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Isomorphisms of AlgY 2n(k)

By

Joo Ho RANG and Young Soo Jo

1 . Introduction

The study of non-self-adjoint operator algebras on Hilbert space was
begun in 1974 by Arveson [1]. Recently, such algebras have been found to
be of use in physics, in electrical engineering, and in general systems
theory. O f  particular interest to mathematicians are reflexive algebras
with commutative lattices of invariant subspaces.

First we will introduce terminologies which are used in this paper.
Let Yt9  be a complex Hilbert space and let d  be a subset of P4(. °), the class
of all bounded operators acting on Ye. If d  is a vector space over C and if
sit is closed under the composition of maps, then si is called an algebra. s i
is called a self-adjoint algebra provided A * is in si for every A in
Otherwise, s i  is called a non-self-adjoint algebra. I f  2  is a lattice of
orthogonal projections acting on A', then Alg2 denotes the algebra of all
bounded operators acting on Ye that leave invariant every orthogonal
projection in 2. A  subspace lattice 29  is  a strongly closed lattice of
orthogonal projections acting on Ye, containing 0 and 1. Dually, if S i  is a
subalgebra of (Ye) , then Lat si is the lattice of all orthogonal projections
invariant for each operator in  s i.  A n  algebra s i  is reflexive if  s i =
AlgLat,si and a lattice 2  is reflexive if 2  =  LatA lg2. A  lattice 2' is a
commutative subspace lattice, or CSL, if each pair of projections in 2 9

commutes ; Alg2 is then called a CSL-algebra. If x i , x2 , , x„ are vectors
in some Hilbert space, then [xi, x2, x„] denotes the closed subspace
generated by the vectors x l , x2 , , x„.

Let f t ' be a complex Hilbert space and let 22,, be the subspace lattice
of orthogonal projections generated by {[e 4] ,  [e 3], , [e2- 1],e 2 ,  e31 [e3,
e 4 , ed, , [e2n -3, e2,,-2, [ e 2 n - i, ez„]) with an orthonormal basis fe4, e2 . . . . .
e 2,J. Then algebras Alg..29

2„  are important classes of non-self-adjoint
operator algebras. These algebras possess many surprising properties
related to isometries, isomorphisms, cohomology, and extreme points.
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Let Ye be a complex Hilbert space with an orthonormal basis le i , e2 ,
, e2,J. Let Alg.29

2„(k) be a subalgebra of M(Y e) such that an operator A  is
in A1g22,,(k) if and only if A  is in Alg..99

2, and one off-diagonal entry of A  is
zero. Such Alg2' 2„(k) are also interesting algebras which have been found
to be of use in physics, in electrical engineering and in other fields.

In this paper, we will investigate isomorphisms of these algebras. Let
- 2,(i) be the subspace lattice of orthogonal projections generated by { [ea
[e 3] ,  . •  •  ,  [ e 2 - 1 ]  I [el, e2, ed, Ce3, e4, ed, • • •  [ e 2 i - 3 ,  e 2 -2 r e 2 1 - 1 ] ,  [ e 2 1 - 1 ,  [ e21,1,

e2,2, e21,3], ,  E e 2 - 1 ,  e 2 1 1  ( i  =  1, 2, ... n — 1) where e _i = 0 and e0 = 0 whenever
i =1 .  Let A n  (i) be the algebra consisting of all bounded operators acting on
a 2n-dimensional complex Hilbert space .1P, that are of the form

2i

2i+1

  

where all non-starred entries are zero and with an orthonormal basis {e l , e2,
, e2}.

2. Isom etries of Alg.,T2.(k)

Let a n d  2  be commutative subspace lattices. By an isometry go :
Alg2' 1—>A1g29

2 we mean a strictly algebraic isometry, that is, a bijective,
linear, multiplicative map. An isometry yo : Alg.r 1--->A lgY 2 is said to be
spatially implemented if there is a bounded invertible operator T such that
Q (A ) = TA 7- 1  for all A  in AlgY i .

Lemma 2. 1. (1) Alg2'2n(o— ge2n(i),

( 2 )  L a t • 4 2 , )  - T 2 n ( i ) •

Let I and j  be positive integers. Then E iy is the matrix whose (I, j)-com-
ponent is 1 and all other components are O.

Theorem 2. 2. Let (10 : A lg2 (1 ) — >AlgY2”(,) be an isometry such that 40(E11)
=Ell for all 1=1, 2, ... , 2n. Then there exist non-zero complex numbers au such
that yo (El) =a u E u for all E u in  Alg4„(,).
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Proof  Let q)(E//) =Ell for all 1. Then (p(E0)-49(EllEuE.)-Eilq)(Eu)Eu for
Eu in A 1 g2 2 „ (i). So if we compare the (1, 1 )-c o m p o n e n t of ço(Eu ) with that of
E ugo (Eu)El l , ( E  =  E , ,  for some non-zero complex number au.

Theorem 2. 3. Let yo: A1g22n(l) - - >A1g22„(,) be an isometry such that y9(Ell)
=Ell for all 1=1, 2, ... , 2n and let yo(E0)=a u Eu , au* 0 for all E u in  A1g.99

2,,( ,) .
Then there exists a diagonal operator T such that cp(A )=TA T - 1  for all A  in
A1g222,,(0. Here T is a 2n x 2n diagonal operator whose

(1) (1, 1)-component is land (2i+1, 2i+1)-com ponent is L
(2) (2, 2)-component is cri21,

-1 .i-1

(3) (21, 21)-component is (II  a2k-i, (2 k ) a 2 k + 1 , 2 k )  (1= 1 2, ... , i) and
k=1 k=1

i - 1 i - 1

(21 - 1, 21 -1)-component is (11 a 2k -L  2 k )  
-1 

(11  a2k+ L  2 k )  (1=2, i),
k=1 k=1

(4) (2 i+  2 j, 2i +2P-component is
- 1 -/- r

i

(1 -= 1, 2, ... n - i)0 11 a 2 /+ 2 k -1 , 2 1 + 2 0  ( 1  I  a21+2k-1, 21+2k-2)
k=1 k=1

and  (2i+21 - 1, 2i+2j - 1)-component is
' -1 i-0 - 1 a2i+2k-1, 21+2k) a21+2 k  -1 , 2 1 + 2 * -2 )  (1 -  2 , • •  •  n -i).

k=1 k=1

Proof  Let A = (au) be in A lgY 2 n (0 . Then ç o ( A ) = ( a ua u) .  Let T= (tu) be
a 2n x 2n-diagonal matrix such that tu* 0 for all 1=1, 2, ... , 2n. Then TA T - 1

=(tilau t,V). So if the linear system for unknown variables tu(/ = 1 , 2, ... , 2n)

au = tu
a32 =  t3 3  t2-21, am= t33 t4-41,

21-2 t21-1. 21-1  t 2
 2 1 - 2 ,  a21-L 2i =  t21- 1 21-1 t21,121,

a21+1 21+2 = t21+L 21+1 WF2. 21+2,

a21+3, 21+2 = t2i+3, 21+3 t:+2, 21+2, a21+ 5 21+4 = t21+3, 2i+3 21+4,

2n - 2  =  t2n-L  2k -1 t2n 1- 2. 2n-2 and a2,.-1 2'  =  t2n  -1 , 2k -1 t2n,1 2n

has solutions, then go (A) = TA T - 1  for all A  in A lg Y 2„( 0 .
Put t11=1 and t 2 i+ 1  2 i+ 1  =  1 .  Then from the above relations

- 1 „,-1tt22= a 1 2 , 33  =
t

,4- 1 2  - 3 2 ,  - 4 4  - "1 2  3 2  L t3 4

t21-2, 21- 2  =  a l-21a32 a3-41 • • • a215 21 -2 , t21 -1 , 21 -1  =  a1-21a32 a3-41 • • • a21-L 21-2,

t21, 21 =  ai2 lan a3-41•••azil 1 21, t2 i+2  21+2 = a 1
 21+2,

t21+ 5 21+3 = a 1  2 1 + 2 a 2 1 + 2  2 1 + 2 , 121+4 2i+4 = a 2 i }Fi, 21+2a2i+3, 21+2C6+3, 21+4,
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2n.-2 
= 0G+1. 21+2a2i+3, 2i+2a2i+3, 2i+e • •a 2-ni

+a 2n-2,

t2 n -L 2n-1 = a+L 21+2a21+a 21+2C61-3, 2i+4' • .a2-711-3 . 2n-2 a2n-L

t2 n , 2•1 = aZ-11-1 2i+2a21+a 21-1-4...a2i1 a 2n-2 a2,-1, 271-2a2n 1-1 2,1 •

Hence ço(A )= T A T ' for all A  in Alg...29 2,,(l)•

Lemma 2. 4( [1 0]). Let 2 ' 1 and 2 .2  be commutative subspace lattices on
Hilbert spaces .1f, and Ye2 , respectively, and suppose that A lg2 ' 1—>A1g9' 2 is
an algebraic isomorphism. Let .141 be a maximal abelian self-adjoint subal-
gebra (m asa) contained in T hen there ex ist a bounded invertible
operator Y : .16— .16 and an autom orphism  p : Alg_r i-->A1g..r i such that

(  i )  p ( M ) = M  f or all M  in  d i and
( ii)  g 9 (A )=Y p (A )Y - 1  f or all A  in Alg-99 1.

Theorem 2. 5. Let ç :2 n ( ) - - >  A lg Y  N(I) be an isomorphism. Then there
exists an invertible operator T  such that yo(A )= TA T - 1  for all A in Alg-rwo•

Proof . Since (Alg..r 2 )) n (m g 2 2 ) .  is a masa of A lgY w o  and Ell is in
(A1g2'2„(0) fl (A lg2 (I))*  for all 1-1 , 2, ... , 2n, by Lemma 2. 4 there exist an
invertible operator Y  in  . 4 ( l f )  an d  an  automorphism p :  A1g29 wo- - >
A lg ..r(,) such that p(E11)=Ell and yo(A)= Y p(A )Y - 1  fo r all A  in  A1g2'2n(,)
and 1(1=1, 2, 2 n ). By Theorem 2. 3, p (A ) = SA S - 1  for some invertible
operator S. Hence ço (A ) = Y p (A ) Y - 1  = Y SA S - 1  Y- 1 .  Let T = YS. Then ç9 (A )
=T A T ' for all A  in Alg2'2”(o•

Theorem 2. 6. Let ço : Alg2'2„(0— >A1g2'2„(,) be an isomorphism. Then there
exists an invertible operator T  in Alg2'2„(,), all of whose diagonal components
are non-zero, such that ço(A )= TA T - 1  for all A in Alg2'5.6).

Proof . Let yo : Alg2'2„(,) - - ->A1g2'2,) be an isomorphism. Then by Theo-
rem 2. 5 there exists an invertible operator T  such that go(A)= T A T - ' for
all A in A1g2' 2 (,). Let A = (a i„) and 59(11)= ( b p i )  be in A lg 2 ( ,)  and let T =
(t,,,). Then yo(A )T= TA ... ( * ).

( 1 )  t22, 2m - 1 =  0 for all j, m.

First, we will show that t25 1 =0 for all j. Suppose that t2, 1 0 for some j.
Comparing the (2j, 1)-component of ço(A )T  w ith that of TA, t221b2125=
taj, I a n . S ince t25, I 0, 2 . i ••• (*1)•

Comparing the(2j, 3)-component of (p(A )T  with that of TA, b25. 25 t25, 3 =

t25, 3 a 3 3 .  So t25, 3 ( 1) 25, a 3 3 )  1.4 3  C a n  a33) —0 by  ( *  ) .  Since the equation (*  )
holds for all A  in Alg2'2„(,), t25, 3=0.

Comparing the(2j, 2)-component of ço(A )T  with that of TA,
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b21. 21t21, 2 -  tat. 1 a12+ t21, 2 a22 t h  3a32 if i 1  and
b21, 21 t21, 2 -  t 2 j ,  a12 + t2,, 2 a 2 2  if 1

Since b21, 21 =a 11 ,  t2,. 2 (a ii -a 2 2 )  -  t 2,, + t 2,, 3 a 32 (i 1 )  and  t2,, 2 (an - a22) ai2
( i = 1 ) .  Since the equation ( * )  holds for all A  in  A lgY 2„(,), we have a
contradiction if a 11 = a 22 and a 12 V  Thus t21, 1=0. We want to show that if
t21, 21-1 = 0, then t  21+1 0 for all 1. Suppose that t21, 21-1  -  0 and t21, 21+1 

0  0 for some
1. Comparing the ( 2 j ,  21+1)-component of go (A )T with that of TA, a21+121+1

= b21.
Comparing the ( 2 j ,  20-component of yo(A)T with that of TA (1 i),

b21, 21 t21, 2/ =  t2 1, 21-ia21_ 1, 21 +  t21. 21a24 2/ + tab 21+ l a2/+1, 21•

Since t21, 21-1  =  0  and b21, 21 - a2i+L 21+1>

t 2 1, 21 (a21+4 21+1 a242 1 + 1 a 2 1 + 1 ,  2/ (10 0.

Since the equation (  *  )  holds for all A in A lg 2 ' 2„(1) ,  we have a contradic-
tion.

Comparing the (21, 21+2)-component of go (A) T with that of TA (1= i),

b21, 21t21, 21+2 = t2i. 21+1a21+1, 21+2+ t21. 21+2a21+2. 21+2 +
1-
21 21+3 a2/+a 21+2.

Since b21, 2, -a2/44, 21+1,

th  21+2(a21+4 21+1 a2/+2, 21+2) - t21, 21+1a21+L 21+2 ± t2), 21+3 a21+3, 21+2.

Since the equation (  *  )  holds for all A in A1g.99
2„(1) ,  we have a contradic-

tion. Thus if t21, _1= O, then t21, 21+ 1 -  0  for all 1. Therefore t21, 2m-1 
= O for all j,

m.
If t21, 2m 0 ,  then

(2) a2m, 2m - b21, 21t

(3) t21, i=0 for all 1(10 2m) and
( 4 )  t24 2m = 0  for all 1(1+]).

For, comparing the (21, 2m) -component of ço(A )T with that of TA,

b21, 21t21. 2m t2j, 2m - a 2m -1, 2m + taf, 2ma2m. 2m + t21, 2m +1 a2m + 1, 2m if m  0 i  and
b21, 2/ t21. 2m 

= t2j 2m-
1 a2m-L 2m ± t2j. 2m a2m, 2m if Trt =i.

Since t21, 2m 0 0, t21, _ 1  =  () and t21, 2,,,+1=  0 , b21. 2i
=

 a2m , 2m . Similarly, we can prove
the following.

(2) t2,, i =  0  for all 1(10 2 m )  and
(3) t24 2m = 0  for all 1(10 j).

Similarly, we can prove the following. If t2 ,-1 .2-10  0 , then

(5) b21-1, 21-1 
=

a2m -1, 2m 1 •
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(6) 2-1=0 for all 1 ( l  2 j - 1 )  and
(7) t2,-L 21- 1  -  0 for all /(/ 2).

If t1i 0 and t2,+i, 2,+i *O, then T is in A1gY2n(I).
For, let ti tC o m p a r in g  the (1, 2)-component of go (A )T  with that of

TA, t22*a
Suppose that t t22 • • • r *O. Comparing the (21+1, 2 1)-com-

ponent of go(A )T with that of TA ( j 0 i ) ,  t2I+L 2/+1 O.
Suppose that t i l  0, t22 * 0, , t2/+1 2/+1 0 . Comparing the (21+1, 21 + 2)-

component of (p(A )T with that of TA, t 2/+2 a  I f  t2 1 -L  2 / -1  0  0 , t2 4 O d
t21+1 21+1 0 0, then we can get t2,_L 21=0 for all j ( j 0 /  and j 1+ 1) by comparing
the (21-1, 21)-component of go(A )T with that of TA.

Finally, suppose that /204 2,* O. Comparing the (2i+ 1, 20-component
of yo(A )T with that of TA,

b21+L 2i t2i, 21 + b21+1 21+1 t2i+1 21+ b2i+L 2i+2 t21+2. 2 1

= ta+i, 21-1a21-1. 21+ t2i+L 21a2i. 21+ t2i+1 21+1a21+ 1 21•

Since a21+1 21
= 0, b21+L 2i 0, t21+2, 21 - 0, t2i+ 1, 21-1 - 0  and 21+1 -a21+L 21+1, t21+1, 21 •

(a21+L 21+1 a 2 i ,  2 1 )  - 0 .

Since the equation ( *  ) holds for all A in A lg2 ' 2„( ) , we have a contra-
diction. Thus /21+1.2i= 0 . Hence T is in A lg22(0.

We want to prove that  t1100 and t
-  1It is easily verified that both t 2 1 1 ,  and 2  can not be non-zero, and

both t2 1 1  and t21,2 can not be non-zero (j__ 2).
k-2. 2k-1. 1 0 and 12k, 2= aIf ti l  =0, then 12* 0  for some k .  Suppose that t2

-2.

Comparing the (2k-1 , 2)-com ponent of yo(A )T with that of TA, we have
2),t2k-L 2 (ail a22) t2k-1. 1 a 12 which is a contradiction. Thus 12k 2* 0 or /  2 * 0 - .

(*  2 ) . But this contradicts the just above fact. Hence t i l  + 0 .  By a simple
but tedious calculation, it is verified that both t-21-1, 21+1 and t 1 1 2i+2 cannot be
non-zero, and both t21 1, 21+1 and /21, 2i+2 cannot be non-zero (1+ 1+ 1 ). Suppose
that t21-FL 21+1

= 0. Then t21+1, 21+1 0 0 for some 1(1=1, 2, ... , n).
If t21+1, 21+1 0 0 for some 1(1=1, 2, ... Y  n), then with an argument similar to

(*  2 )  we have a contradiction. Hence t..2i+L 21+1 0.

Let Ye be a complex Hilbert space with an orthonorm al basis {eh e2,
, e z„} and let .99 2„(i+1) be the subspace lattice of orthogonal projections

generated by {Ee l ] ,  [e3], , [e2,-1], [el, e2, e3], [e3, e 4 ,  es], [e21-1, e21, e21+1],
[e 21+2 , e2,3], 1e21+3, e21+4, e21+ 5], • • • , e 5 .1 1  (1 = 0 , 1, 2, ... n -  1) where e_ 1 =
0 and e 0 = 0 whenever 1=0.

Let .42n(i+1) be the algebra consisting of all bounded operators, acting
on a 2n-dimensional complex Hilbert space Ye, that are of the form
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21+2

•

21+1 • • *  *  0

  

where all non-starred entries are zero and with an orthonormal basis {e l ,
ez , ,  e z„}. By the arguments similar to those of Lemma 2. 1, Theorems 2.
2, 2. 3, 2.5, we can obtain the following.

Lemma 2. 7. ( 1 )  A l g Y 2n(i+1)
—

•
4

2n(i+1),

(2) Lat.42n(i+o— Y 2•1(i+ 1)•

Theorem 2. 8. Let go: AlgY2,.(i+i) - - >A1gY2,.(i+i) be an isomorphism such
that ço(E ll)= E u for a ll 1= 1 , 2, 2 n .  Then there exist non-zero complex
numbers au such that ço(E u ) = a u E u for all Eu in A lg 2 2 2,.(i+i)•

Theorem 2. 9. Let go: Alg22,.(i+i) — >Alg 2 n (i+ 1 ) be an isomorphism such
that ço(Eu) =Ell for all 1= 1 , 2, ... , 2n and let ço(E u)= auE u, a1 i 0 for all E u in
A lg.99 2”(i+D• Then there exists a diagonal operator T such that ço (A )=  T A T '
for all A in A 1 g2 7 2 +i).

Theorem 2. 10. Let ç o :  Alg..r 2„(,+1)—>A10- ÇP2 ,(I+ 1 ) be an isomorphism. Then
there exists an invertible operator T  such that ço (A )=  TA T 1 for all A in
AlgY2n6-F12•

Example 2. 11. Let

T =

( 1 0  0  0  0 \
0 1  0  0  0  0
0  0  1  0  0  0
0  0  0  0  0  1
0  0  0  0  1  0

\ 0  0  0  1  0  0

Define yo : Alg 2 2.3(l+1)— >A1g.r2x3(l+1) by ço(A )= TA T* = T A T "  for all A  in
A1g2'2.3(l+1). Then ço is spatially implemented but T  is not in A1g.99 2x3(1+1) •

Example 2. 12. Let
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T =

/0 0  1
0 1 0
1 0 0
0 0 0
0 0 0

\0  0  0

0 0 \
0 0
0 0
0 1
1 0
0 0 !

 

Define ço: A lto- Y*2x3a+n— >A lgY 2.3(l+i) by ço(A )= TA T* =TA T - 1  fo r all A  in
Alg.r2.3(1+1). Then ço is spatially implemented but T  is not in Alto- Y0— 2x 3(1+1) •

Example 2. 13. Let

T =

/0 0  1 0 0 0 \
0  1  0  0  0  0
1 0  0  0  0  0
0  0  0  1  0  0
0  0  0  0  1  0

\0 0  0  0  0  1 /

Define ço : AlgY 2x30+1)— >A1g2"2x3(i+i) by ço(A )= TA T * = T A T - '  for all A  in
AlgY2.3(i+1). Then yo is spatially implemented but T is not in AlorY 2.3(i+i)•

Theorem 2. 14. Let ço : Alg.r2n(,±1) .— A1g22„(I,-1) be an isomorphism. Then
we can get the follow ing:

(1) for all j  and m.

If t2 i2 .0  0, then

(2) a5n. — 2j,

(3) tv , i = 0 f or all WO 2m) and,
(4) 1•24 2.= 0 f or all l ( l0 1 ) .

If t2 -1 2m-1 0  0, then

(5) 2m-1= b21- 1 21-1,

(6) 2.-1=0 f or all 1(10 2j-1) and
( 7 )  t21-1 2/-1— 0 for all l( l m ).

Proof ( 1 )  hi 2 .-i= 0 for all j  and m.
First, we will show that t21, 1 = 0  for all j. Suppose that t n . i JO for some j.
Comparing the (2 j, 1 )-com ponent of ç o (A )T  w ith that of TA, b2i 21 t21,1=
t21, 1 a11 . S in c e  h i, 0, a11=b21, 2j. Comparing the (2 j+ 1, 1)-com ponent of
4 o (A )T  w ith  th a t o f  TA, b21+1 t21, 1+b21+1 21+1t21+1 1+ b21+1,21 t+2 -21+2, 1 -1 .21+1 I an .

Since all= b21. 21, we have b21+L zit (b_2j , — 21+1, 1 . 2j, 21 b21+1, 21+1) b21+1 2+2t21+ ( i  0  1
or j 1 ) and b2J+1 21 t21, 1 t 2 1 +  1 (

1)21, 21— b21+1, 21+1) (i = 1 and j—  1). We have a
contradiction. Hence t21, 1= 0  for all j.
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.. j,n  1 1N) . ex t we want to show that if t21 21-1 - 0, then t2 2/+1
— 0 for all 1(1=2, ... ,

Suppose that f-2j, 21-1
- 0 and t2 j , 2/+1 0 for some 1(1=2, ... , n— P .  Com-

paring the (2j, 2 1+1)-com ponent of yo(A )T with that of TA,

b2j, 2, t21, 21+1
=

 t21 21+1a21-Fi,

Since f 21+1+0, bzi, — azi+L 21+1.

Comparing th e (2 j+ 1 , 21+1)-component of (p(A )T  with that of TA,

b2I+1, 2j t2j. 21+1 + b2)+1, 21+1 t2,7+1 21+1 + b2j+L 2J+2t2j+2. 21+1
=

 t2j+1, 2/+1a21+ 1 21+1.

Since azi+L 21+1= kJ, 21,

b21_FL 21/ 4/ 21+1
=

 t2j411, 21+1(b2j, 21
—

 b2j+1, 2j+1) b2j+1. 21+2 t2j+2, 21+1 ( i+1  or j 0 1 )  and
b2J+1. 2, t2f, 21+1

—
 t217+1 2/+1 b2j+1. 21+1) 1 and 1=1).

We have a contradiction. Hence if tzi, 21-1= 0 , then t-2j, 2/ +1 — 0 for all 1.
By the arguments similar to those of Theorem 2. 6, we can obtain the

following.
If /21 2. then

(2) a2m. 2,n b2j, 21,

(3) tzi,1=0 for all 1(102m ) and
(4) ta 2m = 0 for all 1(1+j).

If t2,-1.2.-1 0, then

(5) bai-L 21-1
=

 a2m-1. 2m-1,

(6) 1/, 2-1=0 for all 1(1+21 - 1) and
(7) t2,-1. 2/-1

— 0 for all / ( l0 m ) .

As special cases, we will consider the cases that are i= 0 and i= n - 1 .

Theorem 2. 15. Let yo: AlgY2n(o-Fo— >A1g.29 2„(0+1) be an isom orphism . Then
there exists an invertible operator S  in  AlgY2,,(0+1) s u c h  th at  (A )=S A S - 1  or
ço(A )=(S U)21(S U) - ' f or all A  in Al 0.- _9?2n(0+1), where

U =

/1 0  0 0  0 0 \
0 0 0 0 0 1
0 0 0 0 1 0
0 0 0 1 0 0

\0 1  0 0  0  0 /
is a 2n x 2n matrix.

P ro o f  Let yo : AlgY2,,(0+1)-- ->A1g-29 2,,(0+1) be an isomorphism. Then by
Theorem 2.10, there exists an invertible operator T  such that yo(A)=
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T A T ' for all A in Alg2'2o+D. Let A = (a,i )  and go (A) = (b 0 )  be in AlgY2,,(0+1)
and let T  =  ( 0 .  Then ço(A )T  = TA  for all A in Alg2'2n(o+D.

We can get the following by Theorem 2.14 :

(1) tab 2m-1 — 0 for all j  and m.

If ta,, 2.0 0, then

(2) a2m, 2m — b2, 22,
(3) t2.,,/=0 for all 1(1 2m) and
(4) t21. — 0 for all 1 ( / 0 i ) .

If t2,- 1. - 1  0, then

(5) a2.-L 2.-1 2/-1,

(6) 2.-1=0 for all / ( /0 2 j—  1) and
(7) tz,-1, 21-1 —  0 for all /(/ Om).

If t21-1, 21-1  0, t21, 21 0 0 and t2 /+1, 22+1 0, then

(8) t2-121=0 for all j ( j /  and j /- F- 1).

We want to prove that t12=0  if Suppose th at tii 0 and t12 0.
Comparing the (1, 2)-component of yo (A )T  with that of TA, b11t12=t12a22+
t13 a32 . Since t,,0 O, Since t,3 =0, we have ti2(a22 — an) =0 which is a
contradiction. Hence t,2 =0. I f  t11 0 and t22 0 ,  then tkk 0 for all k ( k =1 , 2,

, 2n). Hence if t11*0  and t22t h e n  T  is Alg29
2 (,+i ) b y  (1), (2), , (8).

So we can take S = T  in this case. If and t22=0, then let

U=

/ 1  0  0 0  0 \
0  0  0  - • •  0 0 1
0  0  0  • • •  0 1 0
0  0  0  • • •  1 0 0

\0 1  0  • • •  0  0  0 /

be a 2n X 2n matrix. Define (pi : AlgY2,,(01-1)— >A1 9 ""g— 2n(0+1) by (pi ( A )  UA U - 1  for
all A  in Alg2' 2„(0 +1) .  Then (p i is an isomorphism and goi cp (A ) = (U T )A (U T ) 1

for all A  in Alg (0-FD• I f  t2n, 2 0, then UT belongs to AlcrY 2n(0+1) because t2„, 2
is  the (2, 2)-component of U T . In this case, we can take S = T U . Since
U 2 =1, S =U (U T )U  and so belongs to Alg2'2,,(0+1) and T = S U . Hence yo (A) =
TA T - 1 = (S U)A  (S U) - 1  for all A  in AlgY2,a+D•

..2n  2 - -  -We want to prove that ti l a n d  t if t22 —

First, we will prove that t if n2 --  -2 2

Suppose that ta 27+2 ta 2)+ 1 =  0 and ta 2)+3 =0 for some 1 (1 =1  2, ... , n —
2 ) . Comparing the (3, 2j+ 2)-component of (p(A )T  with that of TA,

b32 t2 21+2 + b33 ta 2.1+ 2 +  b,4 t4, 21+2 = ta 2i+1 a21+2 21+ 2+  ta 2i+2a21+z 2i+ 2 +  ta  21+3 (1 21+3, 21+2 •
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Since ta 21+1 = 0, ta 25+3 =0 and t a 43+200, ta 2)+2 -3.2)+20 and hence we have t ( 1)22

b33) — 15326.2.1+2 which is a contradiction. Hence if ta 25-F20 0 , then t a 21 +10 0  or
ta + 0 0  for some j ( j =  1, 2, , n — 2). Suppose that ta 2./+ 2 0  0, ta 21+1 0 and ta

= 0 .  Comparing the (3, 21)-component of g  o (A )T  with that of TA,

b32 ta +  b 3 3  ta bath ta 2,-1a2,-L 2, + ta 2,a25 21+/3. 2,-,1a21+L

Since ta 2 )+ 2  0, tt  2.7 =  0 and ta 2.3+100, ta 21= 03 ta 2,-1 = 0 and b33=a25-FL 25/-1. So we
have ta 21 (a2,-Fi. 2,-F1 a 2 5. 25) — ta 21+ia2,+L 21 w h ic h  is  a contradiction. I f  we
continue this process, then we can get the following ; If ta 2)+200 and ta  25+ 1

0, then t 21+ 2 - /  0 0  for all 1(1 = 1, 2, ... , 2 j). In particular, ta, +2. 2+ 0  and t2j+L 3

0 0 •  Comparing the (21+3, 2) -component of yo (A ) T  with that of TA,

b2 1 + 2 25+2 t21+2. 2 + b2 5+ 2 25+3 t2./+3. 2 + 
b25+3.

 25+4 t2)+4 2 = t25+a 1 a12
t 2 1 + a

 2a22  + t25-1a 3a37.

Since t2,+1300, 1.21+a 3—  0 . S o  we have t2J+3. 2 (b2)+2, 2 1+2 b25+ 3 . 27+ 3) —  ba l+  a 25+2 t21+2. 2

w hich is a contradiction. Suppose that ta 25+2+0, ta 250 0 0  and tt  2,+4= a
Comparing the (3, 21+4)-component of yo (A ) T  with that of TA,

b32 ta 25 + 4+  b33 t5  21+ 4+ butt 25-F4 — ta 2)+3(125+5 2,+4+ ta 2 1 +4 a21 +4  22+4+ ta 21-E5122,+a 2,1-4 •

Since ta 2,-320 0, ta 22+4 — 0 .  S in ce  ta 2.,±3 * 0, ta 25+5- 0 .  Since ta 2,-0 0 , b33 = a2 + 5 23+3.
So  we have ta 21+4(a25+a 25+3 —a2 5 + 4  2)+4) =ta 21-F3c/25+5 25+ 4 which is a contradiction.

If we continue this process, we can get the following ; If ta 2) +2 0 and
ta 254-3 0 ,  then t2+4 2,-F2+10 0 for a l l  1 ( 1 = 1 ,  2, ... , 2n - 2j - 2). In particular,
t2n-25 , 2n 0 0 and t..2n -2)- 1. 2n -1 * 0 .  Comparing the (2 n -2 j+  1, 2n)-component of
g9 (A )T  with that of TA,

b 2 n -2 1 + 1 2n -2/ tan-2j. 2 + b2n -2j+ L 2n -2j+ 1 t2n-2j+L 2n b2n-25+1, 2n-21+2 tan-2/-12. 2n

= 1.2n - 2 j + - 1 a2,- 1, 2 +  t2 n  - 2j+ L 2n a2, 2n •

Since t2, 25. 2n +0 and t.,2n  -2 )-1 . 2n-1 
0  Op tan -2)+2. 2 —  0 and t 2 2 1 + 1  2n-1 — 0  and az> , 2 =

2h
-

21- S o  w e  have t„2,3_2,+1.2„(b 2n - 2/. 2n b 2n + L 2n-22+1) — ban - 2J+ 1. 2n 2.7 tan -2), 2n

which is a contradiction. Therefore if t22 = 0, then t2, =  0  for all 1=2, ... , n
— 1. Hence t2,2„0 0  if t22 = a

Suppose that ta 2„ 0 0 and ta 2 - 1
= 0. Comparing the (3, 2n)-component of

ç o (A )T  with that of TA,

b32 ta 2n +  b33  t ab  t34 -4. 2n = ta 2n-1 a2n - L  2'  +  ta Nth>, 2n•

Since ta 2,3003 ta 2n — 0 and azn. 2 =  b 2 2 .  So we have ta 2n (b22 b 3 3 )  b 3 2  ta 2n which is
a contradiction. Hence if t2. 2 n  0  0, th en  ta 2n-1  

0  a If t5 2n 0  0 and ta 2-1 0 0 , then
2 „ -2  O. Suppose th a t  ta 2„ 0  t 3 .  2 n - 1

0  0 and tt  2 n -2
=  O. Comparing the (3, 2n

—2)-component of ço (A ) T  with that of TA,

b32t2. 2 n - 2 +  baa ta 2n-2 + b34 1.4 2 n -2  =  ta 2n -3 a2„-a 2n-2 ta 2n-2  a2n  a 2n-2  +  ta 2 „ - 1 a 2 „ - L  2n-2.

Since t a 2,,0 0, ta 2„-2= 0 and t 2,1-2
=  a S ince ta 2 n - 1 0  0, b33=a2-1. 2 n - 1  and ta=



222 Joo Ho K ong and Y oung Soo Jo

0. So we have ta( a 2 n - 1  2 n - 1  —
a 2 n -2 , 2 n -2 )  =  ta 2,,--1a2n- 1 2 n - 2  which is a contra-

diction. If we continue this process, we can get the following ; If ta0 ,
then t2+1 2n- 1 0  for a ll 1(1= 1, 2 , . . .  ,  2 n  — 2 ) .. .(* ) . In particular, t2k, 2  is
non-zero. In consequence, if t22 is zero, then t2„, 2  is non-zero.

Finally, we want to show that t 11 is non-zero.
Suppose tia O .  Comparing the(1, 2)-component of ço(A )T  with that of

TA, b 11 t12 + b12 t22 t11 a2 + t12 a22 4- 1.13 a32. Since / 13a 3 3  
6

'11. SO t12 (a33 — a22) —

t13a32 which is a contradiction. Hence t13= 0 .  Similarly we can prove that t12

= 0  by comparing the (1, 2)-component of ço(A )T  with that of TA.
Suppose that t 2k+1 0  for some k (k = 2, n — 1). Comparing the

(1, 2k)-component of ço(A )T  with that of TA,

b11 LI 2k +  b 1 2  t2 , 2 k  =  t l 2 k - la 2 k - 1 2k + tl, 2k a2 2k + tl, 2k+ 1 a2k+1, 2k •

Since t 2k+1 Op b l l  — a2k+1, 2k+1 and t 1 2 k - 1  —  0 .  So we have t (a-1 2k ■-•2k+1, 2k+1  a 2 k ,  2 k )  —

tl, 2k+1a2k+1, 2k which is a contradiction. Hence t.1, 2k +1 —0 for all k= 1, 2 , ... , n -
1.

Suppose that t 0 for some k(k= 2 , ... , n ) . Comparing the (1, 2k)-- L 2k

component of ço(A )T  with that of TA,

b11 t1 2k + b12 ta 2k = t1. 2k-1 a2k-1, 2k + tt 2k a2k. 2k 
+ t I .

 2k+1 a2k-F1 21 .

Since b12=0, t1, 2k-1 — 0  and t, 2k+1 —  Op b11 t1 2k = a2k, 2k t1, 2k• • • ( * 1)• If t22 — 0 , then
t2+2„-2k. 2k 0  by ( *  ) .  So a2k, 2k — b2 +2n -2k, 2+2n -2k • Hence t i, 2k (b2+2n-2k, 2+2n-2k —  b11) —  0

by ( * 1) which is a contradiction. Suppose that t22 0 0 and t33= 0 .  Compar-
ing the (3, 2)-component of ço(A )T  with that of TA,

b32  t22  +  b33  t32  +  b34  t42  =  t3 lau+ t32a22  +  t33a32 .

Since t22+ 0 ,  t42 —0 and a 22 b 22 . So we have t32(b22 — b33) — b32t22 which is a
contradiction. Thus if t 22 0 ,  then t33 0 . Suppose that t22+0, t33 + O and /44 =
0. Comparing the (3, 4)-component of ço(A )T  with that of TA,

b32 t24 + b33 t34 + b34 t44 =  t3 3 a 3 4  +  t34 a44 +  t31 a54.

Since tm  0 ,  bin —a33 and t35 0 .  Since t22 t24 0 .  So we get t34 (a33 a44)

a 34 t33 which is a contradiction. So if /22a n d  / 33t h e n  /44 0 .  Hence if we
continue this process, then we can get the following ; If /22t h e n  t11 0 for
all / (/ = 2, 3, ... , 2n). Since t_2k, 2k 0 ,  a 2 k  2k —b 2 k  2k• So t1 2k (b 2 k , 2k b 1 1 )  = 0  by ( 1 )
which is a contradiction. Hence

Theorem 2. 16. Let ç : V, —g— 2n((n-1) +1)—> A 1
g Y 2 n ( (n -1 )+  1 )  be an isomorphism.

Then there exists an invertible operator S  in  Alg_9?— 2n((n -1)+1) such that ço(A )=
SA S - 1  or ço(A )= (SU )A (SU ) - 1  for all A  in A1g22,,((,-1)+1), where
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/0 • • 0 1 0\
o • • 0 1 0 0

I 1 0 0 0

1 0• • 0 0 0
\ 0 • • • 0 01 /

is a 2n X 2n matrix.

P ro o f Let yo : A lo 2n((n-1)+ 1)
-

"A l g Y 2 n ( ( n -
1)+ 1) be an isom orphism . Then

by Theorem 2.10, there exists an invertible operator T  such that ço (A )=
TA T - 1  f o r  a ll A  in  AlgY2,,((-1)+1). L et A =  (a t , )  a n d  go(A)= ( b p ,)  b e  in
Alg22nOE,.-1)+D and let T =  ( t p , ) .  Then ço (A )T  =  TA for all A in A10. 9°2n((n-1)-1-1)•

We can get the following by Theorem 2.14.

(1) t2,, 2.-1 -  0 for all j  and m.

If t2,, 2,. *  0, then

(2) a2m , 2m  - k J .  2.1,

(3) ta, 1= 0 for all /(/ 2m) and
(4) t21, 2 m  =  0  for all / (/ 0 j) .

If t2f -1 , 2m -1  0  0, then

(5) a2m-1, 2m-1 b21-1, 2f-1>

(6) t1 2m-1= 0 for all 1( 1 0 2 j - 1 )  and
(7) t2f -L 21- 1  -  0 for all /(/ m ) .

If t21-1, 2/-1 0 0, t21, 2/ 0  0 and t21+1, 21+1 0 0, then (8) t2j-1, 21
= 0  for all j ( j and j /-k

1 ). If t2n-1, 2n-1 
0  0, then t2,,-?. 2 n - 2  0  0. Suppose that t2,,-1, 2n-1 

0  0  and t 2,,-2. 2n-2 0.
Comparing th e  (2n-1, 2n-2)-component of go (A) T  with that of TA,

b 2„- 1. 2n-2 t2n •2 2 n -2  ±  b2,,-1 2n-1 t2n -1. 2n-2

t2, -1, -  3  a2n 2n-2 ± t2n - 1, 2n-2 a2n -2, 2n.-2 t?,, -1, 2n - 1a2n - 1, 2n-2.

Since t2,,-1, 2n-1 0, b 2,,- 1, 2 n - 1  a n d  t 2 , , 1 ,  2 n -3  °  0. So  w e get t-2n-1, 2n-2

(a 2 n -  1, 2n-1 a 2 n -2 , 2 n -2 )  =  t2 n  -  1 , 2 n -1  a 2 n  -  2 n -2  which is a contradiction.
Similarly, we can prove that if t2,,-1, 2n-1 0  0 and t 2>t - 2 

0  OP then t2„-a 2,1-3

0.
So if t2,,2, 0  a n d  t-2n-L 2n-1 0 0 >  then tkk 00 for all k (k  = 1 , 2, ... , 2n) and

t2,-1,2,,=0 by comparing th e  (2n-1, 2n)-component of ç 0 (A) T  with that of
TA . Hence T  is in  AlgY2,,((,,-1)+1) by (1), (2), ,  ( 8 ) .  In this case, we can
take S = T . If t2n , 2n  0  0  and t-2 n -1 , 2 n -1  -  0, then let
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/0• 0 10 \
0 • • 0 1 0 0

1 0 0 0U=
1 0• • 0 0 0

\  0 • • • 0 01 1

be a  2n X 2n m atrix. D efine (p1 : 2 n ( (n -1 )+ 1 )-+ A lg Y 2 n ( (n -1 )+ 1 )  by çoi(A) —
UA U - 1  for all A in A1g_9"2 n ( ( n - 1 ) + 1 ) •  Then (pi is an isomorphism and v i ço(A)=
(UT )A  (UT ) - 1  fo r all A  in  Alg  2 n ( ( n - 1 ) + 1 )  and ti,2ft_i i s  the ( 2 n - 1 ,  2n — 1)-
component of U T . If t1, 2,2-1 0, then UT belongs to A lgY 2n((n-1)+1)• In this
case w e can take S  = T U .  Since U2 = / ,  S =U ( U T ) U  and so belongs to

and T = SU. Hence ço (A) = T A T  =  (SU)A  (S U) - 1  for all A  in
A lg 22 2,.((-1)+1)• With the same proof as some part of Theorem 2. 15, we can
prove that if t 2n-1—  0, then t2„ 2n0 0 a n d  2 - 1 *  0 .

Let 1m be the m  x m  identity matrix and let J„, be the m  X m  backward
identity matrix.

Theorem 2.17. L et (p : AlgY 2n(i+D— > AlgY  2n(i+i) be an isomorphism
n - - 2). Then there exists an invertible operator S  in A l g . r 2 n ( z + i )  such that v (A )

SAS - 1  or (p (A ) = (S U)A  (S U) - 1  or (p (A ) = (S V )A  (S V ) - 1  or cp(A )= (S W )A
(S W ) - 1 ,  where

V = ( 1

 I 2 , -

0

2 i - 1 )  

a n d  W  =
( . 1 2 i + 1u = (I2i+1 0

0 .12-21-1)' J 2 n - 2 1 - ) •

P roo f. Let (p : A lgY 2.0+1,— , A lgY 2„6+1, be an isomorphism . Then by
Theorem 2. 10, there exists an  invertible operator T  such that cp(A ) =
TAT - 1  for all A in AlgY2„(I,-1). Let A = (ap,) and 40 (A ) —  (bp,) be in A1gY2„(.+1)
and let T =  ( t , ) .  Then cp(A )T = TA for all A  in Alg.22 2n0+0. By Theorem 2.
14, we can get the following :

(1) t2j. 2m-1 —  0 for all j  and m.

If /2,2. 0 ,  then

(2) a2m. 2m — b2j, 2. 1/9

(3) t2i. i= 0 for all /(/' 2m) and
(4) t22,. 00 for all / ( / * j ) .

If /2,-L 2.-100, then

(5) a2m -L 2m -1 —  b21-1,

(6) t1,2,._1 0 for all / ( / 0 2 j - 1 )  and
( 7 )  t2)-1, 21-1 —  0 for all 1(1 m).
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If t2/-1, 2/-1 0  0, /-21, 210  0 and t2 1 + 1  2 1 + 1 *  0, then

( 8 )  t2f-L  2/ - 0  for all j ( j 0 1  and j* 1 + 1 ) .

If til * 0  and t 2 + 2 ,  2 i+ 2 *  01 then T is in A1gY2no+D as in the proof of Theorem 2.
15. In this case, we can take S = T .  If t11 0 0  and t-2 i+ 2 , 2 i+ 2  -  03 then let U=
([21+1 0  )

\  0 j 2 n - 2 i - l i

in Alg22n(i+D. Then (p i is an isomorphism, çoiço(A)= (U T )A  (U T) - 1  for all A
in Alg.29

2„(i+i) and t2, 21+2 is the (2i+2, 2i+  2)-component of U T . If t-2,1, 2i+2 Oy

then UT belongs to Alg22n(i+i). In this case, we can take S=  TU . Since U 2

-=/, S=U (U T)U  and so belongs to AlgY2„(i+i) and T = S U . Hence go(A )=
TAT - 1 -  (S U )A (S U )"  for all A  in Alg2'2„(i+D. If tu =0 and t21+22+2 0 ,2i+2 0 ,  then

let V = (f2i+i 0
I2

) .  Define (p2 : Alg_rmi+D-->A1gY2„(i+0 by (P2(A)-= VAV - 1

0 ,-2i-1
for all A in AlgY2n(i+i). Then (P2 is an isomorphism, yo2(p(A )=  (V T)A (V T) - 1

for all A  in Alg22.(i+i) and t-2i+1. 1 is the (1, 1)-component of V T . If t2i+L i *O,
then VT belongs to AlgY2,,(i+D. In this case, we can take S=  T V . Since V 2

=1,. S= V (V T) V and so belongs to AlgYmi+ 1) and T = S V . Hence yo(A )=
T A T '=  (S V )A (S V ) - 1  for all A  in Alg22„(i+i)•

If t,, =0 and t
(Ja +1 0  )

-21+2 21+2 -  0, then let W= .  Define ( P 3  :  A lg Y 2 n ( i+ 1 )
\  0  J 2 4 - 2 1 - 1

- > A 1 g 2 .
5 1 ( i+ 1 )  b y  (P3(A)= WA W - ' fo r  a ll A  in Alg22n(l+1). Then go, is an

isomorphism, (p3 (p (A )=  (W T )A  (W T ) - 1  for all A  in A l  9'''' is theg._ 2n(i+1), t21+ 11

(1, 1)-component of W T and t2 n , 21-q is the (2i+2, 2i+ 2)-component of WT.
If t21+ 1  , 0 and t2, 2i+2 * 0 , then WT belongs to Alge29 2,,(i+i). In this case, we can
take S = T W . Since W 2 =/, S = W (W T )W  and so belongs to Alg (i+i ) and
T =S W . Hence 9 (A) -  TA T - 1  =  (SW )A (SW ) - 1  for all A  in AlgY27(I+1) •

We want to prove that t2i+11 0 if tn=0 and t2„ 21+2 0  if t21+2, 21+2
= 0.

First we want to prove that if tn  =0, then t n-2 i+ 1 , 1  •  - .

Suppose that tn = 0 .  Then t2k+L 1 •* 0  for some k(k =1, 2, ... , n - 1 ) .  If
-

•-

0 ( k 0 i ,  k=1, 2, ..., n - 1)
2k+L 1.

t2k+1,1 .2k. 2 2k+2. 20, then we can prove that t 0 or t
by comparing the (2k +1, 2)-component of go (A )T  with that of T A . If t
* 0  and -2t 2 • -(-)

y then  t 2,-L3+ 0
. 2k,2 

- by comparing the (2k - 1, 2)-component of
(p(A )T  with that of T A . If t 0 and t2k - L 3 + 0, then t2,, 44 0 0  by comparing
the (2k -1, 4)-component of ço (A )T  with that of T A . If we continue this
process, then we can prove that if t 0 and t n  then t

2 +1. k -  1 + /

0  and t 0 , then t,,,+ 3 3 +0 b y  comparing the (2k+3, 2) -
.-2k+2, 2 • 2k+- 4, 4 0

0 for- .-2k+1, 1 -2k, 2 • - ,

all / (/ =1, 2, ... , 2k)... 0).
If t2k+1* ..2k+2. 20

component of (p(A )T  with that of T A . If t 0 and t a + 3 ,  3 *  0, then t

0 by comparing the (2k+3, 4)-component of ço (A )T  with that of T A . So if
we continue this process, - then  we can prove that tif

t
.... ..2k+L i * 0  and t-2k+ 22. • . . ,y

then -2ki-/, / • 0 for all 1(1=1, 2, ... , 2n - 2k)... (ii). In the case (0 , if k<1, then
(.)

.  Define (pi : Alg..T2„@+0- >A1gY2,,(,+i) by Soi(A)= UAL!' for all A
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2k+10 0 and ta  2k0  O. Comparing the  (1, 2k +2)-com ponent of yo(A)T with
that of TA,

butt  2k+2 b 1 2  t 2  2 k + 2 2k+1a2k+1 2k+2± t1 , 2k+2 a2k+2. 2k+2 t l ,  2 k + 3 a 2 k + a  2 k + 2 .

Since b11=a2k+L 2 k + 1 , we have f 2k+2(a2k+L 2k+ 1 a 2 k + 2 .  2 k + 2 )  t t  2 k + 1  a 2 k + L  2 k + 2  which is
a contradiction.

If 1< k, then t21+ 2 k - 2 1-1  
0  0, t21+  2 k -2 1  0  0 and t 2k-21+1 0 .  B y  (7) hi+a 2k-21+1

= 0 . We want to prove that t-2j+L 2k-2H-1 — 0 for all j=  0, L 2 , .. . , n -1 .
Suppose that t25+12k-21+100 for some j ,  Comparing th e  (2 j+ 1 , 2k  — 20-

component of cp (A) T with that of TA,

b21+1, 2j t2j, 2k-21 ±  b21+1, 2.i+1 1-2.1-1 1. 2k-21 + b21+1, 2H-2 1.21+2 2k-21

= t2j+L  2k -21-1a2k -21-1, 2k-21+ t2j+1. 2k -2i a2k -2i, 2k-21 + t2 j+1, 2k -2 i+ la2k-v+ 1  2k -21•

Since t21+2  2k-21 0  0, t2j. 2k-2i 
— 0 and t2j+2  2k-21 — 0 1 ) .  Since t21+23. 2k -2i-1 

0  0, t2.f+1. 2k-21-1

—0. Since t.2j+L  2k -2i+ 1 0 Or b2j+L  2j+1 
—

a2k-21+ L  2k-21+ 1 . If i =j, then b25+1, 25+2= 0 . Hence
we have t.,2 J+ 1, 2k -2i (a2k  -2i+1, 2k -2i+1 a 2k - 2k-21) t25+1. 2k -2i+ a 2k - 2i+1. 2k-21 which is a con-
tradiction. Thus t25+ 1  2k -2 i+ 1  =  0 for all 1=0, 1, 2, ... , n - 1 .  It is a contradiction.

In the case ( i i ) ,  if k< i, then ta , 21-2k 0 and t 21-2k+1 + 0.
Comparing th e  (21+1, 21 - 2k + 2)-com ponent of yo(A )T with that of

TA,

b21+1, 21 t21, 21-2k+2 b21+1, 21+1 t2i+1, 21-2k+2 b21+1, 21+2 t2i+2. 21-2k+2

t21+1, 21-2k+1 a2i-2k+L 21-2k+2 t2i+L 21-2k+2a21-2k+2, 2 1-2k+2

t21+1, 21-2k+3a21-2k+3, 21-2k+2.

Since t2j 21-2k 0, t2i, 21-2k+2 =  0. Since t21+1, 2i-2k+1 0  0, t21+L 21-2k+3 —  0  and  b21+1 21+1 =

a 2 1 -2 k + 1 . 2 1 -2 k + 1 . Since b21+1, 21+2 = 0 ,  we have

t21+1, 21 -
2k+2(a21-2k+1. 21-2k+1 

—
a21-2k+2, 2i-2k+2) = t2i+1, 21-2k+ 1 a2i-2k+1. 21-2k+2.

It is a contradiction.
If 1< k, then t..2k+2i, 21 0  0, t2k+21+1, 21+1 0 0 and t..2k+2i+2. 21+2 

0  0.
Comparing th e  (2k + 2i+ 1, 21+ 2)-com ponent of go(A )T with that of

TA,

b2k+21+1, 2k+21t2k+21, 21+2 + b2k+21+1, 2k+21+1 t2k+21+1 21+2 4-
 b2k+21+1, 2k+21+2 t2k+21-4-2, 21+2

= t2k+2i+1, 21+1a21+1, 21+2 4
-
 t2k+2i+1, 2 1 + 2 a 2 1 + 2  21+2 ±t2k+21+1, 2 1 + 3 a 2 1 + 2  21+2.

Since t-2k+2i, 21+2 = 0, t2k+21+1, 21+3 
= 0  and a21+2 21+2 = b2k+21+2, 2k+21+2r

t2k+21+1, 21+2 (b2k+21+2, 2k+21+2 b2k+21+1 2k+211-1) b2k+21+1, 2k+2i+2 t2k+21+2 21+2.

It is a contradiction. Thus if t11 n -t2i+1. 1 
0

 0 .  •  •  (  *  0 ) •

Next we want to prove that if t21+2 21+2=O, then t2„,2,+20  O.
Suppose that t 2,-F2 =  O.
If t110 O, then t„+ 0 for all 1(1=1, 2 , . . .  ,  2 i+ 1 ) . So t2,-, 2, 2 = t21+1 4 = Or • • • r
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t21+2, 2i
=  0 and t2i+2. 21+2 —  0.• • ( * 1)•

If t21+ 0  for some j ( j =  2, ... , n —1), then t2 1+ + 0 or t..2i+a 21+21+1

+ 0 by comparing the (2i+ 3, 2i+2j) - component of cp(A)T with that of TA.
If 1.21+2 21+2j +0 a n d  

t21+a 21+21-1
0  0, then t2i+4, 2/+2/-2 + 0 by comparing the (2i+

3, 2i+2j-2)-component of go(A )T with that of T A . If t2 i+a 2 i+2;-10 0  and
t2i+4, 21+21-2

0  0, then t21+5, 2i+2j-3 0 0 by comparing the (2i+5, 21+21-2)-compo-
nent of cp(A)T with that of TA.

If we continue this process, then we can get the following ; If t21+2. 21+21 *

0 and t..2i+a 21+21-1
0  0, then t21+2+ 4 2/+2)-1

0  0 for all 1(1=1, 2, ..., 2j - 2 ). In partic-
ular t..21+21+L 21+1

0 0  and t21+21, 2i+2 O.
Comparing the (2i+2j+1, 2i+2) - component of go(A )T  with that of

TA,

b21+21+1. 21+21t21+21 21+2+ b2i+2j+1. 21+2j+1t21+2/+1, 21+2+ b2i+2j+L 21+2j+2t2i+21+2, 2 1+2

= t2i+2j+L 21+1a21+L 21+2 + t2i+21+L 21+2a21+2. 21+2+ t2i+2j+L 21+3a21+ 5 21+2.

Since t21+21, 2 1+ 2  0  0 , 
1.

21+21+2 21+2 = 0 and a21+2. 21+2 — b21+21. 21+21•

Since t21+21+1 21+1
0

 0, t21+25+1, 21+3 0. Since a21+ 1 21+2
=  0, we have t..2i+2j+L 21+2 021+21 21+21

— b2i+2j+L 21+21+0 — b2i+2.1+L 21+2.421+2/, 21+2 which is a contradiction.
If t21+2, 21+2.'10 0  and t21+5 21+21+1

0  0, then t21+4. 21+21+2 
0  0 by comparing the (2i+

3, 21+21+2)-component of ço (A )T  with that of T A . If t21+3, 21+2j+1
0  0  and

t21+4, 21+21+2 * 0, then t-..2i+5, 2i+2/+3 0 0 by comparing the (2i+5, 2i+2j+2)-compo-
nent of (p(A )T with that of T A . So if we continue this process, then we
have the following. If t21+  21+21 

0  0 and t•
,21+3. 21+21+1

0  0, then t2i+2+1, 214-21+1 
0  0 for all

1(1=1, 2 ,  . . . ,  2n —21—  21). In particular, t..5.-2i+2, 2n  0  0 and f.
,
2n-2j+1 2n-1

0  0.
Comparing the (2n — 2j+ 3, 2n)-component of yo(A )T with that of TA,

b2n-2j+a 2n-2j+2 t2n-2/4-2. 2n ± b2n -
21+3 2,,_21+3t2,,_21+3 2n b2n - 2j+3. 2n-2j+4 t2n-2j+4, 2n

=  t2,, -2 j+ a  2 -1a2n-L 2n ±  t2n -2 j+ 5 2n a2n, 2n•

Since t-2n -21+2. 2n 
0

 0, t2n-2/+4. 2n —  0 and a2,.. 2 — b2„-21+2, 2n-21+2. Since t2,,-2j-FL 2 n -1 *  0 2

t2n -2 j+ a 2 n - 1  —  0. S o  w e  have t.,2„-.2.;+a 2n (b2n-2/+2, 2n-2j+2 b2n-21+a 2n -
2 j+ 3 )  —

b2r1-21+ 5 2n-21+2 t2n-2)+2. 2n which is a contradiction. Thus t 21+21- 0 for all j ( j= 1 ,
2, ... n — i - 1)... ( * 2). Hence t2z+2. 2j

=  0 for all j ( j = L  2, ..., n - 1) by ( *
and (* 2 )  and hence t2,+ 2 +0.

If t21+Z 2n 
0  0, then t21+a 2n - 10 0  by comparing the (21+ 3, 2n)-component of

yo(A)T with that of TA.
If t5+2. 5,0 0 and t.

,
21+ a 2n-1 

0  0, then t214-4 2n-2
0  0 by comparing the (2i+3, 2n

— 2) - component of (p (A )T  with that of TA. So if we continue this process,
then we have the following. If t5+2.2 00, then t 2n -/  0  0 for all /(/=L 2,

2n - 2i - 2 ).  In  particular, f 21+2 0 .  •  •  (  *  3 • tll.— 0, then t5+1100 by
(*  0). Suppose th a t t..21+1, 1

0
0  and t21,2=0. Comparing the (2i+1, 2)

-component of go(A)T with that of TA,
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b21+L 2i ta, 2 +  b2i+1, 21+1 t2i+1, 2 +  b2i+1, 21+2 t2i+a 2 = t2i+1, 1a12+ t21+1 2a22 + t21+L  3a32.

Since t21-FL 10 0, t21+L 3 0  an d  b2i+1 21+1 — a11. Since hi, 2 0  an d  b21+L 2i+2 0 , we
have t21+1 2 ( a l l  

—
a22) = t2i+1  1a12 which is a contradiction.

If t21+1. 1 O0 and ta, 20 0 ,  then t21
-

L 3 0 by comparing the (2 i-1 , 2 ) -c o m p o -
n e n t  of yo (A) T with that of TA. If we continue this process, then we have
the follow ing. If t21+1.1 0  0  and t2, 2 0  0, then t i+i 00 for all 1(1 = 0 , t 2, ... ,
2 i). B y ( *  2) t21+2. 21+2i

— 0  for all 1(1=1, 2, ,  n — i - 1 ) .  So ta+z, 2j
=  0 for all

1, 2, , n - 1 )  and  hence t21+2200. B y  (  ), * 3, 21+2 O.
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