*}
R(\sigma) f(x)=\beta(\sigma, x) \sqrt{\frac{d \nu_{0, \mu, E^{\prime}}(x \sigma)}{d \nu_{0, \mu}(x)}} f(x \sigma) \quad\left(x \sigma \in \operatorname{supp}^{\prime}(f)\right), \tag{4.4}
\end{equation*}
$$

where the existence of a 1-cocycle β for a subgroup $S \subset \mathfrak{S}_{\infty}$ is assumed :

$$
\beta\left(\sigma_{1} \sigma_{2}, x\right)=\beta\left(\sigma_{1}, x\right) \beta\left(\sigma_{2}, x \sigma_{1}\right) \quad\left(\sigma_{1}, \sigma_{2} \in S, x \in X\right)
$$

The commuting relation

$$
\begin{equation*}
R(\sigma) \circ T_{E}^{\alpha}(g)=T_{E}^{\alpha}(g) \circ R(\sigma) \tag{4.5}
\end{equation*}
$$

is equivalent to the following relation between 1 -cocycles: for any $A \in$ $\boldsymbol{M}_{0}\left(E^{\prime}\right)$,

$$
\begin{align*}
& \beta(\sigma, x) \cdot \alpha(g, x \sigma)=\alpha(g, x) \cdot \beta\left(\sigma, g^{-1} x\right) \tag{4.6}\\
& \text { for } \nu_{0, \mu, E^{\prime}} \text {-almost all } x \in A .
\end{align*}
$$

Assume that σ satisfies $s_{\sigma(j)}=s_{j}(j \in \mathbf{N})$, or equivalently, $\sigma \mathbf{N}(k)=\mathbf{N}(k)(k$ $\in \mathbf{K}$). Then, putting

$$
\begin{equation*}
\beta(\sigma, x)=\frac{\gamma(x \sigma)}{\gamma(x)} \prod_{k \in \mathbb{N}}\left(\prod_{j \in \mathbb{N}(k)} \frac{d \mu_{0}-1,(j)\left(x_{j}\right)}{d \mu_{j}\left(x_{j}\right)}\right)^{i s(k)}, \tag{4.7}
\end{equation*}
$$

we get a 1-cocycle β for which the commuting relation (4.5) holds.
The subgroup $\mathcal{S}_{\infty}\left(\left(s_{j}\right)_{j \in \mathbb{N}}\right)$ of Θ_{∞} consisting of all σ such that $s_{o(j)}=s_{j}$ $(\forall j \in \mathbf{N})$, is equal to the restricted direct product $\Pi_{k \in \mathbf{K}}^{\prime} \Im_{\mathbf{N}(k)}$, where, for a subset J of $\mathbf{N}, \mathfrak{\Im}_{J}=\left\{\sigma \in \mathfrak{S}_{\infty} ; \operatorname{supp}(\sigma) \subset J\right\}$.

The above results give us the following

Lemma 4.1. The group of unitary intertwining operators $\mathscr{I}\left(T_{E}^{\alpha}\right)$ for the representation T_{E}^{a} contains a subgroup $\left\{R(\sigma) ; \sigma \in \mathfrak{S}_{\infty}(s)\right\}$, $s=\left(s_{j}\right)_{j \in \mathbb{N}}$, or in another expression, $T_{E^{\prime}}^{\alpha}(G)^{\prime} \supset R\left(\mathcal{G}_{\infty}(s)\right)^{\prime \prime}$.

4.4. More general permutations acting as intertwining operators.

 Hereafter it is convenient for us to take the realization of T originally given as infinite tensor product of $T_{j}^{\alpha_{j}}$ s : $T=T_{E}^{\alpha}=\otimes_{j \in \mathrm{~N}} T_{j}^{\alpha_{j}}$ on $H(T)=\otimes_{\text {j }}^{\alpha} \mathcal{N}^{\chi} \mathscr{H}_{j}$ with $\mathscr{H}_{j}=L^{2}\left(X_{j}, \mathscr{B}_{j}, \mu_{j}\right)$. We may and do assume that $\gamma_{j}=1$ for $j \in \mathbf{N}$.Now take a permutation σ on $\mathbf{N}: \sigma \in \tilde{\Xi}_{\infty}$, and let us examine if one can define an intertwining operator $R(\sigma)$ on $H(T)$ through permutation of components by the formula equivalent to (4.4). The commuting relation (4.5) of $R(\sigma)$ with the representation $T_{E^{\prime}}^{\alpha}$ gave us the expression (4.7) of the 1 -cocycle β. So, in particular, we have the invariance $s_{\sigma^{-1}(j)}=s_{j}(j \in \mathbf{N})$. We denote by $\tilde{\mathfrak{S}}_{\infty}(s), s=\left(s_{j}\right)_{j \in \mathbb{N}}$, the subgroup of $\tilde{\mathfrak{S}}_{\infty}$ consisting of all such σ 's.

Our problem here is to examine if a bounded intertwining operator can be given canonically through the following formula. Take a decomposable element $f=\otimes_{j \in \mathrm{~N}} f_{j}$ such that, for $j \gg 0, f_{j}=\chi_{j}=\left\|\chi_{E_{j}}\right\|_{\varkappa_{j}}^{-1} \chi_{E_{j}}$, in $H(T)=\otimes_{j \in \mathrm{~N}}^{\chi} \mathscr{H}_{j}$ with $\chi=\left(\chi_{j}\right)_{j \in \mathrm{~N}}$. Then it should be mapped to a decomposable $h=\otimes_{j \in \mathrm{~N}} h_{j}$ with

$$
h_{j}\left(x_{j}\right)=\left(\frac{d \mu_{o}-1(j)}{d \mu_{j}}\left(x_{j}\right)\right)^{t+i s_{j}} f_{o-1}{ }^{-1}\left(x_{j}\right)
$$

We discuss as in §1.3. The decomposable element h belongs to $H(T)$ $=\otimes_{j \in \mathrm{~N}}^{\chi} \mathscr{H}_{j}$ if and only if $\left(h_{j}\right)_{j \in \mathrm{~N}}$ is cofinal with the reference vector $\chi=$ $\left(\chi_{i}\right)_{j \in \mathrm{~N}}$, that is,

$$
\begin{equation*}
\sum_{j \in N}\left|1-<h_{j}, \chi_{j}>_{\varkappa_{j}}\right|<\infty . \tag{4.8}
\end{equation*}
$$

Since E is μ-unital, we have $\sum_{j \in \mathrm{~N}}\left|1-\left\|\chi_{E_{j}}\right\|_{\boldsymbol{w}_{j}}^{2}\right|<\infty$, and so the above condition is equivalent to

$$
\begin{equation*}
\sum_{j \in \mathbb{N}}\left|1-<h_{j}^{\prime}, \chi_{E_{j}}>_{\varkappa_{j}}\right|<\infty, \tag{4.9}
\end{equation*}
$$

where, since $s_{o^{-1}(j)}=s_{j}$,

$$
h_{j}^{\prime}\left(x_{j}\right)=\left(\frac{d \mu_{o}-11_{j)}}{d \mu_{j}}\left(x_{j}\right)\right)^{t+i i_{j}} \chi_{E_{o}-1(j)}\left(x_{j}\right) .
$$

Furthermore it is also equivalent to the following condition :

$$
\begin{equation*}
\sum_{j \in \mathbb{N}}| |\left|\chi_{E_{j}} \|_{\varkappa_{j}}^{2}-<h_{j}^{\prime}, \chi_{E_{j}}>_{\varkappa_{j}}\right|=\sum_{j \in \mathbb{N}}\left|<\chi_{E_{j}}-h_{j}^{\prime}, \chi_{E_{j}}>_{\varkappa_{j}}\right|<\infty, \tag{4.10}
\end{equation*}
$$

Thus we have next
Lemma 4. 2. A permutation $\sigma \in \tilde{\Xi}_{\infty}(s)$ gives a unitary operator $R(\sigma)$ on $H(T)$ by the formula stated above if and only if the condition (4.9) or the equivalent one (4.10) holds. This operator $R(\sigma)$ intertwines the infinite tensor product representation T of G.

Denote by $\mathbb{S}_{\mu, E s s}$ with $s=\left(s_{j}\right)_{j \in \mathcal{N}}$ the set of all elements $\sigma \in \tilde{\mathbb{S}}_{\infty}(s)$ for which an operator $R(\sigma)$ is defined by the above formula. Then it contains $\mathfrak{S}_{\infty}(s)$ and forms a group as we can see without difficulty using the convergence $\sum_{j \in \mathrm{~N}}\| \| \chi_{\varepsilon_{j}}\left\|_{\boldsymbol{x}_{j}}^{2}-\right\| h_{j}^{\prime} \|_{\boldsymbol{x}_{j}}^{2} \mid<\infty$.

The important thing is that $R(\sigma)$ gives an intertwining operator for the representation T, that is,

$$
R\left(\mathfrak{G}_{\mu, E, s}\right)^{\prime \prime} \subset T(G)^{\prime} .
$$

So, we are interested in determining the structure of the group $\mathbb{G}_{\mu, E, s}$ and also in the following problem.

Problem 4.3. Does the equality hold in the above inclusion relation? In other words, is the algebra of all intertwining operators for the infinite tensor product representation T is generated (weakly) by $R\left(\mathbb{S}_{\mu, E, s}\right)=\{R(\sigma) ; \sigma \in$ $\left.\mathcal{S}_{\mu, E, s}\right\}$?

Let us introduce in the group $\mathscr{U}(H(T))$ of all unitary operators on $H(T)$ the strong convergence topology, which is equivalent to the weak convergence topology. Introduce on it a compatible metric given by

$$
d\left(U_{1}, U_{2}\right)=\sum_{i \in \mathrm{~N}} 2^{-i}\left\|U_{1} h_{i}-U_{2} h_{i}\right\|+\sum_{i \in \mathrm{~N}} 2^{-i}\left\|U_{1}^{-1} h_{i}-U_{2}^{-1} h_{i}\right\|
$$

for $U_{1}, U_{2} \in \mathscr{U}(H(T))$, where $\left\{h_{i} ; i \in \mathbf{N}\right\}$ is a fixed complete orthonormal system of $H(T)$. Then the group $\mathscr{U}(H(T))$ is a complete separable metric group, and accordingly so is the group $\mathscr{I}(T)=T(G)^{\prime} \cap \mathscr{U}(H(T))$. Induce the topology and the metric onto the group $\Im_{\mu, E, s}$ of permutations through the representation R. We call this topology as $\mathrm{s} \cdot \mathrm{w}$-topology and denote the metric again by d. Then there occurs a natural question :

Problem 4.4. When the subgroup $\mathfrak{S}_{\infty}(s)$ is everywhere dense in $\mathfrak{\Xi}_{\mu, s, s}$?
4.5. Some generalities on the permutation group $\mathbb{S}_{\mu E_{s} s}$. Note that any element $\sigma \in \tilde{\Xi}_{\infty}$ is expressed uniquely as a (possibly infinite) product of mutually disjoint cyclic permutations as

$$
\begin{equation*}
\sigma=\Pi_{k \in K} \sigma_{k} \tag{4.11}
\end{equation*}
$$

where σ_{k} 's are cyclic and $\operatorname{supp}\left(\sigma_{k}\right)$'s are mutually disjoint. Denote by $\tilde{\Xi}_{\infty, f}$ the subgroup of \mathbb{S}_{∞} consisting of all σ with cyclic components σ_{k} from \mathbb{S}_{∞}.

Proposition 4.5. (i) Let $E=\Pi_{j \in \mathbb{N}} E_{j}$ and $F=\Pi_{j \in \mathbb{N}} F_{j}$ be two μ-unital subset of X such that $E \stackrel{\mu}{\sim} F$. Then $\mathfrak{\Im}_{\mu, E, s}=\mathfrak{\Im}_{\mu, F, s}$.
(ii) For an element $\sigma \in \mathfrak{G}_{\mu, \varepsilon_{s}}$, let (4.11) be its canonical decomposition into cyclic permutations. Then, for any subset $K^{\prime} \subset K$, the product $\sigma_{K^{\prime}}=\Pi_{k \in K^{\prime}} \sigma_{k}$ is again an element of $\mathbb{S}_{\mu, E, s}$.
(iii) Any element of $\mathbb{S}_{\mu, E, s} \cap \tilde{\mathcal{S}}_{\infty, f}$ is a limit of a sequence in $\mathfrak{\Xi}_{\infty}(s) \subset \mathbb{G}_{\mu, E, s}$ in s.w-topology.

Proof. (i) We apply the criterion (4.9). Denote by $a_{j}(E)$ the inner product $<h_{j}^{\prime}, \chi_{E_{j}}>$ and by $a_{j}(F)$ the corresponding inner product for the unital subset F. Then we see from (4.9) that it is sufficient for us to prove

$$
\sum_{j \in \mathbb{N}}\left|1-a_{j}(E)\right|<\infty \Rightarrow \sum_{j \in \mathrm{~N}}\left|1-a_{j}(F)\right|<\infty .
$$

From the equality

$$
\chi_{E_{\tau(j)}} \chi_{E_{j}}+\chi_{F_{\tau(j)}} \chi_{F_{j}}=\left(\chi_{F_{\tau(j)}}-\chi_{E_{t(j)}}\right)\left(\chi_{F_{j}}-\chi_{E_{j}}\right)+\chi_{E_{t(j)}} \chi_{F_{j}}+\chi_{E_{j}} \chi_{F_{\tau(j)}},
$$

we have

$$
\left\{1-a_{j}(E)\right\}+\left\{1-a_{j}(F)\right\}=I_{1, j}+I_{2 j}+I_{3 j}
$$

where, with $\tau=\sigma^{-1}$,

$$
\begin{aligned}
& I_{1, j}=-\int_{X_{j}}\left(\frac{d \mu_{\tau(j)}}{d \mu_{j}}\right)^{t+i k_{j}}\left(\chi_{F_{\tau(j)}}-\chi_{E_{\tau(j)}}\right)\left(\chi_{F_{j}}-\chi_{E_{j}}\right) d \mu_{j}, \\
& I_{2 j}=1-\int_{X_{j}}\left(\frac{d \mu_{\tau(j)}}{d \mu_{j}}\right)^{t+i i_{j}} \chi_{E_{\tau(j)}} \chi_{F_{j}} d \mu_{j}, \\
& I_{3, j}=1-\int_{X_{j}}\left(\frac{d \mu_{\tau(j)}}{d \mu_{j}}\right)^{t+i s_{j}} \chi_{E_{j}} \chi_{F_{\tau(j)}} d \mu_{j} .
\end{aligned}
$$

Applying Schwarz inequality for $I_{1, j}$, we have $\left|I_{1, j}\right| \leq \mu_{\tau(j)}\left(E_{\tau(j)} \ominus F_{\tau(j)}\right)^{\ddagger}$ $\mu_{j}\left(E_{j} \ominus F_{j}\right)^{\frac{1}{2}}$, whence $\sum_{j \in \mathrm{~N}}\left|I_{1, j}\right|<\infty$.

Note that $\sum_{j \in \mathrm{~N}}\left|1-<h_{j}^{\prime}, \chi_{E_{j}}>\right|<\infty$ and $\sum_{j \in \mathrm{~N}}\left|1-<\chi_{F_{j}}, \chi_{E_{j}}>\right|<\infty$ imply $\Sigma_{j \in \mathbb{N}}\left|1-<h_{j}^{\prime}, \chi_{F_{j}}>\right|<\infty$. Then, applying the last inequality, we get $\sum_{j \in \mathbb{N}}\left|I_{2 j}\right|<\infty$.

Replace τ by τ^{-1} in the above discussion, then we have

$$
\sum_{j \in N}\left|1-\int_{x_{j}}\left(\frac{d \mu_{\tau}-1(j)}{d \mu_{j}}\right)^{t+i s_{j}} \chi_{E_{\tau}-1(j)} \chi_{F_{j}} d \mu_{j}\right|<\infty .
$$

Replace indices j by $\tau(j)$ and take into account $s_{\tau(j)}=s_{j}$, Then the left hand side equals

$$
\sum_{j \in \mathbb{N}}\left|1-\int_{x_{j}}\left(\frac{d \mu_{\tau(j)}}{d \mu_{j}}\right)^{t-i s_{j}} \chi_{E_{j}} \chi_{F_{\tau(j)}} d \mu_{j}\right|=\sum_{j \in \mathbb{N}}\left|I_{3, j}\right| .
$$

Thus we get finally $\sum_{j \in \mathbb{N}}\left|1-a_{j}(F)\right|<\infty$.
(ii) For this, we apply the criterion (4.10). Then the assertion is clear.
(iii) It is enough to note that $\left\langle R\left(\sigma_{K^{\prime}}\right) f_{1}, f_{2}\right\rangle \rightarrow\left\langle R(\sigma) f_{1}, f_{2}\right\rangle$ as $K^{\prime} \nearrow K$, $\left|K^{\prime}\right|<\infty$, for any f_{1}, f_{2} from the canonical dense subset of $H(T)$ used in §4.4. This is a consequence of the condition (4.9).

The proof of Proposition 4.5 is now complete.
Q. E. D.

Proposition 4.6. The set of unitary operators $\left\{R(\sigma) ; \sigma \in \mathbb{G}_{\mu, E, s}\right\}$ is closed in the group $\mathscr{U}(H(T))$ of all unitary operators on $H(T)$ in the strong operator topology.

The group $\mathfrak{S}_{\mu, E_{s}}$ is a complete separable metric group with the metric d.
Proof. The second assertion follows from the first one because \mathscr{U} (H $(T))$ with d is a complete separable metric group. So we prove here the first assertion.

Assume that $R\left(\sigma_{n}\right) \rightarrow U, \sigma_{n} \in \mathbb{G}_{\mu, s, s}$ in $\mathscr{U}(H(T))$. Then $R\left(\sigma_{m} \sigma_{n}^{-1}\right) \rightarrow I(m, n$ $\rightarrow \infty)$. In particular, for the standard vector $v_{0}=\otimes_{j \in \mathrm{~N}} \chi_{j} \in H(T)$ with $\chi_{j}=$ $\left\|\chi_{E_{j}}\right\|_{\boldsymbol{x}_{j}}^{-1} \chi_{E_{j}}=\mu_{j}\left(E_{j}\right)^{-1 / 2} \chi_{E_{j}}$, we have $<R\left(\sigma_{m} \sigma_{n}^{-1}\right) v_{0}, v_{0}>\rightarrow 1$, that is,

$$
\prod_{j \in \mathrm{~N}} \int_{M} \sqrt{\frac{d \mu_{o_{n} 0_{m}^{-1}(j)}}{d \mu_{j}}(p)} \chi_{o_{n_{m}^{o}}{ }^{-1}(j)}(p) \chi_{j}(p) d \mu_{j}(p) \rightarrow 1
$$

Denote by $\alpha_{j}^{m, n}$ the j-th term in the product on the left hand side. Then $\sum_{j \in \mathrm{~N}} \log \alpha_{j}^{m, n} \rightarrow 0(m, n \rightarrow \infty)$. Since $-\log (1-x)>2^{-1} x$ for sufficiently small x >0, we have $\sum_{j \in \mathrm{~N}}\left|1-\alpha_{j}^{m, n}\right| \rightarrow 0(m, n \rightarrow \infty)$. Therefore, for any $\varepsilon>0$, there exists $N>0$ such that, for any $m, n>N$,

$$
\begin{equation*}
\sum_{j \in \mathrm{~N}} \int_{M}\left|\sqrt{\frac{d \mu_{o_{m}(j)}}{d \lambda}(p)} \chi_{o_{m}(j)}(p)-\sqrt{\frac{d \mu_{o_{n}(j)}}{d \lambda}(p)} \chi_{o_{n}(j)}(p)\right|^{2} d \lambda(p) \leq \varepsilon, \tag{4.12}
\end{equation*}
$$

where $\lambda \in \mathscr{L} \mathscr{F} \mathscr{M}(M)$ is a fixed standard measure.
Now fix j, and consider the set of natural numbers $\sum_{j}=\left\{\sigma_{n}(j) ; n \in \mathbf{N}\right\}$. We assert that this is a finite set. In fact, assuming the contrary, we can
take a series of integers n_{1}, n_{2}, \cdots, such that $\sigma_{n_{k}}(j) \rightarrow \infty$. Then, since

$$
\left(\chi_{\sigma_{m}(j)}(p)\right)^{2} \frac{d \mu_{o_{m}(j)}}{d \lambda}(p) \rightarrow{ }^{\exists} \rho(p) \quad \text { in } L^{1}(M ; \lambda),
$$

the following limit exists for any Borel subset $B \subset M$: for $\tau_{k}=\sigma_{n_{k}}$,

$$
\lim _{k \rightarrow \infty} \frac{\mu_{\tau_{k}^{(j)}}\left(E_{\tau_{k}(j)} \cap B\right)}{\mu_{\tau_{k}(j)}\left(E_{\tau_{k}(j)}\right)} .
$$

Put this limit as $\nu(B)$, then ν is a probability measure on M. On the other hand, we assumed the condition (MU2) on the μ-unital subset $E=\Pi_{j \in \mathrm{~N}} E_{j}$. Hence $\nu(K)=0$ for any compact suset K of M. Making $K \nearrow M$, we come to a contradiction $0=1$.

Since Σ_{1} is finite as just proved, there exists at least one element $j_{1} \in$ Σ_{1} such that $S_{1}:=\left\{\sigma_{n} ; \sigma_{n}(1)=j_{1}\right\}$ is infinite. Similarly, since $\Sigma_{2}^{\prime}:=\{\sigma(2) ; \sigma$ $\left.\in S_{1}\right\} \subset \Sigma_{2}$ is finite, there exists a $j_{2} \in \Sigma_{2}^{\prime}$ for which $S_{2}:=\left\{\sigma \in S_{1} ; \sigma(2)=j_{2}\right\}$ is infinite. Successively, we define a series of integers $j_{1}, j_{2}, j_{3}, \cdots$, and a series $S_{1} \supset S_{2} \supset S_{3} \supset \cdots$, of infinite subsets of $\mathbb{G}_{\mu, E, s}$ such that $\sigma(i)=j_{i}(i \leq k)$ for $\sigma \in$ S_{k}.

Put $\sigma_{0}(i)=j_{i}(i \in \mathbf{N})$, then σ_{0} is an injective transformation on \mathbf{N}, and $s_{o_{0}(j)}=s_{j}(j \in \mathbf{N})$. In the evaluation (4.12), replace the infinite sum $\sum_{j \in \mathbb{N}}$ by a finite sum $\sum_{j=1}^{k}$ and take σ_{m} from S_{k}. Then, $\sigma_{m}(j)=\sigma_{0}(j)$ for $1 \leq j \leq k$, and so we get

$$
\sum_{j=1}^{k} \int_{M}\left|\sqrt{\frac{d \mu_{o_{0}(j)}}{d \lambda}(p)} \chi_{o_{0}(j)}(p)-\sqrt{\frac{d \mu_{o_{n}(j)}}{d \lambda}(p)} \chi_{o_{n}(j)}(p)\right|^{2} d \lambda(p) \leq \varepsilon .
$$

Letting $k \rightarrow \infty$, we obtain

$$
\begin{equation*}
\sum_{j=1}^{\infty} \int_{M}\left|\sqrt{\frac{d \mu_{o_{0}(j)}}{d \lambda}(p)} \chi_{o_{0}(j)}(p)-\sqrt{\frac{d \mu_{o_{n}(j)}}{d \lambda}(p)} \chi_{\sigma_{n}(j)}(p)\right|^{2} d \lambda(p) \leq \varepsilon . \tag{4.13}
\end{equation*}
$$

From this we can get

$$
\sum_{j=1}^{\infty} \int_{M}\left|\sqrt{\frac{d \mu_{o(j)}}{d \lambda}(p)} \chi_{o_{0}(j)}(p)-\sqrt{\frac{d \mu_{j}}{d \lambda}(p)} \chi \chi_{j}(p)\right|^{2} d \lambda(p)<\infty,
$$

by applying (4.14) below, or $\sum_{j \in \mathbb{N}} I_{j}(\sigma)<\infty$ for any $\sigma \in \mathbb{S}_{\mu, E, s}$ in the notation there.

Discussing as in §4.4, we see that the above evaluation guarantees that the following correspondense defines a bounded linear oparator on $H(T)=\otimes_{j \in \mathrm{~N}}^{\chi} \mathscr{H}_{j}:$

$$
R\left(\sigma_{0}\right): f=\otimes_{j \in \mathbb{N}} f_{j} \longrightarrow h=\otimes_{j \in \mathbb{N}} h_{j}
$$

with

$$
h_{j}\left(x_{j}\right)=\left(\frac{d \mu_{o_{0}(j)}}{d \mu_{j}}\left(x_{j}\right)\right)^{\ddagger+i s_{j}} f_{o_{0}(j)}\left(x_{j}\right)
$$

Furthermore, for an element of the form

$$
f=f_{1}\left(x_{1}\right) f_{2}\left(x_{2}\right) \cdots f_{k}\left(x_{k}\right) \otimes\left(\otimes_{j=k+1}^{\infty} \chi_{j}\left(x_{j}\right)\right), \quad\left\|f_{i}\right\|=1,
$$

we have, for $\sigma \in S_{k}$,

$$
\left\|\left\{R\left(\sigma_{0}\right)-R\left(\sigma^{-1}\right)\right\} f\right\|^{2}=2-2 \prod_{j=k+1}^{\infty} r_{j}
$$

with

$$
r_{j}=\int_{x_{j}} \sqrt{\frac{d \mu_{o(j)}}{d \mu_{j}}\left(x_{j}\right)} \sqrt{\frac{d \mu_{o(j)}}{d \mu_{j}}\left(x_{j}\right)} \chi_{o_{0}(j)}\left(x_{j}\right) \chi_{o(j)}\left(x_{j}\right) d \mu_{j}\left(x_{j}\right) .
$$

On the other hand, we have, from (4.13), $\sum_{j=k+1}^{\infty} 2\left(1-r_{j}\right)<\varepsilon$. Since $2 x>$ $-\log (1-x)$ for sufficiently small $x>0$, we have, for $\rho=2-2 \prod_{j=k+1}^{\infty} r_{j}$,

$$
\sum_{j=k+1}^{\infty} 2\left(1-r_{j}\right) \geq-\sum_{j=k+1}^{\infty} \log r_{j}=-\log \left(1-\frac{\rho}{2}\right) \geq \frac{\rho}{2} .
$$

Thus we get

$$
\left\|\left\{R\left(\sigma_{0}\right)-R\left(\sigma^{-1}\right)\right\} f\right\|^{2} \leq 2 \varepsilon
$$

for $\sigma \in S_{k}$ with sufficiently large k. Hence $R\left(\sigma_{0}\right)=U^{-1}$.
Similar argument shows that there exists an injective transformation σ_{0}^{\prime} on \mathbf{N} such that $R\left(\sigma_{0}^{\prime}\right)=U$. Accordingly, $R\left(\sigma_{0} \sigma_{0}^{\prime}\right)=R\left(\sigma_{0}\right) R\left(\sigma_{0}^{\prime}\right)=I$, and also $R\left(\sigma_{0}^{\prime} \sigma_{0}\right)=I$. Thus we see that $\sigma_{0} \sigma_{0}^{\prime}=\sigma_{0}^{\prime} \sigma_{0}=\mathrm{id}$, and so $\sigma_{0}^{\prime} \in \tilde{\mathcal{S}}_{\infty}$. The element σ_{0}^{\prime} belongs to $\Im_{\mu, E, s}$ and $U=R\left(\sigma_{0}^{\prime}\right)$. This is what we want to prove. Q. E. D.

Denote by $\tilde{\mathbb{\Xi}}_{\infty, f}(s)$ the subgroup consisting of $\sigma \in \tilde{\mathbb{\Xi}}_{\infty, f}$ which satisfy $s_{o(j)}$ $=s_{j}(j \in \mathbf{N})$. Then, in general, we have

Proposition 4. 7. Assume $s=\left(s_{j}\right)_{j \in \mathrm{~N}}$ be such that $\tilde{\mathfrak{S}}_{\infty}(s)$ is not completely contained in $\tilde{\mathcal{S}}_{\infty, f}$. Then the group $\mathfrak{G}_{\mu, E, s}$ contains neither the whole of $\tilde{\mathbb{S}}_{\infty, f}(s)$, nor of $\tilde{\mathfrak{S}}_{\infty}(s) \backslash \tilde{\mathfrak{S}}_{\infty, f}(s)$.

Proof. Taking into account Proposition 4.5(i), we can assume from the beginning that the μ-unital subset $E=\prod_{j \in N} E_{j}$ satisfies the condition (MU2str), that is, for any compact $K \subset M, K \cap E_{j}=\phi$ for $j \gg 0$. Replacing E by its μ-cofinal one if necessary, we may also assume that each E_{j} is relatively compact.

For a subset $J \subset \mathbf{N}$, denote by \mathbb{S}_{J} (resp. $\tilde{\mathbb{S}}_{J}$) the group of all finite permutations (resp. all permutations) on J, and consider it as a subgroup
of \mathbb{S}_{∞} (resp. $\tilde{\mathbb{S}}_{\infty}$). The assumption on s means that there exists an infinite subset $I \subset \mathbf{N}$ for which $s_{i}=s_{i^{\prime}}$ for $i, i^{\prime} \in I$. This means that $\tilde{\mathbb{S}}_{\infty}(s) \supset \tilde{\mathbb{S}}_{I}$. Then, there exists an infinite subset $J \subset I$ such that $E_{j}, j \in J$, are mutually disjoint. By the criterion (4.9), we see that

$$
\mathfrak{S}_{\mu, E_{s}} \cap \tilde{\mathfrak{S}}_{J}=\mathfrak{S}_{J}(s):=\left\{\sigma \in \mathfrak{S}_{j} ; s_{o(j)}=s_{j}(j \in \mathbf{N})\right\}
$$

This proves the assertions of the proposition.
Q. E. D.

Let us give another important consequence of the condition (4.9). This clarifies the situation for " $\sigma \in \mathfrak{G}_{\mu, E, s}$ ".

Proposition 4.8. Assume that $\sigma \in \tilde{\mathcal{G}}_{\infty}(s)$ belongs to $\mathbb{G}_{\mu, s, s}$.
(i) $E \cap E \sigma^{-1}$ is μ-cofinal with E, and also is $\mu \sigma^{-1}$-cofinal with $E \sigma^{-1}$, where $E \sigma^{-1}=\prod_{j \in \mathrm{~N}} E_{o-1}{ }^{-1}(j)$ and $\mu \sigma^{-1}=\left(\mu_{o}^{-1}(j)\right)_{j \in \mathrm{~N}}$.
(ii) Let $F=\Pi_{j \in \mathrm{~N}} F_{j}$ with $F_{j}=E_{j} \cap E_{o-1_{(j)}}$ if $E_{j} \cap E_{o-1_{(j)}} \neq \phi$ (true except for a finite number of j 's), and $F_{j} \subset X_{j}=M$, a relatively compact open set, otherwise. Then $F \stackrel{\mu}{\sim} E$ and $F \stackrel{\mu \sigma^{-1}}{\sim} E \sigma^{-1}$. Furthermore the following two product measures on F are mutually equivalent :

$$
\prod_{j \in \mathbb{N}}\left(\mu_{j} \mid F_{j}\right), \quad \prod_{j \in \mathbb{N}}\left(\mu_{o}^{-1}(j) \mid F_{j}\right) .
$$

Proof. We study the condition (4.9). Then, first we have

$$
\begin{aligned}
& \left\|\left|h_{j}^{\prime}\right|-\chi_{E_{j}}\right\|_{\varkappa_{j}}^{2} \leq\left\|h_{j}^{\prime}-\chi_{E_{j}}\right\|_{\varkappa_{j}}^{2} \leq \\
& \leq\left|1-\left\|h_{j}^{\prime}\right\|_{\varkappa_{j}}^{2}\right|+\left|1-\left\|\chi_{E_{j}}\right\|_{\varkappa_{j}}^{2}\right|+2\left|1-<h_{j}^{\prime}, \chi_{E_{j}}>_{\varkappa_{j}}\right|
\end{aligned}
$$

and so

$$
\begin{equation*}
\sum_{j \in \mathrm{~N}}| |\left|h_{j}^{\prime}\right|-\chi_{E_{j}} \|_{\varkappa_{j}}^{2}<\infty . \tag{4.14}
\end{equation*}
$$

The j-th term is the integral

$$
I_{j}(\sigma)=\int_{x_{j}}\left|\left(\frac{d \mu_{o}-1(j)}{d \mu_{j}}\left(x_{j}\right)\right)^{\frac{t}{2}} \chi_{E_{\sigma}-1}(j)\left(x_{j}\right)-\chi_{E_{j}}\left(x_{j}\right)\right|^{2} d \mu_{j}\left(x_{j}\right) .
$$

Separate the integral on X_{j} into the sum of those on $E_{j} \backslash E_{\sigma^{-1}(j)}, E_{o^{-1}(j)} \backslash E_{j}$, and on $E_{j} \cap E_{o-1}{ }_{(j)}$. Then,

$$
\begin{aligned}
& I_{j}(\sigma)= \mu_{j}\left(E_{j} \backslash E_{o}-1(j)\right. \\
&+\int_{E_{j} \cap E_{o}-1(j)} \left\lvert\,\left(\frac{d \mu_{o}-\mu_{(j)}}{d \mu_{j}}\left(E_{o^{-1}(j)}\right) \backslash E_{j}\right)+\right. \\
&\left.\left.x_{j}\right)\right)^{t} \chi_{E_{\sigma^{-1}}(j)}\left(x_{j}\right)-\left.\chi_{E_{j}}\left(x_{j}\right)\right|^{2} d \mu_{j}\left(x_{j}\right) .
\end{aligned}
$$

Since $\sum_{j \in \mathbb{N}} I_{j}(\sigma)<\infty$, we get

$$
\text { (A) } \sum_{j \in \mathbb{N}} \mu_{j}\left(E_{j} \backslash E_{o-1(j)}\right)<\infty,
$$

(B) $\sum_{j \in \mathbb{N}} \mu_{o^{-1}(j)}\left(E_{o^{-1}(j)} \backslash E_{j}\right)<\infty$,
(C) $\quad \sum_{j \in \mathrm{~N}} \int_{F_{j}}\left|\left(\frac{d \mu_{o}-1(j)}{d \mu_{j}}\left(x_{j}\right)\right)^{\ddagger}-1\right|^{2} d \mu_{j}\left(x_{j}\right)<\infty$.

The first inequality shows that $E \cap E \sigma^{-1}$ is $\mu \sigma^{-1}$-cofinal with $E \sigma^{-1}$. The third one is rewritten in a symmetric from as follows by means of a fixed measure $\lambda \in \mathscr{L} \mathscr{F} \mathscr{M}(M)$:

$$
\sum_{j \in \mathrm{~N}} \int_{F_{j}}\left|\left(\frac{d \mu_{o}^{-1}(j)}{d \lambda}\left(x_{j}\right)\right)^{\ddagger}-\left(\frac{d \mu_{j}}{d \lambda}\left(x_{j}\right)\right)^{\ddagger}\right|^{2} d \lambda\left(x_{j}\right)<\infty .
$$

By Kakutani's theorem [7], this is a necessary and sufficient condition for that the two product measures on F in the proposition are mutually equivalent.

Thus the proposition is now completely proved.
Q. E. D.

Proposition 4.9. Assume that all s_{j} 's are equal to zero: $s=\left(s_{j}\right)_{j \in \mathrm{~N}}=(0)$. Then, for $a \sigma \in \tilde{\mathfrak{G}}_{\infty}=\tilde{\Xi}_{\infty}(s)$, the conditions (A), (B) and (C) are necessary and sufficient for that σ belongs to $\mathfrak{S}_{\mu, E_{s},}$.

A proof can be given by examining the proof of the preceeding proposition.
4.6. Examples. We give here several typical examples.

Example 4.10. Assume that all E_{j} 's are mutually disjoint. Then, we see from the criterion (4.9) that $\Im_{\mu, E, s}=\Im_{\infty}(s)$. Furthermore, in this case, as will be seen in the next section, we have $R\left(\Theta_{\infty}(s)\right)^{\prime \prime}=T(G)^{\prime}$, that is, any intertwining operator for T can be weakly approximated by linear combinations of $R(\sigma), \sigma \in \mathfrak{S}_{\infty}(s)$. In another terminology, the group $G=$ $\operatorname{Diff}_{0}(M)$ and a permutation group $\mathfrak{S}_{\infty}(s)$ form a dual pair.

Example 4.11. Assume that, for any $N>0$, there exists an integer $j_{N}>$ N such that $\cup_{j s_{j}} E_{j}$ and $\cup_{j \gg_{N}} E_{j}$ are mutually disjoint. Then, again from (4. 9), we see that any cyclic permutation in $\tilde{\mathfrak{S}}_{\infty}$ with infinite length cannot comes into $\mathfrak{S}_{\mu, E_{s} s}$. This means that $\mathbb{S}_{\mu, E_{s}} \subset \tilde{\mathbb{S}}_{\infty, f}(s)$. Furthermore, the group $\mathfrak{\Xi}_{\infty}(s)$ is dense in $\Theta_{\mu, E, s}$ in $\mathrm{s} \cdot \mathrm{w}$-topology. In this sense, as will be seen in $\S 5$, we can say that the groups G and $\Im_{\infty}(s)$ form a dual pair.

Example 4.12. Let us give an example of $\mathcal{G}_{\mu \mathrm{E}, s}$ which contains a cyclic permutation with infinite length. This gives also an example for which the subgroup $\mathfrak{S}_{\infty}(s)=\mathfrak{S}_{\infty} \cap \mathfrak{S}_{\mu, E, s}$ is not dense in $\mathfrak{S}_{\mu, E, s}$ in $s \cdot$ w-topology.

Put $M=\mathbf{R}$ and consider $X=\Pi_{j \in \mathbb{Z}} X_{j}, \quad X_{j}=M$. Let σ_{∞} be a cyclic permutation given by $\sigma_{\infty}(j)=j+1(j \in \mathbf{Z})$. For $j \in \mathbf{N}$, put $c_{j}=1+1 / 2+1 / 3+$
$\cdots+1 / j$, and $c_{0}=0$. We define measures μ_{j} on X_{j} as follows. First take a positive function ρ on $[0, \infty)$ which satisfies
(1) $\int_{0}^{\infty} \rho(t) d t=1$,
(2) $\sum_{j \in \mathrm{~N}} \int_{0}^{1 / j} \rho(t) d t<\infty$,
(3) $(\sqrt{\rho})^{\prime}(t) \in L^{2}([0, \infty) ; \lambda)$ with usual Lebesgue measure λ.

As an example of such a function ρ, we have $\rho(t)=C t^{4}\left(1+t^{6}\right)^{-1}$ with a normalization constant $C>0$. We put $d \mu_{j}(t)=\rho_{j}(t) d t$ for $j \geq 0$, and $d \mu_{-j}(t)$ $=\rho_{j}(-t) d t$ for $j>0$ with

$$
\rho_{j}(t)= \begin{cases}\rho\left(t-c_{j}\right) & \left(t \geq c_{j}\right) \\ \tau_{j}(t) & \left(t \leq c_{j}\right),\end{cases}
$$

for $j \geq 0$, where $\tau_{j}(t)>0$ are locally summable functions, arbitrarily chosen.
Take $E_{j} \subset X_{j}$ as follows : $E_{j}=\left[c_{j}, \infty\right)$ for $j \geq 0$, and $E_{-j}=\left(-\infty,-c_{j}\right]$ for $j>$ 0 . Then $\mu_{j}\left(E_{j}\right)=1$, and $E=\prod_{j \in Z} E_{j}$ is a μ-unital subset of X which satisfies the condition (MU2str), i. e., for any compact $K \subset M, K \cap E_{j}=\phi(|j| \gg 0)$.

We put $s=\left(s_{j}\right)_{j \in \mathbf{Z}}=(0)$ with $s_{j}=0(\forall j)$.
Let us check the conditions (A), (B) and (C) in Proposition 4.9. For (A), $E_{j} \backslash E_{o \sigma^{\prime}(j)}=E_{j} \backslash E_{j-1}$ and is equal to ϕ for $j>0$. Moreover for $j \in \mathbf{N}$

$$
\mu_{-j}\left(E_{-j} \backslash E_{-j-1}\right)=\mu_{j}\left(E_{j} \backslash E_{j+1}\right)=\int_{c_{j}}^{c_{j+1}} \rho\left(t-c_{j}\right) d t=\int_{0}^{1 /(j+1)} \rho(t) d t .
$$

Therefore we have

$$
\sum_{j \in \mathbf{Z}} \mu_{j}\left(E_{j} \backslash E_{\sigma_{\infty}^{-1}(j)}\right)=\sum_{j \geq 0} \mu_{j}\left(E_{j} \backslash E_{j+1}\right)<\infty .
$$

Similarly we see that the condition (B) holds.
Let us now prove the condition (C). Put $F_{j}=E_{j} \cap E_{\sigma_{\infty}^{-1}(j)}$, then $F_{j}=\left[c_{j}\right.$, $\infty), F_{-j}=\left(-\infty,-c_{j+1}\right]$ for $j>0$, and it is enough to prove

$$
\sum_{j \in \mathrm{~N}} \int_{F_{j}}\left|\sqrt{\rho_{j}(t)}-\sqrt{\rho_{j-1}(t)}\right|^{2} d t<\infty .
$$

Then,

$$
j \text {-th term }=\int_{0}^{\infty}\{\sqrt{\rho(t+1 / j)}-\sqrt{\rho(t)}\}^{2} d t
$$

On the other hand,

$$
\begin{gathered}
\sqrt{\rho(t+a)}-\sqrt{\rho(t)}=a \cdot \int_{0}^{1}(\sqrt{\rho})^{\prime}(t+s a) d s \\
|\sqrt{\rho(t+a)}-\sqrt{\rho(t)}|^{2} \leq a^{2} \cdot \int_{0}^{1}\left|(\sqrt{\rho})^{\prime}(t+s a)\right|^{2} d s
\end{gathered}
$$

Hence

$$
\int_{0}^{\infty}|\sqrt{\rho(t+a)}-\sqrt{\rho(t)}|^{2} d t \leq a^{2} \cdot \int_{0}^{\infty}\left|(\sqrt{\rho})^{\prime}(t)\right|^{2} d t .
$$

Put $a=1 / j$, then we see that the sum over $j \in \mathbf{N}$ converges. This proves that the condition (C) holds, and so the cyclic permutation σ_{∞} with infinite length does belong to the group $\mathcal{S}_{\mu, E, s}$.

Finally we prove that $\Im_{\infty}(s)\left(=\Im_{\infty}\right.$ here) is not dense in $\Theta_{\mu, E, s}$ with respect to $\mathrm{s} \cdot \mathrm{w}$-topology in this case. Consider the infinite cyclic permutation $\sigma_{\infty} \in \mathbb{G}_{\mu, E, s}$. Take $\sigma \in \mathfrak{S}_{\infty}$ and put

$$
I_{k}^{s}:=\int_{-\infty}^{\infty}\left|\sqrt{\frac{d \mu_{o_{\infty}(k)}}{d t}(t)} \chi_{E_{o_{\infty}(k)}}(t)-\sqrt{\frac{d \mu_{o(k)}}{d t}(t)} \chi_{E_{o(k)}}(t)\right|^{2} d t
$$

and $I(\sigma):=\sum_{k \in \mathcal{Z}} I_{k}^{o}$. Assume that the element σ_{∞} can be approximated by elements of \mathfrak{S}_{∞}, then $I(\sigma)$ can become smaller and smaller without limit.

On the other hand, note that $\sigma_{\infty}(-1)=0$. Then, if $\sigma(-1)<0$, we have $I(\sigma) \geq I_{-1}^{o}=2$. If $\sigma(-1) \geq 0$, then there exists a $k \geq 0$ such that $\sigma(k)<0$. Since $\sigma_{\infty}(k)>0$, we have again $I(\sigma) \geq I_{k}^{p}=2$. Thus we come to a contradiction.

Remark 4.13. If the condition (C) is replaced by a stronger one

$$
\text { (C') } \quad \sum_{j \in \mathbf{Z}} \int_{F_{j}}\left|1-\frac{d \mu_{o}-1(j)}{d \mu_{j}}\left(x_{j}\right)\right| d \mu_{j}\left(x_{j}\right)<\infty .
$$

Then, we have no cyclic permutation $\sigma \in \tilde{\Xi}_{\infty}$ with infinite length which satisfies the conditions (A), (B) and (C^{\prime}).

In fact, let σ be an infinite cyclic permutation, and take a Borel measurable set $B \subset M$. Then for $\tau=\sigma^{-1}$

$$
\begin{aligned}
& \left|\mu_{\tau(j)}\left(B \cap E_{\tau(j)}\right)-\mu_{j}\left(B \cap E_{j}\right)\right| \leq \\
& \leq \mu_{\tau(j)}\left(E_{\tau(j)} \backslash E_{j}\right)+\mu_{j}\left(E_{j} \backslash E_{\tau(j)}\right)+\left|\mu_{\tau(j)}\left(B \cap E_{j} \cap E_{\tau(j)}\right)-\mu_{j}\left(B \cap E_{j} \cap E_{\tau(j)}\right)\right| \\
& \leq \mu_{\tau(j)}\left(E_{\tau(j)} \backslash E_{j}\right)+\mu_{j}\left(E_{j} \backslash E_{\tau(j)}\right)+\int_{E_{j} \cap E_{\tau(j)}}\left|1-\frac{d \mu_{\tau(j)}}{d \mu_{j}}\left(x_{j}\right)\right| d \mu_{j}\left(x_{j}\right) .
\end{aligned}
$$

Therefore $\quad \sum_{j \in Z}\left|\mu_{\tau(j)}\left(B \cap E_{\tau(j)}\right)-\mu_{j}\left(B \cap E_{j}\right)\right|<\infty$.
Hence, there exists a limit $\lim _{k \rightarrow \infty} \mu_{r^{k}(j)}\left(B \cap E_{r^{k}(j)}\right)$, where j is so chosen that $\tau(j) \neq j$. Denote this limit by $\omega(B)$, then, by a general theorem, ω is a measure on M. From the condition (MU2) for (μ, E), we see that $\omega(K)=$ 0 for any compact $K \subset M$, whence $\omega(M)=0$. But, this contradicts the fact that $\lim _{k \rightarrow \infty} \mu_{t^{k}(j)}\left(E_{r^{k}(j)}\right)=1$.
4.7. Relation to quasi-invariance of the product measure $\nu_{\mu, E}$. When a permutation $\sigma \in \Im_{\infty}(s)$ is addmitted to have a unitary operator
$R(\sigma)$, or σ belongs to $\mathbb{S}_{\mu, E_{s}}$, it acts on the product measures on $X=\prod_{j \in \mathrm{~N}} X_{j}$, $X_{j}=M$, as shown in Proposition 4.8. Here we study from another point of view the quasi-invariance under σ of the product measure $\nu_{\mu, E}$ itself. In this study we find that for the vectors

$$
\sqrt{\frac{d \mu_{o}-11_{j)}}{d \mu_{j}}\left(x_{j}\right)} \cdot \chi_{E_{o}-1(j)}\left(x_{j}\right) \quad(j \in \mathbf{N})
$$

two multiplicative factors, the square-root of the density and a transformed function $\chi_{E_{o}-1(j)}$, cannot be separated in general, or they should be considered together, not separated, in connection with the tensored space $\otimes_{j \in \mathrm{~N}}^{x} \mathscr{H}_{j}$. In other words, for a permutation σ, leaving the tensored space $\otimes_{j \in \mathrm{~N}}^{\chi} \mathscr{H}_{j}$ invariant and leaving the measure $\left(\nu_{\mu, E}, \mathscr{M}(\mu, E)\right.$) quasi-invariant are different things.

The following example explains the situation.

Example 4.14. In Example 4.12, we have treated (μ, E) on $X=\Pi_{j \in \mathbf{Z}} X_{j}$, $X_{j}=M=$ R. Assume in this example that $E \sigma=\prod_{j \in \Sigma} E_{o(j)}$ is μ-cofinal with E, and accordingly that $\otimes_{j \in Z} \chi_{E_{o(j)}} \in \otimes_{j \in Z} \mathscr{H}_{j}$, for an element $\sigma \in \mathbb{S}_{\mu, E_{s}}$. The assumption means the following:

$$
\sum_{j \in \mathbf{Z}}\left|1-\mu_{j}\left(E_{o(j)}\right)\right|<\infty, \quad \sum_{j \in \mathbf{Z}} \mu_{j}\left(E_{j} \ominus E_{o(j)}\right)<\infty
$$

Now let us take as σ the infinite cyclic permutation $\sigma_{\infty}(j)=j+1(j \in \mathbf{Z})$. Then, for $j>0, E_{\sigma_{\infty}(-j)} \backslash E_{-j}=E_{-j+1} \backslash E_{-j}=\left(-c_{j},-c_{j-1}\right]$, and

$$
\mu_{-j}\left(E_{o_{\infty}(-j)} \backslash E_{-j}\right)=\int_{c_{j-1}}^{c_{j}} \tau_{j}(t) d t .
$$

Since locally summable functions $\tau_{j}>0$ can be chosen arbitrarily, we take them in such a way that $\int_{c_{j-1}}^{c_{j}} \tau_{j}(t) d t=1(j \in \mathbf{N})$. Then we have $\sum_{\mathrm{j} \in \mathrm{Z}} \mu_{j}\left(E_{j} \ominus E_{\sigma_{\infty}(j)}\right)=\infty$, and so $E \sigma_{\infty}$ is not μ-cofinal with E. Accordingly the σ-ring $\mathscr{M}(\mu, E)$ is not stable under the action of $\sigma_{\infty}: x=\left(x_{j}\right)_{j \in \mathcal{Z}} \mapsto x \sigma_{\infty}=$ $\left(x_{\sigma_{\infty}(j)}\right)_{j \in Z}$ on X, whereas σ_{∞} belongs to $\mathfrak{G}_{\mu, E, s}$ as shown in Example 4.12.

Here we give a good sufficient condition for the invariance of σ-ring $\mathscr{M}(\mu, E)$ and the quasi-invariance of the product measure $\nu_{\mu, E}$, under a permutation, as follows.

Proposition 4.15. Let $\sigma \in \tilde{\mathcal{E}}_{\infty}$. Assume, for (μ, E) on $X=\prod_{j \in \mathbb{N}} X_{j}, X_{j}=M$, that the next three conditions hold:
(1) $\sum_{j \in \mathrm{~N}} \mu_{j}\left(E_{j} \ominus E_{o(j)}\right)<\infty$,

$$
\begin{aligned}
& \text { (2) } \sum_{j \in \mathbb{N}} \int_{E_{j}}\left|\sqrt{\frac{d \mu_{o}-1(j)}{d \mu_{j}}\left(x_{j}\right)}-1\right|^{2} d \mu_{j}\left(x_{j}\right)<\infty, \\
& \text { (3) } \sum_{j \in \mathbb{N}} \mu_{j}\left(N_{j}\right)<\infty \Rightarrow \sum_{j \in \mathbb{N}} \mu_{j}\left(N_{o(j)}\right)<\infty .
\end{aligned}
$$

Then, (i) for any μ-unital subset $F=\prod_{j \in \mathrm{~N}} F_{j}, \mu$-cofinal with $E: F \stackrel{\mu}{\sim} E, F \sigma$ is μ-unital and $F \sigma \stackrel{\mu}{\sim} E$. Accordingly the ring of measurable sets $\mathscr{M}(\mu, E)$ is stable under $S(\sigma): x \mapsto x \sigma^{-1}(x \in X)$.
(ii) $S(\sigma) \nu_{\mu, E} \simeq \nu_{\mu, E}$.

Proof. Firstly it follows from the condition (1) that $E \sigma$ is μ-unital, and $E \sigma \stackrel{\mu}{\sim} E$. Secondly, if $F \stackrel{\mu}{\sim} E$, then putting $N_{j}=E_{j} \ominus F_{j}$ in (3), we have $\sum_{j \in \mathrm{~N}} \mu_{j}\left(E_{o(j)} \ominus F_{o(j)}\right)<\infty$, i. e., $E \sigma \stackrel{\mu}{\sim} E \sigma$. Hence $F \sigma \stackrel{\mu}{\sim} E$.

Thus the transformation $S(\sigma)$ on X is $\mathscr{M}(\mu, E)$-measurable.
For the assertion (ii), the condition (2) means by Kakutani's theorem that $\nu_{\mu, E}\left|E \simeq S(\sigma) \nu_{\mu, E}\right| E$. So that it is enough for us to see that the condition (2) holds also for any $F^{\stackrel{\mu}{\sim}} E$. To see this, we have

$$
\begin{aligned}
\int_{F_{j}}\left|\sqrt{\frac{d \mu_{o}-1(j)}{d \mu_{j}}}-1\right|^{2} d \mu_{j} & \leq \int_{E_{j} \cap F_{j}}\left|\sqrt{\frac{d \mu_{o}-1(j)}{d \mu_{j}}}-1\right|^{2} d \mu_{j}+ \\
& +2\left(\mu_{o}-1 \mathcal{L}_{(j)}\left(F_{j} \backslash E_{j}\right)+\mu_{j}\left(F_{j} \backslash E_{j}\right)\right),
\end{aligned}
$$

and so the condition (2) for F is obtained.

Example 4.16. Eventhough the situation where the above conditions (1)-(3) hold is rather general, we give such examples in the framework of Example 4.12. Assume that locally summable functions $\left(\tau_{j}\right)_{j \in \mathrm{~N}}$ there satisfy

$$
\sum_{j \geq 0} \int_{-\infty}^{c_{j}} \tau_{j}(t) d t<\infty .
$$

Then the conditions (1)-(3) hold for $\sigma=\sigma_{\infty}$, in this choice of $\mu=\left(\mu_{j}\right)_{j \in \mathrm{~N}}$.
In fact, (1) and (2) are easy to prove, and (3) is essentially equivalent to the following : for $M_{k} \subset[0, \infty), k \in \mathbf{N}$,

$$
\sum_{k \in \mathbb{N}} \int_{M_{k}} \rho(t) d t<\infty \Longleftrightarrow \sum_{k \in \mathbb{N}} \int_{M_{k}} \rho\left(t+\frac{1}{k}\right) d t<\infty, \quad \text { with } \rho(t)=C \frac{t^{4}}{1+t^{6}} .
$$

For \Leftarrow, we remark that there exists a constant $\gamma>0$ such that $\rho\left(t+\frac{1}{k}\right)$ $\geq \gamma \rho(t)$ for $t>0, k \in \mathbf{N}$.

For \Rightarrow, we see that the essential part is to prove

$$
J:=\sum_{k \in \mathbb{N}} \frac{1}{k} \int_{M_{k}} \frac{t^{3}}{1+t^{6}} d t<\infty .
$$

By Hölder's inequality for $(p, q)=(4,4 / 3)$,

$$
J \leq\left(\sum_{k \in \mathbb{N}} \frac{1}{k^{4}}\right)^{1 / 4}\left(\sum_{k \in \mathbb{N}}\left(\int_{M_{k}} \frac{t^{3}}{1+t^{6}} d t\right)^{4 / 3}\right)^{3 / 4}
$$

Again by Hölder's inequality

$$
\left(\int_{M_{k}} \frac{t^{3}}{1+t^{6}} d t\right)^{4 / 3} \leq a \cdot \int_{M_{k}} \rho(t) d t \quad(a>0, \text { constant })
$$

$\S 5$. Dual pairs between $\operatorname{Diff}_{0}(M)$ and certain permutation groups

5.1. Dual pairs. Let us first introduce the notion of a dual pair. Assume a unitary representation ($T, H(T)$) of a certain group G is given together with such a one R of another group U on the same Hilbert space $H(T)$. If there holds the relation $T(G)^{\prime}=R(U)^{\prime \prime}$, then we call G and U form a dual pair (through T and R). Here $T(G)^{\prime}$ denotes the commuting algebra for $T(G)$.

If the group U is compact, a dual pair gives a $1-1$ correspondence $\pi \mapsto$ T_{π}, from a subset of \hat{U} into \hat{G} by decomposing the representation $T \cdot R: G$ $\times U \ni(g, u) \mapsto T(g) \circ R(u)$, of $G \times U$ into irreducibles : $T \cdot R \cong \Sigma_{\pi \in 0} \pi \times T_{\pi}$. Here \hat{U} denotes the set of all equivalence classes of irreducible unitary representations of U, and T_{n} is realized naturally in the space $\operatorname{Hom}_{U}(H(\pi)$, $H(T)$), with $H(\pi)$ the space for π. In this case, U is also called a symmetry group of T [14].

In our present case, we take as G the $\operatorname{group}^{\operatorname{Diff}} \mathrm{D}_{0}(M)$ and as T one of the tensor product representations T_{E}^{α} or their equivalents T_{E}^{α} in $\S 3$. Then there appear the infinite symmetric group ς_{∞} or related permutation groups as a symmetry group U. Here the group U is turned out to be noncompact, and accordingly the situation is not so simple as in the compact group case. However, we will show in another paper that, at least in case $U \subset \mathfrak{S}_{\infty}$, an IUR T_{π} can be constructed, for every IURs π of U, and that the representation T can be decomposed into these IURs T_{π} 's.

We remark here that representations of the infinite symmetric group ς_{∞} are studied from many different points of views, for instance, in [2], [8], [13] and [15].
5. 2. Dual pair relations between G and subgroups of \mathbb{S}_{∞}. Here we assume $\operatorname{dim} M \geq 2$. Let us first treat a simple case where a certain disjointness condition on E_{j} 's is assumed. The following theorem is one of our main results in this paper, and it explains well a background of our method of constructing IURs of G given in the previous paper [4].

Let $\mu=\left(\mu_{j}\right)_{j \in N}$ be as in $\S 3.1$ a system of measures on $X_{j}=M$ taken from $\mathscr{L} \mathscr{F} \mathscr{M}(M)$, and $E=\Pi_{j \in \mathrm{~N}} E_{j}$ be a μ-unital subset of $X=\Pi_{j \in \mathrm{~N}} X_{j}$ for which the conditions (MU1)-(MU2) hold. Consider the infinite tensor product $T_{E}^{\dot{a}}=$ $\otimes_{j \in \mathbf{N}}^{x} T_{j}^{\alpha_{j}}$ of representations $\left(T_{j}^{j_{j}}, \mathscr{H}_{j}\right), j \in \mathbf{N}$, with $\chi=\left(\chi_{j}\right)_{j \in \mathbb{N}}, \chi_{j}=\left\|\chi_{E_{j}}\right\|_{\boldsymbol{x}_{j}}^{-1} \chi_{E_{j}}$, $\mathscr{H}_{j}=L^{2}\left(X_{j}, \mathscr{B}_{j}, \mu_{j}\right)$, and α_{j} given in (4.2) with parameter s_{j}.

Theorem 5.1. Let $\operatorname{dim} M \geq 2$, and assume that E is μ-cofinal with another μ-unital subset $F=\prod_{j \in \mathrm{~N}} F_{j}$ for which $F_{j} \cap F_{k}=\phi$ for $j \neq k$. Then the group of permutations $\mathfrak{\Im}_{\mu, E, s}$ is equal to the subgroup $\mathfrak{\Im}_{\infty}(s)$ of the infinite symmetric group \mathfrak{S}_{∞}, where $s=\left(s_{j}\right)_{j \in \mathbb{N}}$. The diffeomorphism group $G=\operatorname{Diff}_{0}(M)$ and $\mathfrak{S}_{\infty}(s) \subset \mathfrak{S}_{\infty}$ form a dual pair:

$$
T_{E}^{\tilde{a}}(G)^{\prime \prime}=R\left(\Im_{\infty}(s)\right)^{\prime}, \quad T_{E}^{\alpha}(G)^{\prime}=R\left(\Xi_{\infty}(s)\right)^{\prime \prime} .
$$

In particular, when all the parameters $s_{j}, j \in \mathbf{N}$, are equal to each other and all E_{j} 's are mutually disjoint, the groups G and ς_{∞} form a dual pair.

Put $S=\mathfrak{S}_{\infty}(s)$ and $\mathscr{C}=R(S)^{\prime \prime}=\{R(\sigma) ; \sigma \in S\}^{\prime \prime}$, the weakly closed operator algebra generated by $R(\sigma)$'s. Then, $\mathscr{C} \subset T_{E}^{a}(G)^{\prime}$, by Lemma 4.1. Therefore, to prove the theorem, it is enough to show the converse inclusion $\mathscr{C} \supset T_{E}^{\dot{i}}(G)^{\prime}$. To do so, we apply several lemmas given in the succeeding subsections.
5.3. A general lemma on a commuting operator. Let \mathscr{H} be a Hilbert space, $\mathscr{B}(\mathscr{H})$ the set of all bounded linear operators, and $\mathscr{C} \subset \mathscr{B}(\mathscr{H})$ a weakly closed subspace. Further let $P_{n}, n \in \mathbf{N}$, be a sequence of orthogonal projections on \mathscr{H} approximating the identity operator I on \mathscr{H} strongly.

Lemma 5. 2. Assume that an operator $A \in \mathscr{B}(\mathscr{H})$ satisfies the following condition:
(P) there exists a sequence of operators $A_{n} \in \mathscr{C}, n \in \mathbf{N}$, such that
(a) $P_{n} A P_{n}=P_{n} A_{n} P_{n}(n \in \mathbf{N})$,
(b) $\left\|A_{n}\right\| \leq M_{0}(\forall n)$ for some constant $M_{0}>0$.

Then A belongs to $\mathscr{C}: A \in \mathscr{C}$.
Proof. Denote by $<., .>$ the inner product on \mathscr{H}. Then, for any $\phi, \phi \in$ \mathscr{H},

$$
\begin{aligned}
\mid< & A \phi, \phi>-<A_{n} \phi, \phi>\left|\leq\left|<A \phi,\left(I-P_{n}\right) \psi>\right|+\right. \\
& +\left|<A\left(I-P_{n}\right) \phi, P_{n} \psi>\left|+\left|<A_{n} \phi,\left(I-P_{n}\right) \psi>\right|+\right.\right. \\
& +\left|<A_{n}\left(I-P_{n}\right) \phi, P_{n} \phi>\right| \leq\left(\|A\|+M_{0}\right)\left\{\|\phi\|\left\|\left(I-P_{n}\right) \psi\right\|\right. \\
& \left.+\left\|\left(I-P_{n}\right) \phi\right\|\|\psi\|\right\} \rightarrow 0(n \rightarrow \infty) .
\end{aligned}
$$

5.4. Lemmas for finite tensor products of representations. To apply the above general lemma to our situation, we prepare the following
'so-called' dual pair relation for finite tensor products.
Take a finite number of representations ($\left.T_{j}^{a_{j}}, L^{2}\left(X_{j}, \mathscr{B}_{j}, \mu_{j}\right)\right), j \in J$, of G $=\operatorname{Diff}_{0}(M)$, where α_{j} is a 1 -cocycle in (4.2) with parameter $s_{j} \in \mathbf{R}$, and J is a finite index set. Let $s(k), k \in K_{J}$, be all the different numbers in s_{j} 's, and put $J(k)=\left\{j \in J ; s_{j}=s(k)\right\}$. Then the subgroup $\mathfrak{S}_{J}\left(\left(s_{j}\right)_{j \in J}\right)=\left\{\sigma \in \mathbb{S}_{J} ; s_{o(j)}=s_{j}\right.$ $(j \in J)\}$ of \mathfrak{S}_{J} is equal to $\Pi_{k \in K_{J}} \mathfrak{S}_{J(k)}$. Consider the tensor product $T_{J}=\otimes_{j \in J} T_{j}^{\alpha_{j}}$ on the space $\mathscr{H}_{j}=\otimes_{j \in J} \mathscr{H}_{j}$ with $\mathscr{H}_{j}=L^{2}\left(X_{j}, \mathscr{B}_{j}, \mu_{j}\right)$. Then

$$
T_{J}(g) h\left(x_{J}\right)=\frac{\gamma_{J}\left(g^{-1} x_{J}\right)}{\gamma_{J}\left(x_{J}\right)} \prod_{k \in K_{J}}\left(\prod_{j \in J(k)} \frac{d \mu_{j}\left(g^{-1} x_{j}\right)}{d \mu_{j}\left(x_{j}\right)}\right)^{t+i s(k)} h\left(g^{-1} x_{J}\right),
$$

for $h \in \mathscr{H}_{J}$ and $g \in G$, where $\gamma_{J}\left(x_{J}\right)=\prod_{j \in J} \gamma_{j}\left(x_{j}\right), x_{J}=\left(x_{j}\right)_{j \in J} \in \Pi_{j \in J} X_{j}$ with $X_{j}=M$, and $g^{-1} x_{J}=\left(g^{-1} x_{j}\right)_{j \in J}$. On the other hand, we can define an action of $\mathfrak{S}_{J}\left(\left(s_{j}\right)_{j_{\in J}}\right)$ as follows:

$$
R_{J}(\sigma) h\left(x_{J}\right)=\frac{\gamma_{J}\left(x_{J} \sigma\right)}{\gamma_{J}\left(x_{J}\right)} \prod_{k \in K_{J}}\left(\prod_{j \in J(k)} \frac{d \mu_{o}-1_{(j)}\left(x_{j}\right)}{d \mu_{j}\left(x_{j}\right)}\right)^{\ddagger+i s(k)} h\left(x_{J} \sigma\right),
$$

where $x_{J} \sigma=\left(x_{o(j)}\right)_{j \in J}$.
The dual pair relation is claimed as in
Lemma 5.3. The tensor product representation T_{J} of $G=\operatorname{Diff}_{0}(M)$ and the representation R_{J} of the subgroup $S=\Im_{J}\left(\left(s_{j}\right)_{j_{J}}\right)=\prod_{k \in K_{J}} \mathfrak{G}_{J(k)}$ of \mathfrak{S}_{J} form a dual pair, or

$$
T_{J}(G)^{\prime \prime}=R_{J}(S)^{\prime}, \quad T_{J}(G)^{\prime}=R_{J}(S)^{\prime \prime} .
$$

For the sake of reference, we remark, at this point, about the relation between different finite tensor product representations. Denote by $|J|$ the number of elements in J.

Lemma 5. 4. Let J_{1} and J_{2} be two finite subsets of \mathbf{N}. Assume that $\left|J_{1}\right|$ $\neq\left|J_{2}\right|$. Then, the tensor product representations $T_{J_{1}}$ and $T_{J_{2}}$ are mutually disjoint, or any intertwining operator between them is identically zero.

For completeness, proofs of these lemmas are given in Appendix.
5. 5. Fundamental Lemmas. The following observation is a key for our proof of dual pair. Let $T_{E}^{\dot{\alpha}}$ on $\otimes_{j \in \mathrm{~N}}^{\alpha} \mathscr{H}_{j}, \mathscr{H}_{j}=L^{2}\left(X_{j}, \mathscr{B}_{j}, \mu_{j}\right)$, be the infinite tensor product representation of G in question. Let U be a connected open subset of M and put $V=M \backslash U$, and take a subspace \mathscr{W} of the infinite tensor product space $\otimes_{\mathrm{j} \in \mathrm{N}}^{\mathrm{N}} \mathscr{H}_{j}$ given as follows: for a finite subset J of N and a series of vectors $f_{j} \in \mathscr{H}{ }_{j}(j \nexists J), \mathscr{W}$ is expressed as

$$
\begin{gather*}
\mathscr{W}=\left(\otimes_{j \in J} \mathscr{H}_{j}(U)\right) \otimes\left(\otimes_{j \notin J} f_{j}\right) \tag{5.1}\\
\text { with } \mathscr{H}_{j}(U)=L^{2}\left(U, \mathscr{B}_{j}\left|U, \mu_{j}\right| U\right) \leftrightarrow \mathscr{H}_{j},
\end{gather*}
$$

where $f_{j} \in \mathscr{H}_{j}(V)(j \nexists J)$ are such that $\prod_{j^{\ddagger j J}}\left\|f_{j}\right\|_{\varkappa_{j}}$ is unconditionally convergent and $\sum_{j \neq J}\left|1-<f_{j}, \chi_{j}>\right|<\infty$. Then we have the following simple lemma.

Lemma 5.5. Take a subspace \mathscr{W} of $\otimes_{j \in \mathbb{N}}^{\chi} \mathscr{H}_{j}$ of the form in (5. 1), and let P_{\star} be the orthogonal projection onto \mathscr{W}. Then, for any intertwining operator $A \in T_{E}^{a}(G)^{\prime}, P_{\circledast} A P_{\Downarrow}=P_{\Downarrow} A^{\prime} P_{\Downarrow}$ with an $A^{\prime} \in \mathscr{C}=R\left(\mathcal{S}_{\mu, E, s}\right)^{\prime \prime}$ such that $\left\|A^{\prime}\right\| \leq$ $\|A\|$.

Proof. Let $G(U)=\operatorname{Diff}_{0}(U) \subset G$. Then, for $g \in G(U), T_{j}^{\alpha_{j}}(g) f_{j}=f_{j}$ for $j \notin$ J, because $f_{j}=0$ on U. Therefore the subspace \mathscr{W} is invariant under $T_{E}^{a}(G(U))$, and so

$$
\begin{equation*}
T_{E}^{\tilde{a}}(g) P_{\Downarrow}=P_{\Downarrow} T_{E}^{\dot{a}}(g)=P_{\Downarrow} T_{E}^{\dot{a}}(g) P_{\Downarrow}(g \in G(U)) \tag{5.2}
\end{equation*}
$$

Using this, we get from $T_{E}^{\tilde{i}}(\mathrm{~g}) A=A T_{E}^{\tilde{i}}(\mathrm{~g})$,

$$
\begin{equation*}
P_{\Downarrow} T_{E}^{\alpha}(g) P_{\Downarrow} \circ P_{\Downarrow} A P_{\Downarrow}=P_{\Downarrow} A P_{\Downarrow} \circ P_{\Downarrow} T_{E}^{\alpha}(g) P_{\Downarrow}(g \in G(U)) . \tag{5.3}
\end{equation*}
$$

On the other hand, the representation of $G(U)$ induced on \mathscr{W} is isomorphic to the finite tensor product of ($\left.T_{j}^{a_{j}} \mid G(U), \mathscr{H}_{j}(U)\right), j \in J$, that is, $P_{\mathscr{W}} T_{E}^{\dot{\alpha}}(g) P_{W} \mid \mathscr{W}$ is equivalent to $T_{J}(g), g \in G(U)$, in the notation in $\S 5.4$ (M and $G=G(M)$ are replaced by U and $G(U)$ here). Thus we can apply Lemma 5.3 and see that $P_{\Downarrow} A P_{\Downarrow}$ is a linear combination of $P_{\Downarrow} R_{J}(\sigma) P_{\Downarrow}, \sigma \in$ $\Im_{J}\left(s_{J}\right)$, where $s_{J}=\left(s_{j}\right)_{j \in J .}$. This means that $P_{\circledast} A P_{\circledast}=P_{\Downarrow} A^{\prime} P_{\circledast}$ with $A^{\prime} \in$ $<R(\sigma) ; \sigma \in \mathbb{S}_{J}\left(s_{J}\right)>$, the finite dimensional algebra generated by these $R(\sigma)$'s. Further we have $\left\|A^{\prime}\right\|=\left\|P_{\circledast} A^{\prime} P_{\star}\right\|=\left\|P_{\circledast} A P_{\circledast}\right\| \leq\|A\|$.

Thus the proof of the lemma is now complete.
Applying this lemma, we obtain the following fundamental result.

Lemma 5.6. Assume that there exists an increasing sequence U_{n} of open subsets of M such that
(a) $\cup_{n \in \mathrm{~N}} U_{n}=M$ and each U_{n} is connected, and
(b) for each $n, E_{j} \subset U_{n}\left(j \in J_{n}\right)$ and $E_{j} \cap U_{n}=\phi\left(j \not \ddagger J_{n}\right)$ with a finite subset $J_{n} \subset \mathbf{N}$.
Then, under representations T_{E}^{α} and R, the diffeomorphism group G and the permutation group $\mathfrak{S}_{\infty}(s) \subset \mathfrak{S}_{\infty}$ form a dual pair, and also the groups G and $\mathfrak{\Xi}_{\mu, E_{s}}$ form a dual pair too:

$$
T_{E}^{\hat{a}}(G)^{\prime}=R\left(\mathfrak{\Im}_{\infty}(s)\right)^{\prime \prime}=R\left(\mathfrak{S}_{\mu E, s}\right)^{\prime \prime}, \quad T_{E}^{\hat{a}}(G)^{\prime \prime}=R\left(\mathfrak{\Im}_{\infty}(s)\right)^{\prime}=R\left(\mathfrak{S}_{\mu, E_{s}}\right)^{\prime}
$$

Proof. First note that $\cup_{n \in \mathrm{~N}} G\left(U_{n}\right)=G$, which comes from $U_{n} \nearrow M$. Fix n. Then each space \mathscr{H}_{j} is decomposed into a direct sum as

$$
\mathscr{H}_{j}=\mathscr{H}_{j}\left(U_{n}\right) \otimes \mathscr{H}_{j}\left(V_{n}\right) \quad \text { with } V_{n}=M \backslash U_{n} .
$$

Put $\mathscr{W}_{n}=\left(\otimes_{j \in J_{n}} \mathscr{H}_{j}\left(U_{n}\right)\right) \otimes\left(\otimes_{j \notin J_{n}} \chi_{j}\right)$ and $P_{n}=P_{w_{n}}$. Then, $P_{n} \nearrow I$ the identity operator, or $\cup_{n \in \mathbb{N}} \mathscr{W}_{n}$ spans topologically the total space $\otimes_{j \in \mathbb{N}}^{\chi} \mathscr{H}_{j}$. Since $E_{j} \cap$ $U_{n}=\phi\left(j \notin J_{n}\right)$ by assumption, we have $\chi_{j} \in \mathscr{H}_{j}\left(V_{n}\right)\left(j \notin J_{n}\right)$, and so we can apply Lemma 5.5 to $G\left(U_{n}\right)$ and \mathscr{W}_{n}. Hence, for any intertwining operator $A \in T_{E}^{\dot{\alpha}}(G)^{\prime}$, we have $P_{n} A P_{n}=P_{n} A_{n} P_{n}$ with an $A_{n} \in \mathscr{C}=R\left(\mathfrak{G}_{\mu, E, s}\right)^{\prime \prime}$ such that $\left\|A_{n}\right\| \leq\|A\|$.

Thus we come to the situation where Lemma 5.2 can be applied and conclude that $A \in \mathscr{C}$ or $T_{E}^{\dot{\varepsilon}}(G)^{\prime} \subset R\left(\mathfrak{S}_{\mu, E s}\right)^{\prime \prime}$. Since the converse inclusion is clear, the dual pair relation between G and $\mathcal{G}_{\mu, E_{s}}$ is now established. Q. E. D.

Note that, in the case of Lemma 5.6, the subgroup $\mathfrak{S}_{\infty}(s) \subset \mathfrak{S}_{\infty}$ is everywhere dense in the permutation group $\mathfrak{S}_{\mu, E, s}$ in $s \cdot$ w-topology, and the latter is a subgroup of $\tilde{\mathbb{E}}_{\infty, f}$.
5.6. Proof of Theorem 5.1. By assumption on (μ, E), we have a μ-unital subset $F=\prod_{j \in \mathrm{~N}} F_{j}$ such that $F \stackrel{\mu}{\sim} E$ and $F_{j}, j \in \mathbf{N}$, are mutually disjoint. Here we normalize F to get a μ-unital subset, μ-cofinal with E, for which Lemma 5.6 is applicable. Cf. [4, §1.8] for another kind of normalization of E.

Lemma 5.7. (i) There exists a μ-unital subset $E^{\prime}=\prod_{j \in \mathrm{~N}} E_{j}^{\prime}, \mu$-cofinal with E, such that the condition (MU2str) holds, and E_{j}^{\prime} 's are mutually disjoint, each relatively compact, open and with finite number of connected components.
(ii) There exists a μ-unital subset $E^{\prime \prime}=\Pi_{j \in \mathrm{~N}} E_{j}^{\prime \prime}{ }^{\mu} E$ for which $E_{j}^{\prime \prime \prime}$ s are relatively compact, not necessarily mutually disjoint but satisfy the following condition:
(AB) there exists an increasing sequence $U_{n}, n \in \mathbf{N}$, of connected, relatively compact, open subsets of M such that $\cup_{n \in \mathbb{N}} U_{n}=M$ and that, for each n, there exists a finite subset $J_{n} \subset \mathbf{N}$ for which $E_{j}^{\prime \prime} \subset U_{n}$ or $E_{j}^{\prime \prime} \cap U_{n}=\phi$ according as $j \in J_{n}$ or not.

Proof. (i) Take an increasing sequence of connected, relatively compact, open subsets $W_{n}(n \in \mathbf{N})$ of M such that $\cup_{n \in \mathbb{N}} W_{n}=M$, and put $K_{n}=$ $\mathrm{Cl}\left(W_{n}\right)$. Fix a small constant $\varepsilon>0$.

For each F_{j}, there exists a $W_{m_{j}}$ such that $\mu_{j}\left(F_{j} \backslash W_{m_{j}}\right)<\varepsilon / 2^{j+1}$. Further, since E satisfies the condition (MU2), so does F, and so there exists an increasing sequence $N_{n} \in \mathbf{N}$ such that $\sum_{j>N_{n}} \mu_{j}\left(F_{j} \cap K_{n}\right)<\varepsilon / 2^{n+1}$. Put $E_{j}^{(0)}=\left(F_{j}\right.$ $\left.\cap W_{m_{j}}\right) \backslash \cup_{n: j>N_{n}} K_{n}$, and $E^{(0)}=\Pi_{j \in \mathrm{~N}} E_{j}^{(0)}$. Then $E^{(0)} \stackrel{\mu}{\sim} E$, and $E^{(0)}$ satisfies the condition (MU2str) : for any compact subset K of $M, K \cap E_{j}^{(0)}=\phi(j \gg 0)$. The sets $E_{j}^{(0)}$ are mutually disjoint and relatively compact.

Hereafter, we consider only such open subsets U that their boundaries $\partial U=\mathrm{Cl}(U) \backslash U$ are null sets : $\mu_{j}(\partial U)=0$ for any μ_{j}. For each $E_{j}^{(0)}$, we take a
relatively compact, open subset $E_{j}^{(1)}$ such that

$$
\begin{equation*}
\mu_{j}\left(E_{j}^{(1)} \ominus E_{j}^{(0)}\right)+\sum_{k \neq j} \mu_{k}\left(E_{j}^{(1)} \cap E_{k}^{(0)}\right)<\varepsilon / 2^{j} . \tag{5.4}
\end{equation*}
$$

Then, $E^{(1)}=\prod_{j \in \mathrm{~N}} E_{j}^{(1)} \stackrel{\mu}{\sim} E^{(0)}$. Further, put inductively for $j=1,2, \cdots$,

$$
E_{j}^{(2)}=E_{j}^{(1)} \backslash\left(\cup_{k<j} \mathrm{Cl}\left(E_{k}^{(2)}\right)\right)=E_{j}^{(1)} \backslash \cup_{k<j} \mathrm{Cl}\left(E_{k}^{(1)}\right) .
$$

Then, $E_{j}^{(2)}$ are mutually disjoint, open subsets. Note that

$$
\begin{gathered}
E_{j}^{(2)} \ominus E_{j}^{(1)}=E_{j}^{(1)} \cap\left(\cup_{k<j} \mathrm{Cl}\left(E_{k}^{(1)}\right)\right) \equiv E_{j}^{(1)} \cap\left(\cup_{k<j} E_{k}^{(1)}\right) \\
\subset\left(E_{j}^{(1)} \backslash E_{j}^{(0)}\right) \cup\left(E_{j}^{(0)} \cap \cup_{k<j} E_{k}^{(1)}\right) \quad \text { (modulo null sets), }
\end{gathered}
$$

Then we get $\mu_{j}\left(E_{j}^{(2)} \ominus E_{j}^{(1)}\right) \leq \mu_{j}\left(E_{j}^{(1)} \ominus E_{j}^{(0)}\right)+\sum_{k<j} \mu_{j}\left(E_{j}^{(0)} \cap E_{k}^{(1)}\right)$, and so

$$
\begin{equation*}
\sum_{j \in \mathbb{N}} \mu_{j}\left(E_{j}^{(2)} \ominus F_{j}^{(1)}\right) \leq \sum_{j \in \mathbb{N}} \mu_{j}\left(E_{j}^{(1)} \ominus E_{j}^{(0)}\right)+\sum_{k \in \mathbb{N}} \sum_{j=k+1}^{\infty} \mu_{j}\left(E_{j}^{(0)} \cap E_{k}^{(1)}\right)<\varepsilon . \tag{5.5}
\end{equation*}
$$

This gives us $E^{(2)}=\Pi_{j \in N} E_{j}^{(2)} \stackrel{\mu}{\sim} E^{(1)}$. Finally, picking up finite number of connected components of each $E_{j}^{(2)}$ appropriately, we get E_{j}^{\prime} and then $E^{\prime}=$ $\Pi_{j \in \mathrm{~N}} E_{j}^{\prime}$ demanded in the assertion (i) in the lemma.
(ii) We start with E^{\prime} in (i) but take a new increasing sequence $W_{n} \nearrow$ $M(n \rightarrow \infty)$ of relatively compact, connected, open subsets. We note here the following elementary fact which will be repeatedly applied in the discussions below. Let $C \subset W_{n}$ be a closed subset of M and p a point outside of W_{n}, then a path connecting p with C meets necessarily with $W_{n} \backslash C$ before meeting C itself, and so we can connect p with W_{n} by a small open path without touching C inside of W_{n}.

We proceed inductively as follows. First consider E_{1}^{\prime} and take a $W_{m_{1}}$ containing its closure. Put $I_{1}=\left\{i ; E_{i}^{\prime} \cap W_{m_{1}} \neq \phi\right\}, \quad J_{1}=\left\{i \in I_{1} ; E_{i}^{\prime} \subset W_{m_{1}}\right\}$. For i $\in J_{1}$, put $E_{i}^{\prime \prime}=E_{i}^{\prime}$. For j 's in $I_{1} \backslash J_{1}$, consider first the union $U_{1}^{\prime}=W_{m_{1}} \cup\left(\cup_{i \in I_{1}}\right.$ $\left.E_{i}^{\prime}\right)$. We can make it connected (since $\operatorname{dim} M \geq 2$) by adding small open pathes appropriately to $E_{j}^{\prime}, j \in I_{1} \backslash J_{1}$, to connect their connected components outside of $W_{m_{1}}$ to $W_{m_{1}}$, so that we get $E_{j}^{\prime \prime}, j \in I_{1} \backslash J_{1}$, and a connected open U_{1} $=W_{m_{1}} \cup\left(\cup_{j \in I_{1}} E_{j}^{\prime \prime}\right)$ satisfying

$$
\begin{equation*}
\mu_{j}\left(E_{j}^{\prime \prime} \ominus E_{j}^{\prime}\right)+\sum_{k \notin I_{1}} \mu_{k}\left(E_{j}^{\prime \prime} \cap E_{k}^{\prime}\right)<\varepsilon / 2^{j} \quad\left(j \in I_{1} \backslash J_{1}\right) . \tag{5.6}
\end{equation*}
$$

Note that the above sum is actually a finite sum. Put $A_{1}=\left\{k \notin I_{1}, E_{k}^{\prime} \cap E_{j}^{\prime \prime} \neq\right.$ $\left.\phi\left(\exists j \in I_{1} \backslash J_{1}\right)\right\}$ and

$$
\begin{equation*}
E_{k}^{\prime \prime}=E_{k}^{\prime} \backslash \cup_{j \in I_{1} J_{1}} E_{j}^{\prime \prime} \quad\left(k \in A_{1}\right) . \tag{5.7}
\end{equation*}
$$

Thus $E_{i}^{\prime \prime}$ are determined for $i \in B_{1}:=I_{1} \cup A_{1}$. Note that $E_{i}^{\prime \prime} \subset U_{1}$ for $i \in I_{1}$, and that $E_{k}^{\prime \prime}\left(k \in A_{1}\right)$ and $E_{i}^{\prime}\left(i \notin B_{1}\right)$ are disjoint with U_{1}. Thus the first step of the induction is completed.

For the second step, we take a $W_{m_{2}}, m_{2}>m_{1}$, which contains all of
$\mathrm{Cl}\left(E_{i}^{\prime \prime}\right), i \in B_{1}$. Then, $U_{1} \subset W_{m_{2}}$. Put $I_{2}=\left\{i \notin B_{1} ; E_{i}^{\prime} \cap W_{m_{2}} \neq \phi\right\}$ and $J_{2}=\left\{i \in I_{2} ;\right.$ $\left.E_{i}^{\prime} \subset W_{m_{2}}\right\}$. For $i \in J_{2}$, put $E_{i}^{\prime \prime}=E_{i}^{\prime}$. For j 's in $I_{2} \backslash J_{2}$, consider first the union U_{2}^{\prime} $=W_{m_{2}} \cup\left(\cup_{i \in I_{2}} E_{i}^{\prime}\right)$. We can make U_{2}^{\prime} connected by adding small open pathes to $E_{j}^{\prime}, j \in I_{2} \backslash J_{2}$, to connect their connected components outside of $W_{m_{2}}$ (finite number by (i)) to $W_{m_{2}}$, not touching $E_{i}^{\prime \prime} \subset W_{m_{2}}, i \in B_{1}$, already determined in the previous step (cf. the note at the beginning of the proof for (ii)), so that we get $E_{j}^{\prime \prime}, j \in I_{2} \backslash J_{2}$, and a connected open $U_{2}=W_{m_{2}} \cup\left(\cup_{j \in I_{2}} E_{j}^{\prime \prime}\right)$, such that

$$
\begin{equation*}
\mu_{j}\left(E_{j}^{\prime \prime} \ominus E_{j}^{\prime}\right)+\sum_{k \notin B_{1} \cup I_{2}} \mu_{k}\left(E_{j}^{\prime \prime} \cap E_{k}^{\prime}\right)<\varepsilon / 2^{j}\left(j \in I_{2} \backslash J_{2}\right) . \tag{5.6'}
\end{equation*}
$$

Put $A_{2}=\left\{k \notin B_{1} \cup I_{2} ; E_{k}^{\prime} \cap E_{j}^{\prime \prime} \neq \phi\left(\exists j \in I_{2} \backslash J_{2}\right)\right\}$, and

$$
E_{k}^{\prime \prime}=E_{k}^{\prime} \backslash\left(\cup_{j \in I_{2} J_{2}} E_{j}^{\prime \prime}\right) \quad\left(k \in A_{2}\right) .
$$

Thus $E_{i}^{\prime \prime}$ are determined for $i \in B_{2}:=B_{1} \cup I_{2} \cup A_{2}$. Note that $E_{i}^{\prime \prime} \subset U_{2}\left(i \in B_{1} \cup\right.$ I_{2}), and that $E_{i}^{\prime \prime}\left(i \in A_{2}\right)$ and $E_{i}^{\prime}\left(i \notin B_{2}\right)$ are disjoint with U_{2}.

For the third step, we take a $W_{m_{3}}, m_{3}>m_{2}$, containing all $\mathrm{Cl}\left(E_{i}^{\prime \prime}\right), i \in B_{2}$. Put $I_{3}=\left\{i \notin B_{2} ; E_{i}^{\prime} \cap W_{m_{3}} \neq \phi\right\}$, and $J_{3}=\left\{i \in I_{3} ; E_{i}^{\prime} \subset W_{m_{3}}\right\}$. For $i \in J_{3}$, put $E_{i}^{\prime \prime}=E_{i}^{\prime}$. For j 's in $I_{3} \backslash J_{3}$, consider $U_{3}^{\prime}=W_{m_{3}} \cup\left(\cup_{i \in l_{3}} E_{i}^{\prime}\right)$, and so on. We omit to state the n-th step since it is now clear.

Finally, thus obtained $E_{j}^{\prime \prime}, j \in \mathbf{N}$, give a μ-unital subset $E^{\prime \prime} \stackrel{\mu}{\sim} E^{\prime}$, as is seen by an evaluation similar to (5.5), and satisfies the condition (AB).

The proof of the assertion (ii) of the lemma is now complete.
Proof of Theorem 5. 1. Now let us return to the proof of Theorem 5.1. From $E^{\prime \prime \mu} \stackrel{\mu}{\sim} E$, we see that the representations $T_{E^{\prime \prime}}^{\hat{\alpha}}$ and $T_{E}^{\dot{\alpha}}$ are unitary equivalent in a natural fashion, and that the permutation groups $\mathfrak{S}_{\mu, E^{\prime \prime}, s}$ and $\mathfrak{\Im}_{\mu, E, s}$ coincide with each other (cf. Proposition $4.5(\mathrm{i})$). So the proof of the theorem is transferred from E to $E^{\prime \prime}$.

To establish the dual pair relation, we apply Lemma 5.6. The condition (AB) established in Lemma 5.7 (ii) is nothing but the assumptions (a) and (b) in Lemma 5.6. So we can apply Lemma 5.6 and see that the groups G and $\Xi_{\infty}(s)=\Xi_{\mu, E, s}$ form a dual pair.

Thus the proof of Theorem 5.1 is now complete.
5.7. Cases of E satisfying a weaker disjointness condition. In our general situation where only the two conditions (MU1)-(MU2) are assumed for (μ, E), there gives rise to an interesting problem as

Problem 5.8. Under the tensor product representation $T_{E}^{\tilde{\tilde{a}}}$, do the diffeomorphism group $G=\operatorname{Diff}_{0}(M)$ and the permutation group $\mathfrak{S}_{\mu, E, s} \subset \mathbb{S}_{\infty}(s)$ form a dual pair?

At this stage, we have no definite answer. However, if we assume a certain weak disjointness condition on E, the answer is yes and we have even more as is given in Theorem 5.9 below.

Let us introduce the following disjointness condition on $E=\Pi_{j \in \mathbb{N}} E_{j}$:
(wDIS) there exists an increasing sequence I_{n} of finite subsets of \mathbf{N} such that $I_{n} \nearrow \mathbf{N}$ and, for any $n \in \mathbf{N}, \cup_{j \in I_{n}} E_{j}$ and $\cup_{k \notin I_{n}} E_{k}$ are mutually disjoint.

Then we have another main result in this paper as in
Theorem 5.9. Let $T_{E}^{\dot{d}}$ be the infinite tensor product representation of G determined from (μ, E) as in the preceeding theorem.

Let $\operatorname{dim} M \geq 2$. Assume that the μ-unital subset E is μ-cofinal to another μ-unital subset F which satisfies the condition (wDIS).
(i) The group $\mathfrak{S}_{\mu, E, s}$ is contained in $\tilde{\mathfrak{G}}_{\infty, f}$. The subgroup $\mathfrak{S}_{\infty} \cap \mathfrak{G}_{\mu, E_{s}}=$ $\mathfrak{S}_{\infty}(s)$ of \mathfrak{S}_{∞} is everywhere dense in $\mathfrak{S}_{\mu, E, s}$ with respect to $s \cdot w$-topolygy.
(ii) The groups G and $\mathfrak{\Im}_{\mu, E, s}$ form a dual pair: $R\left(\mathfrak{\Im}_{\mu, E, s}\right)^{\prime \prime}=T_{E}^{\alpha}(G)^{\prime}$. Furthermore the groups G and $\mathfrak{\Im}_{\infty}(s) \subset \mathfrak{S}_{\mu, E, s}$ form also a dual pair in the sense that $R\left(\mathcal{G}_{\infty}(s)\right)^{\prime \prime}=T_{E}^{\tilde{\alpha}}(G)^{\prime}$.
5.8. Proof of Theorem 5.9. As in the proof of Theorem 5.1, we can replace E by F. For the first assertion (i), it is enough to see that $\mathbb{G}_{\mu, E_{s}} \subset$ $\tilde{\mathfrak{S}}_{\infty, f}$, thanks to Proposition 4.5(iii). In turn, this inclusion relation is not difficult to prove under the condition (wDIS) on F.

To prove the second assertion (ii), we apply Lemmd 5.6. Therefore the main part of the proof is to discuss a normalization of the μ-unital subset E, that is, a replacement of E by another good μ-unital subset to which Lemma 5.6 is applicable.

Lemma 5.10. Let (μ, E) be a pair satisfying the conditions (MU1)-(MU 2). Assume that the condition (wDIS) holds for E.
(i) There exists a μ-unital subset $E^{\prime}=\prod_{j \in N} E_{j}^{\prime}$ such that $E^{\prime} \stackrel{\mu}{\sim} E$ and E^{\prime} satisfies the conditions (wDIS) and (MU2str), and that each E_{j}^{\prime} is a relatively compact, open subset of $X_{j}=M$, with finite number of connected components.
(ii) In case $\operatorname{dim} M \geq 2$, there exists a μ-unital subset $E^{\prime \prime}=\Pi_{j \in \mathrm{~N}} E_{j}^{\prime \prime} \stackrel{\mu}{\sim} E$ with relatively compact $E_{j}^{\prime \prime \prime} s$ for which the condition ($A B$) in Lemma 5. 7 holds.

Proof. (i) From the condition (wDIS), there exists an increasing sequence $I_{m} \subset \mathbf{N}, I_{m} \nearrow \mathbf{N}$, such that $\cup_{j \in L_{m}} E_{j} \subset M(m \geq 1)$, with $L_{m}=I_{m} \backslash I_{m-1}, L_{1}=$ I_{1}, are mutually disjoint. We construct $E^{(0)}=\Pi_{j \in N} E_{j}^{(0)} \stackrel{\mu}{\sim} E$, and then $E^{(1)}=$ $\Pi_{j \in N} E_{j}^{(1)} \stackrel{\mu}{\sim} E^{(0)}$, just as in the beginning of the proof of Lemma 5.7 , but starting with E here in place of F there. Then, $Q_{m}^{(0)}:=\cup_{j \in L_{m}} E_{j}^{(0)}, m \in \mathbf{N}$, are
mutually disjoint, and $E_{j}^{(1)}$'s are relatively compact and open.
Put, for $j \in L_{1}, E_{j}^{(2)}=E_{j}^{(1)}$, and put, for $j \in L_{m}, m \geq 2$, inductively on m,

$$
E_{j}^{(2)}=E_{j}^{(1)} \backslash \cup_{k=1}^{m-1} \cup_{i \in L_{k}} \mathrm{Cl}\left(E_{i}^{(2)}\right)=E_{j}^{(1)} \backslash \cup_{k=1}^{m-1} \cup_{i \in L_{k}} \mathrm{Cl}\left(E_{i}^{(1)}\right) .
$$

Then, $Q_{m}^{(2)}:=\cup_{i \in L_{m}} E_{i}^{(2)}, m \in \mathbf{N}$, are mutually disjoint, relatively compact and open. Similarly as in the proof of Lemma 5.7(i), we have an evaluation

$$
\mu_{j}\left(E_{j}^{(2)} \ominus E_{j}^{(1)}\right) \leq \mu_{j}\left(E_{j}^{(1)} \ominus E_{j}^{(0)}\right)+\sum_{i \in \bigcup_{k}=1 L_{k}} \mu_{j}\left(E_{j}^{(0)} \cap E_{i}^{(1)}\right) \quad\left(j \in L_{m}\right) .
$$

Summing up this inequality, we get $\sum_{j \in \mathrm{~N}} \mu_{j}\left(E_{j}^{(2)} \ominus E_{j}^{(1)}\right)<\varepsilon$ as in (5.5), whence $E^{(2)} \stackrel{\mu}{\sim} E^{(1)}$. Picking up finite number of connected components from $E_{j}^{(2)}$ appropriately, we obtain E_{j}^{\prime} and $E^{\prime}=\prod_{j \in \mathrm{~N}} E_{j}^{\prime} \stackrel{\mu}{\sim} E^{(2)} \stackrel{\mu}{\sim} E$ in (i) of the lemma.
(ii) Just as in the proof of (ii) in Lemma 5.7, we start with E^{\prime} given above, and with a new increasing sequence $W_{n} \nearrow M(n \rightarrow \infty)$ having the same properties as there. However we discuss here not according to individual $E_{i}^{\prime}, i \in \mathbf{N}$, but according to families $\left\{E_{i}^{\prime} ; i \in L_{m}\right\}, m \in \mathbf{N}$.

Put $Q_{m}^{\prime}=\cup_{i \in L_{m}} E_{i}^{\prime}, m \in \mathbf{N}$. First consider Q_{1}^{\prime}, and take a $W_{m_{1}}$ containing its closure. Put $I_{1}^{w}=\left\{m ; Q_{m}^{\prime} \cap W_{m_{1}} \neq \phi\right\}$, and $J_{1}^{w}=\left\{m \in I_{1}^{w} ; Q_{m}^{\prime} \subset W_{m_{1}}\right\}$. For $i \in L_{m}$ with $m \in J_{1}^{w}$, put $E_{i}^{\prime \prime}=E_{i}^{\prime}$. For j 's in $L_{m}, m \in I_{1}^{w} \backslash J_{1}^{w}$, consider first the union $U_{1}^{\prime \prime}$ $=W_{m_{1}} \cup\left(\cup_{m^{\prime} \in I_{1}^{w}}^{w} Q_{m^{\prime}}^{\prime}\right)$. We make it connected by adding small open pathes appropriately to $E_{j}^{\prime}, j \in L_{m}, m \in I_{1}^{\nu} \backslash J_{1}^{w}$, to connect their connected components outside of $W_{m_{1}}$ to $W_{m_{1}}$, so that we get $E_{j}^{\prime \prime}, j \in L_{m}, m \in I_{1}^{w} \backslash J_{1}^{w}$, and a connected open $U_{1}=W_{m_{1}} \cup\left(\cup_{m \in I_{1}^{w}} Q_{m}^{\prime \prime}\right)$ with $Q_{m}^{\prime \prime}=\cup_{j \in L_{m}} E_{j}^{\prime \prime}$, satisfying

$$
\mu_{j}\left(E_{j}^{\prime \prime} \ominus E_{j}^{\prime}\right)+\sum_{k \notin L_{m}, m \in I^{\mu}} \mu_{k}\left(E_{j}^{\prime \prime} \cap E_{k}^{\prime}\right)<\varepsilon / 2^{j} \quad\left(j \in L_{m}, m \in I_{1}^{w} \backslash J_{1}^{w}\right) .
$$

Put $A_{1}^{w}=\left\{a \notin I_{1}^{w} ; Q_{a}^{\prime} \cap\left(\cup_{m \in I_{1}^{w} \backslash 1}^{w} Q_{m}^{\prime \prime}\right) \neq \phi\right\}$, and

$$
E_{k}^{\prime \prime}=E_{k}^{\prime} \backslash\left(\cup_{m \in 1_{1}^{w} \backslash \backslash_{1}^{w}} Q_{m}^{\prime \prime}\right) \quad\left(k \in L_{a}, a \in A_{1}^{w}\right)
$$

Thus $E_{i}^{\prime \prime}$ are determined for $i \in L_{m}, m \in B_{1}^{w}:=I_{1}^{w} \cup A_{1}^{w}$. Note that $Q_{m}^{\prime \prime} \subset U_{1}$ for m $\in I_{1}^{w}$, and that $Q_{m}^{\prime \prime}\left(m \in A_{1}\right)$ and $Q_{m}^{\prime}\left(m \notin B_{1}^{w}\right)$ are disjoint with U_{1}. Thus the first step of the induction is completed.

Now we state the n-th step. Assume that $E_{i}^{\prime \prime}$ have been determined for $i \in L_{m}, m \in B_{n-1}^{w}$, by the help of $W_{m_{1}} \subset W_{m_{2}} \subset \cdots \subset W_{m_{n-1}}$. Take a $W_{m_{n}}, m_{n}>m_{n-1}$, containing all $\mathrm{Cl}\left(E_{i}^{\prime \prime}\right), i \in L_{m}, m \in B_{n-1}^{w}$, and put $I_{n}^{w}=\left\{m \notin B_{n-1}^{w} ; Q_{m}^{\prime} \cap W_{m_{n}} \neq \phi\right\}$, and $J_{n}^{w}=\left\{m \in I_{n}^{w} ; Q_{m}^{\prime} \subset W_{m_{n}}\right\}$. For $i \in L_{m}$ with $m \in J_{n}^{w}$, put $E_{i}^{\prime \prime}=E_{i}^{\prime}$. For j 's in L_{m}, $m \in I_{n}^{w} \backslash J_{n}^{w}$, consider first the union $U_{n}^{\prime}=W_{m_{n}} \cup\left(\cup_{\left.m^{\prime} \in\right|_{n} ^{w}} Q_{m^{\prime}}^{\prime}\right)$. We make it connected by adding small open pathes appropriately to $E_{j}^{\prime}, j \in L_{m}, m \in I_{n}^{w} \backslash$ J_{n}^{w}, to connect their connected components outside of $W_{m_{n}}$ to $W_{m_{n}}$ (not touching $E_{j}^{\prime \prime}, j \in L_{m}, m \in B_{n-1}^{w}$, already determined until the last step), so that we get $E_{j}^{\prime \prime}, j \in L_{m}, m \in I_{n}^{w} \backslash J_{n}^{w}$, and a connected open $U_{n}=W_{m_{n}} \cup\left(\cup_{m \in E_{n}^{w}} Q_{m}^{\prime \prime}\right)$
satisfying
(5. $\left.6^{\prime \prime \prime}\right) \quad \mu_{j}\left(E_{j}^{\prime \prime} \ominus E_{j}^{\prime}\right)+\sum_{k \notin L_{m}, m \in B_{n-1}^{w} \cup U_{n}^{w}} \mu_{k}\left(E_{j}^{\prime \prime} \cap E_{k}^{\prime}\right)<\varepsilon / 2^{j} \quad\left(j \in L_{m}, m \in I_{n}^{w} \backslash J_{n}^{w}\right)$.

$$
E_{k}^{\prime \prime}=E_{k}^{\prime} \backslash\left(\cup_{\left.m \in I_{n}^{w} \backslash \backslash_{n}^{w} Q_{m}^{\prime \prime}\right)} \quad\left(k \in L_{a}, a \in A_{n}^{w}\right) .\right.
$$

Then $E_{i}^{\prime \prime}$ are determined for $i \in L_{m}, m \in B_{n}^{w}:=B_{n-1}^{w} \cup I_{n}^{w} \cup A_{n}^{w}$. Note that $Q_{m}^{\prime \prime} \subset U_{n}$ for $m \in B_{n-1}^{w} \cup I_{n}^{w}$, and that $Q_{m}^{\prime \prime}\left(m \in A_{n}^{w}\right)$ and $Q_{m}^{\prime}\left(m \notin B_{n}^{w}\right)$ are disjoint with U_{n}.

Repeating this process inductively on n, we obtain finally $E_{j}^{\prime \prime}, j \in \mathbf{N}$, which satisfy the condition (AB) in Lemma 5.7 for the sequence $U_{n}, n \in \mathbf{N}$, because $Q_{m}^{\prime \prime} \subset U_{n}$ or $Q_{m}^{\prime \prime} \cap U_{n}=\phi$ for any $m, n \in \mathbf{N}$.

This complete the proof of the lemma.
Proof of Theorem 5. 9(ii). Since we have constructed $E^{\prime \prime} \stackrel{\mu}{\sim} E$ which satisfies the condition (AB) in Lemma 5.7, we are now ready to apply Lemma 5.6. Then the assertion (ii) of the theorem follows from this lemma.

The proof of Theorem 5.9 is now complete.

§ 6. Groups of volume-preserving diffeomorphisms

Assume that a connected $C^{(n)}$-manifold $M, n \geq 1$, is equipped with a measure $\omega \in \mathscr{L} \mathscr{F} \mathscr{M}(M)$. We consider here an important subgroup $G_{\omega}=$ $\operatorname{Diff}_{0}(M ; \omega)$ of $G=\operatorname{Diff}_{0}(M)$ consisting of volume-preserving $g \in G: d \omega(g p)$ $=d \omega(p), p \in M$.
6.1. The extension \bar{G}_{ω} of the group G_{ω}. Denote by \mathscr{M}_{ω} the group of all measurable transformations on M which are equal to the identity outside some compacts and preserve the volume ω, and also denote by \bar{G}_{ω} its subgroup consiting of all elements $g \in \mathscr{M}_{\omega}$ which can be approximated by nets $g_{\epsilon}, \varepsilon>0$, in G_{ω}. Here, by definition, a net $g_{\epsilon} \in G_{\omega}, \varepsilon>0$, approximates $g \in \mathscr{M}_{\omega}$ if (i) $\omega\left(\left\{p \in M ; g_{\varepsilon} p \neq g p\right\}\right) \rightarrow 0$ as $\varepsilon \downarrow 0$, and (ii) there exists a compact $K \subset M$ such that $g_{\varepsilon}=$ id outside K.

Note that the fact that \bar{G}_{ω} becomes actually a group is seen from the following

Lemma 6.1. Assume that two nets $g_{\varepsilon}, h_{\varepsilon}, \varepsilon>0$, in G_{ω} approximate $g, h \in$ \mathscr{M}_{ω} respectively. Then the products $g_{t} h_{t} \in G_{\omega}$ approximates the product gh, and the inverse g_{ε}^{-1} approximates the inverse g^{-1}.

In this section we investigate firstly what kind of transformations are contained in the extended group \bar{G}_{ω}, and secondly whether or not the natural representations of the group G_{ω} or their tensor products can be
extended to the group extension \bar{G}_{ω}.
6.2. Rotation of a cubic body. In this and the succeeding two subsections, we treat the local case or the case where M is a connected open submanifold of $\mathbf{R}^{d}(d \geq 2)$. Consider the measure

$$
d \omega(x)=d x_{1} d x_{2} \cdots d x_{d} \quad\left(x=\left(x_{i}\right)_{i=1}^{d} \in \mathbf{R}^{d}\right) .
$$

Let $D=J^{d}$ with closed interval J be a cubic body in $M \subset \mathbf{R}^{d}$. Intoduce coordinates for which $J=[-a, a], a>0$, so that the center of D is the origin O. We devide D into two pieces by $D_{ \pm}=J_{ \pm} \times J^{d-1}$ with $J_{+}=[0, a], J_{-}=[-a$, $0]$. Denote by $h_{D_{+}, D_{-}}$(resp. g_{D}) the measurable transformation on M which exchanges D_{+}and D_{-}(resp. rotates D arround the center O by the angle π) and equals to the identity outside of D. We prove here that the transformations $h_{D_{+}, D_{-}}$and g_{D} can be respectively approximated by a net $g_{\varepsilon} \in G_{\omega}, \varepsilon$ >0, as $\varepsilon \downarrow 0$, where the support of g_{ε} is contained in $D_{t}=J_{\varepsilon}^{d} \subset M$ with $J_{\varepsilon}=$ $[-a-\varepsilon, a+\varepsilon]$. To do so, it is enough to show it for the rotation g_{D}.
6.2.1. First we assume $d=2$ and follow the result of Neretin [11]. Introduce the polar coordinates (r, ϕ) for $\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2}$. Take a smooth curve $r=\lambda(\phi)$ contained in the inside of $D_{\epsilon} \backslash D$ such that $\lambda(\phi+\pi)=\lambda(\phi)(\forall \phi)$, and also take a monotone smooth function $\tau(s)$ such that $\tau(s)=\pi$ for $s \leq 0$ and $\tau(s)=0$ for $s \geq s_{0}>0$, with a sufficiently small number s_{0} so that the curve r $=\sqrt{\lambda(\phi)^{2}+s_{0}}$ is contained in D_{ϵ}. We define a transformation $g_{\epsilon} \in \operatorname{Diff}_{0}(M, \omega)$ as follows. Let $g_{\epsilon}(r, \phi)=\left(r_{1}, \phi_{1}\right)$ and, for $s=r^{2}-\lambda(\phi)^{2}$,

$$
\left(r_{1}, \phi_{1}\right)= \begin{cases}(r, \phi+\pi) & \text { for } s \leq 0, \\ \left(\sqrt{\lambda\left(\phi_{1}\right)^{2}+s}, \phi+\tau(s)\right) & \text { for } 0 \leq s \leq s_{0}, \\ (r, \phi) & \text { for } s \geq s_{0} .\end{cases}
$$

Note that, in the region between two curves $r=\lambda(\phi)$ and $r=\sqrt{\lambda(\phi)^{2}+s_{0}}$, we have $2 r d r d \phi=d s d \phi=2 r_{1} d r_{1} d \phi_{1}$.
6.2.2. Next we proceed to the general case. For $x=\left(x_{1}, x_{2}, x_{3}, \cdots, x_{d}\right)$ $\in \mathbf{R}^{d}$, we put $\tilde{x}=\left(x_{3}, \cdots, x_{d}\right)$ and distinguish first two components $\left(x_{1}, x_{2}\right)$, introducing for it the polar coordinates (r, ϕ) as in the case of $d=2$. Our transformation $g_{\varepsilon} \in \operatorname{Diff}_{0}(M, \omega), \varepsilon>0$, is given in the following form : for x $=\left(x_{1}, x_{2}, \cdots, x_{d}\right)$, use the coordinates ($r, \phi ; \tilde{x}$), then

$$
g_{\epsilon}(r, \phi ; \tilde{x})=\left(r_{1}, \phi_{1} ; \tilde{x}\right)
$$

with $\left(r_{1}, \phi_{1}\right)=g_{6, x}(r, \phi)$, where $g_{s, x}$ is a transformation depending on $\tilde{x}=\left(x_{3}\right.$, \cdots, x_{d}) with a similar form as g_{s} in the case of $d=2$. To give $g_{\varepsilon, i}$, we introduce two monotone smooth functions $\xi(t), \eta(t), t \geq 0$, as

$$
\begin{gathered}
\xi(t)=1(0 \leq t \leq a), \quad \xi(a+\varepsilon / 3)=0, \\
\eta(t)=1(0 \leq t \leq a+2 \varepsilon / 3), \quad \eta(a+\varepsilon)=0,
\end{gathered}
$$

and put $\xi(t)=\xi(-t), \eta(t)=\eta(-t)$ for $t \leq 0$, and

$$
\xi(\tilde{x})=\prod_{i=3}^{d} \xi\left(x_{i}\right), \quad \eta(\tilde{x})=\prod_{i=3}^{d} \eta\left(x_{i}\right) .
$$

Define $\left(r_{1}, \phi_{1}\right)=g_{\epsilon, x}(r, \phi)$ as follows: put first

$$
\lambda(\phi ; \tilde{x})=\frac{\lambda(\phi)}{\xi(\tilde{x})+(1-\xi(\tilde{x})) \lambda(\phi)}
$$

and then, for $s=r^{2}-\lambda(\phi ; \tilde{x})^{2}$,

$$
\left(r_{1}, \phi_{1}\right)= \begin{cases}(r, \phi+\eta(\tilde{x}) \pi) & \text { for } s \leq 0 \\ \left(\sqrt{\left.\lambda\left(\phi_{1} ; \tilde{x}\right)^{2}+s, \phi+\eta(\tilde{x}) \tau(s)\right)}\right. & \text { for } 0 \leq s \leq s_{0}, \\ (r, \phi) & \text { for } s \geq s_{0}\end{cases}
$$

Note that, for a fixed \tilde{x}, the curve $r=\lambda(\phi ; \tilde{x}), 0 \leq \phi \leq 2 \pi$, equals to a unit circle if $\left|x_{i}\right| \geq a+\varepsilon / 3$ for some $i \geq 3$, and then the curve (r_{1}, ϕ_{1}), $0 \leq \phi \leq 2 \pi$, for a fixed parameter $s, 0 \leq s \leq s_{0}$, is a circle $r=\sqrt{1+s}$, and the rotation of angle $\eta(\tilde{x}) \tau(s)$ on the circle is smoothly consistent at $s=s_{0}$ with the rotation of angle $\eta(\tilde{x}) \pi$ of the unit disc $r \leq 1$ in the center, as it should be.

Note further that the transformation g_{ϵ} keeps the last ($d-2$) components \tilde{x} of x always invariant and, for each \tilde{x}, it equals a volumepreserving transformation on $\left(x_{1}, x_{2}\right) \in \mathbf{R}^{2}$ whose angle of rotation dicreases smoothly along with \tilde{x}. This implies in particular that the transformation g_{t} on $M \subset \mathbf{R}^{d}$ preserves the volume element ω.
6.3. More general transformations in \bar{G}_{ω}. We assume still $M \subset \mathbf{R}^{d}$. Let us divide M by the family of hyperplanes $x_{i}=n \delta(n \in \mathbf{Z})$ with sufficiently small $\delta>0$. Then, speaking about the cubic bodies cut off by these hyperplanes, we arrive at the following situation. Two cubic bodies are called adjacent to each other if they have in common one of their surfaces. Any two cubic bodies D_{1} and D_{2} inside of M can be connected by a chain of cubic bodies in $M, C_{1}=D_{1}, C_{2}, \cdots, C_{n}=D_{2}$, in such a way that C_{i} and C_{i+1} are adjacent for $1 \leq i<n$. Then any permutation of C_{i} 's can be given as a product of the transposition $h_{c_{i}, c_{i+1}} \in \bar{G}_{\omega}$ of C_{i} with C_{i+1} through the common surface, since this is well-known for the permutation group $\mathfrak{\Im}_{n}$. More in detail we have

Lemma 6. 2. For any two cubic bodies D_{1}, D_{2} in M given as above, there exists a permutation $h_{D_{1}, D_{2}}$ of D_{1} and D_{2} belonging to \bar{G}_{ω}. Here, by definition, $h_{D_{1}, D_{2}}=\mathrm{id}$ outside of $D_{1} \cup D_{2}$. More exactly, take an arcwise-connected, relatively compact negighbourhood U of $D_{1} \cup D_{2}$, then there exists a net $g_{\epsilon} \in G_{\omega}$, $\varepsilon>0$, and a permutation $h_{D_{1}, D_{2}}$ such that g_{ε} approximates $h_{D_{1}}, D_{2}$ and $\operatorname{supp}\left(g_{\varepsilon}\right) \subset$ U.

Proof. According to the size of the narrowest neck of U, we devide M finer by hyperplanes $x_{i}=\delta^{\prime}:=\delta / N$ with sufficiently big N. Then new smaller cubic bodies $D_{i}^{\prime} \subset D_{i}(i=1,2)$ can be connected by a chain of (new) cubic bodies contained in U. Then, the explicit form of measurepreserving transformations in $\S 6.2$ and the argument just above show that we can do everything inside of the open submanifold U. This means that a permutation $h_{D_{1}, D_{2}}$ can be approximeted by a net $g_{\epsilon} \in G_{\omega}$ with $\operatorname{supp}\left(g_{\varepsilon}\right) \subset U$. Take $K=\mathrm{Cl}(U)$, then $g_{\varepsilon}=$ id outside K, and so we see that $h_{D_{1}, D_{2}} \in \bar{G}_{\omega}$.
6.4. Exchange of two equi-volume open sets. Let $M \subset \mathbf{R}^{d}, d \geq 2$. Take two relatively compact open sets O_{1}, O_{2} with the same volume. Then we have

Proposition 6.3. There exists in \bar{G}_{ω} a measurable transformation $h_{o_{1}}, o_{2}$ which maps O_{1} onto O_{2}, O_{2} onto O_{1} (modulo null sets), and equals to the identity outside of $O_{1} \cup O_{2}$. More exactly, for an arcwise-connected relatively compact open set U containing $\mathrm{Cl}\left(O_{1} \cup O_{2}\right)$, there exists a net $g_{\epsilon}, \varepsilon>0$, in $G_{\omega}(U):=\left\{g \in G_{\omega} ; \operatorname{supp}(g) \subset U\right\}$, which approximates $h_{o_{1}}, o_{2}$. We can choose $h_{o_{1}, o_{2}}$ in such a way that, for certain open subsets V_{j} of O_{j} with $\omega\left(V_{j}\right)=\omega\left(O_{j}\right)$, it maps V_{1} onto V_{2}, V_{2} onto V_{1}, homeomorphically on each connected components.

Proof. Step 1. Let $\gamma>0$. Then there exists a sufficiently fine decomposition of M by hypersurfaces $x_{i}=n \delta(n \in \mathbf{Z})$ such that, for $j=1,2$, let \mathscr{C}_{j} be the set of cubic bodies for this decomposition contained in O_{j}, then the union $F_{j}=\cup_{D \in ধ_{j}} D$ approximates O_{j} as $\omega\left(O_{j} \backslash F_{j}\right)<\gamma$. Let n_{j} be the number of elements in \mathscr{C}_{j}. Assume that $n_{1} \leq n_{2}$. Discurding $\left(n_{2}-n_{1}\right)$ elements in \mathscr{C}_{2}, we get \mathscr{C}_{2}^{\prime}. Put $\mathscr{C}_{1}^{\prime}=\mathscr{C}_{1}$. Then $\omega\left(O_{j} \backslash F_{j}^{\prime}\right)<\gamma$ for $F_{j}^{\prime}=\cup_{D \in \mathscr{Y}_{j}^{\prime}} D$. Make pairs $\left(D_{1}, D_{2}\right)$, $D_{1} \in \mathscr{C}_{1}^{\prime}, D_{2} \in \mathscr{C}_{2}^{\prime}$, bijectively, and take $h_{D_{1}, D_{2}} \in \bar{G}_{\omega}$ in Lemma 6.2, then the product $h_{F_{1}^{\prime}, F_{2}^{\prime}}$ of $h_{D_{1}, D_{2}}$ over these pairs, maps F_{1}^{\prime} onto $F_{2}^{\prime}, F_{2}^{\prime}$ onto F_{1}^{\prime}, and equal to the identity outside of $F_{1}^{\prime} \cup F_{2}^{\prime}$, and so it approximates in a sense the desired transformation $h_{o_{1}}, o_{2}$.

Note that $h_{F_{1}^{\prime}}, F_{2}^{\prime}$ maps V_{1}^{\prime} onto V_{2}^{\prime} homeomorphically on each connected components, where $V_{j}^{\prime}=\cup_{D \in C_{j}} \operatorname{Int}(D), \operatorname{Int}(D)=$ the interior of D, and that $\omega\left(F_{j}^{\prime} \backslash V_{j}^{\prime}\right)=0$.

Step 2. Now we construct a net in \bar{G}_{ω} of certain $h_{F_{1}^{\prime}, F_{2}^{\prime}}$'s which 'converges' to an $h_{o_{1}}, o_{2}$. Then we guarantee, by Lemma 6.4 given below, the exixtence of a net $g_{c}, \varepsilon>0$, in the group G_{ω}, converging to $h_{o_{1}}, o_{2}$.

Take $\varepsilon=\varepsilon_{k}=2^{-k}, k \geq 1$, and put $\gamma=\varepsilon$. We discuss by induction on k and give a convergent series in \bar{G}_{ω}. For $k=1$, we follow the process descrived in Step 1 and put

$$
O_{j}^{(1)}=O_{j}, \quad F_{j}^{(1)}=F_{j}^{\prime}, \quad V_{j}^{(1)}=V_{j}^{\prime}(j=1,2), \quad h_{F_{1}^{(1)}, F_{2}^{(1)} .} .
$$

For the next step $k=2$, we take $\varepsilon=\varepsilon_{2}, \gamma=\varepsilon$, and $O_{j}^{(2)}=O_{j}^{(1)} \backslash F_{j}^{(1)}$ for O_{j} in the discussion in Step 1. Then, we obtain $F_{j}^{(2)} \subset O_{j}^{(2)}, V_{j}^{(2)} \subset F_{j}^{(2)}(j=1,2)$, and $h_{F_{1}^{(2)}, F_{2}^{(2)}}$.

In general, for the k-th step, we take $O_{j}^{(k)}=O_{j}^{(k-1)} \backslash F_{j}^{(k-1)}$ for O_{j} in the discussion in Step 1. Then we get $F_{j}^{(k)} \subset O_{j}^{(k)}, V_{j}^{(k)} \subset F_{j}^{(k)}$ and $h_{F_{1}^{(k)}, F_{2}^{(k)} \text {. }}^{\text {. }}$

Let us now put

$$
\begin{array}{cl}
h_{n} & =h_{F_{1}^{(k)}, F_{2}^{(k)} \text { on } F_{1}^{(k)} \cup F_{2}^{(k)} \text { for } 1 \leq k \leq n,} \quad \text { =id elsewhere, } \\
h & =h_{F_{1}^{(k)}, F_{2}^{(k)} \text { on } F_{1}^{(k)} \cup F_{2}^{(k)} \text { for } 1 \leq k<\infty,}=\text { id elsewhere, }
\end{array}
$$

Put $W_{j}=\cup_{k=1}^{\infty} F_{j}^{(k)}, V_{j}=\cup_{k=1}^{\infty} V_{j}^{(k)}$. Then, $h_{n} \in \bar{G}_{\omega}$ approximates the tansformation $h \in \mathscr{M}_{\omega}$ which is equal to the identity outside of $O_{1} \cup O_{2}$, and maps $W_{1} \subset O_{1}$ onto $W_{2} \subset O_{2}, W_{2}$ onto W_{1}. Note that $\omega\left(O_{j} \backslash V_{j}\right)=0$ and that h exchanges $V_{1} \subset W_{1}$ and $V_{2} \subset W_{2}$ homeomorphically on each connected components. We take this h as the transformation $h_{o_{1}}, o_{2}$ desired.

Step 3. The 'convergence' of h_{n} in \bar{G}_{ω} to h shows us the existence of a net $g_{\varepsilon}, \varepsilon>0$, in G_{ω} converging to h, by the help of the lemma below. To apply this lemma, we take $K=K_{0}=\mathrm{Cl}(U)$.

For the assertion on the existence of a convergent net in $G_{\omega}(U)$, we apply Lemmas 6.2 and 6.4.
Q. E. D.

Lemma 6.4. Assume that an element $g \in \mathscr{M}_{\omega}$ is approximated by a net g_{ϵ}, $\varepsilon>0$, in \bar{G}_{ω} in such a way that (a) for a compact K, $\operatorname{supp}\left(g_{\epsilon}\right) \subset K$, (b) $\omega(p \in$ $\left.\left.M ; g_{\epsilon} p \neq g p\right\}\right) \rightarrow 0$ as $\varepsilon \downarrow 0$. Then g belongs to the extended group \bar{G}_{ω} if there exists another compact K_{0} such that each $g_{\epsilon} \in \bar{G}_{\omega}$ is approximated by a net $g_{\delta \delta}$, $\delta>0, \delta \downarrow 0$, in G_{ω} such that $\operatorname{supp}\left(g_{\epsilon \delta}\right) \subset K_{0}$.

We omit the proof of this lemma.
6.5. The group extension \bar{G}_{ω} in the general case. Let us treat now the general case. Let M be a connected $C^{(n)}$-manifold, $1 \leq n \leq \infty$, and ω a measure on M taken from $\mathscr{L} \mathscr{F} \mathscr{M}(M)$. For eack local chart (U, ψ), in the co-ordinates $\psi(p)=x=\left(x_{i}\right)_{i=1}^{d}, d=\operatorname{dim} M$, we have $d \omega(p)=\rho(x) d x_{1} d x_{2} \cdots d x_{d}$ with a locally integrable, positive density ρ. Assume the following condition holds:
(Den) the density ρ is of class $C^{(n)}$ in every local chart.
Then we can transfer the results in $\S 6.4$ for local case to this general case, as shown below.

Define new local co-ordinates $\left(y_{i}\right)_{i=1}^{d}$ as $y_{1}=\int^{x_{1}} \rho\left(t_{1}, x_{2}, x_{3}, \cdots, x_{d}\right) d t_{1}$, and $y_{i}=x_{i}$ for $i>1$, then we have a standard expression of ω as

$$
d \omega(p)=d y_{1} d y_{2} \cdots d y_{d}
$$

A local chart (U, ψ) is called admissible if the measure ω is expressed in the standard form. For such a chart (U, ψ), consider U as an open subset of \mathbf{R}^{d} through $\psi: U \hookrightarrow \mathbf{R}^{d}$, and apply for U the results in $\S 6$.4. Put

$$
\bar{G}_{\omega}(U)=\left\{g \in \bar{G}_{\omega} ; \operatorname{supp}(g) \subset U\right\} .
$$

Theorem 6.5. Assume that a measure ω on M satisfies the condition (Den). Let O_{1} and O_{2} be two relatively compact, open subsets of M with the same volume. Then there exists an element $h_{o_{1}, o_{2}} \in \bar{G}_{\omega}$ which maps O_{1} onto O_{2}, O_{2} onto O_{1} (modulo null sets), and equals to the identity outside of $O_{1} \cup O_{2}$.

Furthermore, let U be an arcwise-connected open subset of M containing $\mathrm{Cl}\left(O_{1} \cup O_{2}\right)$. Then there exists a net $g_{\varepsilon}, \varepsilon>0$, in $G_{\omega}(U)$, converging to $h_{o_{1}}, o_{2}$. Moreover $h_{o_{1}}, o_{2}$ can be so chosen that there exist open subsets $V_{j} \subset O_{j}$ such that $\omega\left(O_{j} \backslash V_{j}\right)=0$ and it maps V_{1} onto V_{2}, V_{2} onto V_{1}, homeomorphically on each connected component.

Proof. Devide O_{j} into small open subsets $O_{j, m}, 1 \leq m \leq N$, (up to subsets of smaller dimensions) in such a way that each $O_{j, m}$ is contained in an admissible chart $U_{j, m}$, and that $\omega\left(O_{1, m}\right)=\omega\left(O_{2 m}\right)$ and $\omega\left(O_{j} \backslash \cup_{m=1}^{N} O_{j, m}\right)=0$.

Fix an m. Then there exists a chain of admissible charts $W_{1}=U_{1 m}, W_{2}$, $\cdots, W_{n}=U_{2 m}$, such that $W_{i} \subset U, W_{i} \cap W_{i+1} \neq 0(1 \leq i<n)$. Devide again the pair $O_{1 m}, O_{2 m}$ into pairs of equi-volume open subsets, sufficiently small compairing to the sizes of $W_{i}, W_{i} \cap W_{i+1}$. Take one of these pairs and let it be $O_{1}^{\prime}, O_{2}^{\prime}$. Choose a chain of open subsets $V_{1}=O_{1}^{\prime}, V_{2} \subset W_{1} \cap W_{2}, V_{3} \subset W_{2} \cap$ $W_{3}, \cdots, V_{n}=O_{2}^{\prime}$ all with the same volume. Then, by Proposition 6.3, V_{i} and V_{i+1} are exchanged by an $h_{i, i+1}=h_{V_{i}, v_{i+1}} \in \bar{G}_{\omega}\left(W_{i}\right)$. Therefore V_{1} and V_{n} are exchanged by an appropriate product of transposition $h_{i, i+1}$, just as in the symmetric group $\mathfrak{\Im}_{n}$. Thus we see that $O_{1, m}$ and $O_{2 m}$ are exchanged by an element in \bar{G}_{ω}, and finally so are the original O_{1} and O_{2}.

Remark 6.6. Take an arbitrary $\omega_{0} \in \mathscr{L} \mathscr{F} \mathscr{M}(M)$, or a locally finite measure on M which is locally equivalent to Lebesgues measures. Then there exists, for any $\varepsilon>0$, a measure $\omega \in \mathscr{L} \mathscr{F} \mathscr{M}(M)$ satsifying the condition (Den) and $\left|\omega-\omega_{0}\right|(M)<\varepsilon$.
6.6. Representations of $G_{\omega}=\operatorname{Diff}_{0}(M, \omega)$ and of \bar{G}_{ω}. On the Hilbert space $\mathscr{H}_{0}=L^{2}(M, \omega)$, we have a natural representation T_{0} of $G_{\omega}=\operatorname{Diff}_{0}(M$, ω) in the form

$$
T_{0}(g) f(x)=f\left(g^{-1} x\right) \quad\left(g \in G_{\omega}, x \in M, f \in \mathscr{H}_{0}\right)
$$

This representation can be extended by continuity to a representation of the group extension \bar{G}_{ω} consisting of measurable transformations approximated by a net in G_{ω}. In fact, suppose that $g_{\varepsilon}, \varepsilon>0$, in G_{ω} converges
to $g \in \bar{G}_{\omega}$ as $\varepsilon \downarrow 0$, then it induces a strong convergence of operators $T_{0}\left(g_{\varepsilon}\right)$, and the limiting operator can be attributed to g and gives $T_{0}(g)$, which is expressed by the same formula as above. Assume the condition (Den) for ω, then the group \bar{G}_{ω} contains a transformation which exchanges two equi-volume open subsets O_{1} and O_{2} in a compact, and equals to the identity outside of them. Even if there exist several such transformations, we denote any of them simply by $h_{o_{1}}, o_{2}$.

The irreducibility of the representation T_{0} of the group G_{ω} is equivalent to the irreducibility under the bigger group \bar{G}_{ω}, and the latter, even it is rather clear, is proved here in the simplest way.

Theorem 6.7. Let $\operatorname{dim} M \geq 2$, and assume, for a measure $\omega \in \mathscr{L} \mathscr{F} \mathscr{M}(M)$, that the condition (Den) holds.
(i) In case $\omega(M)=+\infty$, the natural representation T_{0} of the group $G_{\omega}=$ $\operatorname{Diff}_{0}(M, \omega)$ is irreducible, and so is its extension to the group \bar{G}_{ω}.
(ii) In case $\omega(M)<+\infty$, the 1-dimensional subspace consisting of constant functions on M is G_{ω}-invariant, and its orthogonal complement in \mathscr{H}_{0} is irreducible under G_{ω}. The same is true also for \bar{G}_{ω}.

Proof. Enough to prove the assertions for the extended group \bar{G}_{ω}. Let A be an intertwining operator of T_{0}. Take an open subset U with finite volume and its indicator function $f=\chi_{U} \in \mathscr{H}_{0}$. Put $\phi=A f$. Take any two relatively compact, open subsets O_{1} and O_{2} with the same volume, both contained in U or in $M \backslash U$, and take $h=h_{o_{1}}, o_{2}$, then $T_{0}(h) f=f$ and so we have $T_{0}(h) \phi=\phi$, that is,

$$
\phi\left(h_{o_{1}}, o_{2} x\right)=\phi(x) \quad \text { for almost all } x \in M
$$

Since the pair O_{1}, O_{2} are arbitrary both inside or outside of U, the function ϕ should be constant separately inside or outside of U. Therefore we have $\phi \equiv A\left(\chi_{U}\right)=c_{U} \chi_{U}+d_{U} \chi_{M}$ with constants $c_{U}, d_{U} \in \mathbf{C}$. In case $\omega(M)=$ $+\infty$, the constant function χ_{M} does not belong to \mathscr{H}_{0}, and so $d_{U}=0$ or $A\left(\chi_{U}\right)$ $=c_{U} \chi_{U}$. In case $\omega(M)<+\infty$, we have, in particular, $A\left(\chi_{M}\right)=a \cdot \chi_{M}$ with a constant $a \in \mathbf{C}$.

The formula $A\left(\chi_{U}\right)=c_{U} \chi_{U}+d_{U} \chi_{M}$ can be extended to a measurable subset U with finite volume such that $\omega(\partial U)=0$, where $\partial U:=\mathrm{Cl}(U) \backslash$ Int (U) is the boundary of U. Now, for such a subset U with $\omega(M \backslash U)>0$, devide it into two disjoint, non-null, such subsets as $U=U_{1} \sqcup U_{2}$. Then, we see easily that $c_{U}=c_{U_{1}}=c_{U_{2}}$. Therefore $c_{U}=c_{U^{\prime}}$ for any two open sets U and U^{\prime} with finite volumes and $\neq M$. This means that $c_{U}=c$, a constant.

In case $\omega(M)=+\infty$, we have $A f_{1}=c f_{1}$ for any $f_{1} \in \mathscr{H}_{0}$ and so the representation T_{0} is irreducible.

In case $\omega(M)<+\infty$, the 1 -dimensional subspace $\mathscr{H}_{00}=\mathbf{C} \chi_{M}$ is invariant
under \bar{G}_{ω} and so is its orthogonal complement $\mathscr{H}_{01}=\left(\mathscr{H}_{00}\right)^{\perp}$. Put $\psi_{U}=\chi_{U}-$ $(\omega(U) / \omega(M)) \chi_{M}$. Then, $\psi_{U} \in \mathscr{H}_{01}$ and so $A\left(\psi_{U}\right) \in \mathscr{H}_{01}$. Since $c_{U}=c$, we get from this that $A\left(\psi_{U}\right)=c \cdot \psi_{U}$ and so $A \mid \mathscr{H}_{01}=c \cdot I_{x_{01}}$. This means that the representation $T_{0} \mid \mathscr{H}_{01}$ is irreducible.

Note 6.8. For the bigger group $G=\operatorname{Diff}_{0}(M)$, its natural representations $T_{s}, s \in \mathbf{R}$, on \mathscr{H}_{0} are always irreducible even when $\omega(M)<+\infty$. (The explicit form of T_{s} is given at the beginning of Appendix below, and its restriction for G_{ω} is nothing but T_{0}.) In fact, the subspace \mathscr{H}_{00} consisting of constant functions on M is G_{ω}-invariant, but not G-invariant.

The same kind of arguments as in the above proof of Theorem 6.7 can be used for the irreducible decompositions of finite tensor products of the natural representations, and similar results are obtained for the small subgroup $G_{\omega}=\operatorname{Diff}_{0}(M, \omega)$ as those for the whole group $G=\operatorname{Diff}_{0}(M)$. Let $T_{0}^{(k)}=\otimes_{i=1}^{k} T_{i}$ with $T_{i}=T_{0}$ be the k-th tensor product of T_{0} on the space $\mathscr{H}_{0}^{(k)}$ $=\otimes_{i=1}^{k} \mathscr{H}_{i}, \mathscr{H}_{i}=\mathscr{H}_{0}$. The symmetric group Θ_{k} acts on $\mathscr{H}_{0}^{(k)}$ naturally as permutations of the components of decomposable vectors.

Theorem 6.9. The k-th tensor product $T_{0}^{(k)}$ of the natural representation T_{0} of the group G_{ω} can be extended to the bigger group \bar{G}_{ω} by continuity. Assume $\operatorname{dim} M \geq 2$, and $\omega(M)=+\infty$. Then, on the representation space $\mathscr{H}_{0}^{(k)}$, the groups G_{ω} and $\mathfrak{\Im}_{k}$ form a dual pair, and so does the groups \bar{G}_{ω} and $\mathfrak{\Im}_{k}$.

The assertion for G_{ω} and that for the extended group \bar{G}_{ω} are mutually equivalent. The proof is quite similar as for the group G itself and is based on the irreducibility of natural representation given in Theorem 6.7.
6.7. Infinite tensor products and dual pairs of $G_{\omega} \times \mathbb{S}_{\infty}$. Let $\mu=$ $\left(\mu_{i}\right)_{i \in \mathrm{~N}}$ with $\mu_{i}=\omega$ on $X_{i}=M$, and also let $E=\prod_{i \in N} E_{i}, E_{i} \subset X_{i}$, be a μ-unital subset of $X=\Pi_{i \in \mathrm{~N}} X_{i}$. Assume the condition (MU2) for (μ, E) : for any compact subset K of $M, \sum_{i \in N} \omega\left(K \cap E_{i}\right)<\infty$. Then the infinite tensor product T_{E} of natural representation T_{0} of G_{ω} is given as in Theorem 3.1. Moreover the σ-ring $\mathscr{M}(\mu, E)$ and the product measure $\nu_{\mu, E}$ are G_{ω}-invariant by the discussions in $\S 3.5$. So an explicit form of T_{E} is given as

$$
T_{E}(g) f(x)=f\left(g^{-1} x\right) \quad\left(g \in G_{\omega}, x \in X, f \in L^{2}\left(X, \mathscr{M}(\mu, E), \nu_{\mu, E}\right)\right) .
$$

Note that any element g in the extended group \bar{G}_{ω} has compact support, then we see easily that the above formula can be extended to give an infinite tensor product of the natural representation of the group \bar{G}_{ω}. This representation is an extension by continuity from G_{ω} to \bar{G}_{ω}, as shown by the following lemma, and is denoted again by the same symbol T_{E}.

Lemma 6.10. Assume that a net $g_{\varepsilon}, \varepsilon>0$, in G_{ω} converges to an element g
$\in \bar{G}_{\omega}$. Then the net of operators $T_{E}\left(g_{\epsilon}\right)$ converges strongly to $T_{E}(g)$.
We make the infinite symmetric group \mathfrak{S}_{∞} act on the space $L^{2}(X, \mathscr{M}(\mu$, $E), \nu_{\mu, E}$) as

$$
R(\sigma) f(x)=f(x \sigma) \quad\left(\sigma \in \mathfrak{S}_{\infty}, f \in L^{2}\left(X, \mathscr{M}(\mu, E), \nu_{\mu, E}\right)\right),
$$

where $x \sigma=\left(x_{o(i)}\right)_{i \in \mathrm{~N}}$ for $x=\left(x_{i}\right)_{i \in \mathrm{~N}} \in X$.
Similarly as for the infinite tensor product representations T_{E}^{α} or T_{E}^{α} for $G=\operatorname{Diff}_{0}(M)$ in $\S 5$, we have a dual pair relation for the group G_{ω} of measure preserving diffeomorphisms and the symmetric group Θ_{∞} as given in

Theorem 6.11. Let M be a connected $C^{(n)}$-manifold, $n \geq 1$, with $\operatorname{dim} M \geq$ 2, and ω be a measure on M locally finite, locally equivalent to Lebesgue measures, with $C^{(n)}$-class densities, and with $\omega(M)=+\infty$. Put $\mu=\left(\mu_{i}\right)_{i \in \mathrm{~N}}, \mu_{i}=$ ω, and take a μ-unital subset $E=\prod_{i \in N} E_{i}$. Assume that E_{i} 's are mutually disjoint. Then, on the Hilbert space $L^{2}\left(X, \mathscr{M}(\mu, E), \nu_{\mu, E}\right)$, the representation $T_{E} \cdot R$ of the product groups $G_{\omega} \times \mathbb{S}_{\infty}$ gives a dual pair relation, and a similar fact holds also for $\bar{G}_{\omega} \times \mathbb{G}_{\infty}$:

$$
T_{E}\left(G_{\omega}\right)^{\prime}=R\left(\mathfrak{\Im}_{\infty}\right)^{\prime \prime}, \quad T_{E}\left(\bar{G}_{\omega}\right)^{\prime}=R\left(\mathfrak{\Im}_{\infty}\right)^{\prime \prime} .
$$

The proof is similar as for the case of $G \times \Theta_{\infty}(s)$ in $\S \S 5.3-5.6$, but for a special $s=\left(s_{j}\right)_{j \in N}$ with all $s_{j}=0$ in Theorem 5.1. It is based on Theorem 6.9 for the k-th tensor product $T_{0}^{(k)}$ of T_{0} and the symmetric group $\mathfrak{\Im}_{k}$. We omit the details here.

Remark 6.12. In the case where the disjointness condition (wDIS) on the μ-unital subset E is assumed, we can give a similar result as Theorem 5.9 in $\S 5.7$. Further, its proof is also similar.

Appendix. Finite tensor products of natural representations of a diffeomorphism group

Let M be a connected $C^{(n)}$-manifold with $n \geq 1$, and $G=\operatorname{Diff}_{0}(M)$ the group of diffeomorphisms on M with compact supports. Consider finite number of representations ($T_{j}^{a_{j}}, \mathscr{H}_{j}$), $\mathscr{H}_{j}=L^{2}\left(X_{j}, \mathscr{B}_{j}, \mu_{j}\right)$ with $X_{j}=M$, given by (4.1)-(4.2) in §4.2. Within the unitary equivalence, we may assume that $\gamma_{j}=1$ in (4.2) and all the μ_{j}^{\prime} s are equal to the same one $\omega \in \mathscr{L} \mathscr{F} \mathscr{M}(M)$. We can assume that ω has $C^{(n)}$-class density. Thus the representation $T_{j}^{q_{j}}$ is determined uniquely by the parameter $s_{j} \in \mathbf{R}$ in the 1-cocycle α_{j}, and it is denoted also by $T_{s_{j}}$:

$$
T_{s_{j}}(g) h(p)=\left(\frac{d \omega\left(g^{-1} p\right)}{d \omega(p)}\right)^{t+i s_{j}} h\left(g^{-1} p\right)
$$

At first we give the following simple lemma.

Lemma A.1. Any representation $T_{s}, s \in \mathbf{R}$, of G is irreducible. Two represbntations $T_{s_{1}}$ and $T_{s_{2}}$ are mutually equivalent if and only if $s_{1}=s_{2}$.

Proof. For the irreducibility, it is enough for us to quote Note 6. 8. Let us prove the second assertion. Take a coordinate neighbourhood U of M. We may assume that the measure ω is given in this coordinates $p=\left(p_{1}, p_{2}\right.$, $\left.\cdots, p_{d}\right)$ as $d \omega(p)=d p_{1} d p_{2} \cdots d p_{d}$. Take a relatively compact, open subset U_{0} of U such that $\mathrm{Cl}\left(U_{0}\right) \subset U$. Then, there exists an element $g \in G(U)=$ $\operatorname{Diff}_{0}(U) \subset G$ such that $g^{-1} p=\left(\gamma p_{1}, \gamma p_{2}, \cdots, \gamma p_{d}\right) \equiv \gamma p$ for $p \in U_{0}$ with a positive constant $\gamma \neq 1$.

Decompose the representation spaces $\mathscr{H}_{j}=L^{2}(M, \omega)(j=1,2)$ as $\mathscr{H}_{j}=$ $L^{2}(U) \otimes L^{2}(M \backslash U)$. Then, the restrictions $T_{s_{j}} \mid G(U)$ are both irreducible on $L^{2}(U)$, by Note 6.8, and trivial on $L^{2}(M \backslash U)$. Therefore an intertwining operator $A: \mathscr{H}_{1} \rightarrow \mathscr{H}_{2}$, leaves $L^{2}(U)$ and $L^{2}(M \backslash U)$ stable, and $A \mid L^{2}(U)$ is zero or invertible. Note that restrictions $T_{s_{j}} \mid G_{\omega}(U)$ to the subgroup $G_{\omega}(U)$ $=G_{\omega} \cap G(U)$ are both identical on $L^{2}(U)$ and irreducible on its subspace $\left\{\chi_{U}\right\}^{+}$, and so A is a scalar multiplication operator on $L^{2}(U)$ and maps $L^{2}(M$ $\backslash U)$ onto itself.

Thus, for any $h \in L^{2}(U), A h=a h$ with a constant $a \in \mathbf{C}$. So, taking the above element $g \in G(U)$, we have, for $h \in L^{2}\left(U_{0}\right)$,

$$
T_{s_{1}}(g) h(p)=\gamma^{\left(\ddagger+i s_{1}\right) d} h(\gamma p), \quad T_{s_{2}}(g)(A h)(p)=\gamma^{\left(\left(+i s_{2}\right)^{2} d\right.} a h(\gamma p) .
$$

Since $A T_{s_{1}}(g)=T_{s_{2}}(g) A$, we have $a=0$ if $s_{1} \neq s_{2}$.
Lemma A. 2. Let $\operatorname{dim} M \geq 2$. Take a finite number of representations $T_{s_{j}}$, $j \in J$, with the parameters $s_{j} \in \mathbf{R}$ of G, and the same number of $T_{s_{j}^{\prime}}, j \in J$, with s_{j}^{\prime} $\in \mathbf{R}$. Then an intertwining operator between the tensor products $\otimes_{j_{\in J}} T_{s_{j}}$ and $\otimes_{j \in J} T_{s_{j}^{\prime}}$ is a linear combination of the permutation operator $R(\sigma)$ with $\sigma \in \mathbb{S}_{J}$ satisfying $s_{\sigma(j)}=s_{j}^{\prime}(j \in J)$. Here $R(\sigma)\left(\otimes_{j \in J} f_{j}\right):=\otimes_{j \in J} f_{\sigma}-1_{(j)}$, for decomposable element $\otimes_{j \in J} f_{j} \in \otimes_{j \in J}^{x} \mathscr{H}_{j}$ with $f_{j} \in \mathscr{H}_{j}$.

In particular, if the sets of parameters $\left\{s_{j} ; j \in J\right\}$ and $\left\{s_{j}^{\prime} ; j \in J\right\}$ are different, these two tensor product representations are mutually disjoint.

Proof. For a subset V of M, put $\mathscr{H}_{j}(V)=L^{2}\left(V, \mathscr{B}_{j}\left|V, \mu_{j}\right| V\right) \subset \mathscr{H}_{j}$. Take connected open subsets $U_{j}, j \in J$, of M which are mutually disjoint, and put $U_{\infty}=M \backslash \cup_{j \in J} U_{j}$. Then we have an orthogonal decomposition of each \mathscr{H}_{j} as

$$
\begin{equation*}
\mathscr{H}_{j}=\sum_{k \in J_{\infty}}^{\otimes} \mathscr{H}_{j}\left(U_{k}\right), \quad \text { with } J_{\infty}=J \cup\{\infty\} . \tag{A.1}
\end{equation*}
$$

Consider the subgroup $G^{\prime}=\prod_{k \in J} G\left(U_{k}\right)$ of G and its representation under the tensor product $\otimes_{j \in J} T_{s_{j}}$ on the space $\mathscr{H}_{J}=\otimes_{j \in J} \mathscr{H}_{j}$. Then, inserting the decomposition (A.1) in each \mathscr{H}_{j}, we get a decomposition of \mathscr{H}_{J} as follows:

$$
\mathscr{H}_{J}=\sum_{Q \in\left(J_{\infty}\right)}^{\infty} \mathscr{H}[Q] \quad \text { with } \mathscr{H}[Q]=\otimes_{j \in J} \mathscr{H}_{j}\left(U_{q_{j}}\right),
$$

where the sum runs over $Q=\left(q_{j}\right)_{j_{\in J}} \in\left(J_{\infty}\right)^{J}$. As G^{\prime}-modules, on each component $\mathscr{H}[Q]$, there acts a tensor product representation

$$
\otimes_{j \in J_{Q}}\left(T_{s_{j}} \mid G\left(U_{q_{j}}\right), \mathscr{H}_{j}\left(U_{q_{j}}\right)\right),
$$

with $J_{Q}=\left\{j \in J ; q_{j} \neq \infty\right\}$ on the factor $\otimes_{j \in J_{Q}} \mathscr{H}_{j}\left(U_{q_{j}}\right)$, and the other factor $\otimes_{\text {jॄ }^{\prime} J_{Q}} \mathscr{H}_{j}\left(U_{\infty}\right)$ gives the multiplicity.

All the components which carry an irreducible tensor product of $G^{\prime}=$ $\Pi_{j \in J} G\left(U_{j}\right)$, not containing the trivial representation of any of $G\left(U_{j}\right)$'s, are given as

$$
\otimes_{j \in J}\left(T_{s_{j}} \mid G\left(U_{o(j)}\right), \mathscr{H}_{j}\left(U_{o(j)}\right)\right),
$$

where $\sigma \in \mathfrak{G}_{J}$. On any other component, some of $G\left(U_{j}\right)$'s acts trivially.
Take an intertwining operator A of $\otimes_{j \in J} T_{s_{j}}$ with $\otimes_{j_{j}} T_{s_{j}^{\prime}}$. Then the above fact means that A maps $\otimes_{j \in J} \mathscr{H}_{j}\left(U_{j}\right)$ onto some of $\otimes_{j \in J} \mathscr{H}_{j}\left(U_{o(j)}\right)$. If this is not zero, the representations of G^{\prime} on these subspaces should be equivalent. By Lemma A. 1, applied to each of $G\left(U_{j}\right)$, we see that $s_{o(j)}=s_{j}^{\prime}$ ($j \in J$) in that case. If this does not happen for any $\sigma \in \mathfrak{S}_{J}$, then A should be zero on $\otimes_{j \in J} \mathscr{H}_{j}\left(U_{j}\right)$.

Now let us study the way of changing when $\mathscr{U}=\left(U_{j}\right)_{j \in J}$ is replaced by another $\mathscr{U}^{\prime}=\left(U_{j}^{\prime}\right)_{j \in J .}$. Put $\mathscr{H}(\mathscr{U})=\otimes_{j \in J} \mathscr{H}\left(U_{j}\right)$ anew and denote by $P_{\mathscr{\mathscr { H }}}$ the orthogonal projection of \mathscr{H}_{J} onto $\mathscr{H}(\mathscr{U})$. For a $\sigma \in \mathfrak{G}_{J}$, put $\mathscr{U} \sigma=\left(U_{o(j)}\right)_{j \in J}$, then $\mathscr{H}(\mathscr{U} \sigma)=R(\sigma) \mathscr{H}(\mathscr{U})$. Define $\mathfrak{S}_{J}\left(\left(s_{j}\right)_{j \in J}\right)=\left\{\sigma \in \mathbb{S}_{j} ; s_{o(j)}=s_{j}(j \in J)\right\}$. Then the above argument shows that
where $a(\sigma, \mathscr{U}) \in \mathbf{C}$ are constants.
Let us prove that these constants do not depend on \mathscr{U}. To do so, we introduce an equivalence relation in the set of all $\mathscr{U}=\left(U_{j}\right)_{j_{\in J}}$ with mutually disjoint, connected open U_{j} 's. Two elements \mathscr{U} and $\mathscr{U}^{\prime}=\left(U_{j}^{\prime}\right)_{j \in J}$ are called adjacent to each other and denoted as $\mathscr{U} \approx \mathscr{U}^{\prime}$ if $U_{j} \cap U_{j}^{\prime} \neq \phi(j \in J)$. Further \mathscr{U} and \mathscr{U}^{\prime} are called equivalent and denoted as $U \sim U^{\prime}$, if there exists a finite number of elements $\mathscr{U}^{(1)}, \mathscr{U}^{(2)}, \cdots, \mathscr{U}^{(n)}$ such that $\mathscr{U} \approx \mathscr{U}^{(1)}, \mathscr{U}^{(k)} \approx \mathscr{U}^{(k+1)}(1 \leq k<$ n), $\mathscr{U}^{(n)} \approx \mathscr{U}^{\prime}$.

Assume now $\mathscr{U} \approx \mathscr{U}^{\prime}$. For $j \in J$, take a connected component $U_{j}^{\prime \prime}$ of $U_{j} \cap$ $U_{j}^{\prime} \neq \phi$, and put $\mathscr{U}^{\prime \prime}=\left(U_{j}^{\prime \prime}\right)_{j \in J}$. Then, $\mathscr{U} \approx \mathscr{U}^{\prime \prime} \approx \mathscr{U}^{\prime}$ and $\mathscr{H}(\mathscr{U} \sigma) \cap \mathscr{H}\left(\mathscr{U}^{\prime} \sigma\right) \supset$ $\mathscr{H}\left(\mathscr{U}^{\prime \prime} \sigma\right)$ for any $\sigma \in \mathfrak{S}_{J}$. It can be seen from this that $a(\sigma, \mathscr{U})=a\left(\sigma, \mathscr{U}^{\prime \prime}\right)=$
$a\left(\sigma, \mathscr{U}^{\prime}\right)$ for $\sigma \in \mathbb{G}_{J}\left(\left(s_{j}\right)_{j \in J}\right)$. Therefore we get $a(\sigma, \mathscr{U})=a\left(\sigma, \mathscr{U}^{\prime}\right)$ if $\mathscr{U} \sim \mathscr{U}^{\prime}$.
On the other hand, in case $d=\operatorname{dim} M \geq 2$, any two elements \mathscr{U} and \mathscr{U}^{\prime} are mutually equivalent, as we can see without difficulty. This means that, on the dense subspace of \mathscr{H}_{J} spanned by $\mathscr{H}(\mathscr{U})$'s, the operator A is expressed as $A=\sum_{\sigma \in \Theta_{j}\left(\left(s_{j}\right)_{j \in)}\right)} a(\sigma) R(\sigma)$ with $a(\sigma)=a(\sigma, \mathscr{U})$. This expression holds also on the whole space \mathscr{H}_{J}.

Remark A. 3. In case $d=1$, take $M=\mathbf{R}$. Then $\mathscr{H}_{J} \cong L^{2}\left(\mathbf{R}^{k}, \Pi \lambda\right)$ with $k=$ $|J|$ and λ a Lebesgue measure on \mathbf{R}. In this case, there exist k ! number of equivalence classes of \mathscr{U} 's. In fact, consider the order of elements in $\mathscr{U}=$ $\left(U_{j}\right)_{j=1}^{k}$: for $x=\left(x_{j}\right), x_{j} \in U_{j}(1 \leq j \leq k)$,

$$
x_{\tau(1)}<x_{\tau(2)}<\cdots<x_{\tau(k)},
$$

with a certain $\tau \in \mathfrak{\Xi}_{k}$. Then each τ represents an equivelence class of \mathscr{U} 's.
On the other hand, put $D=\left\{x=\left(x_{j}\right) \in \mathbf{R}^{k} ; x_{1}<x_{2}<\cdots<x_{k}\right\}$, and $x \tau=$ $\left(x_{\tau(j)}\right)_{j=1}^{k}, \tau \in \mathbb{G}_{k}$. Denote by Q_{τ} the restriction on $D \tau \subset \mathbf{R}^{k}$ of function $f \in \mathscr{H}_{j}$:

$$
Q_{\tau} f(x)=f(x)\left(x \in D_{\tau}\right) ; \quad=0(x \notin D \tau) .
$$

Then we have

Lemma A.4. Let $M=\mathbf{R}$. Then for the tensor product $\otimes_{j=1}^{k} T_{s_{j}}$ of representations $\left(T_{s_{j}}, \mathscr{H}_{j}\right), \mathscr{H}_{j}=L^{2}(\mathbf{R}, \lambda)$ of $G=\operatorname{Diff}_{0}(\mathbf{R})$, the algebra of intertwining operators is generated by $\left\{R(\sigma) ; \sigma \in \mathfrak{\Im}_{k}\left(\left(s_{j}\right)_{j=1}^{k}\right)\right\}$ and $\left\{Q_{\tau} ; \tau \in \Im_{k}\right\}$. In case where all the s_{j} 's are mutually equal, this algebra is isomorphic to $\mathfrak{g l}(k!, \mathbf{C})$ algebraically.

It may be interesting to investigate the situation in case $k=|J|=\infty$.
Returning to the general case, we remark here

Lemma A. 5. Let J and J^{\prime} be two finite sets of indices. Assume that $|J|$ $\neq\left|J^{\prime}\right|$. Then any two tensor product representations $\otimes_{j \in J} T_{s_{j}}$ and $\otimes_{k \in J} T_{s_{k}^{\prime}}$ of G are mutually disjoint.

A proof can be given by a similar method as that in the proof of the above lemma.

Division of Mathematics
Graduate School of Science
Kyoto University
Department of Mathematics
Fukui University

References

[1] A. Guichardet, Symmetric Hilbert spaces, and related topics, Lect. Notes in Math., Vol. 261, Springer-Verlag, 1972.
[2] T. Hirai, Construction of irreducible unitary representations of the infinite symmetric group Ξ_{∞}, J. Math. Kyoto Univ., 31(1991), 495-541.
[3] T. Hirai, On unitary representations of diffeomorphism groups and those of the infinite symmetric group (in Japanese), RIMS Kôkyûroku, Vol. 816, pp. 46-70, 1992.
[4] T. Hirai, Irreducible unitary representations of the group of diffeomorphisms of a non-compact manifold, J. Math. Kyoto Univ., 33(1993), 827-864.
[5] T. Hirai, Representations of diffeomorphism groups and the infinite symmetric group, in Noncompact Lie Groups and Some of Their Applications, pp. 225-237, Kluwer Academic Publishers, 1994.
[6] T. Hirai, Relations between unitary representations of diffeomorphism groups and those of the infinite symmetric group, in Transactions of German-Japanese Symposium on 'Infinite-Dimensional Harmonic Analysis' held in Tübingen, pp. 94-112, Verlag D. + M. Gräbner, Bamberg, 1996.
[7] S. Kakutani, On equivalence of infinite product measures, Ann. Math., 49(1948), 214224.
[8] S. Kerov, G. Ol'shanskiĭ and A. Vershik, Harmonic analysis on the infinite symmetric group. A deformation of the regular representation, C. R. Acad. Sci. Paris, 316(1993), 773-778.
[9] A. A. Kirillov, Unitary representations of the group of diffeomorphisms and of some of its subgroups, Sel. Math. Sov., 1 (1981), 351-372.
[10] Yu. A. Neretin, Holomorphic extensions of representations of the group of diffeomorphisms of the circle, Math. USSR Sbornik, 67(1990), 75-97.
[11] Yu. A. Neretin, Categories of bistochastic measures, and representations of some infinite-dimensional groups, Russian Acad. Sci. Sb. Math., 75(1993), 197-219.
[12] J. von Neumann, On infinite direct products, Compositio Math., 6(1938), 1-77.
[13] N. Obata, Certain unitary representations of the infinite symmetric group, I and II, Nagoya Math. J., 105(1987), 109-119, and 106(1987), 143-162.
[14] G. I. Ol'shanshiĭ, Unitary representations of infinite-dimensional pairs (G, K) and the formalism of R. How, in Representations of Lie groups and related topics. (Advanced Studies in Comtemporary Mathematics, 7), pp. 269-463, Gordon and Breach, 1990.
[15] G. I. Ol'shanskiī, Unitary representations of (G, K)-pairs related to the inifinite symmetric group $S(\infty)$, Leningrad Math. J., 1 (1990), 983-1014.
[16] H. Shimomura, Poisson measures on the configuration space and unitary representations of the group of diffeomorphisms, J. Math. Kyoto Univ., 34(1994), 599-614.
[17] H. Shimomura, Ergodic decomposition of probability measures on the configuration space, J. Math. Kyoto Univ., 35(1995), 611-630.
[18] A. M. Vershik, I. M. Gelfand and M. I. Graev, Representations of the group of diffeomorphisms, Usp. Mat. Nauk, 30(1975), 3-50(=Russ. Math. Surv., 30(1975), 1-50).
[19] Y. Yamasaki, Measures on infinite dimensional spaces, Vol. 2, Kinokuniya-Shoten, Tokyo, 1978.

