The quasi $K O_{*}$-types of weighted projective spaces

By
Yasuzo Nishimura and Zen-ichi Yosimura

0 . Introduction

Let $K O$ and $K U$ be the real and the complex K-spectrum respectively. For any $C W$-spectrum X its $K U$-homology $K U_{*} X$ is regarded as a ($Z / 2-$ graded) abelian group with involution because the complex K-spectrum $K U$ possesses the conjugation $\phi_{c}^{-1}: K U \rightarrow K U$. Given $C W$-spectra X and Y we say that X is quasi $K O *$-equivalent to Y if there exists an equivalence $f: K O \wedge X \rightarrow K O \wedge Y$ of $K O$-module spectra (see [5]). If X is quasi $K O *-$ equivalent to Y, then $K O_{*} X$ is isomorphic to $K O * Y$ as a $K O_{*}-$ module, and in addition $K U * X$ is isomorphic to $K U * Y$ as an abelian group with involution ψ_{C}^{-1}.

Let $\tilde{P}^{n}=\tilde{P}^{n}\left(q_{0}, \cdots, q_{n}\right)$ be the (complex) weighted projective space of type (q_{0}, \cdots, q_{n}), and $C P^{n}=\tilde{P}^{n}(1, \cdots, 1)$ the usual complex projective space. The $K U$-cohomology of \tilde{P}^{n} has been computed in [1]. Our purpose here is to determine the quasi $K O_{*}$-type of \tilde{P}^{n}. In the special case (q_{0}, \cdots, q_{n}) $=(1$,
$\cdots, 1$), it is known that $C P^{n}$ is quasi $K O$ *-equivalent to $\underset{m}{\vee} C_{n}$ or $\underset{m}{\vee} C_{n} \vee \Sigma^{2 n}$ according as $n=2 m$ or $2 m+1$ where \sum^{k} is the k-dimensional sphere spectrum and C_{η} denotes the cofiber of the stable Hopf map $\eta: \Sigma^{1} \rightarrow \Sigma^{0}$ (cf. [3, Theorem 2] and [5, Corollary 2.5]).

In $\S 1$ we recall some results about the $K U$-cohomology of a weighted projective space $\tilde{P}^{n}=\tilde{P}^{n}\left(q_{0}, \cdots, q_{n}\right)$ from [1]. In $\S 2$ we investigate the behaviour of the conjugation ψ_{c}^{-1} on $K U^{*} \tilde{P}^{n}$ in order to determine the quasi $K O *-$ type of \tilde{P}^{n}. In $\S 3$ we describe generators of the $K O$-cohomology group $K O^{*} \tilde{P}^{n}$.

1. A weighted projective space \tilde{P}^{n}

Let n be a positive integer and (q_{0}, \cdots, q_{n}) a tuple of positive integers. Consider the following operation of the multiplicative group $C^{*}=C \backslash\{0\}$ on
the space $\left(C^{n+1}\right)^{*}=C^{n+1} \backslash\{0\}$:

$$
\begin{equation*}
\lambda \cdot\left(x_{0}, \cdots, x_{n}\right)=\left(\lambda^{q} 0 x_{0}, \cdots, \lambda^{q_{n}} x_{n}\right) . \tag{1}
\end{equation*}
$$

The associated topological quotient space is called the (complex) weighted projective space of type (q_{0}, \cdots, q_{n}) and it is denoted by

$$
\tilde{P}^{n}=\tilde{P}^{n}\left(q_{0}, \cdots, q_{n}\right)
$$

Of course, $\tilde{P}^{n}(1, \cdots, 1)$ is the usual complex projective space $C P^{n}$.
We call a tuple (q_{0}, \cdots, q_{n}) "well-ordered" if q_{i} divides q_{i-1} for all $i(1 \leq$ $i \leq n)$. Given a tuple $\left(q_{0}, \cdots, q_{n}\right)$ the integer $l_{k}=l_{k}\left(q_{0}, \cdots, q_{n}\right)$ for $0 \leq k \leq n$ is defined as the least common multiple (lcm) of all integers

$$
\left(\prod_{0 \leq \alpha \leq k} q_{i_{\alpha}}\right) / \operatorname{gcd}\left\{q_{i_{\alpha}} \mid 0 \leq \alpha \leq k\right\}, \quad \text { with } \quad 0 \leq i_{0}<i_{1}<\cdots<i_{k} \leq n
$$

where gcd stands for the greatest common divisor. Using the integer $l_{k}=$ $l_{k}\left(q_{0}, \cdots, q_{n}\right)$ we define integers

$$
\begin{equation*}
\bar{q}_{i}=l_{i+1} / l_{i} \quad(0 \leq i \leq n-1), \quad \bar{q}_{n}=\operatorname{gcd}\left\{q_{0}, \cdots, q_{n}\right\} . \tag{2}
\end{equation*}
$$

Then the tuple ($\bar{q}_{0}, \cdots, \bar{q}_{n}$) is well-ordered and $l_{k}\left(\bar{q}_{0}, \cdots, \bar{q}_{n}\right)=l_{k}\left(q_{0}, \cdots, q_{n}\right)$ for all $k(0 \leq k \leq n)$ (cf.[1, 4.10]). Suppose that $\nu_{p}\left(q_{0}\right) \geq \nu_{p}\left(q_{1}\right) \geq \cdots \geq \nu_{p}\left(q_{n}\right)$ for a prime p where ν_{p} is the p-valuation. Then the p-valuation of l_{k} is $\nu_{p}\left(l_{k}\right)=$ $\nu_{p}\left(q_{0}\right)+\nu_{p}\left(q_{1}\right)+\cdots+\nu_{p}\left(q_{k-1}\right)$. Therefore $l_{k}=q_{0} q_{1} \cdots q_{k-1}$, and hence $\bar{q}_{k}=q_{k}$, if (q_{0}, \cdots, q_{n}) is well-ordered.

Denote by γ the canonical line bundle over $C P^{n}$ and set $a=[\gamma]-1 \in$ $K U^{0} C P^{n}$. Then it is well known that the (reduced) $K U$-cohomology group $K U^{*} C P_{+}^{n} \cong Z[a] /\left(a^{n+1}\right)$ where $C P_{+}^{n}$ is the disjoint union of $C P^{n}$ and a point. Consider the $\operatorname{map} \varphi=\varphi\left(q_{0}, \cdots, q_{n}\right): C P^{n} \rightarrow \tilde{P}^{n}$ defined by $\varphi\left[x_{0}, \cdots, x_{n}\right]=\left[x_{0}^{0_{0}}, \cdots\right.$, $\left.x_{n}^{q_{n}}\right]$. According to [1, Theorem 3.4] the map φ induces a monomorphism $\varphi^{*}: K U^{*} \tilde{P}^{n} \rightarrow K U^{*} C P^{n}$ and there exists a Z-basis $\left\{T_{1}, \cdots, T_{n}\right\}$ of $K U^{*} \tilde{P}^{n}$ such that

$$
\begin{equation*}
\varphi^{*}\left(T_{i}\right)=Q_{\overline{\bar{q}}_{0}}(a) Q_{\bar{q}_{1}}(a) \cdots Q_{\bar{a}_{i-1}}(a) \tag{3}
\end{equation*}
$$

where $Q_{k}(a)=(1+a)^{k}-1$. Thus $K U^{0} \tilde{P}^{n}$ is a free abelian group of rank n and $K U^{1} \tilde{P}^{n}=0$.

The group Z / q of the q th roots of the unity in C^{*} acts on the space $\left(C^{n+1}\right)^{*}$ as in (1). The quotient space denoted by $\tilde{L^{n}}=\tilde{L^{n}}\left(q ; q_{0}, \cdots, q_{n}\right)$ is called the weighted lens space of type ($q ; q_{0}, \cdots, q_{n}$). For the natural surjection $\theta: \tilde{L}^{n} \rightarrow \tilde{P}^{n}$ and the canonical inclusion $i_{n+1}: \tilde{P}^{n} \rightarrow \tilde{P}^{n+1}$ the following sequence is a cofibering (cf. [4, Assertion. 1]) :

$$
\begin{equation*}
\tilde{L^{n}}\left(q ; q_{0}, \cdots, q_{n}\right) \xrightarrow{\theta} \tilde{P}^{n}\left(q_{0}, \cdots, q_{n}\right) \xrightarrow{i_{n+1}} \tilde{P}^{n+1}\left(q_{0}, \cdots, q_{n}, q\right) . \tag{4}
\end{equation*}
$$

In particular, if q divides all $q_{i}(0 \leq i \leq n)$ then Z / q acts trivially on the space $\left(C^{n+1}\right)^{*}$ and hence $\tilde{L}=\left(C^{n+1}\right)^{*}$ is (homotopy) equivalent to $\Sigma^{2 n+1}$.

2. The quasi $K O$-type of \tilde{P}^{n}

In order to determine the quasi $K O *$-type of \tilde{P}^{n} we shall use the following theorem (cf. [2, Theorem 3.2] or [5, Theorem 2.4]).

Theorem 2.1. Let X be a $C W$-spectrum such that $K U^{0} X$ is a free abelian group and $K U^{1} X=0$. Then X is quasi $K O$. equivalent to a certain wedge sum of copies of C_{n} and $\Sigma^{2 s}(0 \leq s \leq 3)$ where C_{n} denotes the cofiber of the stable Hopf map $\eta: \Sigma^{1} \rightarrow \Sigma^{0}$.

Remark. The conjugation map ψ_{c}^{-1} acts on $K U^{0} X$ as follows:

$$
\psi_{c}^{-1}=\left\{\begin{align*}
& 1 \text { when } X=\Sigma^{0} \text { or } \Sigma^{4} \tag{5}\\
&-1 \\
&\left(\begin{array}{rr}
-1 & -1 \\
0 & 1
\end{array}\right)(\text { denoted by } \rho) \text { when } X=\Sigma^{2} \text { or } \Sigma^{6} \\
& \text { when } X=C_{n}
\end{align*}\right.
$$

The following lemma asserts that for our purpose any tuples (q_{0}, \cdots, q_{n}) may be restricted to well-ordered ones.

Lemma 2.2. $\quad \tilde{P}^{n}\left(q_{0}, \cdots, q_{n}\right)$ is quasi $K O_{*}$-equivalent to $\tilde{P}^{n}\left(\bar{q}_{0}, \cdots, \bar{q}_{n}\right)$.
Proof. The map associated with any permutation

$$
f: \tilde{P}^{n}\left(q_{0}, \cdots, q_{n}\right) \rightarrow \tilde{P}^{n}\left(q_{i_{0}}, \cdots, q_{i_{n}}\right)
$$

is clearly a homeomorphism. Therefore we may assume that $\nu_{2}\left(q_{0}\right) \geq \nu_{2}\left(q_{1}\right)$ $\geq \cdots \geq \nu_{2}\left(q_{n}\right)$ where ν_{2} is the 2 -valuation. It is easily seen that $\nu_{2}\left(\bar{q}_{i}\right)=\nu_{2}\left(q_{i}\right)$ for all $i(0 \leq i \leq n)$. We put $\xi_{i}=l \bar{q}_{i} / q_{i}$ and $\bar{\xi}_{i}=l q_{i} / \bar{q}_{i}(0 \leq i \leq n)$ with $l=\operatorname{lcm}\left\{q_{0}\right.$, $\left.\cdots, q_{n}\right\} / 2^{\nu_{2}\left(q_{0}\right)}$ and consider the following two maps between $\tilde{P}^{n}=\tilde{P}^{n}\left(q_{0}, \cdots\right.$, $\left.q_{n}\right)$ and $\bar{P}^{n}=\tilde{P}^{n}\left(\bar{q}_{0}, \cdots, \bar{q}_{n}\right)$:

$$
\begin{aligned}
& g: \tilde{P}^{n} \rightarrow \bar{P}^{n},\left(x_{0}, \cdots, x_{n}\right) \mapsto\left(x_{0}^{\xi_{0}}, \cdots, x_{n^{n}}^{\xi_{n}}\right), \\
& h: \bar{P}^{n} \rightarrow \tilde{P}^{n},\left(x_{0}, \cdots, x_{n}\right) \mapsto\left(x_{0}^{\xi_{0}}, \cdots, x_{n^{n}}^{k_{n}}\right) .
\end{aligned}
$$

According to Theorem $2.1 \tilde{P}^{n}$ and \bar{P}^{n} are quasi $K O$, -equivalent to certain wedge sums Y_{n} and \bar{Y}_{n} of C_{n} and $\Sigma^{2 s}(0 \leq s \leq 3)$ respectively. Since $g h, h g$: $\left(x_{i}\right) \mapsto\left(x_{i}^{c^{2}}\right)$ and l is odd, $g: \tilde{P}^{n} \rightarrow \bar{P}^{n}$ is a 2-equivalence. Therefore Y_{n} must be coincide with \bar{Y}_{n}.

Given $C W$-spectra X and Y we say that X has the same \mathscr{C}-type as Y if $K U * X$ is isomorphic to $K U * Y$ as an abelian group with involution ϕ_{c}^{-1} (cf. [2, 4.1]).

Proposition 2.3. Let $\left(q_{0}, \cdots, q_{n}\right)$ be a well-ordered tuple and put $c_{k}=\left(q_{0}\right.$ $\left.+\cdots+q_{k-1}\right) / q_{k}$ for $1 \leq k \leq n-1$. Then the weighted projective space $\tilde{P}^{n}=\tilde{P}^{n}\left(q_{0}\right.$, \cdots, q_{n}) has the same \mathscr{C}-type as the following cell complex

$$
Y_{n}=\Sigma^{2} \bigcup_{\theta_{1}} e^{4} \bigcup_{\theta_{2}} e^{6} \bigcup_{\theta_{3}} \cdots \bigcup_{\theta_{n-1}} e^{2 n}
$$

where $\theta_{k}=\eta$ if c_{k} is odd, and $\theta_{k}=0$ if c_{k} is even.
Remark. Note that $\theta_{k}=\eta$ if $\theta_{k-1}=0$ and q_{k-1} / q_{k} is odd, and $\theta_{k}=0$ otherwise. Let $S=\left\{1 \leq s \leq n \mid c_{s-1}\right.$ and c_{s} are even $\}$ and $T=\left\{1 \leq t \leq n-1 \mid c_{t}\right.$ is odd) where we understand that c_{0} and c_{n} are even. Then Y_{n} is just the wedge sum $\vee_{t \in T} \Sigma^{2 t} C_{n} \vee \vee_{s \in s} \Sigma^{2 s}$.

We shall prove Proposition 2.3 by induction on n below, but first show how to obtain the quasi $K O$ *-type of \tilde{P}^{n} applying Proposition 2.3.

Theorem 2.4. Let (q_{0}, \cdots, q_{n}) be a well-ordered tuple of positive integers. Then the weighted projective space $\tilde{P}^{n}=\tilde{P}^{n}\left(q_{0}, \cdots, q_{n}\right)$ is quasi KO. -equivalent to the wedge sum $Y_{n}=\vee_{t \in T} \Sigma^{2 t} C_{n} \vee \vee_{s \in S} \Sigma^{2 s}$ given in the above remark.

Proof. In order to prove our theorem by induction on n we consider the following diagram

$$
\begin{array}{ccccc}
\Sigma^{2 n+1} K O & \xrightarrow{1 \wedge \theta} & K O \wedge \tilde{P}^{n} & \xrightarrow{1 \wedge i_{n+1}} & K O \wedge \tilde{P}^{n+1} \\
\uparrow \iota & & \uparrow f & & \\
\Sigma^{2 n+1} & \xrightarrow{\theta_{n}} & Y_{n} & \longrightarrow & Y_{n+1}
\end{array}
$$

Here $f: Y_{n} \rightarrow K O \wedge \tilde{P}^{n}$ is a quasi $K O$ *-equivalence and $\iota: \Sigma^{0} \rightarrow K O$ is the unit of $K O$. For each component of Y_{n} we have

$$
\begin{aligned}
& K O_{2 n+1} \Sigma^{2 s} \cong\left\{\begin{array}{cl}
Z / 2(\text { generated by } \eta) & \text { if } n \equiv s \bmod 4 \\
0 & \text { if otherwise, } \\
K O_{2 n+1} C_{n}=0 &
\end{array} .\right.
\end{aligned}
$$

Since \tilde{P}^{n+1} and Y_{n+1} have the same \mathscr{C}-type, we observe that the map $\iota \wedge \theta$: $\Sigma^{2 n+1} \rightarrow K O \wedge \tilde{P}^{n}$ is trivial if and only if $\theta_{n}=0$. Therefore the square in the above diagram becomes commutative after changing the quasi $K O_{*}-$ equivalence $f: Y_{n} \rightarrow K O \wedge \tilde{P}^{n}$ suitably if necessary. So there exists a quasi $K O *$-equivalence $g: Y_{n+1} \rightarrow K O \wedge \tilde{P}^{n+1}$ as desired.

Let ($q_{0}, \cdots, q_{n-1}, q_{n}, q_{n+1}$) be a tuple such that (q_{0}, \cdots, q_{n}) is well-ordered and q_{n+1} divides q_{n-1}. Since $l_{k}\left(q_{0}, \cdots, q_{n}\right)=l_{k}\left(q_{0}, \cdots, q_{n}, q_{n+1}\right)$ for $0 \leq k \leq n$ it follows that $i_{n+1}^{*} T_{i}=T_{i}(1 \leq i \leq n)$ and $i_{n+1}^{*} T_{n+1}=0$ for the canonical inclusion
$i_{n+1}: \tilde{P}^{n}\left(q_{0}, \cdots, q_{n}\right) \rightarrow \tilde{P}^{n+1}\left(q_{0}, \cdots, q_{n}, q_{n+1}\right)$ where T_{i} 's are the generators of $K U^{0} \tilde{P}^{n+1}$ and $K U^{0} \tilde{P}^{n}$ given in (3). In order to prove Proposition 2.3 by induction on n we may assume that the conjugation ψ_{c}^{-1} on $K U^{0} \tilde{P}^{n} \cong K U^{0} Y_{n}$ is expressed as a certain direct sum J_{n} of ± 1 and $\pm \rho$ after the basis $\left\{T_{1}, \cdots\right.$, $\left.T_{n}\right\}$ is replaced by $\left\{T_{1}, \cdots, T_{n}\right\}$ where $T_{i}=T_{i}+$ a linear combination of $\left\{T_{i+1}\right.$, $\left.\cdots, T_{n}\right\}$. Then the conjugation ψ_{c}^{-1} on $K U^{0} \tilde{P}^{n+1}$ behaves as $\phi_{c}^{-1} T_{i}=J_{n} T_{i}+\gamma_{i} T_{n+1}$ for some integer $\gamma_{i}(1 \leq i \leq n)$ and $\phi_{c}^{-1} T_{n+1}=(-1)^{n+1} T_{n+1}$.

Lemma 2.5. Let $\left(q_{0}, \cdots, q_{n-1}, q_{n}, q_{n+1}\right)$ be a tuple such that $\left(q_{0}, \cdots, q_{n}\right)$ is well-ordered and q_{n+1} divides q_{n-1}. When the conjugation ϕ_{c}^{-1} behaves as $\phi_{c}^{-1} T_{i}$ $=J_{n} T_{i}+\gamma_{i} T_{n+1}$ on $K U^{0} \tilde{P}^{n+1}$, $q \gamma_{i}$ is divisible by q_{n-1} for any $i(1 \leq i \leq n)$ and in particular $q \gamma_{n}=(-1)^{n+1}\left(q_{0}+\cdots+q_{n-1}\right)$ where $q=\operatorname{lcm}\left\{q_{n}, q_{n+1}\right\}$.

Proof. Consider $\bar{P}^{n+1}=\tilde{P}^{n+1}\left(q_{0}, \cdots, q_{n-1}, q_{n-1}, q_{n-1}\right)$ as well as $\tilde{P}^{n+1}=\tilde{P}^{n+1}$ $\left(q_{0}, \cdots, q_{n-1}, q_{n}, q_{n+1}\right)$. Recall that $\left\{T_{1}, \cdots, T_{n}, T_{n+1}\right\}$ and $\left\{T_{1}, \cdots, T_{n}, T_{n+1}\right\}$ form base of $K U^{0} \tilde{P}^{n+1}$ and $K U^{0} \bar{P}^{n+1}$ respectively where $\varphi^{*} T_{n+1}=q_{0} \cdots q_{n-1} q a^{n+1}$ and $\varphi^{*} T_{n+1}^{\prime}=q_{0} \cdots q_{n-1} q_{n-1} a^{n+1}$. Since the conjugation ψ_{c}^{-1} on $K U^{0} \bar{P}^{n+1}$ behaves as $\psi_{c}^{-1} T_{i}=J_{n} T_{i}+\zeta_{i} T_{n+1}$ for some integer ζ_{i} it follows immediately that $q \gamma_{i}=$ $q_{n-1} \zeta_{i}$ for any $i(1 \leq i \leq n)$. In the special case $i=n\left(T_{n}=T_{n}\right)$ we have

$$
\varphi^{*} T_{n}=l_{n} a^{n}+L a^{n+1}, \quad \varphi^{*} T_{n+1}=l_{n+1} a^{n+1}
$$

where $l_{n}=q_{0} \cdots q_{n-1}, l_{n+1}=q_{0} \cdots q_{n-1} q_{n}$ and $L=l_{n}\left(q_{0}+\cdots+q_{n-1}-n\right) / 2$. Note that $\psi_{c}^{-1} a=(1+a)^{-1}-1$. This implies that

$$
\phi_{c}^{-1} a^{n}=(-1)^{n} a^{n}+(-1)^{n+1} n a^{n+1}, \quad \phi_{c}^{-1} a^{n+1}=(-1)^{n+1} a^{n+1} .
$$

Since $\psi_{c}^{-1} \varphi^{*}=\varphi^{*} \psi_{c}^{-1}$, we see that $\gamma_{n}=(-1)^{n+1}\left(q_{0}+\cdots+q_{n-1}\right) / q$.
Proof of Proposition 2.3. By induction on n we shall show that the conjugation ψ_{c}^{-1} on $K U^{0} \tilde{P}^{n+1}$ is normalized as a desired direct sum J_{n+1} of \pm 1 and $\pm \rho$ after the basis $\left\{T_{1}^{\prime}, \cdots, T_{n}, T_{n+1}\right\}$ is replaced by $\left\{T_{1}^{\prime \prime}, \cdots, T_{n}^{\prime \prime}, T_{n+1}\right\}$ where $T_{i}^{\prime \prime}=T_{i}^{\prime}+\delta_{i} T_{n+1}$ for some integer $\delta_{i}(1 \leq i \leq n)$. Set $\alpha_{i}=\nu_{2}\left(q_{i}\right)$ for simplicity.
i) The " $\theta_{n-1}=0$ " case : In this case \tilde{P}^{n} has the same \mathscr{C}-type as $Y_{n}=$ $Y_{n-1} \vee \Sigma^{2 n}$. Therefore the conjugation ϕ_{c}^{-1} on $K U^{0} \tilde{P}^{n}$ is $J_{n}=J_{n-1} \oplus(-1)^{n}$. Then the conjugation ϕ_{c}^{-1} on $K U^{0} \tilde{P}^{n+1}$ behaves as follows:

$$
\begin{aligned}
& \phi_{c}^{-1} T_{i}=J_{n-1} T_{i}+\gamma_{i} T_{n+1} \quad \text { if } \quad 1 \leq i \leq n-1, \\
& \phi_{c}^{-1} T_{n}^{\prime}=(-1)^{n} T_{n}^{\prime}+\gamma_{n} T_{n+1} \quad \text { and } \quad \phi_{c}^{-1} T_{n+1}=(-1)^{n+1} T_{n+1} .
\end{aligned}
$$

We first assume that $\alpha_{n-2}>\alpha_{n-1}$. If $\alpha_{n-1}=\alpha_{n}$, then $\left(q_{0}+\cdots+q_{n-1}\right) / q_{n}$ is odd, and hence, by Lemma 2.5, so is γ_{n}. Hence the conjugation ψ_{c}^{-1} is congruent to $J_{n-1} \oplus(-1)^{n} \rho$ and $Y_{n+1}=Y_{n-1} \vee \sum^{2 n} C_{n}$. If $\alpha_{n-1}>\alpha_{n}$, then all of γ_{i} are even from Lemma 2.5. Therefore the conjugation ψ_{c}^{-1} is congruent to $J_{n} \oplus(-1)^{n+1}$ and
$Y_{n+1}=Y_{n} \vee \Sigma^{2 n+2}$. We next assume that $\alpha_{n-2}=\alpha_{n-1}$, and hence $\theta_{n-2}=\eta$. Then there exists an odd integer $m \geq 3$ such that $\alpha_{n-m-1}>\alpha_{n-m}=\cdots=\alpha_{n-2}=\alpha_{n-1}$. From Lemma 2.5 it follows that γ_{n} is even if and only if $\alpha_{n-1}>\alpha_{n}$. Now our result is shown similarly to the first case " $\alpha_{n-2}>\alpha_{n-1}$ ".
ii) The " $\theta_{n-1}=\eta$ " case: In this case \tilde{P}^{n} has the same \mathscr{C}-type as $Y_{n}=$ $Y_{n-2} \vee \sum^{2 n-2} C_{n}$ and $\alpha_{n-2}=\alpha_{n-1}$. We first assume that $\alpha_{n-1}>\alpha_{n}$. Then $Y_{n+1}=Y_{n}$ $\vee \sum^{2 n+2}$ as is shown in the " $\theta_{n-1}=0$ " case. We next assume that $\alpha_{n-1}=\alpha_{n}$. Then there exists an even integer $m \geq 2$ such that $\alpha_{n-m-1}>\alpha_{n-m}=\ldots=\alpha_{n-1}=$ α_{n}. From induction hypothesis the conjugation ψ_{c}^{-1} on $K U^{0} \tilde{P}^{n}$ is $J_{n}=J_{n-m} \oplus$ $(-1)^{n+1}(\rho \oplus \cdots \oplus \rho)$. Then the conjugation ψ_{c}^{-1} on $K U^{0} \tilde{P}^{n+1}$ behaves as follows:

$$
\begin{array}{rlrl}
\phi_{C}^{-1} T_{i} & =(-1)^{n+1} T_{i}+\gamma_{i} T_{n+1}, & & \phi_{C}^{-1} T_{j}=(-1)^{n} T_{j}+\gamma_{j} T_{n+1}, \\
\psi_{C}^{-1} T_{h} & =\mp\left(T_{h}^{\prime}+T_{n+1}\right)+\gamma_{h} T_{n+1}, & \psi_{c}^{-1} T_{n+1}= \pm T_{n+1}+\gamma_{h+1} T_{n+1} .
\end{array}
$$

for some $i, j \geq n-m$ and $h \leq n-1$. For $\phi_{c}^{-1}=\left(\begin{array}{c}\left(\begin{array}{c}-1\end{array}\right)^{n+1} \\ 0\end{array}\binom{\gamma_{i}}{-1}^{n+1}\right)$ on the $(i, n+$ 1)-th component we have $\gamma_{i}=0$ because $\left(\psi_{c}^{-1}\right)^{2}=1$. On the $(h, h+1, n+1)-$ th component $\psi_{c}^{-1}=\left(\begin{array}{c} \pm \\ 0 \\ (-1)^{n+1}\end{array}\right)$ is congruent to $(\pm \rho) \oplus(-1)^{n+1}$ where $\gamma=$ $\binom{\gamma_{n}}{\gamma_{n+1}}$. We here consider $\tilde{P}^{n+2}\left(q_{0}, \cdots, q_{n}, q_{n+1}, q_{n+2}\right)$ with $q_{n+2}=q_{n}$. Then the conjugation ϕ_{c}^{-1} on the ($j, n+1, n+2$)-th component is expressed as

$$
\phi_{C}^{-1}=\left(\begin{array}{ccc}
(-1)^{n} & \gamma_{j} & \zeta_{j} \\
0 & (-1)^{n+1} & \zeta_{n+1} \\
0 & 0 & (-1)^{n}
\end{array}\right)
$$

for some integer ζ_{j} and $\zeta_{n+1}=(-1)^{n}\left(q_{0}+\cdots+q_{n}\right) / q_{n}$ by Lemma 2.5. Note that $\gamma_{j} \zeta_{n+1}=(-1)^{n} 2 \zeta_{j}$ because $\left(\psi_{c}^{-1}\right)^{2}=1$. This equality implies that γ_{j} must be even since ζ_{n+1} is odd. Therefore $\psi_{c}^{-1}=\left(\begin{array}{c}(-1)^{n} \\ 0\end{array}(-1)^{\gamma_{j+1}}\right)$ on the $(j, n+1)-$ component is congruent to $(-1)^{n} \oplus(-1)^{n+1}$. Consequently we see that the conjugation ψ_{c}^{-1} is congruent to $J_{n} \oplus(-1)^{n+1}$ and $Y_{n+1}=Y_{n} \vee \sum^{2 n+2}$.

3. The group $K O^{*} \tilde{P}^{n}$

We have the Bott cofiber sequence

$$
\Sigma^{1} K O \xrightarrow{\eta \wedge 1} K O \xrightarrow{\varepsilon_{U}} K U \xrightarrow{\varepsilon_{o} \beta} \Sigma^{2} K O
$$

where $\beta: K U \rightarrow \Sigma^{2} K U$ denotes the inverse of the Bott periodicity and $\varepsilon_{U}:$ KO $\rightarrow \mathrm{KU}$ is the complexification and $\varepsilon_{0}: \mathrm{KU} \rightarrow \mathrm{KO}$ is the realification. As is well known, the equalities $\varepsilon_{o} \varepsilon_{U}=2$ and $\varepsilon_{U} \varepsilon_{o}=1+\psi_{c}^{-1}$ hold. Let $\eta \in \pi_{1} K O \cong Z /$ 2. $\eta^{2} \in \pi_{2} K O \cong Z / 2$ and $\xi \in \pi_{4} K O \cong Z$ be the generators such that $\xi^{2}=4 B_{R} \in$ $\pi_{8} K O \cong \pi_{0} K O \cong Z$ where B_{R} denotes the Bott periodicity element. Hereafter we shall drop B_{R} writing $\xi^{2}=4$ instead of $\xi^{2}=4 B_{R}$. Let (q_{0}, \cdots, q_{n}) be a well-
ordered tuple of positive integers and $\tilde{P}^{n}=\tilde{P}^{n}\left(q_{0}, \cdots, q_{n}\right)$. Recall that $K U^{0} \tilde{P}^{n}$ is a free abelian group with basis $\left\{T_{1}, \cdots, T_{n}\right\}$ and $K U^{1} \tilde{P}^{n}=0$. By a routine computation we can obtain

Lemma 3.1. Operating $\varepsilon_{u} \varepsilon_{o}=1+\psi_{c}^{-1}$ on $K U^{e n} \tilde{P}^{n}$ we have the following equalities: $\left(1+\phi_{c}^{-1}\right) \beta^{n} T_{n}=2 \beta_{n} T_{n}, \quad\left(1+\phi_{c}^{-1}\right) \beta^{n} T_{n-1}=c_{n-1} \beta^{n} T_{n},\left(1+\psi_{c}^{-1}\right) \beta^{n-1} T_{n}=0$ and $\left(1+\psi_{C}^{-1}\right) \beta^{n-1} T_{n-1}=2 \beta^{n-1} T_{n-1}-c_{n-1} \beta^{n-1} T_{n}$ where $c_{k}=\left(q_{0}+\cdots+q_{k-1}\right) / q_{k}$.

Consider the following cofiber sequence

$$
\Sigma^{2 n-1} \xrightarrow{\theta} \tilde{P}^{n-1} \xrightarrow{i_{n}} \tilde{P}^{n} \xrightarrow{j_{n}} \Sigma^{2 n} .
$$

The map j_{n} induces elements of the group $K O^{e v} \tilde{P}^{n}$ as follows:

$$
R_{n}=j_{n}^{*} 1 \in K O^{2 n} \tilde{P}^{n}, R_{n}^{\prime}=j_{n}^{*} \eta^{2} \in K O^{2 n-2} \tilde{P}^{n} \quad \text { and } \quad R_{n}^{\prime \prime}=j_{n}^{*} \xi \in K O^{2 n-4} \tilde{P}^{n}
$$

There hold the following relations: $2 R_{n}=\varepsilon_{o} \beta^{n} T_{n}, \varepsilon_{U} R_{n}=\beta^{n} T_{n}, R_{n}^{\prime}=\varepsilon_{o} \beta^{n-1} T_{n}$, $\varepsilon_{u} R_{n}^{\prime}=0, R_{n}^{\prime \prime}=\varepsilon_{o} \beta^{n-2} T_{n}$ and $\varepsilon_{u} R_{n}^{\prime \prime}=2 \beta^{n-2} T_{n}$. In particular, R_{n}^{\prime} and $R_{n}^{\prime \prime}$ are contained in the image $\varepsilon_{o}\left(K U^{e v} \tilde{P}^{n}\right) \subset K O^{e v} \tilde{P}^{n}$.

Assume that c_{n-1} is odd. Then we have the following cofiber sequence

$$
\Sigma^{2 n-3} C_{n} \longrightarrow \tilde{P}^{n-2} \xrightarrow{i_{n} i_{n-1}} \tilde{P}^{n} \xrightarrow{k_{n}} \Sigma^{2 n-2} C_{n}
$$

inducing a split exact sequence

$$
0 \longrightarrow K O^{*} \Sigma^{2 n-2} C_{n} \longrightarrow K O^{*} \tilde{P}^{n} \longrightarrow K O^{*} \tilde{P}^{n-2} \longrightarrow 0 .
$$

Set $T_{n-1}^{\prime}=T_{n-1}+\left(1-c_{n-1}\right) / 2 T_{n}$. Using the realification $\varepsilon_{0}: K U \rightarrow K O$ we consider the following elements in $K O^{e n} \tilde{P}^{n}$:

$$
\begin{aligned}
& S_{n}=\varepsilon_{o} \beta^{n} T_{n-1} \in K O^{2 n} \tilde{P}^{n}, \quad S_{n}^{\prime}=\varepsilon_{o} \beta^{n-1} T_{n-1} \in K O^{2 n-2} \tilde{P}^{n}, \\
& S_{n}^{\prime \prime}=\varepsilon_{o} \beta^{n-2} T_{n-1} \in K O^{2 n-4} \tilde{P}^{n}, S_{n}^{\prime \prime \prime}=\varepsilon_{o} \beta^{n-3} T_{n-1} \in K O^{2 n-6} \tilde{P}^{n} .
\end{aligned}
$$

Since $\varepsilon_{U} S_{n}=\beta^{n} T_{n}=\varepsilon_{U} R_{n}$ and $2 \varepsilon_{U} S_{n}^{\prime \prime}=2 \beta^{n-2} T_{n}=\varepsilon_{U} R_{n}^{\prime \prime}$ it follows that $S_{n}-R_{n}=\eta^{*} x$ for some $x \in K O^{2 n+1} \tilde{P}^{n} \cong K O^{2 n+1} \tilde{P}^{n-2}$ and $2 S_{n}^{\prime \prime}-R_{n}^{\prime \prime}=\eta^{*} y$ for some $y \in K O^{2 n-3} \tilde{P}^{n} \cong$ $K O^{2 n-3} \tilde{P}^{n-2}$. Therefore we may employ the elements $S_{n}, S_{n}^{\prime}, S_{n}^{\prime \prime}$ and $S_{n}^{\prime \prime \prime}$ instead of a basis of the image $k_{n}^{*}\left(K O^{e n} \sum^{2 n-2} C_{\eta}\right) \subset K O^{e v} \tilde{P}^{n}$.

Lemma 3.2. Let $\left(q_{0}, \cdots, q_{n}, \cdots, q_{n+m}\right)$ be a well-ordered tuple such that c_{n} $=\left(q_{0}+\cdots+q_{n-1}\right) / q_{n}$ is even. For any $m \geq 0$ there exists an element $T_{n, n+m}=T_{n}+$ $a_{1} T_{n+1}+\cdots+a_{m} T_{n+m} \in K U^{0} \tilde{P}^{n+m}$ satisfying $\varepsilon_{o} \beta^{n+1} T_{m, n+m}=0$, where $a_{1}=-c_{n} / 2$ and $a_{2 j}$ is taken to be 0 or 1 . In particular, $a_{4 k}=a_{4 k+2}=0$ if $c_{n+4 k}$ is even.

Proof. By induction on m we shall construct a desired element $T_{n, n+m}$. Obviously $\varepsilon_{o} \beta^{n+1} T_{n}=0$ and $\left(1+\psi_{c}^{-1}\right) \beta^{n+1} T_{n, n+1}=0$, which implies that ε_{o} $\beta^{n+1} T_{n, n+1}=0$. Under induction hypothesis we here assume that there exists an element $T_{n, n+m-1} \in K U^{0} \tilde{P}^{n+m-1}$ satisfying $\varepsilon_{o} \beta^{n+1} T_{n, n+m-1}=0$.
i) The $m=4 k+2$ case: Take $a_{4 k+2}=0$ if $\varepsilon_{0} \beta^{n+1} T_{n, n+4 k+1}=0 \in K O^{2 n+2}$ $\tilde{P}^{n+4 k+2}$ and $a_{4 k+2}=1$ if otherwise. Setting $T_{n, n+4 k+2}=T_{n, n+4 k+1}+a_{4 k+2} T_{n+4 k+2} \in$ $K U^{0} \tilde{P}^{n+4 k+2}$, it follows immediately that $\varepsilon_{o} \beta^{n+1} T_{n, n+4 k+2}=0$.
ii) The $m=4 k+3$ case: Note that $\left(1+\psi_{c}^{-1}\right) \beta^{n+1} T_{n, n+4 k+2}=b_{n+4 k+2}$ $\beta^{n+1} T_{n+4 k+3} \in K U^{2 n+2} \tilde{P}^{n+4 k+3}$ for some integer $b_{n+4 k+2}$. Since there exists an integer b such that $\varepsilon_{o} \beta^{n+1} T_{n, n+4 k+2}=b \varepsilon_{o} \beta^{n+1} T_{n+4 k+3} \in K O^{2 n+2} \tilde{P}^{n+4 k+3}$, we see that $b_{n+4 k+2}=2 b$ is even. Setting $T_{n, n+4 k+3}=T_{n, n+4 k+2}-b_{n+4 k+2} / 2 T_{n+4 k+3} \in K U^{0} \tilde{P}^{n+4 k+3}$, it is obvious that $\varepsilon_{0} \beta^{n+1} T_{n, n+4 k+3}=0$.
iii) The $m=4 k$ case : Setting $T_{n, n+4 k}=T_{n, n+4 k-1}+a T_{n+4 k} \in K U^{0} \tilde{P}^{n+4 k}$ for any integer a, we see that $\varepsilon_{o} \beta^{n+1} T_{n, n+4 k}=0$. The integer $a_{4 k}$ will be determined in iv).
iv) The $m=4 k+1$ case : Note that $\left(1+\psi_{c}^{-1}\right) \beta^{n+1} T_{n, n+4 k-1}=b_{n+4 k} \beta^{n+1} T_{n+4 k+1}$ $\in K U^{2 n+2} \tilde{P}^{n+4 k+1}$ for some integer $b_{n+4 k}$. Consider $\bar{P}^{n+4 k+2}=\tilde{P}^{n+4 k+2}\left(q_{0}, \cdots, q_{n+4 k-1}\right.$, $\left.q_{n+4 k} q_{n+4 k} q_{n+4 k}\right)$. Then $\left(1+\psi_{C}^{-1}\right) \beta^{n+1} T_{n, n+4 k-1}=b_{n+4 k} \beta^{n+1} T_{n+4 k+1}-d \beta^{n+1} T_{n+4 k+2}$ (1 $\left.+\psi_{c}^{-1}\right) \beta^{n+1} T_{n+4 k+1}=2 \beta^{n+1} T_{n+4 k+1}-\left(c_{n+4 k}+1\right) \beta^{n+1} T_{n+4 k+2}$ in $K U^{2 n+2} \bar{P}^{n+4 k+2}$. Since $\left(\psi_{c}^{-1}\right)^{2}=1$ it is immediate that $b_{n+4 k}\left(c_{n+4 k}+1\right)=2 d$. This implies that $c_{n+4 k}$ is odd if $b_{n+4 k}$ is odd. Take $a_{4 k}=0, a_{4 k+1}=-b_{n+4 k} / 2$ when $b_{n+4 k}$ is even, and $a_{4 k}=$ 1, $a_{4 k+1}=-\left(b_{n+4 k}+c_{n+4 k}\right) / 2$ when $b_{n+4 k}$ is odd. Setting $T_{n, n+4 k+1}=T_{n, n+4 k-1}+$ $a_{4 k} T_{n+4 k}+a_{4 k+1} T_{n+4 k+1} \in K U^{0} \tilde{P}^{n+4 k+1}$, it follows immediately that $\left(1+\psi_{c}^{-1}\right)$ $\beta^{n+1} T_{n, n+4 k+1}=0$, and hence $\varepsilon_{o} \beta^{n+1} T_{n, n+4 k+1}=0$.

Assume that $c_{n+4 k}$ is even. In this case $b_{n+4 k}$ is even, so $a_{4 k}$ is taken to be 0 as in iv). If $c_{n+4 k+1}$ is odd, then $\tilde{P}^{n+4 k+2}$ is quasi $K O_{*}$-equivalent to $\tilde{P}^{n+4 k} V$ $\Sigma^{2 n+8 k+2} C_{n}$. Hence we can see that $\varepsilon_{0} \beta^{n+1} T_{n, n+4 k+1}=0 \in K O^{2 n+2} \tilde{P}^{n+4 k+2}$. So $a_{4 k+2}$ is taken to be 0 as in i). When $c_{n+4 k+1}$ is even, we consider $\bar{P}^{n+4 k+2}=\tilde{P}^{n+4 k+2}\left(q_{0}\right.$, $\left.\cdots, q_{n+4 k-1}, q_{n+4 k}, q_{n+4 k}, q_{n+4 k}\right)$. Then the canonical map $\pi: \tilde{P}^{n+4 k+2} \rightarrow \bar{P}^{n+4 k+2}$ induces a homomorphism $\pi^{*}: K O^{2 n+2} \bar{P}^{n+4 k+2} \rightarrow K O^{2 n+2} \tilde{P}^{n+4 k+2}$ carrying ε_{o} $\beta^{n+1} T_{n, n+4 k+1}$ to $\varepsilon_{o} \beta^{n+1} T_{n, n+4 k+1}$. Since $\varepsilon_{o} \beta^{n+1} T_{n, n+4 k+1}=0$ in $K O^{2 n+2} \bar{P}^{n+4 k+2}, a_{4 k+2}$ is taken to be 0 even if $c_{n+4 k+1}$ is even.

Corollary 3.3. Let $\left(q_{0}, \cdots, q_{n}, \cdots, q_{n+m}\right)$ be a well-ordered tuple such that $c_{n}=\left(q_{0}+\cdots+q_{n-1}\right) / q_{n}$ is even. For any $m \geq 1$ there exists an element $R_{n, n+m} \in$ $K O^{2 n} \tilde{P}^{n+m}$ such that $\varepsilon_{U} R_{n, n+m}=\beta^{n} T_{n, n+m}, i_{n+m}^{*} R_{n, n+m}=R_{n, n+m-1}$ or $R_{n, n+m-1}+R_{n+m-1}^{\prime}$ if $m \equiv 2 \bmod 4$ and c_{n+m-1} is odd, and $i_{n+m}^{*} R_{n, n+m}=R_{n, n+m-1}$ if otherwise. Here $R_{n, n}$ $=R_{n}=j_{n}^{*} 1 \in K O^{2 n} \tilde{P}^{n}$ and $R_{n+m-1}^{\prime}=j_{n+m-1}^{*} \eta^{2} \in K O^{2 n+2 m-4} \tilde{P}^{n+m-1} \cong K O^{2 n} \tilde{P}^{n+m-1}$.

Proof. The induced homomorphism $i_{n+m}^{*}: K O^{2 n+1} \tilde{P}^{n+m} \rightarrow K O^{2 n+1} \tilde{P}^{n+m-1}$ is an epimorphism unless $m \equiv 2 \bmod 4$ and c_{n+m-1} is odd. In this case we can easily find an element $R_{n, n+m} \in K O^{2 n} \tilde{P}^{n+m}$ satisfying $\varepsilon_{U} R_{n, n+m}=\beta^{n} T_{n, n+m}$ and $i_{n+m}^{*} R_{n, n+m}=R_{n, n+m-1}$. Assume that $m \equiv 2 \bmod 4$ and c_{n+m-1} is odd. Since $\left(i_{n+m} i_{n+m-1}\right)^{*}: K O^{2 n+1} \tilde{P}^{n+m} \rightarrow K O^{2 n+1} \tilde{P}^{n+m-2}$ is an isomorphism, we can find an element $R_{n, n+m} \in K O^{2 n} \tilde{P}^{n+m}$ such that $\varepsilon_{U} R_{n, n+m}=\beta^{n} T_{n, n+m}$ and $i_{n+m-1}^{*} i_{n+m}^{*} R_{n, n+m}=$ $i_{n+m-1}^{*} R_{n, n+m-1}$. The last equality implies that $i_{n+m}^{*} R_{n, n+m}=R_{n, n+m-1}+x R_{n+m-1}^{\prime}$ for
some $x \in Z / 2$.
Remark. In Corollary 3.3 we can uniquely choose an element $R_{n, n+m}$ unless $m \equiv 1 \bmod 4$ and c_{n+m-1} is even. On the other hand, we can choose just two elements $R_{n, n+m}$ and $R_{n, n+m}+R_{n+m}^{\prime}$ if $m \equiv 1 \bmod 4$ and c_{n+m-1} is even.

If c_{n} is even, we set

$$
\begin{align*}
& R_{n, n+m}^{\prime}=\varepsilon_{o} \beta^{n-1} T_{n, n+m} \in K O^{2 n-2} \tilde{P}^{n+m}, \tag{6}\\
& R_{n, n+m}^{\prime \prime}=\varepsilon_{o} \beta^{n-2} T_{n} \quad \in K O^{2 n-4} \tilde{P}^{n+m} .
\end{align*}
$$

Note that $\eta^{2} R_{n, n+m}=\varepsilon_{o} \beta^{-1} \varepsilon_{U} R_{n, n+m}=R_{n, n+m}^{\prime}$ where $R_{n, n+m} \in K O^{2 n} \tilde{P}^{n+m}$ is obtained in Corollary 3.3. If c_{n-1} is odd, we set

$$
\begin{align*}
& S_{n, n+m}=\varepsilon_{o} \beta^{n} T_{n-1} \in K O^{2 n} \tilde{P}^{n+m}, \\
& S_{n, n+m}^{\prime}=\varepsilon_{o} \beta^{n-1} T_{n-1} \in K O^{2 n-2} \tilde{P}^{n+m}, \\
& S_{n, m+m}^{\prime \prime}=\varepsilon_{o} \beta^{n-2} T_{n-1} \in K O^{2 n-4} \tilde{P}^{n+m}, \tag{7}\\
& S_{n, n+m}^{\prime,}=\varepsilon_{o} \beta^{n-3} T_{n-1} \in K O^{2 n-6} \tilde{P}^{n+m} .
\end{align*}
$$

By virtue of Theorem 2.4 we can now give generators of $K O^{*} \tilde{P}^{n}$ as follows (cf. [3]) :

Theorem 3.4. Let $\left(q_{0}, \cdots, q_{n}\right)$ be a well-ordered tuple of positive integers. For the weighted projective space $\tilde{P}^{n}=\tilde{P}^{n}\left(q_{0}, \cdots, q_{n}\right)$ the group $K O^{*} \tilde{P}^{n}$ $\cong \oplus_{0 \leq i \leq 7} K O^{i} \tilde{P}^{n}$ is generated by the following elements :

$$
R_{s, n}, \eta R_{s, n}, R_{s, n}^{\prime}, R_{s, n}^{\prime \prime}, S_{t+1, n}, S_{t+1, n}^{\prime}, S_{t+1, n}^{\prime \prime}, S_{t+1, n}^{\prime \prime \prime}
$$

where s and trun over $S=\left\{1 \leq s \leq n ; c_{s-1}\right.$ and c_{s} are even $\}$ and $T=\{1 \leq t \leq n-$ $1 ; c_{t}$ is odd\} respectively.

Department of Mathematics Osaka City University

Department of Mathematics Nagoya Institute of Technology

References

[1] A. Al Amrani, Complex K-theory of weighted projective spaces, J. Pure and Applied Algebra, 93 (1994) 113-127.
[2] A. K. Bousfield, A Classification of K-local spectra, J. Pure and Applied Algebra, 66 (1990) $121-163$.
[3] M. Fujii, Ko-groups of projective spaces, Osaka J. Math., 4 (1967) 141-149.
[4] T. Kawasaki, Cohomology of twisted projective spaces and lens complexes, Math. Ann., 206 (1973) 243-248.
[5] Z. Yosimura, Quasi K-homology equivalences, I, Osaka J. Math., 27 (1990) 465-498.

