Absence of diffusion near the bottom of the spectrum for a random Schrödinger operator on $L^{2}\left(\boldsymbol{R}^{3}\right)$

By
Yuji Nomura

1. Introduction

Let $(\Omega, F, \boldsymbol{P})$ be a probability space whose precise definition will be given later. For each $\omega \in \Omega$, we consider Anderson type random Schrödinger operator on $\boldsymbol{L}^{2}\left(\boldsymbol{R}^{3}\right)$:

$$
\left\{\begin{array}{l}
H_{\omega}=-\Delta+V_{\omega}(x), \tag{1.1}\\
V_{\omega}(x)=\sum_{i \in Z^{\prime} q_{i}}(\omega) f(x-i)
\end{array}\right.
$$

where $\Delta=\sum_{j=1}^{3} \frac{\partial^{2}}{\partial x_{j}^{2}} . \quad\left\{q_{i}\right\}_{i \in Z^{3}}$ satisty
(H.1) $\quad\left\{q_{i}\right\}_{i \in Z^{3}}$ are real-valued independent identically distributed random variables on ($\Omega, F, \boldsymbol{P}$) with uniform distribution on $[0,1]$.
We suppose the following conditions:
(H.2) There exist two positive numbers η_{0} and η_{1} such that $\eta_{0} \leq f(x) \leq \eta_{1}$ for $x \in[0,1)^{3}$,
(H.3) $\quad x \notin[0,1)^{3} \Rightarrow f(x)=0$.
H_{ω} is considered to be the operator corresponding to the Hamiltonian of the electron in random metalic media. Let $\sigma\left(H_{\omega}\right)$ denote the spectrum of H_{ω}. Then the following is a known fact.

Proposition 1.1. (Kirsch and Martinelli).

$$
\sigma\left(H_{\omega}\right)=[0, \infty) \text { a.s. }
$$

For $E>0$, we shall mean by g_{E} an arbitrary real-valued function which satisfies the following condition:
(A) $\quad g_{E} \in C_{0}^{\infty}(\boldsymbol{R})$ and $\operatorname{supp} g_{E} \subset(0, E)$,
where $C_{0}^{\infty}(O)=\left\{f \in C^{\infty}(O) \mid\right.$ supp $\left.f \subset O\right\}$ for an open set $O \subset \boldsymbol{R}^{n}$.
In this paper we are interested in the following quantity:

$$
\begin{equation*}
r_{E}^{2}(t)=\boldsymbol{E}\left[\int_{\boldsymbol{R}^{3}}|x|^{2}\left|e^{-i t H \omega} g_{E}\left(H_{\omega}\right) \psi(x)\right|^{2} d x\right] \tag{1.2}
\end{equation*}
$$

for $\psi \in L_{2}^{2}\left(\boldsymbol{R}^{3}\right)=\left\{f \in L^{2}\left(\boldsymbol{R}^{3}\right) \mid\langle x\rangle^{2} f \in L^{2}\left(\boldsymbol{R}^{3}\right)\right\}$, where $\langle x\rangle=\sqrt{1+|x|^{2}}$ and \boldsymbol{E} denotes the integration in ω with respect to the measure $\boldsymbol{P} . g_{E}\left(H_{\omega}\right) \psi$ is a wave function of a electron which is well localized in the sence of $L_{2}^{2}\left(\boldsymbol{R}^{3}\right)$ and has energy near the bottom of the spectrum. $r_{E}^{2}(t)$ represents the mean square distance from the origin of the time-evolution of the electron whose initial wave function is $g_{E}\left(H_{\omega}\right) \psi$.
When $V \equiv 0$ or V is periodic, $r_{E}^{2}(t)$ behaves asymptotically as

$$
r_{E}^{2}(t) \sim C t^{2}(t \rightarrow \infty)
$$

But when V is random, we expect by physical consideration that $r_{E}^{2}(t)$ behaves asymptotically as

$$
r_{E}^{2}(t) \sim D t(t \rightarrow \infty) .
$$

D is called the diffusion constant. In [6] J.M.Combes and P.D.Hislop proved Anderson localization, that is to say, there exists $E^{*}>0$ such that in [0, E^{*}] the spectrum is pure point and the corresponding eigenfunctions decay exponentially. Hence when E is sufficiently small, we expect that $D=0$. But this does not follow from Anderson localization (see e.g.[7]).

Our main theorem is the following.
Theorem 1.1. We assume $(H .1),(H .2),(H .3)$ and (A), then there exists $E^{*}>0$ such that if $0<E<E^{*}$, then

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{1}^{T} \frac{r_{E}^{2}(t)}{t} d t=0
$$

By J. Fröhlich and T. Spencer [1], absence of diffusion was proved in the case of discrete random Schrödinger operators in multidimensions. In the continuous case F. Martinelli and H. Holden [5] studied random Schrödinger operator with potential

$$
V_{\omega}(x)=\sum_{i \in \boldsymbol{Z}^{i}} q_{i}(\omega) X_{C_{i}}(x),
$$

where

$$
C_{i}=\left\{x \in \boldsymbol{R}^{3} \left\lvert\,-\frac{1}{2}<x_{i} \leq \frac{1}{2}\right. ; i=1,2,3\right\}
$$

and $X_{C_{i}}(x)$ is the characteristic function of C_{i}.
Our proof relies heavily on [1] and [5].
Let $\Omega=\left\{\omega: \boldsymbol{Z}^{3} \rightarrow[0,1]\right\}$ and F be the σ-algebra generated by of all cylinder sets of Ω. For a cylinder set $I=\left\{\omega \mid \omega\left(i_{j}\right) \in \Delta_{j}, i_{j} \in \boldsymbol{Z}^{3}, \Delta_{j}:\right.$ Borel set of $\boldsymbol{R}, j=1,2, \cdots, n\}$, we define

$$
\begin{equation*}
\boldsymbol{P}(I)=\int_{\Delta_{1}} X_{[0,1 \mid}\left(\lambda_{1}\right) d \lambda_{1} \cdots \int_{\Delta n} X_{[0,1]}\left(\lambda_{n}\right) d \lambda_{n}, \tag{1.3}
\end{equation*}
$$

where $X_{[0,1]}(\lambda)$ is the characteristic function on interval [0, 1]. By E. Hopf's extension theorem, \boldsymbol{P} is extended to a probability measure on (Ω, F). If we define $q_{i}(\omega)=\omega(i)$, the random variables $\left\{q_{i}\right\}_{i \in Z 3}$ satisfy (H.1). We define the group of measure preserving ergodic transformations $T_{i}\left(i \in \boldsymbol{Z}^{3}\right)$ in Ω by

$$
T_{i} \omega(j)=\omega(j-i), \quad\left(j \in \boldsymbol{Z}^{3}\right)
$$

for $\omega \in \Omega$. Then we have

$$
H_{T_{i \omega}}=U_{i} H_{\omega} U_{i}^{*} \quad\left(i \in \boldsymbol{Z}^{3}\right)
$$

where U_{i} are the unitary operators in $L^{2}\left(\boldsymbol{R}^{3}\right)$ defined by

$$
\left(U_{i} f\right)(x)=f(x-i) \text { for } f \in L^{2}\left(\boldsymbol{R}^{3}\right), i \in \boldsymbol{R}^{3} .
$$

For technical reasons, we shall rather work in the following extended probability space:

$$
(\bar{\Omega}, \bar{F}, \overline{\boldsymbol{P}})=(\Omega, F, \boldsymbol{P}) \times\left(\boldsymbol{R}^{3} / \boldsymbol{Z}^{3}, \boldsymbol{B}\left(\boldsymbol{R}^{3} / \boldsymbol{Z}^{3}\right), \mu\right)
$$

where $\boldsymbol{B}\left(\boldsymbol{R}^{3} / \boldsymbol{Z}^{3}\right)$ is the topological Borel field and μ is the Lebesgue measure. $x \in \boldsymbol{R}^{3}$ can be written uniquely as follows:

$$
x=\underline{x}+\dot{x}, \underline{x} \in \boldsymbol{Z}^{3}, \dot{x} \in[0,1)^{3} .
$$

If we define the transformations $\bar{T}_{x}\left(x \in \boldsymbol{R}^{3}\right)$ on $\bar{\Omega}$ by

$$
\bar{T}_{x}(\omega, k)=\left(T_{\underline{x+k}} \omega,(x+k)^{\cdot}\right)
$$

for $(\omega, k) \in \bar{\Omega}$ and $x \in \boldsymbol{R}^{3}$, we have the following proposition in [2].
Proposition 1.2 (Kirsch) . (1) $\left\{\bar{T}_{x}\right\}_{x \in \boldsymbol{R}^{3}}$ is a group of measure preserving ergodic transformations on ($\bar{\Omega}, \bar{F}, \overline{\boldsymbol{P}})$,
(2) $H_{\bar{T}_{x}(\omega, k)}=U_{x} H_{(\omega, k)} U_{x}^{*}$ for $(\omega, k) \in \bar{\Omega}$ and $x \in \boldsymbol{R}^{3}$, where $U_{x} f(\cdot)=f(\cdot-x)$ and $H_{\omega, k}=-\Delta+V_{\omega}(x-k)$.

We denote by $G_{\omega}(z ; x, y)$ and $G_{(\omega, k)}(z ; x, y)$ the Green functions of $H_{\omega}-z$ and $H_{(\omega, k)}-z$, respectively. It immediately follows that

$$
\begin{equation*}
G_{(\omega, k)}(z ; x, y)=G_{\omega}(z ; x-k, y-k) \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
G_{\bar{T}_{t \omega, u t)}}(z ; x, y)=G_{(\omega, k)}(z ; x-t, y-t) \tag{1.5}
\end{equation*}
$$

The proof of Theorem 1.1 can be reduced to the following theorem as is shown in Section 2.

Theorem 1.2. There exists $E^{*}>0$ such that

$$
\lim _{\varepsilon \backslash 0} \varepsilon \int_{\boldsymbol{R}^{3}}(1+|x|) \overline{\boldsymbol{E}}\left[\left|G_{(\omega, k)}\left(E^{\prime}+i \varepsilon ; x, 0\right)\right|^{4}\right]^{\frac{1}{4}} d x=0
$$

uniformly in E^{\prime} on any compact set in $\left(0, E^{*}\right]$, where $\overline{\boldsymbol{E}}$ denotes the integration in (ω, k) with respect to $\overline{\boldsymbol{P}}$.

In the proof of Theorem 1.2, the following theorem is essential.
Theorem 1.3. For any $p>0$, there exist $E^{*}>0, N^{*} \in \boldsymbol{N}, c_{1}>0$ and $K_{p}>0$ such that if $0<E \leq E^{*}$ then

$$
\begin{aligned}
& \boldsymbol{P}\left(\left|G_{\omega}(E+i \varepsilon ; x, y)\right| \leq e^{m(E)\left(N L(E)^{3-|x-y|)} \max \left\{1, \frac{1}{|x-y|}\right\}, ~\right) ~}\right. \\
& \text { for any } \left.x \in \boldsymbol{R}^{3} \text { and any } y \in[0,1)^{3}\right) \leq 1-\frac{K_{p}}{N^{p}}
\end{aligned}
$$

for any $N^{*} \leq N \in \boldsymbol{N}$ uniformly in $\varepsilon \neq 0$. Here $m(E)=c_{1} E^{\frac{1}{2}}, L(E)=\left[\frac{1}{E^{\frac{1}{2}}}\right]$ where [] denotes the integer part.

Theorem 1.3 is proved in Section 6.

2. Proof of Theorem 1.1

It is not difficult to check that the following proposition implies Theorem 1.1 (see e.g. [5, p. 203]).

Proposition 2.1. There exists $E^{*}>0$ such that if $0<E \leq E^{*}$ then

$$
\lim _{T \rightarrow \infty} \frac{1}{T} \int_{\eta T}^{T} \frac{r_{E}^{2}(t)}{t} d t=0
$$

for any $\eta \in(0,1)$.
In this section we shall prove that this proposition, in turn, follows from Theorem 1.2.

Proof of Proposition 2.1 assuming Theorem 1.2. We denote by c constants independent of ω and ε, which may be different according to the situation. For $\varepsilon=\frac{1}{T}$, we have

$$
\begin{align*}
& \frac{1}{T} \int_{\eta T}^{T} \frac{r_{E}^{2}(t)}{t} d t=\frac{1}{T} \int_{\eta T}^{T} e^{\varepsilon t} e^{-\varepsilon t} \frac{r_{E}^{2}(t)}{t} d t \leq \frac{e}{\eta} \varepsilon^{2} \int_{0}^{\infty} e^{-\varepsilon t} r_{\bar{E}}^{2}(t) d t \tag{2.1}\\
& \quad=\frac{e}{2 \pi \eta} \varepsilon^{2} \int_{-\infty}^{\infty} \boldsymbol{E}\left[\int_{-\infty}^{\infty}|x|^{2}\left|R_{\omega}\left(E^{\prime}+\frac{\varepsilon}{2} i\right) g_{E}\left(H_{\omega}\right) \phi(x)\right|^{2} d x\right] d E^{\prime} .
\end{align*}
$$

The last equality of (2.1) will be proved in Appendix 1. Let E^{*} be as in Theorem 1.2. Let $0<E<E^{*}$ and $\Psi_{\omega}=g_{E}\left(H_{\omega}\right) \psi$. We divide the last member of (2.1) in the three parts as follows:

$$
\frac{e}{2 \pi \eta} \varepsilon^{2} \int_{E^{*}}^{\infty} \boldsymbol{E}\left[\int_{R^{3}}|x|^{2}\left|R_{\omega}\left(E^{\prime}+\frac{\varepsilon}{2} i\right) \Psi_{\omega}(x)\right|^{2} d x\right] d E^{\prime}
$$

$$
\begin{aligned}
& +\frac{e}{2 \pi \eta} \varepsilon^{2} \int_{\bar{E}}^{E^{*}} \boldsymbol{E}\left[\left.\int_{R^{3}}\left|x^{2}\right| R_{\omega}\left(E^{\prime}+\frac{\varepsilon}{2} i\right) \Psi_{\omega}(x)\right|^{2} d x\right] d E^{\prime} \\
& +\frac{e}{2 \pi \eta} \varepsilon^{2} \int_{-\infty}^{\bar{E}} \boldsymbol{E}\left[\int_{\boldsymbol{R}^{3}}|x|^{2}\left|R_{\omega}\left(E^{\prime}+\frac{\varepsilon}{2} i\right) \Psi_{\omega}(x)\right|^{2} d x\right] d E^{\prime} \\
& =\mathrm{I}+\text { II + III, }
\end{aligned}
$$

where \bar{E} is a positive number satisfying

$$
\operatorname{supp} g_{E} \subset(\bar{E}, E)
$$

To begin with, we shall estimate the terms I and III. If we set

$$
f_{\varepsilon, E^{\prime}}(x)=\frac{g_{E}(x)}{x-E^{\prime}-i \varepsilon} \in C_{0}^{\infty}(\boldsymbol{R}),
$$

we have

$$
R_{\omega}\left(E^{\prime}+i \varepsilon\right) \Psi_{\omega}(x)=f_{\varepsilon, E^{\prime}}\left(H_{\omega}\right) \psi(x)
$$

Then we get

$$
\begin{align*}
& \int_{R^{3}}|x|^{2}\left|R_{\omega}\left(E^{\prime}+i \varepsilon\right) \Psi_{\omega}(x)\right|^{2} d x=\left.\int_{R^{3}}|x|^{2}| |_{\varepsilon, E^{\prime}}\left(H_{\omega}\right) \psi(x)\right|^{2} d x \tag{2.2}\\
& \quad \leq\| \|_{\varepsilon, E^{\prime}}\left(H_{\omega}\right)\left\|_{L_{2}^{2}-L_{2}^{2}}^{2}\right\| \phi \|_{L_{2}^{2}}^{2}
\end{align*}
$$

where $L_{2}^{2}=L_{2}^{2}\left(\boldsymbol{R}^{3}\right)$. For Banach spaces X and Y, we denote by $\|\cdot\|_{X \rightarrow Y}$ the operator norm of the bounded operator from X to Y. By Lemma A.1, we have uniformly for $E^{\prime} \in(-\infty, \bar{E}] \cup\left[E^{*}, \infty\right)$

$$
\begin{equation*}
\left\|f_{\varepsilon, E^{\prime}}\left(H_{\omega}\right)\right\|_{L_{2}^{2}-L_{2}^{2}}^{2} \leq \frac{c}{1+E^{\prime 2}}, \tag{2.3}
\end{equation*}
$$

where constant c is independent of ω and ε. From (2.2) and (2.3) we obtain

$$
\boldsymbol{E}\left[\int_{\boldsymbol{R}^{3}}|x|^{2}\left|R_{\omega}\left(E^{\prime}+i \varepsilon\right) \Psi_{\omega}(x)\right|^{2} d x\right] \leq \frac{c}{1+E^{\prime 2}}
$$

for $E^{\prime} \in(-\infty, \bar{E}] \cup\left[E^{*}, \infty\right)$ uniformly in $\varepsilon>0$. Then there exists a positive c such that

$$
\int_{E^{*}}^{\infty} \boldsymbol{E}\left[\int_{\boldsymbol{R}^{3}}|x|^{2}\left|R_{\omega}\left(E^{\prime}+i \varepsilon\right) \Psi_{\omega}(x)\right|^{2} d x\right] d E^{\prime} \leq_{c}
$$

and

$$
\int_{-\infty}^{\bar{E}} \boldsymbol{E}\left[\int_{\boldsymbol{R}^{2}}|x|^{2}\left|R_{\omega}\left(E^{\prime}+i \varepsilon\right) \Psi_{\omega}(x)\right|^{2} d x\right] d E^{\prime} \leq c
$$

uniformly in $\varepsilon>0$. For this reason, I and III tend to 0 as $\varepsilon \rightarrow 0$.
Next we shall estimate II. For $k \in[0,1)^{3}$, we have

$$
\begin{equation*}
R_{\omega}\left(E^{\prime}+i \varepsilon\right) \Psi_{\omega}(\cdot-k)=U_{k} R_{\omega}\left(E^{\prime}+i \varepsilon\right) \Psi_{\omega} \tag{2.4}
\end{equation*}
$$

$$
\begin{aligned}
& =U_{k} R_{\omega}\left(E^{\prime}+i \varepsilon\right) U_{k}^{*} U_{k} g_{E}\left(H_{\omega}\right) U_{k}^{*} U_{k} \psi \\
& =R_{(\omega, k)}\left(E^{\prime}+i \varepsilon\right) g_{E}\left(H_{(\omega, k)}\right) U_{k} \psi,
\end{aligned}
$$

where $R_{(\omega, k)}\left(E^{\prime}+i \varepsilon\right)=:\left(H_{(\omega, k)}-\left(E^{\prime}+i \varepsilon\right)\right)^{-1}$ by Proposition 1.2, (2) and $H_{(\omega, 0)}=$ H_{ω}. Therefore if we put $\psi_{(\omega, k)}=U_{k} \psi$ and

$$
\Psi_{(\omega, k)}=g_{E}\left(H_{(\omega, k)}\right) \psi_{(\omega, k)}
$$

then we obtain

$$
\begin{aligned}
& \left.\int_{R^{3}}\left|x^{2}\right| R_{\omega}\left(E^{\prime}+i \varepsilon\right) \Psi_{\omega}(x)\right|^{2} d x \\
& \quad=\int_{R^{3}}|x-k|^{2}\left|R_{(\omega, k)}\left(E^{\prime}+i \varepsilon\right) g_{E}\left(H_{(\omega, k)}\right) \psi_{(\omega, k)}(x)\right|^{2} d x \\
& \quad=\int_{\boldsymbol{R}^{3}}|x-k|^{2}\left|R_{(\omega, k)}\left(E^{\prime}+i \varepsilon\right) \Psi_{(\omega, k)}(x)\right|^{2} d x .
\end{aligned}
$$

Integrating with respect to $\overline{\boldsymbol{P}}$, we get

$$
\begin{align*}
& \boldsymbol{E}\left[\int_{\boldsymbol{R}^{3}}|x|^{2}\left|R_{\omega}\left(E^{\prime}+i \varepsilon\right) \Psi_{\omega}(x)\right|^{2} d x\right] \tag{2.5}\\
& \quad=\overline{\boldsymbol{E}}\left[\int_{\boldsymbol{R}^{3}}|x|^{2}\left|R_{\omega}\left(E^{\prime}+i \varepsilon\right) \Psi_{\omega}(x)\right|^{2} d x\right] \\
& \quad=\overline{\boldsymbol{E}}\left[\int_{\boldsymbol{R}^{3}}|x-k|^{2}\left|R_{(\omega, k)}\left(E^{\prime}+i \varepsilon\right) \Psi_{(\omega, k)}(x)\right|^{2} d x\right]
\end{align*}
$$

Since $k \in[0,1)^{3}$, the last member of (2.5) is bounded by

$$
\begin{align*}
\overline{\boldsymbol{E}} & {\left[\int_{\boldsymbol{R}^{s}} c\left(1+|x|^{2}\right)\left|\int_{\boldsymbol{R}^{3}} G_{(\omega, k)}\left(E^{\prime}+i \varepsilon ; x, y\right) \Psi_{(\omega, k)}(y) d y\right|^{2} d x\right] } \tag{2.6}\\
& \leq \overline{\boldsymbol{E}}\left[\int_{\boldsymbol{R}^{s}} c\left(1+|x|^{2}\right) \prod_{j=1,2} \int_{\boldsymbol{R}^{3}}\left|G_{(\omega, k)}\left(E^{\prime}+i \varepsilon ; x, y_{j}\right) \| \Psi_{(\omega, k)}\left(y_{j}\right)\right| d y_{j} d x\right] \\
& \leq \int_{\boldsymbol{R}^{3}} c\left(1+|x|^{2}\right)\left(\int_{\boldsymbol{R}^{3}} \overline{\boldsymbol{E}}\left[\left|G_{(\omega, k)}\left(E^{\prime}+i \varepsilon ; x, y\right)\right|^{4}\right]^{\frac{1}{4}} \overline{\boldsymbol{E}}\left[\left|\Psi_{(\omega, k)}(y)\right|^{4}\right]^{\frac{1}{4}} d y\right)^{2} d x .
\end{align*}
$$

The last inequality is obtained by Fubini's theorem and by twice using the Schwarz inequality. Since \bar{T}_{y} has the measure preserving property by Proposition 1.2, we obtain

$$
\begin{gathered}
\overline{\boldsymbol{E}}\left[\left|G_{(\omega, k)}\left(E^{\prime}+i \varepsilon ; x, y\right)\right|^{4}\right]=\overline{\boldsymbol{E}}\left[\left|G_{\tilde{T}_{y}(\omega, k)}\left(E^{\prime}+i \varepsilon ; x-y, 0\right)\right|^{4}\right] \\
=\overline{\boldsymbol{E}}\left[\left|G_{(\omega, k)}\left(E^{\prime}+i \varepsilon ; x-y, 0\right)\right|^{4}\right]
\end{gathered}
$$

Therefore the last member of (2.6) equals

$$
\begin{equation*}
\int_{\boldsymbol{R}^{3}}\left(1+|x|^{2}\right)\left(\int_{\boldsymbol{R}^{3}} \overline{\boldsymbol{E}}\left[\left|G_{(\omega, k)}\left(E^{\prime}+i \varepsilon ; x-y, 0\right)\right|^{4}\right]^{\frac{1}{4}} \overline{\boldsymbol{E}}\left[\left|\Psi_{(\omega, k)}(y)\right|^{4}\right]^{\frac{1}{4}} d y\right)^{2} d x \tag{2.7}
\end{equation*}
$$

Let

$$
\begin{equation*}
K(x)=\overline{\boldsymbol{E}}\left[\left|G_{(\omega, k)}\left(E^{\prime}+i \varepsilon ; x, 0\right)\right|^{4}\right] \frac{1}{4} . \tag{2.8}
\end{equation*}
$$

By taking $|x|^{2}$ into the integration with respect to y and using the inequality $|x| \leq|x-y|+|y|$, (2.7) is bounded by

$$
\begin{align*}
& \int_{\boldsymbol{R}^{3}}\left(K * \overline{\boldsymbol{E}}\left[\left|\Psi_{(\omega, k)}\right|^{4}\right]^{\frac{1}{4}}\right)^{2} d x+2 \int_{\boldsymbol{R}^{3}}\left((|x| K) * \overline{\boldsymbol{E}}\left[\left|\Psi_{(\omega, k)}\right|^{4}\right]^{\frac{1}{4}}\right)^{2} d x \tag{2.9}\\
& \quad+2 \int_{\boldsymbol{R}^{3}}\left(K *\left(|y| \overline{\boldsymbol{E}}\left[\left|\Psi_{(\omega, k)}\right|^{4}\right]^{\frac{1}{4}}\right)\right)^{2} d x \\
& \quad \leq\left(\int_{\boldsymbol{R}^{3}} K(x) d x\right)^{2} \int_{\boldsymbol{R}^{3}} \overline{\boldsymbol{E}}\left[\left|\Psi_{(\omega, k)}(y)\right|^{4}\right]^{\frac{1}{2}} d y \\
& \quad+2\left(\int_{\boldsymbol{R}^{3}}|x| K(x) d x\right)^{2} \int_{\boldsymbol{R}^{3}} \overline{\boldsymbol{E}}\left[\left|\Psi_{(\omega, k)}(y)\right|^{4}\right]^{\frac{1}{2}} d y \\
& \left.\quad+2\left(\int_{\boldsymbol{R}^{3}} K(x) d x\right)^{2} \int_{\boldsymbol{R}^{3}} \overline{\boldsymbol{E}}\left[\left|y \Psi_{(\omega, k)}(y)\right|^{4}\right]\right]^{\frac{1}{2}} d y .
\end{align*}
$$

We shall show

$$
\begin{equation*}
\int_{R^{3}} \overline{\boldsymbol{E}}\left[\left|y \Psi_{(\omega, k)}(y)\right|^{4}\right]^{\frac{1}{2}} d y<\infty . \tag{2.10}
\end{equation*}
$$

From Lemma A. 2 we have

$$
\left|\langle y\rangle^{2} \Psi_{(\omega, k)}(y)\right|=\left|\langle y\rangle^{2} g_{E}\left(H_{(\omega, k)}\right) U_{k} \psi(y)\right| \leq\left\|U_{k} \psi\right\|_{L_{2}^{2}} \leq c
$$

uniformly in $(\omega, k) \in \bar{\Omega}$. Therefore we get

$$
\begin{equation*}
\left|\Psi_{(\omega, k)}(y)\right| \leq \frac{c}{1+y^{2}} \tag{2.11}
\end{equation*}
$$

uniformly in $(\omega, k) \in \bar{\Omega}$. We have

$$
\begin{aligned}
& \int_{\boldsymbol{R}^{\mathbf{B}}} \overline{\boldsymbol{E}}\left[\left|y \Psi_{(\omega, k)}(y)\right|^{4}\right]^{\frac{1}{2}} d y \\
& \quad \leq\left(\int_{\boldsymbol{R}^{3}}\left(\frac{1}{1+y^{2}}\right)^{2} d y\right)^{\frac{1}{2}}\left(\overline{\boldsymbol{E}}\left[\int_{\boldsymbol{R}^{3}}\left(1+y^{2}\right)^{2}|y|^{4}\left|\Psi_{(\omega, k)}(y)\right|^{4} d y\right]\right)^{\frac{1}{2}}
\end{aligned}
$$

and from (2.11) we get

$$
\begin{aligned}
& \int_{R^{3}}\left(1+y^{2}\right)^{2}|y|^{4}\left|\Psi_{(\omega, k)}(y)\right|^{4} d y \\
& \quad \leq \int_{R^{3}}\left(1+y^{2}\right)^{2}\left|\Psi_{(\omega, k)}(y)\right|^{2}|y|^{4} \frac{c}{\left(1+|y|^{2}\right)^{2}} d y \\
& \quad \leq c\left\|\Psi_{(\omega, k)}\right\|_{L_{2}^{2}}^{2} \leq\left\|g_{E}\left(H_{(\omega, k)}\right)\right\|_{L_{2}^{2}-L_{2}^{2}}^{2}\left\|U_{k} \psi\right\|_{L_{2}^{2}}^{2} \leq c
\end{aligned}
$$

uniformly in $(\omega, k) \in \bar{\Omega}$. The last inequality is obtained from Lemma A.1. Thus we have (2.10). In a similar fashion we can check

$$
\begin{equation*}
\int_{\boldsymbol{R}^{2}} \overline{\boldsymbol{E}}\left[\left|\Psi_{(\omega, k)}(y)\right|^{4}\right]^{\frac{1}{2}} d y<\infty . \tag{2.12}
\end{equation*}
$$

By (2.5) - (2.10) and (2.12), to show that II tends to 0 as $\varepsilon \rightarrow 0$, we have only to prove

$$
\varepsilon \int_{R^{s}}(1+|x|) K(x) d x \rightarrow 0 \text { as } \varepsilon \downarrow 0
$$

uniformly in $E^{\prime} \in\left[\bar{E}, E^{*}\right]$. In view of (2.8), this is nothing but the assertion of Theorem 1.2. Thus the proof of Proposition 2.1 is completed.

3. Proof of Theorem 1.2

In this section we shall give a proof of Theorem 1.2 by using Theorem 1.3 and Lemma A. 4.

Proof of Theorem 1.2. To begin with we shall devide \boldsymbol{R}^{3} as follows. Let

$$
\begin{equation*}
A_{0}=\left\{x \in \boldsymbol{R}^{3}| | x \mid<1\right\}, A_{1}=\left\{x \in \boldsymbol{R}^{3}|1 \leq|x|<R\}\right. \tag{3.1}
\end{equation*}
$$

and

$$
\begin{equation*}
A_{j}=\left\{x \in \boldsymbol{R}^{3}\left|2^{j-2} R \leq|x|<2^{j-1} R\right\}\right. \tag{3.2}
\end{equation*}
$$

for $\boldsymbol{N} \ni j \geq 2$. For $E \geq \varepsilon>0$ we define

$$
\begin{align*}
& V_{N, E}^{\ell}=\left\{\omega| | G_{\omega}(E+i \varepsilon ; x, y) \left\lvert\, \leq e^{m(E)\left(N L(E)^{3}-|x-y|\right)} \max \left\{1, \frac{1}{|x-y|}\right\}\right.\right. \tag{3.3}\\
& \text { for any } \left.x \in \boldsymbol{R}^{3} \text { and any } y \in[0,1)^{3}\right\} .
\end{align*}
$$

For $x \in A_{0}$, from Lemma A. 4 we have

$$
\begin{align*}
& \left(\int_{[0,113} \boldsymbol{E}\left[\left|G_{\omega}(E+i \varepsilon ; x+k, k)\right|^{4}\right] d k\right)^{\frac{1}{4}} \tag{3.4}\\
& \quad \leq \frac{e^{m(E)\left(N_{0} L(E) 3-|x|\right)}}{|x|} \boldsymbol{P}\left(V_{N 0, E}^{\varepsilon}\right)^{\frac{1}{4}}+\left(\frac{1}{|x|^{2}}+\frac{c}{\varepsilon}\right) \boldsymbol{P}\left(V_{N 0, E}^{\varepsilon}\right)^{\frac{1}{4}}
\end{align*}
$$

and for $x \in A_{j}(j \geq 1)$, we have

$$
\begin{align*}
& \left(\int_{[0,1]^{3}} \boldsymbol{E}\left[\left|G_{\omega}(E+i \varepsilon ; x+k, k)\right|^{4}\right] d k\right)^{\frac{1}{4}} \tag{3.5}\\
& \quad \leq e^{m(E)(N, L L E)^{3}-|x|} \boldsymbol{P}\left(V_{N,, E}^{\varepsilon}\right)^{\frac{1}{4}}+\left(\frac{1}{|x|}+\frac{c}{\varepsilon}\right) \boldsymbol{P}\left(V_{N,, E}^{\varepsilon c}\right)^{\frac{1}{4}},
\end{align*}
$$

where N_{j} will be specified later and $V_{N, E}^{\varepsilon \in}=\Omega \backslash V_{N, E}^{\ell}$. Since we have by (1.4) and the definition of $\overline{\boldsymbol{E}}$

$$
\begin{equation*}
\overline{\boldsymbol{E}}\left[\left|G_{(\omega, k)}(E+i \varepsilon ; x, 0)\right|^{4}\right]^{\frac{1}{4}}=\left(\int_{[0,1]^{3}} \boldsymbol{E}\left[\left|G_{\omega}(E+i \varepsilon ; x+k, k)\right|^{4}\right] d k\right)^{\frac{1}{4}}, \tag{3.6}
\end{equation*}
$$

we have by (3.4) and (3.5)

$$
\begin{align*}
& \varepsilon \int_{\boldsymbol{R}^{s}}(1+|x|) \overline{\boldsymbol{E}}\left[\left|G_{(\omega, k)}(E+i \varepsilon ; x, 0)\right|^{4}\right]^{\frac{1}{4}} d x \tag{3.7}\\
& \quad \leq \varepsilon \int_{A_{0}}(1+|x|) \frac{e^{\left.m(E)\left(N_{0} L(E)\right)^{3}-|x|\right)}}{|x|} d x \boldsymbol{P}\left(V_{N_{0}, E}^{\varepsilon}\right)^{\frac{1}{4}}
\end{align*}
$$

$$
\begin{aligned}
& +\varepsilon \sum_{j=1}^{\infty} \int_{A j}(1+|x|) e^{m(E)\left(N ; L(E)^{3}-|x|\right)} d x \boldsymbol{P}\left(V_{N, E}^{\varepsilon}\right)^{\frac{1}{4}} \\
& +\varepsilon \sum_{j=0}^{\infty} \int_{A j}(1+|x|)\left(\frac{1}{|x|}+\frac{c}{\varepsilon}\right) d x \boldsymbol{P}\left(V_{N, E}^{\varepsilon c}\right)^{\frac{1}{4}} .
\end{aligned}
$$

By the definitions of A_{j}, we have

$$
\begin{equation*}
\varepsilon \int_{A_{0}}(1+|x|) \frac{e^{m(E)\left(N_{0} L(E)^{3}-|x|\right)}}{|x|} d x \boldsymbol{P}\left(V_{N_{0}, E}^{\varepsilon}\right)^{\frac{1}{4}} \leq \varepsilon c e^{m(E) N_{0} L(E)^{3}} \tag{3.8}
\end{equation*}
$$

and

$$
\begin{align*}
& \int_{A j}(1+|x|) e^{m(E)\left(N, L(E)^{3}-|x|\right)} d x \tag{3.9}\\
& \quad \leq e^{m(E) N j L(E)^{3}}\left(1+2^{j-1} R\right)_{c}\left(2^{j-1} R\right)^{3} \times \begin{cases}e^{-m(E) 2^{j-2} R} & (j \geq 2) \\
e^{-m(E)} & (j=1)\end{cases} \\
& \quad \leq_{c}\left(R 2^{j-1}\right)^{4} \times \begin{cases}e^{m(E)\left(N j L(E)^{3}-R 2^{j-2)}\right.} & (j \geq 2) \\
e^{\left.m(E)\left(N_{1} L(E)\right)^{3}-1\right)} & (j=1) .\end{cases}
\end{align*}
$$

Since, from Theorem 1.3

$$
\boldsymbol{P}\left(V_{N, E}^{\varepsilon c}\right) \leq \frac{K_{p}}{N_{j}^{p}},
$$

we have

$$
\begin{align*}
& \int_{A j}(1+|x|)\left(\frac{1}{|x|}+\frac{c}{\varepsilon}\right) d x \boldsymbol{P}\left(V_{N, E}^{\varepsilon c}\right)_{4}^{1} \tag{3.10}\\
& \qquad \leq\left\{c\left|A_{j}\right|+c\left|A_{j}\right| 2^{j-1} R \frac{1}{\varepsilon}\right\} \frac{K_{p}^{\frac{1}{4}}}{N_{j}^{4}} \leq c\left(R 2^{j-1}\right)^{4} \frac{1}{\varepsilon} \frac{K_{p}^{\frac{1}{4}}}{N_{j}^{4}} \text { for } j \geq 1
\end{align*}
$$

and

$$
\begin{equation*}
\int_{A_{0}}(1+|x|)\left(\frac{1}{|x|}+\frac{c}{\varepsilon}\right) d x \boldsymbol{P}\left(V_{N 0, E}^{\varepsilon c}\right)^{\frac{1}{4}} \leq \frac{c}{\varepsilon} \frac{K_{p}^{\frac{1}{4}}}{N_{0}^{\frac{p}{4}}} . \tag{3.11}
\end{equation*}
$$

By (3.7)-(3.11), it follows that

$$
\begin{align*}
& \varepsilon \int_{\boldsymbol{R}^{3}}(1+|x|) \overline{\boldsymbol{E}}\left[\left|G_{(\omega, k)}(E+i \varepsilon ; x, 0)\right|^{4}\right]^{\frac{1}{4}} d x \tag{3.12}\\
& \quad \leq \varepsilon c e^{m(E) N_{0} L(E)^{3}}+\varepsilon c R^{4} e^{m(E) N_{0} L(E)^{3}-1}+\varepsilon c \sum_{j=2}^{\infty}\left(R 2^{j-1}\right)^{4} e^{m(E)\left(N, L(E)^{3-R 2^{j-2)}}\right.} \\
& \quad+c \frac{K_{p}^{\frac{1}{4}}}{N_{0}^{4}}+c \sum_{j=1}^{\infty}\left(R 2^{j-1}\right)^{4} \frac{K_{p}^{\frac{1}{4}}}{N_{j}^{4}} \\
& \quad=\mathrm{I}+\mathrm{II}+\mathrm{III}+\mathrm{IV}+\mathrm{V} .
\end{align*}
$$

For $j \geq 0$ if we put

$$
\begin{equation*}
N_{j}=\left[\frac{R 2^{j-2}}{2 L(E)^{3}}\right] \tag{3.13}
\end{equation*}
$$

then we have

$$
\begin{equation*}
N_{j} L(E)^{3}-R 2^{j-2} \leq-\frac{1}{4} R 2^{j-1} \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left(R 2^{j-1}\right)^{4} N_{j}^{-\frac{p}{4}} \leq\left(R 2^{j-1}\right)^{4}\left(\frac{R 2^{j-2}}{4 L(E)^{3}}\right)^{-\frac{p}{4}}=\left(R 2^{j-1}\right)^{4-\frac{p}{4}}\left(8 L(E)^{3}\right)^{\frac{p}{4}} \tag{3.15}
\end{equation*}
$$

If we take $p=17$, then it follows from (3.15) that

$$
\begin{equation*}
V \leq c K_{p}^{\frac{1}{4}}\left(8 L(E)^{3}\right)^{\frac{p}{4}} R^{-\frac{1}{4}} \sum_{j=1}^{\infty}\left(2^{-\frac{1}{4}}\right)^{j-1} \tag{3.16}
\end{equation*}
$$

For any $\varepsilon^{\prime}>0$ if we take R sufficiently large, by (3.13) and (3.16) we have

$$
\mathrm{IV}<\frac{\varepsilon^{\prime}}{5} \text { and } \mathrm{V}<\frac{\varepsilon^{\prime}}{5}
$$

independent of ε. Then if we take ε sufficiently small, it follows that

$$
\mathrm{I}<\frac{\varepsilon^{\prime}}{5}, \text { II }<\frac{\varepsilon^{\prime}}{5} \text { and } \mathrm{II}<\frac{\varepsilon^{\prime}}{5} .
$$

Therefore if ε is small enough, then we have

$$
\varepsilon \int_{\boldsymbol{R}^{3}}(1+|x|) \overline{\boldsymbol{E}}\left[\left|G_{(\omega, k)}(E+i \varepsilon ; x, 0)\right|^{4}\right]^{\frac{1}{4}} d x<\varepsilon^{\prime}
$$

This estimate holds uniformly in $E \in\left[\bar{E}, E^{*}\right]$ because there exist two positive numbers c, c^{\prime} such that for any $E \in\left[\bar{E}, E^{*}\right]$

$$
0<c<m(E)<c^{\prime} \text { and } 0<c<L(E)<c^{\prime}
$$

We have thus proved Theorem 1.2.

4. Singular sets

In this section we give the notion of singular sets and a theorem concerning them which will be used essentially in the proof of Theorem 1.3 in Section 6. We denote by E a small but arbitrarily fixed positive number in the sequel. We define the basic length scale:

$$
L(E)=\left[\frac{1}{\sqrt{E}}\right]
$$

where [] denotes the integer part. We choose E sufficiently small so that $L(E) \geq 1$ in the sequel. Let $\boldsymbol{Z}^{3}(E)=L(E) \boldsymbol{Z}^{3}$ and for $j \in \boldsymbol{Z}^{3}(E), Q_{E}(j)=Q_{E}(0)+$ j where

$$
Q_{E}(0)=\left\{x \in \boldsymbol{R}^{3} \mid 0 \leq x_{i}<L(E), j=1,2,3\right\} .
$$

And we define the norm:

$$
|j|_{E}=\max _{i=1,2,3} \frac{\left|j_{i}\right|}{L(E)}
$$

for $j \in \boldsymbol{Z}^{3}(E)$.
We fix $\alpha>0$ and β satisfying

$$
1<\alpha^{2}<\beta
$$

and

$$
\sqrt{2}<\beta<2
$$

in the sequel.
Definition. A site $j \in \boldsymbol{Z}^{3}(E)$ is said to be singular if and only if

$$
\lambda_{1}\left(H_{Q E(j)}^{N}(\omega)\right) \leq 2 E .
$$

Here $H_{Q_{E}(j)}^{N}(\omega)$ is $\left.H_{\omega}\right|_{L^{2}\left(Q_{E}(j)\right)}$ with Neumann boundary conditions and $\lambda_{1}\left(H_{Q_{E}(j)}^{N}(\omega)\right)$ denotes the lowest eigenvalue of $H_{Q_{E}(j)}^{N}(\omega)$. We define a sequence of the singular sets inductively.
$S_{0}=\left\{j \in \boldsymbol{Z}^{3}(E) \mid\right.$ singular $\}$
$S_{i+1}=S_{i} \backslash S_{i}^{g}$
$S^{g}{ }_{i}=\cup_{\chi} D_{i}^{\kappa}$: maximal union of components D_{i}^{κ} satisfying the following condition A (i)
Condition A (i):
(a) $D_{i}^{\kappa} \subset S_{i}$
(b) $\operatorname{diam}_{E} D_{i}^{\kappa} \leq d_{i}$
(c) $\operatorname{dist}_{E}\left(D_{i}^{\alpha}, S_{i} \backslash D_{i}^{\alpha}\right) \geq 2 d_{i+1}$
(d) $\operatorname{dist}\left(\sigma\left(H_{Q E\left(W\left(D \chi_{,}, 4 d_{i}\right)\right)}^{D}\right), E\right) \geq \exp \left(-d_{i}^{\frac{1}{2}}\right)$
where

$$
d_{0}=d_{0}(E)=L(E), d_{i}=d_{0}^{\alpha i}
$$

and

$$
\begin{gathered}
W(D, r)=\left\{j \ni \boldsymbol{Z}^{3}(E) \mid \operatorname{dist}_{E}(j, D) \leq r\right\}, \\
Q_{E}(D)=\bigcup_{j \in D} Q_{E}(j)
\end{gathered}
$$

for any $D \subset \boldsymbol{Z}^{3}(E)$. We denote by diam_{E} and dist_{E} the diameter and the distance measured by the norm $|\cdot|_{E .} H_{Q_{E}\left(W\left(D_{1}^{x_{1}} d_{i}\right)\right)}$ is $\left.H_{\omega}\right|_{L^{2}\left(Q_{E}\left(W\left(D_{1}^{2}, 4 d_{i}\right)\right)\right.}$ with Dirichlet boundary conditions.

The main theorem of this section is the following.
Theorem 4.1. For any $p>0$ there exists $E^{\prime}>0$ such that if $0<E<E^{\prime}$ then

$$
\boldsymbol{P}\left(i \in S_{j}^{g}\right) \leq d_{j}^{-p}
$$

for any $i \in \boldsymbol{Z}^{3}(E)$ and any $j \geq 0$.
For proving this theorem we shall prepare some notations and some lemmas. We define the set of n-cubes $(n \geq 1)$:

$$
\mathscr{C}_{n}=\left\{C_{n} \mid C_{n}=\left\{y \in \boldsymbol{R}^{3}\left|\max _{i=1,2,3}\right| x_{i}-y_{i} \mid \leq 2^{n-1} L(E)\right\} \text { for some } x \in 2^{n-1} \boldsymbol{Z}^{3}(E)\right\}
$$

and the set of 0 -cubes:

$$
\mathscr{C}_{0}=\boldsymbol{Z}^{3}(E)
$$

Let $D \subset \boldsymbol{Z}^{3}(E)$ be finite set. We denote by $n_{0}(D)$ the smallest n_{0} such that there exists an n_{0}-cube $C_{n_{0}}$ including D and fix one $n_{0}(D)$-cube $C_{n_{0}(D)}$ including D. We define $\mathscr{C}_{n_{0}(D)}(D)=\left\{C_{n_{0}(D)}\right\}$ and for $n \leq n_{0}(D)$ let

$$
V_{n}(D)=\min \left\{\# \mathscr{C}_{n} \mid \mathscr{C}_{n} \text { is a family of } n \text {-cubes which cover } D\right\}
$$

and $\mathscr{C}_{n}(D)$ be a family of n-cubes which attains this minimum. We shall fix one sequence of covers of $D:\left\{\mathscr{C}_{n}(D)\right\}_{n=1,2, \cdots, n_{0}(D)}$. We define

$$
\mathscr{C}_{n}^{\prime}(D)=\left\{C_{n} \in \mathscr{C}_{n}(D) \mid \operatorname{dist}_{E}\left(C_{n}, C_{n}^{\prime}\right) \geq 2 d_{0}^{\beta} 2^{\beta n} \text { for any } C_{n}^{\prime} \in \mathscr{C}_{n}(D), C_{n}^{\prime} \neq C_{n}\right\}
$$

for $n_{0}(D)>_{n}>0$ and $\mathscr{C}_{n}^{\prime}(D)=\emptyset$ for $n \geq n_{0}(D)$. We define

$$
V(D)=\sum_{n=1}^{n_{0}(D)} \# \mathscr{C}_{n}(D), V^{\prime}(D)=\sum_{n=1}^{\infty} \# \mathscr{C}_{n}^{\prime}(D), \text { and } \mathscr{C}_{0}(D)=\mathscr{C}_{0}^{\prime}(D)=D
$$

We denote by $X_{D}(\omega)$ the characteristic function of the set:
(4.1) $\Omega_{D}=\left\{\omega \in \Omega \mid\right.$ there exists k such that D is a component of $\left.S_{k}^{g}\right\}$.

Lemma 4.1. Let D be a finite set of $\boldsymbol{Z}^{3}(E)$. For $n \geq 1$ let $j(n)$ be the smallest integer such that $d_{j(n)} \geq d_{0} 2^{n}$. For $C \in \mathscr{C}_{n}(D)$ we denote by $X_{n, c}(n>0)$ the characteristic function of the set:

$$
\left\{\omega \in \Omega \left\lvert\, \operatorname{dist}\left(\sigma\left(H_{Q E(W(C \cap D, 4 d j(n))}^{D}\right), E\right) \leq \exp \left(-d_{j(n)}^{\frac{1}{2}}\right)\right.\right\}
$$

and for $n=0$ let $X_{0, c}$ be the characteristic function of the set $\left\{\omega \in \Omega \mid C \in S_{0}\right\}$. Then

$$
\boldsymbol{E}\left(X_{D}\right) \leq \boldsymbol{E}\left(\prod_{n=0}^{\infty} \prod_{c \in \mathscr{Y}_{n}^{\prime}(D)} X_{n, c}\right)
$$

Here if $\mathscr{C}_{n}^{\prime}(D)=\emptyset$, then we set $\prod_{c \in \mathscr{Y}_{n}(D)} X_{n, C}=1$.
Proof. For $\omega \in \Omega_{D}$ it is sufficient to prove that

$$
\operatorname{dist}\left(\sigma\left(H_{Q E(W(C \cap D,\{d j(n))}^{D}\right), E\right) \leq \exp \left(-d^{\frac{1}{2}}\right)
$$

for any $C \in \mathscr{C}_{n}^{\prime}(D)(n>0)$ and that $C \in S_{0}(\omega)$ for any $C \in D(n=0)$.
Let $\omega \in \Omega_{D}$ and D be a component of S_{k}^{ξ}. First we consider the case $n=0$; $C \in D$ is contained in S_{0} because D is a component of $S_{k}^{\ell} \subset S_{0}$. Next we consider the case $n>0$. We show that if $C \in \mathscr{C}_{n}^{\prime}(D)$, then $C \cap D$ satisfies Condition $A(j$ (n)) (a), (b) and (c). Noting the definition of $\mathscr{C}_{n}^{\prime}(D)$ and $\alpha^{2}<\beta$ it follows that

$$
\begin{equation*}
\operatorname{diam}_{E}(D) \geq 2 d_{0}^{\beta} 2^{\beta n}>2 d_{0}^{\alpha} 2^{\alpha 2 n}=2\left(d_{0}^{\alpha} 2^{\alpha n}\right)^{\alpha} \geq 2 d_{j(n)}^{\alpha}=2 d_{j(n)+1} . \tag{4.2}
\end{equation*}
$$

The last inequality follows from

$$
\begin{equation*}
d_{0}^{\alpha} 2^{\alpha n} \geq d_{j(n)} \tag{4.3}
\end{equation*}
$$

which can be easily seen by contradiction. Let $i(n)$ be the largest integer such that $d_{i(n)} \leq d_{0}^{\beta} 2^{\beta n}$. Then we have $d_{i(n)}>d_{0}^{\alpha} 2^{\alpha n}$ by contradiction and by $\alpha^{2}<\beta$. Because of this inequality and (4.3), we get $j(n)+1 \leq i(n)$. By the definition of $i(n),(4.2)$ and Condition $A(k)(b)$, it follows that

$$
d_{k} \geq \operatorname{diam}_{E}(D) \geq 2 d_{i(n)}
$$

So we have $i(n)<k$. As a consequence we obtain

$$
j(n)<i(n)<k .
$$

From this inequality it follows that $D \in S_{k}^{\mathcal{q}} \subset S_{k} \subset S_{j(n)}$. Therefore $C \cap D$ satisfies Condition $A(j(n))(a)$. Because of the definition of $j(n), \operatorname{diam}_{E} C=2^{n}$ and $d_{0}=$ $L(E) \geq 1$ it follows that

$$
\operatorname{diam}_{E}(C \cap D) \leq 2^{n} \leq d_{j(n)}
$$

which is Condition $A(j(n))(b)$ for $C \cap D$. We show Condition $A(j(n))$ (c) for $C \cap D$. It follows that

$$
\begin{equation*}
S_{j(n)}=S_{k}+\sum_{i=j(n)}^{k-1} S_{i .}^{g} \tag{4.4}
\end{equation*}
$$

If D_{i}^{κ} is a component of $S_{i}^{\boldsymbol{\beta}}$ for $i=j(n), j(n)+1, \cdots, k-1$ then we have that

$$
\begin{equation*}
\operatorname{dist}_{E}\left(D_{i}^{\kappa}, C \cap D\right) \geq \operatorname{dist}_{E}\left(D_{i}^{\kappa}, S_{i} \backslash D_{i}^{\kappa}\right) \geq 2 d_{i+1} \geq 2 d_{j(n)+1} \tag{4.5}
\end{equation*}
$$

by $C \cap D \subset D \subset S_{k} \subset S_{i} \backslash D_{i}^{\alpha}$. Since D is a component of S_{k}^{ℓ}, we have that

$$
\operatorname{dist}_{E}\left(C \cap D, S_{k} \backslash D\right) \geq \operatorname{dist}_{E}\left(D, S_{k} \backslash D\right) \geq 2 d_{k+1}>2 d_{j(n)+1} .
$$

Because of $C \in \mathscr{C}_{n}^{\prime}(D)$ it follows that

$$
\operatorname{dist}_{E}(C \cap D, D \backslash(C \cap D)) \geq 2 d_{0}^{\beta} 2^{\beta n}>2 d_{j(n)+1} .
$$

Hence we have

$$
\begin{equation*}
\operatorname{dist}_{E}\left(C \cap D, S_{k} \backslash(C \cap D)\right) \geq 2 d_{j(n)+1} \tag{4.6}
\end{equation*}
$$

From (4.4), (4.5) and (4.6), we conclude that

$$
\operatorname{dist}_{E}\left(C \cap D, S_{j(n)} \backslash(C \cap D)\right) \geq 2 d_{j(n)+1}
$$

which is Condition $A(j(n))$ (c) for $C \cap D$. Therefore if $C \cap D$ satisfies Condition $A(j(n))$ (d), then $C \cap D$ is a component of $S_{j(n)}^{g}$. But this contradicts the fact that D is a component of $S_{k}^{\mathcal{Z}}$ because $j(n)<k$. As a consequence we get that

$$
\operatorname{dist}\left(\sigma\left(H_{Q E(W(C \cap D, 4 d j(n))}^{D}\right), E\right) \leq \exp \left(-d^{\frac{1}{2}(n)}\right)
$$

We have thus proved Lemma 4.1.
In order to estimate $\boldsymbol{E}\left(X_{D}\right)$, we need the following two propositions.
Proposition 4.1 (Wegner estimate). Let $Q(j)=Q(0)+j, j \in \boldsymbol{Z}^{3}$ and $Q(0)$ $=[0,1)^{3}$. For a finite $J \subset \boldsymbol{Z}^{3}$, let

$$
\Lambda=\cup_{j \in J} Q(j),
$$

and $\bar{J} \subset \boldsymbol{Z}^{3}$ be a finite subset such that

$$
\bar{\Lambda}=\cup_{j \in \bar{J} Q} Q(j)
$$

is the smallest cube containing Λ. Let

$$
H_{\Lambda}^{D}(\omega)=-\Delta+\left.V_{\omega}\right|_{L^{2}(\Lambda)}
$$

with Dirichlet boundary conditions. Then we have

$$
\boldsymbol{P}\left(\left\{\omega \mid \operatorname{dist}\left(\sigma\left(H_{\Lambda}^{D}(\omega)\right), E\right) \leq k\right\}\right) \leq \frac{2 c_{0}^{-1}}{3 \pi^{2}}|\bar{\Lambda}|^{2} k\left(E-k+2 \eta_{0}^{-1} \eta_{1} k\right)^{\frac{3}{2}}
$$

for $k \geq 0$.
This proposition will be proved later. The following proposition has been proved by [4].

Proposition 4.2.

$$
\boldsymbol{P}\left(\lambda_{1}\left(H_{Q E(0)}^{N}(\omega)\right) \leq E\right) \leq \exp \left(-c E^{-\frac{3}{2}}\right)
$$

From these two propositions we can show the following lemma.
Lemma 4.2. If $E>0$ is sufficiently small, then there exists $c>0, c^{\prime}>0$ such that

$$
\boldsymbol{E}\left(X_{D}\right) \leq \exp \left(-c E^{-\frac{3}{2}} \# D-c^{\prime} E^{-\frac{1}{4}} V^{\prime}(D)\right)
$$

Proof. For $n>0$ and for $C_{1}, C_{2} \in \mathscr{C}_{n}^{\prime}(D)\left(C_{1} \neq C_{2}\right)$,

$$
\begin{aligned}
& \operatorname{dist}_{E}\left(W\left(C_{1} \cap D, 4 d_{j(n)}\right), W\left(C_{2} \cap D, 4 d_{j(n)}\right)\right) \\
& \quad \geq 2 d_{0}^{\beta} 2^{\beta n}-8 d_{j(n)} \geq 2 d_{0}^{\beta} 2^{\beta n}-2^{3} d_{0}^{\alpha} 2^{\alpha n} \\
& \quad=2 d_{0}^{\beta} 2^{\beta n}\left(1-2^{2} d_{0}^{\alpha-\beta} 2^{(\alpha-\beta) n}\right)>2 d_{0}^{\beta} 2^{\beta n}\left(1-2^{2} d_{0}^{\alpha-\beta}\right)
\end{aligned}
$$

by the definition of $\mathscr{C}_{n}^{\prime}(D)$ and (4.3). If E is sufficiently small, then the last member of the above inequality is positive. Therefore we have

$$
W\left(C_{1} \cap D, 4 d_{j(n)}\right) \cap W\left(C_{2} \cap D, 4 d_{j(n)}\right)=\emptyset
$$

Then $\left\{X_{n, c}\right\}_{C \in \mathscr{C}_{n}^{\prime}(D)}$ are independent by (H.1). By the definition of $X_{0, C}$ and (H.1), it follows immediately that $\left\{X_{0, C}\right\}_{C \in D=\wp_{0}^{\prime}(D)}$ are independent. Hence by Lemma 4.1 and the independence of $X_{n, c}$, we have for $0<r<1$

$$
\begin{align*}
\boldsymbol{E} & \left(X_{D}\right) \leq \boldsymbol{E}\left[\prod_{n=0}^{\infty} \prod_{c \in \mathscr{C}_{n}^{\prime}(D)} X_{n, C}\right] \tag{4.7}\\
& \leq\left(\prod_{c \in \mathscr{K}_{0}^{\prime}(D)} \boldsymbol{E}\left[X_{0, c}\right]\right)^{1-r}\left(\boldsymbol{E}\left[\prod_{n \geq 1} \prod_{c \in \mathscr{C}_{n_{n}^{\prime}}(D)} X_{n, c}\right]\right)^{r} \\
& \leq \cdots \leq \prod_{n=0}^{\infty} \prod_{c \in \mathscr{C}_{n}^{\prime}(D)}\left(\boldsymbol{E}\left[X_{n, C}\right]\right)^{r^{n(1-r)}} .
\end{align*}
$$

For $n>0$, by the definition of $X_{n, c}$ it follows that

$$
\boldsymbol{E}\left[X_{n, C}\right]=\boldsymbol{P}\left\{\omega \left\lvert\, \operatorname{dist}\left(\sigma\left(H_{Q E(W(C \cap D, 4 d(n)))}^{D}\right), E\right) \leq \exp \left(-d_{j(n)}^{\frac{1}{2}}\right)\right.\right\}
$$

Since $Q_{E}\left(W\left(C \cap D, 4 d_{j(n)}\right)\right)$ is included in a cube with sides of $10 d_{j(n)} d_{0}$ by $C \in$ $\mathscr{C}_{n}^{\prime}(D), d_{j(n)} \geq 2^{n} d_{0}$ and $d_{0} \geq 1$, we have by Proposition 4.1

$$
\begin{equation*}
\left(\boldsymbol{E}\left[X_{n, c}\right]\right)^{r^{n(1-r)}} \leq\left(c d_{j(n)}^{6} d_{0}^{6} \exp \left(-d_{j(n)}^{\frac{1}{2}}\right)\right)^{r^{n(1-r)}} \tag{4.8}
\end{equation*}
$$

If E is sufficiently small, then it follows that

$$
\begin{align*}
& \left(d_{j(n)}^{6} d_{0}^{6} \exp \left(-d_{j}^{\frac{1}{2}}\right)\right)^{r n(1-r)} \tag{4.9}\\
& \quad \leq\left(\exp \left(-c d_{j(n)}^{\frac{1}{2}}\right)\right)^{r^{n(1-r)}} \leq\left(\exp \left(-c d_{0}^{\frac{1}{2}} 2^{\frac{n}{2}}\right)\right)^{r n(1-r)} .
\end{align*}
$$

Choose $1>_{r}>\frac{1}{\sqrt{2}}$, then it follows that
(4.10) the last member of $(4.9) \leq \exp \left(-c E^{-\frac{1}{4}}(\sqrt{2} r)^{n}(1-r)\right) \leq \exp \left(-c E^{-\frac{1}{4}}\right)$ uniformly in $n \geq 1$. Therefore by (4.8), (4.9) and (4.10) we have that

$$
\begin{equation*}
\left(\boldsymbol{E}\left[X_{n, c}\right]\right)^{r^{n(1-r)}} \leq \exp \left(-c^{\prime} E^{-\frac{1}{4}}\right) \tag{4.11}
\end{equation*}
$$

For $n=0$ and $C \in D$, it follows that

$$
\begin{align*}
\boldsymbol{E} & {\left[X_{0, c}\right] } \tag{4.12}\\
& =\boldsymbol{P}\left(C \in S_{0}\right)=\boldsymbol{P}\left(\lambda_{1}\left(H_{Q_{E}(C)}^{N}(\omega)\right) \leq 2 E\right) \\
& =\boldsymbol{P}\left(\lambda_{1}\left(H_{Q E(0)}^{N}(\omega)\right) \leq 2 E\right) \leq \exp \left(-c E^{-\frac{3}{2}}\right)
\end{align*}
$$

from Proposition 4.2. From (4.7), (4.11) and (4.12) we obtain that

$$
\boldsymbol{E}\left[X_{D}\right] \leq \exp \left(-c E^{-\frac{3}{2}} \# D-c^{\prime} E^{-\frac{1}{4}} V^{\prime}(D)\right)
$$

This completes the proof of Lemma 4.2.
In order to prove Theorem 4.1 we need the following lemmas.

Lemma 4.3.

$$
V(D) \leq_{c}\left(\log _{2} E^{-1}\right)^{2} \# D+c^{\prime} V^{\prime}(D)
$$

This lemma will be proved later. The following lemma has been proved by [1].

Lemma 4.4. For $V \in \boldsymbol{N}$, we have

$$
\#\left\{D \subset \boldsymbol{Z}^{3}(E) \mid V(D)=V \text { and } 0 \in D\right\} \leq \exp (10 V)
$$

Proof of Theorem 4.1. Because of the translation invariance by (H.1), we have

$$
\boldsymbol{P}\left(i \in S_{j}^{\boldsymbol{g}}\right)=\boldsymbol{P}\left(0 \in S_{f}^{\boldsymbol{g}}\right)
$$

for $i \in \boldsymbol{Z}^{3}(E)$. We have

$$
\begin{equation*}
\boldsymbol{P}\left(0 \in S_{j}^{\boldsymbol{g}}\right) \leq \sum_{D \ni} \boldsymbol{P}\left(D \text { is a component of } S_{j}^{\boldsymbol{\xi}}\right) \tag{4.13}
\end{equation*}
$$

Let $\boldsymbol{P}_{D, j}=\boldsymbol{P}\left(D\right.$ is a component of $\left.S_{j}^{g}\right)$. If $\operatorname{diam}_{E} D>d_{j}$, it immediately follows that $\boldsymbol{P}_{D, j}=0$ because of Condition $A(j)(\mathrm{b})$. Therefore we shall estimate as follows:

$$
\begin{align*}
& \boldsymbol{P}\left(0 \in S_{j}^{g}\right) \tag{4.14}
\end{align*}
$$

Let D be component of $S_{j}^{\ell}(\omega)$. As a first step, we consider the case where $\operatorname{diam}_{E} D \leq d_{j-1}$. Since $S_{j-1}=S_{j-1}^{g}+S_{j}$, it follows that

$$
\operatorname{dist}_{E}\left(D, S_{j-1} \backslash D\right)=\min \left(\operatorname{dist}_{E}\left(D, S_{j-1}^{\mathcal{E}}\right), \operatorname{dist}_{E}\left(D, S_{j} \backslash D\right)\right) \geq 2 d_{j}
$$

by Conditions $A(j-1)$ (c) and $A(j)$ (c). Suppose that

$$
\operatorname{dist}\left(\sigma\left(H_{Q_{E}(W(D, 4 d j-1))}^{D}\right), E\right) \geq \exp \left(-d_{j-1}^{\frac{1}{2}}\right)
$$

then D would satisfy Condition $A(j-1)$. But this contradicts the fact that D is a component of S_{j}^{ℓ}. Therefore we have

$$
\operatorname{dist}\left(\sigma\left(H_{Q_{E}(W(D, 4 d j-1)}^{D}\right), E\right) \leq \exp \left(-d_{j-1}^{\frac{1}{2}}\right)
$$

Consequently we can estimate $\boldsymbol{P}_{D, j}$ as follows. Let $X^{1}(\omega)$ be the characteristic function of the set:

$$
\left\{\omega \left\lvert\, \operatorname{dist}\left(\sigma\left(H_{Q_{E}(W(D, 4 d j-1))}^{D}\right), E\right) \leq \exp \left(-d_{j-1}^{\frac{1}{2}}\right)\right.\right\}
$$

and X_{D} is the characteristic function Ω_{D}. Since $Q_{E}\left(W\left(D, 4 d_{j-1}\right)\right)$ is included in a cube with side of $10 d_{j-1} d_{0}$, by Proposition 4.1 we have

$$
\boldsymbol{E}\left[X^{1}\right]_{c}\left(d_{j-1} d_{0}\right)^{6} \exp \left(-d_{j-1}^{\frac{1}{2}}\right) .
$$

Hence we have

$$
\begin{gather*}
\boldsymbol{P}_{D, j} \leq \boldsymbol{E}\left[X^{1}(\omega) X_{D}(\omega)\right] \leq\left(\boldsymbol{E}\left[X^{1}(\omega)\right]\right)^{\frac{1}{2}}\left(\boldsymbol{E}\left[X_{D}(\omega)\right]\right)^{\frac{1}{2}} \tag{4.15}\\
\leq c d_{j-1}^{3} d_{0}^{3} \exp \left(-\frac{1}{2} d_{j-1}^{\frac{1}{2}}\right)\left(\boldsymbol{E}\left[X_{D}(\omega)\right]\right)^{\frac{1}{2}} .
\end{gather*}
$$

On the other hand

$$
\begin{equation*}
\mathbf{P}_{D, j} \leq \boldsymbol{E}\left(X_{D}(\omega)\right) . \tag{4.16}
\end{equation*}
$$

From Lemma 4.3, we have that

$$
\begin{aligned}
& c E^{-\frac{3}{2}} \# D+c^{\prime} E^{-\frac{1}{4}} V^{\prime}(D) \\
& \quad \geq\left(c\left(\log _{2} E^{-1}\right)^{2} \# D+c^{\prime} V^{\prime}(D)\right) c E^{-\frac{1}{4}} \geq c E^{-\frac{1}{4}} V(D) .
\end{aligned}
$$

Hence by Lemma 4.2, it follows that

$$
\begin{equation*}
\boldsymbol{E}\left(X_{D}(\omega)\right) \leq \exp \left(-c E^{-\frac{1}{4}} V(D)\right) \tag{4.17}
\end{equation*}
$$

From (4.15), (4.17) and 4.4, we have

$$
\begin{align*}
\mathrm{I} & \leq \sum_{\substack{V=10}}^{\infty} \sum_{\substack{\text { dio. } V(D)=V \\
\text { diam } D \\
d_{j-1}}} c d_{j-1}^{3} d_{0}^{3} \exp \left(-\frac{1}{2} d_{j-1}^{\frac{1}{2}}\right) \exp \left(-c E^{-\frac{1}{4}} V\right) \tag{4.18}\\
& \leq \sum_{\substack{V=1}}^{\infty} c d_{j-1}^{3} d_{0}^{3} \exp \left(-\frac{1}{2} d_{j-1}^{\frac{1}{2}}\right) \exp \left(\left(10-c E^{-\frac{1}{4}}\right) V\right) \\
& \leq c d_{j}^{\frac{6}{\alpha}} \exp \left(-\frac{1}{2} d_{j}^{\frac{1}{2 \alpha}}\right) \leq \frac{1}{2} d_{j}^{-p}
\end{align*}
$$

provided $E>0$ is sufficiently small because $d_{j} \geq d_{0}$ and d_{0} is large when E is small. It is easy to see that

$$
\begin{equation*}
V(D) \geq n_{0}(D) \geq \log _{2} \operatorname{diam}_{E} D . \tag{4.19}
\end{equation*}
$$

Since we have (4.16) from the definition, it follows from (4.17), (4.19) and Lemma 4.4

II

$$
\begin{align*}
& \leq \sum_{\substack{V \geq \log _{2} d d_{-1}}} \exp \left(\left(10-c E^{-\frac{1}{4}}\right) V\right) \leq c \exp \left(\left(10-c E^{-\frac{1}{4}}\right) \log _{2} d_{j-1}\right) \tag{4.20}\\
& \leq \frac{1}{2} d_{j}^{-p}
\end{align*}
$$

provided $E>0$ is sufficiently small. From (4.16), (4.18) and (4.20), we have completed the proof of Theorem 4.1.

Proof of Lemma 4.3. Let $\gamma(x)=\left[\frac{1}{\beta}\left\{x-1-\log _{2}\left(4 d_{0}^{\beta}+3\right)\right\}\right]$. For $n \in \boldsymbol{N}$ such that $\gamma(n)>0$, we claim

$$
\begin{equation*}
V_{n} \leq \frac{1}{2} V_{r(n)}+V_{r(n)}^{\prime} \tag{4.21}
\end{equation*}
$$

where $V_{m}=V_{m}(D)=\# \mathscr{C}_{m}(D)$ and $V_{m}^{\prime}=V_{m}^{\prime}(D)=\# \mathscr{C}_{m}^{\prime}(D)$. In fact, let $\mathscr{C}_{m}^{\prime \prime}=$ $\mathscr{C}_{m}^{\prime \prime}(D)=\mathscr{C}_{m}(D) \mathscr{C}_{m}^{\prime}(D)$. If $C \in \mathscr{C}_{r(n)}^{\prime \prime}$, then there exists $C^{\prime} \in \mathscr{C}_{r(n)}^{\prime \prime}$ such that dist ${ }_{E}$ $\left(C, C^{\prime}\right)<2 d_{0}^{\beta} 2^{\beta \gamma(n)}$ and $C \neq C^{\prime}$. It follows that

$$
\begin{aligned}
& \operatorname{diam}_{E}\left(C \cup C^{\prime}\right) \\
& \quad<2 \cdot 2^{\gamma(n)}+2 d_{0}^{\beta} 2^{\beta \gamma(n)} \\
& \quad<\left(2+2 d_{0}^{\beta}\right) 2^{\beta \gamma(n)}=2^{\beta \gamma(n)+\log _{2}\left(2+2 d d^{\beta}\right)}
\end{aligned}
$$

By the definition of $\gamma(n)$, we have $\beta \gamma(n)+\log _{2}\left(2+2 d_{0}^{B}\right)+1 \leq n$. Hence there exists an n-cube $C^{\prime \prime}$ such that $C \cup C^{\prime} \subset C^{\prime \prime}$. And if C_{1}, C_{2} and $C_{3} \in \mathscr{C}_{r(n)}^{\prime \prime}$ and $\operatorname{dist}_{E}\left(C_{1}, C_{2}\right)<2 d_{0}^{\beta \gamma} 2^{\beta \gamma(n)}$ and $\operatorname{dist}_{E}\left(C_{1}, C_{3}\right)<2 d_{0}^{\beta} 2^{\beta \gamma(n)}$, then it follows that

$$
\begin{aligned}
& \operatorname{diam}_{E}\left(C_{1} \cup C_{2} \cup C_{3}\right) \\
& \quad<3 \cdot 2^{r(n)}+4 d_{0}^{\beta} 2^{\beta \gamma(n)} \\
& \quad<\left(3+4 d_{0}^{\beta}\right) 2^{\beta \gamma(n)}=2^{\beta r(n)+\log _{2}\left(3+4 d_{6}^{\beta}\right)}
\end{aligned}
$$

and $\beta \gamma(n)+\log _{2}\left(3+4 d_{0}^{\beta}\right)+1 \leq n$. Therefore if $\left\{C_{1}, C_{2}, \cdots, C_{l}\right\}=\mathscr{C}_{r(n)}^{\prime \prime}$, there exist at most $\left[\frac{l}{2}\right]$ pieces of n-cubes which cover $\left\{C_{1}, C_{2}, \cdots, C_{l}\right\}$. Hence we have that

$$
\begin{gathered}
V_{n}=\# \mathscr{C}_{n} \leq \frac{1}{2} \# \mathscr{C}_{r(n)}^{\prime \prime}+\# \mathscr{C}_{r(n)}^{\prime} \leq \frac{1}{2} V_{r(n)}+V_{r(n)}^{\prime} . \\
m \text { times }
\end{gathered}
$$

Thus (4.21) is proved. Let $\gamma^{m}(n)=\gamma(\gamma \cdots \gamma(\gamma(n)) \cdots)$. For n such that $\gamma(n)>$ $0, M(n)$ denotes the largest natural number such that $\gamma^{M(n)}(n)>0$ and for n
such that $\gamma(n) \leq 0$, we define $M(n)=0$. If $\gamma(n)>0$, we can iterate (4.21) $M(n)$ times and we get

$$
V_{n} \leq\left(\frac{1}{2}\right)^{M(n)} V_{r^{M(n)(n)}}+\sum_{m=1}^{M(n)}\left(\frac{1}{2}\right)^{m-1} V_{r^{m}(n)}^{\prime} .
$$

Hence we have

$$
\begin{equation*}
V_{n} \leq\left(\frac{1}{2}\right)^{M(n)} V_{0}+\sum_{m=1}^{M(n)}\left(\frac{1}{2}\right)^{m-1} V_{r^{m}(n)}^{\prime} . \tag{4.22}
\end{equation*}
$$

If $\gamma(n) \leq 0$, this inequality (4.22) holds for $M(n)=0$ and for the $2 n d$ term of the right hand side of $(4.22)=0$. Therefore we have

$$
\begin{equation*}
V=V(D)=\sum_{n=0}^{n_{0}(D)} V_{n} \leq \sum_{n=0}^{n_{0}(D)}\left(\frac{1}{2}\right)^{M(n)} V_{0}+\sum_{n=0}^{n_{0}(D)} \sum_{m=1}^{M(n)}\left(\frac{1}{2}\right)^{m-1} V_{r m(n)}^{\prime} . \tag{4.23}
\end{equation*}
$$

We put $d=1+\log _{2}\left(4 d_{0}^{\beta}+3\right)$. Since $\frac{1}{\beta}(x-d)-1 \leq \gamma(x) \leq \frac{1}{\beta}(x-d)$ and $\gamma(x)$ is a monotone increasing function, we have by induction

$$
\begin{equation*}
\left(\frac{1}{\beta}\right)^{m} x-d \sum_{j=1}^{m}\left(\frac{1}{\beta}\right)^{j}-\sum_{j=0}^{m-1}\left(\frac{1}{\beta}\right)^{j} \leq \gamma^{m}(x) \leq\left(\frac{1}{\beta}\right)^{m} x-d \sum_{j=1}^{m}\left(\frac{1}{\beta}\right)^{j} . \tag{4.24}
\end{equation*}
$$

From (4.24) we have

$$
\begin{align*}
& \gamma^{m}(n) \tag{4.25}\\
& \quad>\left(\frac{1}{\beta}\right)^{m} n-d \sum_{j=1}^{m}\left(\frac{1}{\beta}\right)^{j}-\sum_{j=0}^{m-1}\left(\frac{1}{\beta}\right)^{j} \\
& \quad>\left(\frac{1}{\beta}\right)^{m} n-\frac{1}{\beta-1}(d+\beta) .
\end{align*}
$$

For $k \geq \frac{1}{\beta-1}(d+\beta)$, we denote by $l_{0}(k)$ the largest integer (≥ 0) such that

$$
\begin{equation*}
\left(\frac{1}{\beta}\right)^{L_{0}(k)} k-\frac{1}{\beta-1}(d+\beta) \geq 0 . \tag{4.26}
\end{equation*}
$$

Hence we have $\gamma^{l_{0}(k)}(k)>0$ and then $M(k) \geq l_{0}(k)$. Then we have
(4.27) $M(k) \geq\left\{\begin{array}{cl}0 & \text { for } 0 \leq k<\frac{1}{\beta-1}(d+\beta) \\ {\left[\log _{2} \frac{1}{\frac{1}{\beta-1}(d+\beta)}\left(\log _{2} \beta\right)^{-1}\right]} & \text { for } \quad k \geq \frac{1}{\beta-1}(d+\beta) .\end{array}\right.$

From (4.27), we have

$$
\begin{align*}
& \sum_{n=0}^{n_{0}(D)}\left(\frac{1}{2}\right)^{M(n)} \tag{4.28}\\
& \quad \leq \sum_{n=0}^{\infty}\left(\frac{1}{2}\right)^{M(n)} \\
& \quad \leq \frac{1}{\beta-1}(d+\beta)+1+\sum_{k<\frac{1}{\beta-1}(d+\beta)} 2^{-\log _{2} \frac{1}{\beta-1}(d+\beta)}\left(\log _{8} \beta\right)^{-1+1}
\end{align*}
$$

We have

$$
\begin{equation*}
2^{-\log _{2} \frac{1}{\frac{1}{\beta-1}^{1}(d+\beta)}\left(\log _{2} \beta\right)^{-1+1}}=2\left(\frac{1}{\beta-1}(d+\beta)\right)^{\left(\log _{2} \beta\right)^{-1}} k^{-\left(\log _{2} \beta\right)^{-1}} \tag{4.29}
\end{equation*}
$$

Since $d=1+\log _{2}\left(4 d_{0}^{\beta}+3\right), d_{0}=\left[E^{-\frac{1}{2}}\right]$ and $\sqrt{2}<\beta<1$, we have

$$
\begin{equation*}
\frac{1}{\beta-1}(d+\beta) \leq c \log _{2} E^{-1} \tag{4.30}
\end{equation*}
$$

and

$$
\begin{equation*}
2\left(\frac{1}{\beta-1}(d+\beta)\right)^{\left(\log _{2} \beta\right)-1} \leq_{c d^{2}} \leq_{c}\left(\log _{2} E^{-1}\right)^{2} \tag{4.31}
\end{equation*}
$$

for sufficiently small $E>0$. From (4.28) - (4.31) and $\log _{2} \beta<1$, we have

$$
\begin{equation*}
\sum_{n=0}^{n_{0}(D)}\left(\frac{1}{2}\right)^{M(n)} \leq c \log _{2} E^{-1}+c\left(\log _{2} E^{-1}\right)^{2} \leq c^{\prime}\left(\log _{2} E^{-1}\right)^{2} \tag{4.32}
\end{equation*}
$$

for sufficiently small $E>0$. For $m \in \boldsymbol{N}$ and $j \in \boldsymbol{Z}$, let $N_{m, j}=\left\{k \in \boldsymbol{Z} \mid \gamma^{m}(k)=j\right\}$. Let k_{+}be the largest integer such that $\gamma^{m}\left(k_{+}\right)=j$ and k_{-}be the smallest integer such that $\gamma^{m}\left(k_{-}\right)=j$. By (4.24), we have

$$
\begin{aligned}
& \left(\frac{1}{\beta}\right)^{m} k_{+}-d \sum_{j=1}^{m}\left(\frac{1}{\beta}\right)^{j}-\sum_{j=0}^{m-1}\left(\frac{1}{\beta}\right)^{j} \leq \gamma^{m}\left(k_{+}\right) \\
& =j=\gamma^{m}\left(k_{-}\right) \leq\left(\frac{1}{\beta}\right)^{m} k_{-}-d \sum_{j=1}^{m}\left(\frac{1}{\beta}\right)^{j}
\end{aligned}
$$

and then

$$
\left(\frac{1}{\beta}\right)^{m}\left(k_{+}-k_{-}\right) \leq \sum_{j=0}^{m-1}\left(\frac{1}{\beta}\right)^{j}=\frac{\beta}{\beta-1}\left(1-\left(\frac{1}{\beta}\right)^{m}\right) .
$$

Therefore it follows that

$$
\begin{equation*}
\# N_{m, j}=k_{+}-k_{-}+1 \leq \frac{1}{\beta-1} \beta^{m+1} \tag{4.33}
\end{equation*}
$$

We have

$$
\begin{align*}
& \left.\sum_{k=0}^{n_{0}(D) M(k)} \sum_{m=1}^{\left(\frac{1}{2}\right.}\right)^{m-1} V^{\prime}{ }_{r}{ }^{m(k)} \tag{4.34}\\
& \quad=\sum_{j=1}^{n_{0}(D)}\left(\sum_{k=0}^{n_{0}(D) M(k)} \sum_{m=1}^{2}\left(\frac{1}{2}\right)^{m-1} \delta_{r^{m}(k), j}\right) V_{j .}^{\prime}
\end{align*}
$$

From (4.33) and $\beta<2$, we have

$$
\begin{align*}
& \sum_{k=0}^{n_{0}(D) M(k)} \sum_{m=1}^{M\left(\frac{1}{2}\right)^{m-1} \delta_{\gamma^{m}(k), j}} \tag{4.35}\\
& \quad \leq \sum_{m, k=0}^{\infty}\left(\frac{1}{2}\right)^{m-1} \delta_{r^{m}(k), j}=\sum_{m=0}^{\infty}\left(\frac{1}{2}\right)^{m-1} \# N_{m, j} \\
& \quad \leq \frac{\beta^{2}}{\beta-1} \sum_{m=0}^{\infty}\left(\frac{\beta}{2}\right)^{m-1}=c^{\prime}
\end{align*}
$$

From (4.34) and (4.35), we have

$$
\begin{equation*}
\sum_{k=0}^{n_{0}(D)} \sum_{m=1}^{M(k)}\left(\frac{1}{2}\right)^{m-1} V_{r m(K)}^{\prime} \leq c^{\prime} V^{\prime}(D) \tag{4.36}
\end{equation*}
$$

From (4.23), (4.32), and (4.36), we proved Lemma 4.3.
Proof of Proposition 4.1. Let

$$
H_{A}^{D}\left(x_{j} ; j \in J\right)=-\Delta+\left.\sum_{j \in J} x_{i} f(\cdot-j)\right|_{L^{2}(\Lambda)}
$$

with Dirichlet boundary conditions. For $\lambda>0$, let

$$
\left.N\left(\lambda ; x_{j}, j \in J\right)=\# \text { \{eigenvalues of } H_{\Lambda}^{D}\left(x_{j} ; j \in J\right) \leq \lambda\right\}
$$

Since $\lambda-\lambda^{\prime} \leq\left(\lambda-\lambda^{\prime}\right) \eta_{0}^{-1} f$ for $\lambda \geq \lambda^{\prime}$ by (H.2), we have

$$
\begin{align*}
& N\left(\lambda ; x_{j}, j \in J\right) \tag{4.37}\\
& \quad=N\left(\lambda^{\prime}+\lambda-\lambda^{\prime} ; x_{j}, j \in J\right) \\
& \quad \leq N\left(\lambda^{\prime} ; x_{j}-\eta_{0}^{-1}\left(\lambda-\lambda^{\prime}\right), j \in J\right)
\end{align*}
$$

Let $X_{[0,1]}(x)$ be the characteristic function of the interval [0, 1]. From (H.1) and (4.37) we have
(4.38) $\boldsymbol{E}\left[N\left(\lambda ; q_{j}(\omega), j \in J\right)-N\left(\lambda^{\prime} ; q_{j}(\omega), j \in J\right)\right]$

$$
\begin{aligned}
& =\int_{R^{\prime \prime}}\left(N\left(\lambda ; x_{j}, j \in J\right)-N\left(\lambda^{\prime} ; x_{j}, j \in J\right)\right) \prod_{j \in J} X_{[0,1]}\left(x_{j}\right) d x_{j} \\
\leq & \int_{R^{\prime \prime}}\left(N\left(\lambda^{\prime} ; x_{j}-\eta_{0}^{-1}\left(\lambda-\lambda^{\prime}\right), j \in J\right)-N\left(\lambda^{\prime} ; x_{j}, j \in J\right)\right) \prod_{j \in J} X_{[0,1]}\left(x_{j}\right) d x_{j} \\
& =\int_{R^{\prime \prime}} N\left(\lambda^{\prime} ; x_{j}, j \in J\right)\left(\prod_{j \in J} X_{[0,1]}\left(x_{j}+\eta_{0}^{-1}\left(\lambda-\lambda^{\prime}\right)\right)-\prod_{j \in J} X_{[0,1]}\left(x_{j}\right)\right) \prod_{j \in J} d x_{j} \\
& \leq N\left(\lambda^{\prime} ;-\eta_{0}^{-1}\left(\lambda-\lambda^{\prime}\right) j \in J\right) 2 \eta_{0}^{-1}\left|\lambda-\lambda^{\prime} \| \Lambda\right| \\
& \leq N\left(\lambda^{\prime} ;-\eta_{0}^{-1}\left(\lambda-\lambda^{\prime}\right) j \in \bar{J}\right) 2 \eta_{0}^{-1}\left|\lambda-\lambda^{\prime} \| \bar{\Lambda}\right|
\end{aligned}
$$

where $|\Lambda|$ and $|\bar{\Lambda}|$ is the volume of Λ and $\bar{\Lambda}$ respectively. Let $l(\bar{\Lambda})=|\bar{\Lambda}|^{\frac{1}{3}}$. We have by (H.2)

$$
\begin{align*}
N & \left(\lambda^{\prime} ;-\eta_{0}^{-1}\left(\lambda-\lambda^{\prime}\right), j \in \bar{J}\right) \tag{4.39}\\
& \leq N\left(\lambda^{\prime}+\eta_{0}^{-1} \eta_{1}\left(\lambda-\lambda^{\prime}\right) ; 0, j \in \bar{J}\right) \\
& =\#\left\{n \in N^{3} \left\lvert\, \pi^{2} \sum_{j=1}^{3} \frac{n_{j}^{2}}{l(\bar{\Lambda})^{2}}<\lambda^{\prime}+\eta_{0}^{-1} \eta_{1}\left(\lambda-\lambda^{\prime}\right)\right.\right\} \\
& \leq \frac{1}{6} \pi\left(\frac{l(\bar{\Lambda})^{2}}{\pi^{2}}\left(\lambda^{\prime}+\eta_{0}^{-1} \eta_{1}\left(\lambda-\lambda^{\prime}\right)\right)\right)^{\frac{3}{2}} \\
& =\frac{|\bar{\Lambda}|}{6 \pi^{2}}\left(\lambda^{\prime}+\eta_{0}^{-1} \eta_{1}\left(\lambda-\lambda^{\prime}\right)\right)^{\frac{3}{2}} .
\end{align*}
$$

Let $\lambda=E+k$ and $\lambda^{\prime}=E-k$. From (4.38) and (4.39), we have

$$
\begin{align*}
& \boldsymbol{P}\left(\operatorname{dist}\left(\sigma\left(H_{\Lambda}(\omega)\right), E\right) \leq k\right) \tag{4.40}\\
& \quad \leq \boldsymbol{E}\left[N\left(E+k ; q_{j}(\omega) j \in J\right)-N\left(E-k ; q_{j}(\omega), j \in J\right)\right] \\
& \quad \leq \frac{2 c_{0}^{-1}}{3 \pi^{2}}\left(E-k+2 \eta_{0}^{-1} \eta_{1} k\right)^{\frac{3}{2}} k .
\end{align*}
$$

We have proved the proposition.

5. Sufficient condition of the exponential decay of the Green functions

Definition. For $A \subset \boldsymbol{Z}^{3}(E)$, let $A^{c}=\boldsymbol{Z}^{3}(E) \backslash A$,

$$
\partial_{i n} A=\left\{x \in A \mid \text { There exists } y \in A^{c} \text { such that } \operatorname{dist}_{E}(x, y)=1\right\}
$$

and

$$
\partial_{\text {out }} A=\left\{x \in A^{c} \mid \text { There exists } y \in A \text { such that } \operatorname{dist}_{E}(x, y)=1\right\} .
$$

We define ∂A as follows:

$$
\partial A=\partial_{\text {in }} A \cup \partial_{\text {out }} A
$$

$A \subset \boldsymbol{Z}^{3}(E)$ is said to be k-admissible if

$$
\partial A \cap W\left(D_{i}^{\chi}, 4 d_{i}\right)=\emptyset
$$

for any component D_{i}^{χ} of $S_{i}^{\mathcal{Z}}$ and for $i=0,1, \cdots, k$. $A \subset \boldsymbol{Z}^{3}(E)$ is said to be admissible if A is k-admissible for all $k \geq 0$.

Let Λ, Λ_{1} and $\Lambda_{2} \subset \boldsymbol{R}^{3}$ be of the form $\cup_{j \in J} Q_{E}(j)$ for some $J \subset \boldsymbol{Z}^{3}(E)$ such that $\Lambda_{1} \cap \Lambda_{2}=\emptyset$ and $\Lambda_{1} \cup \Lambda_{2}=\Lambda$. Let $G_{\Lambda}(\omega, E+i \varepsilon ; x, y)$ be the Green function of operator $H_{\Lambda, \omega}-(E+i \varepsilon)=H_{\omega}-\left.(E+i \varepsilon)\right|_{L^{2}(\Lambda)}$ on $L^{2}(\Lambda)$ with Dirichlet boundary conditions and $G_{\Lambda_{1} \mid \Lambda_{2}}(\omega, E+i \varepsilon ; x, y)$ be the Green function of operator $H_{\Lambda_{1 \mid} \mid \Lambda_{2}, \omega}$ $-(E+i \varepsilon)=H_{\omega}-\left.(E+i \varepsilon)\right|_{L^{2}\left(\Lambda_{1}\right) \oplus L^{2}\left(\Lambda_{2}\right)}$ on $L^{2}(\Lambda) \simeq L^{2}\left(\Lambda_{1}\right) \oplus L^{2}\left(\Lambda_{2}\right)$ with Dirichlet boundary conditions on $\partial \Lambda_{1} \cup \partial \Lambda_{2}$. Let $\partial_{n_{2}} G_{\Lambda}(\omega, E+i \varepsilon ; x, z), x \in \Lambda, z \in \partial \Lambda$ be the outward normal derivative at z of $G_{\Lambda}(\omega, E+i \varepsilon ; x, y)$. Then form Green's formula it follows that

$$
\begin{align*}
& G_{\Lambda}(\omega, E+i \varepsilon ; x, y) \tag{5.1}\\
& \quad=G_{\Lambda_{1} \mid \Lambda_{2}}(\omega, E+i \varepsilon ; x, y) \\
& \quad-\int_{\partial \Lambda_{1}} \partial_{n_{2}} G_{\Lambda_{1} \mid \Lambda_{2}}(\omega, E+i \varepsilon ; x, z) G_{\Lambda}(\omega, E+i \varepsilon ; z, y) d z
\end{align*}
$$

if $x \in \Lambda_{1}, y \in \Lambda_{1} \cup \Lambda_{2}$ and $x \neq y$. We have

$$
\begin{equation*}
G_{\Lambda_{1 \mid \Lambda}}(\omega, E+i \varepsilon ; x, y)=G_{\Lambda_{j}}(\omega, E+i \varepsilon ; x, y) \tag{5.2}
\end{equation*}
$$

if $x, y \in \Lambda_{j}, j=1,2$ and

$$
\begin{equation*}
G_{\Lambda_{1} \mid \Lambda_{2}}(\omega, E+i \varepsilon ; x, y)=0 \tag{5.3}
\end{equation*}
$$

if $x \in \Lambda_{j}, y \in \Lambda_{k}, j, k=1,2$ and $j \neq k$.
The main theorem of this section is the following theorem.
Theorem 5.1. For $x \in \boldsymbol{R}^{3}$ we denote by $j(x)$ the element of $\boldsymbol{Z}^{3}(E)$ which is uniquely determined by $x \in Q_{E}(j(x))$. There exists $E_{1}>0$ such that for $0<E \leq E_{1}$ if $A \subset \boldsymbol{Z}^{3}(E)$ is k-admissible and $A \cap S_{k+1}=\emptyset$, then it follows that

$$
\left|G_{Q E(A)}(E+i \varepsilon ; x, y)\right| \leq \exp (-m(E)|x-y|)
$$

provided $\operatorname{dist}_{E}(j(x), j(y)) \geq \frac{1}{5} d_{k+1}$ and $0<\varepsilon \leq E$. Here $m(E)=c_{1} E^{\frac{1}{2}}$ and c_{1} is independent of A, k and E.

Proof. We denote by Θ_{k} the following assertion:
If A is $(k-1)$-admissible and $A \cap S_{k}=\emptyset$, then it follows that

$$
\left|G_{Q_{E}(A)}(E+i \varepsilon ; x, y)\right| \leq \exp \left(-m_{k}(E)|x-y|\right)
$$

provided $\operatorname{dist}_{E}(j(x), j(y)) \geq \frac{1}{5} d_{k}$ and $0<\varepsilon \leq E$.
Here $m_{k}(E)=\frac{1}{5} E^{\frac{1}{2}} \prod_{i=0}^{k-1}\left(1-77 d_{i}^{1-\alpha}\right)$ and $m_{0}(E)=\frac{1}{5} E^{\frac{1}{2}}$.
By putting $c_{1}=\frac{1}{5} \prod_{i=0}^{\infty}\left(1-77 d_{i}\left(E_{1}\right)^{1-\alpha}\right)$, Theorem 5.1 follows from Θ_{k+1}.

We shall prove Θ_{k} for $k \geq 0$ by induction.
Step 1: Proof of Θ_{0}.
Since $A \cap S_{0}=\emptyset$, we have $\lambda_{1}\left(-\Delta_{Q_{E}(j)}^{N}+V_{\omega}\right)>2 E$ for $j \in A$. Then we have

$$
H_{Q E(A)}^{D}(\omega)=-\Delta_{Q E(A)}^{D}+V_{\omega} \geq-\Delta_{Q E(A)}^{N}+V_{\omega} \geq \bigoplus_{j \in A}\left(-\Delta_{Q E(j)}^{N}+V_{\omega}\right)>2 E .
$$

From Lemma $A .3$, the exists $E^{\prime}>0$ such that if $0<E \leq E^{\prime}$, then we have

$$
\left|G_{Q_{E}(A)}(E+i \varepsilon ; x, y)\right| \leq \exp \left(-\frac{1}{5} E^{\frac{1}{2}}|x-y|\right)
$$

for any x and y such that $\operatorname{dist}_{E}(j(x), j(y)) \geq \frac{1}{5} d_{0}$ and $0<\varepsilon \leq E$. This completes the proof of Θ_{0}.

Step2: Proof of Θ_{k+1} under the assumption of Θ_{k}.
Let A be k-admissible and $A \cap S_{k+1}=\phi$. If $A \cap S_{k}=\emptyset$, then Θ_{k+1} follows from Θ_{k}.
Hence we shall consider the case of $A \cap S_{k} \neq \emptyset$. In order to prove Θ_{k+1}, we distinguish the following two cases:
(i) $\frac{1}{5} d_{k+1} \leq \operatorname{diam}_{E} A \leq \frac{2}{3} d_{k+1}$.
(ii) $\frac{3}{2} d_{k+1}<\operatorname{diam}_{E} A$.

We first study the case (i).
Lemma 5.1.Let $R \subset \boldsymbol{Z}^{3}(E)$ be a k-admissible set containing some $D_{k}^{\chi} \in S_{k}^{g}$ such that

$$
\frac{1}{5} d_{k+1} \leq \operatorname{diam}_{E} R \leq \frac{3}{2} d_{k+1}
$$

Then we have

$$
\left|G_{Q_{E}(R)}(E+i \varepsilon ; x, y)\right| \leq \exp \left\{-\left(m_{k}(E)-\mu_{k}(E)\right)|x-y|\right\}
$$

provided $\operatorname{dist}_{E}(j(x), j(y)) \geq \frac{1}{5} d_{k+1}$. Here $\mu_{k}(E)=75 m_{k}(E) d_{k}^{1-\alpha}$.
Proof. For simplicity we denote $D=D_{k}^{\kappa}$. We fix $x \in Q_{E}(R)$ and $y \in Q_{E}(R)$ such that $\operatorname{dist}_{E}(j(x), j(y)) \geq \frac{1}{5} d_{k}$. If $\operatorname{dist}_{E}(\{j(x), j(y)\}, D) \geq 4 d_{k}$, we put $D_{1}=$ D and $D_{2}=\left\{z \in R \mid \operatorname{dist}_{E}(z, D) \leq 3 d_{k+1}\right\}$. If $\frac{3}{2} d_{k} \leq \operatorname{dist}_{E}(\{j(x), j(y)\}, D)<4 d_{k}$, we put $D_{1}=D$ and $D_{2}=\left\{z \in R \left\lvert\, \operatorname{dist}_{E}(z, D) \leq \frac{1}{2} d_{k}\right.\right\}$. If $\left.\operatorname{dist}_{E}\{j(x), j(y)\}, D\right)<\frac{3}{2} d_{k}$, we put $D_{1}=\left\{z \in R \left\lvert\, \operatorname{dist}_{E}(z, D) \leq \frac{5}{2} d_{k}\right.\right\}$ and $D_{2}=\left\{z \in R \mid \operatorname{dist}_{E}(z, D) \leq 3 d_{k}\right\}$. Then for sufficientely small $E>0$, from Lemma B. 1 it iollows that there exists a $(k-1)$ -admissible set $B \subset \boldsymbol{Z}^{3}(E)$ such that

$$
D \subset B \subset W\left(D, 4 d_{k}\right), \operatorname{dist}_{E}\left(\partial B,\{j(x), j(y)\} \geq d_{k}\right.
$$

and

$$
\operatorname{dist}_{E}\left(B^{c}, D\right) \leq 3 d_{k}
$$

Let $Q=R \backslash B, \gamma=\partial Q_{E}(B)$ and $\bar{\gamma}=\partial Q_{E}\left(W\left(D, 4 d_{k}\right)\right)$.
Case (i, 1). Let x and y in $Q_{E}(Q)$.
From (5.1), we have

$$
\begin{align*}
& G_{Q_{E}(R)}(x, y) \tag{5.4}\\
& \quad=G_{Q_{E}(Q) \mid Q_{E}(B)}(x, z)-\int_{r} \partial_{n_{1}} G_{Q_{E}(Q) \mid Q_{E}(B)}(x, z) G_{Q_{E}(R)}(z, y) d z \\
& \quad=G_{Q_{E}(Q)}(x, y)+\int_{r} \partial_{n_{2}} G_{Q_{E}(R)}(x, z) \int_{r} G_{Q_{E}(R)}\left(z, z^{\prime}\right) \partial_{n_{z}} G_{Q_{E}(Q)}\left(z^{\prime}, y\right) d z^{\prime} d z .
\end{align*}
$$

Since R and B is $(k-1)$-admissible, so is Q. Moreover by the assumption of R and Condition $A(\mathrm{k})(\mathrm{c}), R \cap\left(S_{k} \backslash D\right)=\emptyset$. Then we have $Q \cap S_{k}=\emptyset$. Hence by applying Θ_{k} to Q, we get

$$
\begin{equation*}
\left|G_{Q_{E}(Q)}(u, v)\right| \leq \exp \left\{-m_{k}(E)|u-v|\right\} \tag{5.5}
\end{equation*}
$$

if $\operatorname{dist}_{E}(j(u), j(v)) \geq \frac{1}{5} d_{k}$. Since $\operatorname{dist}_{E}\left(\partial B,\{j(x), j(y)\} \geq d_{k}, \operatorname{dist}_{E}(\{j(x), j(y)\}\right.$, $j(z))-1>d_{k}-1 \geq \frac{1}{5} d_{k}$ for $z \in \gamma$ for sufficiently small $E>0$. Therefore from Lemma A. 5 and (5.5), we obtain for $z, z^{\prime} \in \gamma$

$$
\begin{equation*}
\left|\partial_{n_{2}} G_{Q_{E}(Q)}(x, z)\right| \leq c_{3}^{\prime} \exp \left\{-m_{k}(E)|x-y|\right\} \tag{5.6}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\partial_{n_{z^{\prime}}} G_{Q_{E}(Q)}\left(z^{\prime}, y\right)\right| \leq c_{3}^{\prime} \exp \left\{-m_{k}(E)\left|z^{\prime}-y\right|\right\} \tag{5.7}
\end{equation*}
$$

since there exists a positive δ such that $m_{k}(E)<\delta$ uniformly in k and sufficiently small $E>0$. Next we shall estimate the term $G_{Q_{E}(R)}\left(z, z^{\prime}\right)$ in (5.4).

Lemma 5.2. Let $u, w \in Q_{E}(B)$. Then we have

$$
\left|G_{Q_{E}(R)}(E+i \varepsilon ; u, w)\right| \leq \frac{1}{|u-w|}+c_{4}^{\prime} \exp \left(d_{k}^{\frac{1}{2}}\right)
$$

Here c_{4}^{\prime} is independent of R, B, u, w, E and ε.
Proof of Lemma 5.2. From (5.1), we get

$$
G_{Q_{E}(R)}(u, w)
$$

$$
=G_{Q_{\varepsilon}\left(W\left(D, 4 d_{1}\right)\right) \mid Q_{E}(R) \backslash Q_{E}\left(W\left(D, 4 d_{1}\right) u, w\right)}
$$

$$
-\int_{\bar{Y}} \partial_{n_{z}} G_{Q_{E}(W(D, 4 d,)) \mid Q_{E}(R) \backslash Q_{E}\left(W\left(D, 4 d_{d}\right)\right)}\left(u, z_{1}\right) G_{Q_{E}(R)}\left(z_{1}, w\right) d z_{1}
$$

$$
=G_{Q_{E}\left(W\left(D, 4 d_{k}\right)\right)}(u, w)-\int_{\bar{T}} \partial_{n_{n}} G_{Q_{E}\left(W\left(D, 4 d_{k}\right)\right)}\left(u, z_{1}\right) G_{Q_{E}(R)}\left(z_{1}, w\right) d z_{1} .
$$

Because $z_{1} \in \bar{\gamma} \subset Q_{E}(Q)$, it follows

$$
\begin{aligned}
& G_{Q_{E}(R)}\left(z_{1}, w\right) \\
& \quad=G_{Q_{E}(Q) \mid Q_{E}(B)}\left(z_{1}, w\right)-\int_{r} \partial_{n_{2}} G_{Q_{E}(Q) \mid Q_{E}(B)}\left(z_{1}, z_{2}\right) G_{Q_{E}(R)}\left(z_{2}, w\right) d z_{2} \\
& \quad=-\int_{r} \partial_{n_{n_{z}}} G_{Q_{E}(Q)}\left(z_{1}, z_{2}\right) G_{Q_{E}(R)}\left(z_{2}, w\right) d z_{2} .
\end{aligned}
$$

Hence we get

$$
\begin{aligned}
& G_{Q_{E}(R)}(u, w) \\
& \quad=G_{Q_{E}(W(D, 4 d k))}(u, w) \\
& \quad+\int_{\bar{Y}} \partial_{n_{s} G} G_{Q_{E}(W(D, 4 d k))}\left(u, z_{1}\right) \int_{\gamma} \partial_{n_{s}} G_{Q_{E}(Q)}\left(z_{1}, z_{2}\right) G_{Q_{E}(R)}\left(z_{2}, w\right) d z_{2} d z_{1} .
\end{aligned}
$$

Because $z_{2} \in \gamma \subset Q_{E}\left(W\left(D, 4 d_{k}\right)\right)$, it follows

$$
\begin{aligned}
& G_{Q_{E}(R)}\left(z_{2}, w\right) \\
& \quad=G_{Q_{E}\left(W\left(D, 4 d_{k}\right)\right)}\left(z_{2}, w\right)-\int_{\bar{T}} \partial_{I_{3}} G_{Q_{E}\left(W\left(D, 4 d_{k}\right)\right)}\left(z_{2}, z_{3}\right) G_{Q_{E}(R)}\left(z_{3}, w\right) d z_{3} .
\end{aligned}
$$

Therefore we obtain

$$
\begin{aligned}
& G_{Q_{E}(R)}(u, w) \\
& \quad=G_{Q_{E}\left(W\left(D, 4 d_{k}\right)\right)}(u, w) \\
& \quad+\int_{\bar{T}} \partial_{n_{n}} G_{Q_{E}\left(W\left(D, 4 d_{k}\right)\right)}\left(u, z_{1}\right) \int_{r} \partial_{n_{z}} G_{Q_{E}(Q)}\left(z_{1}, z_{2}\right) G_{Q_{E}\left(W\left(D, 4 d_{k}\right)\right)}\left(z_{2}, w\right) d z_{2} d z_{1} \\
& -\quad-\int_{\bar{T}} \partial_{n_{3}} G_{Q_{E}(W(D, 4 d k))}\left(u, z_{1}\right) \int_{r} \partial_{n_{z}} G_{Q_{E}(Q)}\left(z_{1}, z_{2}\right) \\
& \quad \times \int_{\bar{T}} \partial_{n_{3} G} G_{Q_{E}\left(W\left(D, 4 d_{k}\right)\right)}\left(z_{2}, z_{3}\right) G_{Q_{E}(R)}\left(z_{3}, w\right) d z_{3} d z_{2} d z_{1} .
\end{aligned}
$$

Inductively we obtain

$$
\begin{aligned}
& \text { (5.8) } \quad G_{Q_{E}(R)}(u, w) \\
& =G_{Q_{E}\left(W\left(D, 4 d_{k}\right)\right)}(u, w) \\
& +\sum_{n=1}^{N} \overbrace{\bar{r}} \int_{r} \cdots \int_{\bar{r}} \int_{r}\left(\prod_{j=0}^{n-1} \partial_{n_{z, y, n}} G_{Q_{E}\left(W\left(D, 4 d_{k}\right)\right)}\left(z_{2 j}, z_{2 j+1}\right) \partial_{n_{2, u, z}} G_{Q_{E}(Q)}\left(z_{2 j+1}, z_{2 j+2}\right)\right) \\
& \times G_{Q_{E}(W(D, 4 d k))}\left(z_{2 n}, w\right) \prod_{j=1}^{2 n} d z_{j} \\
& +\overbrace{\bar{r}} \int_{r} \cdots \int_{\bar{r}} \int_{r}\left(\prod_{j=0}^{N} \partial_{n_{n, s, l}} G_{Q_{E}\left(W\left(D, 4 d_{k}\right)\right)}\left(z_{2 j}, z_{2 j+1}\right) \partial_{n_{2, n, Y}} G_{Q_{E}(Q)}\left(z_{2 j+1}, z_{2 j+2}\right)\right) \\
& \times G_{Q_{E}(R)}\left(z_{2 N+2}, w\right) \prod_{j=1}^{2 N+2} d z_{j}
\end{aligned}
$$

where $z_{0}=u$. From Lemma A.6, it follows

$$
\begin{align*}
& \left|G_{Q_{E}\left(W\left(D, 4 d_{k}\right)\right)}(E+i \varepsilon ; t, s)\right| \tag{5.9}\\
& \quad \leq \frac{1}{|t-s|}+\frac{c_{4}}{\operatorname{dist}\left(\sigma\left(H_{Q_{E}\left(W\left(D, 4 d_{k}\right)\right)}^{D}\right), E+i \varepsilon\right)} \\
& \quad \leq \frac{1}{|t-s|^{+}}+c_{4} \exp \left(d_{k}^{\frac{1}{2}}\right) .
\end{align*}
$$

The last inequality follows from Condition $\mathrm{A}(\mathrm{k})(\mathrm{d})$. If $t \in \gamma \cup Q_{E}(B)$ and $s \in \bar{\gamma}$, it follows

$$
|t-s|>|t-s|-1 \geq d_{k} L(E)-1>\frac{1}{5} L(E) d_{k}>1
$$

for sufficiently small $E>0$. Hence by Lemma A. 5 and (5.9) we have

$$
\begin{align*}
& \left|\partial_{n_{s}} G_{Q_{E}\left(W\left(D, 4 d_{k}\right)\right)}(t, s)\right| \tag{5.10}\\
& \quad \leq c_{3}\left(\frac{1}{|t-s|-1}+c_{4} \exp \left(d_{k}^{\frac{1}{2}}\right) \leq c_{3}\left(5 L(E)^{-1} d_{k}^{-1}+c_{4} \exp \left(d_{k}^{\frac{1}{2}}\right)\right)\right. \\
& \quad \leq c_{5} \exp \left(d_{k}^{\frac{1}{2}}\right)
\end{align*}
$$

for $t \in \gamma \cup Q_{E}(B)$ and $s \in \bar{\gamma}$. From (5.9) we have

$$
\begin{align*}
& \left|\int_{r} G_{Q_{E}(W(D, 4 d k))}\left(z_{2 n}, w\right) d z_{2 n}\right| \tag{5.11}\\
& \quad \leq \int_{r}\left(\frac{1}{\left|z_{2 n}-w\right|}+c_{4} \exp \left(d_{k}^{\frac{1}{2}}\right)\right) d z_{2 n} \\
& \quad=\int_{r} \frac{1}{\left|z_{2 n}-w\right|} d z_{2 n}+c_{4} \exp \left(d_{k}^{\frac{1}{2}}\right)|\gamma| .
\end{align*}
$$

By the shape of $Q_{E}(B)=\cup_{j} Q_{E}(j)$, we can estimate as follows:

$$
\int_{\gamma} \frac{1}{\left|z_{2 n}-w\right|} d z_{2 n} \leq c_{6}|\gamma|
$$

where c_{6} is independent of $\gamma=\partial Q_{E}(B)$ and w. Then the last member of (5.11) is bounded by

$$
\begin{equation*}
c_{7} \exp \left(d_{k}^{\frac{1}{2}}\right)|\gamma| \tag{5.12}
\end{equation*}
$$

Since $z_{2 j+1} \in \bar{\gamma}$ and $z_{2 j+2} \in \gamma$, it follows

$$
\begin{align*}
& \left|\partial_{n_{2,2,1}} G_{Q_{E}(Q)}\left(z_{2 j+1}, z_{2 j+2}\right)\right| \tag{5.13}\\
& \quad \leq c_{3} \sup _{\left|s-z_{2,2}\right| \leq 1}\left|G_{Q E(Q)}\left(z_{2 j+1}, s\right)\right| \\
& \quad \leq c_{3} \exp \left(-m_{k} \frac{L(E)}{5} d_{k}\right)
\end{align*}
$$

by Lemma A. 5 and (5.5). From Lemma A. 6 it follows

$$
\left|G_{Q_{E}(R)}(E+i \varepsilon ; t, s)\right|=\left|G_{Q_{E}(R)}(t, s)\right| \leq \frac{1}{|t-s|}+\frac{1}{\varepsilon}
$$

and then

$$
\begin{equation*}
\int_{r}\left|G_{Q E(R)}\left(z_{2(N+1)}, w\right)\right| d z_{2(N+1)} \leq\left(c_{6}+\frac{1}{\varepsilon}\right)|\gamma| . \tag{5.14}
\end{equation*}
$$

From (5.8) - (5.14), we obtain

$$
\begin{align*}
& \left|G_{Q_{E}(R)}(u, w)\right| \leq\left|G_{Q_{E}(W(D, 4 d k))}(u, w)\right| \tag{5.15}\\
& \quad+\sum_{n=1}^{N}\left(c_{3} c_{5}|\bar{\gamma}| r \left\lvert\, \exp \left(d_{k}^{\frac{1}{2}}\right) \exp \left(-m_{k} \frac{L(E)}{5} d_{k}\right)\right.\right)^{n} c_{7} \exp \left(d_{k}^{\frac{1}{2}}\right) \\
& \quad+\left(c_{3} c_{5}|\bar{\gamma}| \gamma \left\lvert\, \exp \left(d_{k}^{\frac{1}{2}}\right) \exp \left(-m_{k} \frac{L(E)}{5} d_{k}\right)\right.\right)^{N+1}\left(c_{6}+\frac{1}{\varepsilon}\right) .
\end{align*}
$$

Since $|\bar{\gamma}| \gamma \mid \leq c_{8} d_{k}^{6}$ and it follows

$$
c d_{k}^{6} \exp \left(d_{k}^{\frac{1}{2}}\right) \exp \left(-m_{k} \frac{L(E)}{5} d_{k}\right)<\frac{1}{2}
$$

if $E>0$ is sufficiently small, then the last term of the right hand side of (5.15) converges to 0 as $N \rightarrow \infty$. Therefore we obtain

$$
\begin{align*}
& \left|G_{Q E(R)}(u, w)\right| \leq\left|G_{Q E(W(D, 4 d k)}(u, w)\right|+c \exp \left(d_{k}^{\frac{1}{2}}\right) \tag{5.16}\\
& \quad \leq \frac{1}{|u-w|}+c_{4}^{\prime} \exp \left(d_{k}^{\frac{1}{2}}\right)
\end{align*}
$$

by (5.9). We have thus proved Lemma 5.2.
We return to the proof of Lemma 5.1. Noting the continuity of the Green function, it follows from Lemma 5.2

$$
\begin{equation*}
\left|G_{Q_{E}(R)}\left(z, z^{\prime}\right)\right| \leq \frac{1}{\left|z-z^{\prime}\right|}+c_{4} \exp \left(d_{k}^{\frac{1}{2}}\right) \tag{5.17}
\end{equation*}
$$

for $z, z^{\prime} \in \gamma$. Using (5.4)- (5.7) and (5.17), we get
(5.18) $\left|G_{Q_{E(R)}}(x, y)\right|$

$$
\begin{aligned}
& \leq \exp \left(-m_{k}(E)|x-y|\right) \\
& +\left(c_{3}^{\prime}\right)^{2} \int_{r} \int_{r} \frac{\exp \left(-m_{k}(E)|x-z|\right) \exp \left(-m_{k}(E)\left|z^{\prime}-y\right|\right)}{\left|z-z^{\prime}\right|} d z d z^{\prime} \\
& +c_{4}\left(c_{3}^{\prime}\right)^{2} \exp \left(d_{k}^{\frac{1}{2}}\right) \int_{r} \int_{r} \exp \left(-m_{k}(E)|x-z|\right) \exp \left(-m_{k}(E)\left|z^{\prime}-y\right|\right) d z d z^{\prime} \\
& \leq \exp \left(-m_{k}(E)|x-y|\right) \\
& \quad \times\left\{1+c_{9} \int_{r} \int_{r} \frac{\exp m_{k}(E)\left(|x-y|-|x-z|-\left|z^{\prime}-y\right|\right)}{\left|z-z^{\prime}\right|} d z d z^{\prime}\right. \\
& \left.+c_{10} \exp \left(d_{k}^{\frac{1}{2}}\right) \int_{r} \int_{r} \exp m_{k}(E)\left(|x-y|-|x-z|-\left|z^{\prime}-y\right|\right) d z d z^{\prime}\right\}
\end{aligned}
$$

Since $z, z^{\prime} \in \gamma=\partial Q_{E}(B)$, it follows

$$
|x-y|-|x-z|-\left|z^{\prime}-y\right| \leq\left|z-z^{\prime}\right| \leq \sqrt{3}\left(7 d_{k}+1\right) L(E) \leq 14 d_{k} L(E) .
$$

And there exists positive constants c_{11}, c_{12} which are independent of γ, such that

$$
\int_{r} \int_{r} \frac{1}{\left|z-z^{\prime}\right|} d z d z^{\prime} \leq c_{11}|\gamma|^{2} \leq c_{12} d_{k}^{6} .
$$

Then the right hand side of (5.18) is bounded by

$$
\begin{align*}
\exp (& \left.-m_{k}(E)|x-y|\right) \tag{5.19}\\
& \times\left\{1+c_{13} \left\lvert\, \gamma \gamma^{2} \exp \left(d_{k}^{\frac{1}{2}}\right) \exp \left(m_{k}(E) 14 d_{k} L(E)\right)\right.\right\} \\
\leq & \exp \left(-m_{k}(E)|x-y|\right) c_{14} \exp \left(2 d_{k}^{\frac{1}{2}}\right) \exp \left(m_{k}(E) 14 d_{k} L(E)\right)
\end{align*}
$$

Since there exists $\delta>0$ such that

$$
m_{k} L(E) \geq \delta>0
$$

uniformly in k and sufficiently small $E>0$, it follows

$$
\begin{align*}
& c_{14} \exp \left(2 d_{k}^{\frac{1}{2}}\right) \exp \left(m_{k}(E) 14 d_{k} L(E)\right) \tag{5.20}\\
& \quad \leq \exp \left(15 m_{k}(E) d_{k} L(E)\right)=\exp \left(\mu_{k}(E) \frac{1}{5} d_{k+1} L(E)\right) .
\end{align*}
$$

Here we used the definition of $\mu_{k}(E)=75 m_{k}(E) d_{k}^{1-\alpha}$. By (5.18), (5.19) and (5.20), we obtain

$$
\left|G_{Q E(R)}(x, y)\right| \leq \exp \left(-\left(m_{k}(E)-\mu_{k}(E)\right)|x-y|\right)
$$

if $\operatorname{dist}_{E}(j(x), j(y)) \geq \frac{1}{5} d_{k+1}$ for sufficientely small $E>0$ uniformly in k.
Case (i.2). in the case of $x \in Q_{E}(Q)$ and $y \in Q_{E}(B)$, the proof is in a similar fashion in case 1.
We have completed the proof of Lemma 5.1.
Next we shall study the case (ii).
Lemma 5.3. Let $A \subset \boldsymbol{Z}^{3}(E)$ be a k-admissible set such that $A \cap S_{k+1}=\emptyset$, $A \cap S_{k} \neq \emptyset$ and $\operatorname{diam}_{E} A>\frac{3}{2} d_{k+1}$. If $x, y \in Q_{E}(A)$ and $\operatorname{dist}_{E}(j(x), j(y)) \geq \frac{1}{5} d_{k+1}$, then we have

$$
\left|G_{Q_{E}(A)}(E+i \varepsilon ; x, y)\right| \leq \exp \left(-m_{k+1}(E)|x-y|\right) .
$$

Proof. Let $p_{1}, p_{2} \in Q_{E}(A)$ such that $\operatorname{dist}_{E}\left(j\left(p_{1}\right), j\left(p_{2}\right)\right) \geq \frac{1}{5} d_{k+1}$. If dist_{E} $\left(j\left(p_{1}\right), j\left(p_{2}\right)\right) \leq \frac{1}{2} d_{k+1}$, then we put

$$
D_{1}=\left\{z \in A \left\lvert\, \operatorname{dist}_{E}\left(z, j\left(p_{1}\right)\right) \leq \frac{29}{40} d_{k+1}\right.\right\}
$$

and

$$
D_{2}=\left\{z \in A \left\lvert\, \operatorname{dist}_{E}\left(z, j\left(p_{1}\right)\right) \leq \frac{3}{4} d_{k+1}\right.\right\} .
$$

If $\operatorname{dist}_{E}\left(j\left(p_{1}\right), j\left(p_{2}\right)\right)>\frac{1}{2} d_{k+1}$, then we put

$$
D_{1}=\left\{z \in A \left\lvert\, \operatorname{dist}_{E}\left(z, j\left(p_{1}\right)\right) \leq \frac{1}{4} d_{k+1}\right.\right\}
$$

and

$$
D_{2}=\left\{z \in A \left\lvert\, \operatorname{dist}_{E}\left(z, j\left(p_{1}\right)\right) \leq \frac{11}{40} d_{k+1}\right.\right\} .
$$

For sufficientely small $E>0$, from Lemma B. 1 it follows that there exists k-admissible set $R_{p_{1}} \subset A$ such that

$$
\begin{equation*}
p_{1} \in R_{p_{1}}, \operatorname{dist}_{E}\left(\left\{j\left(p_{1}\right), j\left(p_{2}\right)\right\}, \partial R_{p_{1}} \backslash A\right) \geq \frac{17}{80} d_{k+1} \tag{5.21}
\end{equation*}
$$

and

$$
\begin{equation*}
\operatorname{diam}_{E} R_{p_{1}} \leq \frac{3}{2} d_{k+1} \tag{5.22}
\end{equation*}
$$

Let $B_{p_{1}}=A \backslash R_{p_{1}}$. Then it follows $Q_{E}(A)=Q_{E}\left(R_{p_{1}}\right)+Q_{E}\left(B_{p_{1}}\right)$. Since $\operatorname{dist}_{E}(j(x)$, $j(y)) \geq \frac{1}{5} d_{k+1}$, by putting $p_{1}=x, p_{2}=y$ there exists a $k-$ admissible set $R_{x} \subset A$ satisfying (5.21), (5.22). From (5.1) we have

$$
\begin{aligned}
& G_{Q_{E}(A)}(x, y) \\
& \quad=G_{Q_{E}(R x) \mid Q E(B x)}(x, y)-\int_{\partial Q_{E}(R x)} \partial_{n_{s}} G_{Q_{E}(R x) \mid Q E(B x)}\left(x, z_{1}\right) G_{Q_{E}(A)}\left(z_{1}, y\right) d z_{1} \\
& \quad=G_{Q_{E}(R x) \mid Q E(B x)}(x, y)-\int_{\partial Q_{F}\left(R_{x}\right) \backslash Q_{E}(A)} \partial_{n_{1}} G_{Q_{E}(R x)}\left(x, z_{1}\right) G_{Q_{E}(A)}\left(z_{1}, y\right) d z_{1}
\end{aligned}
$$

where we used the fact $G_{Q_{E}(A)}\left(z_{1}, y\right)=0$ if $z_{1} \in \partial Q_{E}(A)$. Because $z_{1} \in \partial Q_{E}\left(R_{x}\right) \backslash$ $\partial Q_{E}(A)$, we have $\operatorname{dist}_{E}\left(j\left(z_{1}\right), j(y)\right) \geq \frac{1}{5} d_{k+1}$. Hence by putting $p_{1}=z_{1}, p_{2}=y$ there exists a k-admissible set $R_{z 1} \subset A$ satistying (5.21), (5.22). We have

$$
\begin{aligned}
& G_{Q_{E}(A)}(x, y) \\
& =G_{Q_{E}(R x) \mid Q_{E}(B x)}(x, y)-\int_{\partial Q_{E}\left(R_{x}\right) \backslash \partial Q_{E}(A)} \partial_{n_{z} H} G_{Q E\left(R_{x}\right)}\left(x, z_{1}\right) G_{Q_{E}\left(R_{x}\right) \mid Q_{E}\left(B_{n}\right)}\left(z_{1}, y\right) d z_{1} \\
& \quad+\int_{\partial Q_{E}\left(R_{x}\right) \backslash \partial Q_{E}(A)} \partial_{n_{z}} G_{Q_{E}\left(R_{x}\right)}\left(x, z_{1}\right) d z_{1} \\
& \quad \times \int_{\partial Q_{E}\left(R_{R_{2}}\right) \backslash \partial Q_{E}(A)} \partial_{n_{z_{3}}} G_{Q_{E}\left(R_{\left.R_{2}\right)}\right)}\left(z_{1}, z_{2}\right) G\left(_{Q E(A)}\left(z_{2}, y\right) d z_{2} .\right.
\end{aligned}
$$

Inductively we have

$$
\begin{align*}
& G_{Q_{E}(A)}(x, y) \tag{5.23}\\
& =G_{Q_{E}\left(R_{x}\right) \mid Q E(B x)}(x, y)
\end{align*}
$$

$$
\begin{aligned}
& +\sum_{n=1}^{N}(-1)^{n} \prod_{j=0}^{n-1}\left(\int_{\partial Q_{E}\left(R_{z}\right) \backslash \partial Q_{E}(A)} \partial_{n_{z+1}} G_{Q_{\varepsilon}\left(R_{z}\right)}\left(z_{j}, z_{j+1}\right) d z_{j+1}\right) \\
& \times G_{Q_{E}\left(R_{z t}\right) \mid Q_{\varepsilon}\left(B_{z_{t}}\right)}\left(z_{n}, y\right) \\
& +(-1)^{N+1} \prod_{j=0}^{N}\left(\int_{\partial Q_{E}\left(R_{s}\right) \backslash \partial Q_{\varepsilon}(A)} \partial_{n_{z_{s, 1}}} G_{Q_{\varepsilon}\left(R_{R_{j}}\right)}\left(z_{j}, z_{j+1}\right) d z_{j+1}\right) \\
& \times G_{Q_{E}(A)}\left(z_{N+1}, y\right) \\
& =\mathrm{I}+\text { II }+ \text { III }
\end{aligned}
$$

where $z_{0}=x$. First we estimate I. If $y \notin Q_{E}\left(R_{x}\right)$, then we have $\mathrm{I}=0$. Hence we have only to study the case where $y \in Q_{E}\left(R_{x}\right)$. We have $G_{Q_{E}\left(R_{x}\right) \mid Q_{E}(B x)}(x, y)=$ $G_{Q_{E}\left(R_{x}\right)}(x, y)$. By the definition of R_{x}, R_{x} is k-admissible set and $R_{x} \cap S_{k+1}=\phi$ because of $A \cap S_{k}=\emptyset$. Therefore if $R_{x} \cap S_{k}=\emptyset$, then by the assumption of induction we have
(5.24) $\left|G_{Q_{E}(R x)}(x, y)\right| \leq \exp \left(-m_{k}(E)|x-y|\right) \leq \exp \left(-m_{k}^{\prime}(E)|x-y|\right)$
and if $R_{x} \cap S_{k} \neq \emptyset$ then by Lemma 5.1 we have

$$
\begin{equation*}
\left|G_{Q_{E}\left(R_{x}\right)}(x, y)\right| \leq \exp \left(-m_{k}^{\prime}(E)|x-y|\right) \tag{5.25}
\end{equation*}
$$

where $m_{k}^{\prime}(E)=m_{k}(E)-\mu_{k}(E)$. Next we estimate II. By Lemma A. 5 we have

$$
\begin{equation*}
\left|\partial_{n_{2, \ldots}, \ldots} G_{Q_{E}\left(R_{z}\right)}\left(z_{j}, z_{j+1}\right)\right| \leq c_{c_{3} \sup _{\left|z_{j+1}-u\right| \leq 1}}\left|G_{Q_{E}\left(R_{u}\right)}\left(z_{j}, u\right)\right| . \tag{5.26}
\end{equation*}
$$

From (5.21) we have

$$
\begin{align*}
& \operatorname{dist}_{E}\left(j\left(z_{j}\right), j(u)\right) \tag{5.27}\\
& \quad \geq \operatorname{dist}_{E}\left(j\left(z_{j}\right), j\left(z_{j+1}\right)\right)+\operatorname{dist}_{E}\left(j\left(z_{j+1}\right), j(u)\right) \\
& \quad \geq \frac{17}{80} d_{k+1}-1>\frac{1}{5} d_{k+1}
\end{align*}
$$

for sufficientely small $E>0$. From (5.26), (5.27), Lemma 5.1 and the assumption of induction as we obtained (5.24) and (5.25) we have

$$
\begin{equation*}
\mid \partial_{n_{2,1}} G_{Q_{E}\left(R_{k z}\right)}\left(z_{j}, z_{j+1}\right) \leq c_{c_{3} \sup _{\left|z_{j+1}-u\right| \leq 1}} \exp \left(-m_{k}^{\prime}(E)\left|z_{j}-u\right|\right) \tag{5.28}
\end{equation*}
$$

Since $\left|z_{j}-z_{j+1}\right| \geq\left|z_{j}-u\right|-1$ and there exists $\delta>0$ such that $m_{k}^{\prime}(E) \leq \delta$ uniformly in k for sufficiently small $E>0$, we have

$$
\begin{equation*}
\left|\partial_{n_{s, .}, \ldots} G_{Q_{E}\left(R_{k}\right)}\left(z_{j}, z_{j+1}\right)\right| \leq c_{3}^{\prime} \exp \left(-m_{k}^{\prime}(E)\left|z_{j}-z_{j+1}\right|\right) \tag{5.29}
\end{equation*}
$$

Since $\operatorname{dist}_{E}\left(j\left(z_{n}\right), j(y)\right) \geq \frac{1}{5} d_{k+1}$, it follows similary to (5.24) and (5.25) that

$$
\begin{equation*}
\left|G_{Q_{\varepsilon}\left(R_{z n}\right) \mid Q_{\varepsilon}\left(B_{n}\right)}\left(z_{n}, y\right)\right| \leq \exp \left(-m_{k}^{\prime}(E)\left|z_{n}-y\right|\right) . \tag{5.30}
\end{equation*}
$$

From (5.29), we have

$$
\leq \sum_{n=1}^{N} \prod_{j=0}^{n-1}\left(\int_{\partial Q_{\varepsilon}\left(R_{z}\right) \backslash \partial Q_{\varepsilon}(A)} c_{3}^{\prime} \exp \left(-m_{k}^{\prime}(E)\left|z_{j}-z_{j+1}\right|\right) d z_{j+1}\right) \exp \left(-m_{k}^{\prime}(E)\left|z_{n}-y\right|\right)
$$

Let $\nu_{k}(E)=m_{k}(E) d_{k}^{1-\alpha}$ and $m_{k}^{\prime \prime}(E)=m_{k}^{\prime}(E)-\nu_{k}(E)$. We have
(5.32) $\exp \left(-m_{k}^{\prime}(E)\left|z_{j}-z_{j+1}\right|\right)=\exp \left(-m_{k}^{\prime \prime}(E)\left|z_{j}-z_{j+1}\right|\right) \exp \left(-\nu_{k}(E)\left|z_{j}-z_{j+1}\right|\right)$ and

Since

$$
\begin{equation*}
\left(\prod_{j=0}^{n-1} \exp \left(-m_{k}^{\prime \prime}(E)\left|z_{j}-z_{j+1}\right|\right)\right) \exp \left(-m^{\prime \prime}(E)\left|z_{n}-y\right|\right) \leq \exp \left(-m_{k}^{\prime \prime}(E)|x-y|\right) \tag{5.33}
\end{equation*}
$$

$$
\begin{aligned}
& \left|z_{j}-z_{j+1}\right| \\
& \quad \geq\left(\operatorname{dist}_{E}\left(j\left(z_{j}\right), j\left(z_{j+1}\right)\right)-1\right) L(E) \\
& \quad \geq\left(\frac{17}{80} d_{k+1}-1\right) L(E)>\frac{1}{5} d_{k+1} L(E)
\end{aligned}
$$

for stfficiently small $\mathrm{E}>0$, we have

$$
\begin{equation*}
\exp \left(-\nu_{k}(E)\left|z_{j}-z_{j+1}\right|\right) \leq \exp \left(-\nu_{k}(E) \frac{1}{5} d_{k+1} L(E)\right) \tag{5.34}
\end{equation*}
$$

From (5.31) - (5.34) we have
(5.35) \mid II \mid

$$
\leq \sum_{n=1}^{N} \prod_{j=0}^{n-1}\left(c_{3}^{\prime}\left|\partial Q_{E}\left(R_{z}\right) \backslash \partial Q_{E}(A)\right| \exp \left(-\nu_{k}(E) \frac{1}{5} d_{k+1} L(E)\right)\right) \exp \left(-m_{k}^{\prime \prime}(E)|x-y|\right)
$$

By (5.22) we have $\left|\partial Q_{E}\left(R_{z i}\right) \backslash \partial Q_{E}(A)\right| \leq 6 L(E)^{2}\left(\frac{3}{2} d_{k+1}\right)^{3}=c_{15} L(E)^{2} d_{k+1}^{3}$. Since there exists $\delta>0$ such that $\nu_{k}(E) L(E) d_{k+1}>\delta d_{k}$ uniformly in k for sufficiently small $E>0$, there exists $0<\delta^{\prime}<1$ such that

$$
\begin{align*}
& c_{3}^{\prime}\left|\partial Q_{E}\left(R_{z^{\prime}}\right) \backslash \partial Q_{E}(A)\right| \exp \left(-\nu_{k}(E) \frac{1}{5} d_{k+1} L(E)\right) \tag{5.36}\\
& \quad \leq c_{3}^{\prime} c_{15} L(E)^{2} d_{k+1}^{3} \exp \left(-\nu_{k}(E) \frac{1}{5} d_{k+1} L(E)\right) \\
& \quad<\delta^{\prime}
\end{align*}
$$

uniformly in k for sufficiently small $E>0$. From (5.35) and (5.36) we have

$$
\begin{equation*}
\mid \text { II } \mid \leq c_{16} \exp \left(-m_{k}^{\prime \prime}(E)|x-y|\right) \tag{5.37}
\end{equation*}
$$

for sufficiently small $E>0$. Finally we estimate III. From Lemma A. 6 we have

$$
\begin{align*}
& \left|G_{Q_{E}(A)}\left(z_{n+1}, y\right)\right|=\left|G_{Q_{E}(A)}\left(E+i \varepsilon ; z_{n+1}, y\right)\right| \tag{5.38}\\
& \quad \leq \frac{1}{\left|z_{n+1}-y\right|}+c_{4} \varepsilon^{-1} .
\end{align*}
$$

In a fashion similar to that used to estimate II, we have
(5.39) |III

$$
\begin{aligned}
& \leq \prod_{j=0}^{N}\left(\int_{Q_{\varepsilon}\left(R_{k}\right) \backslash \partial Q_{\varepsilon}(A)} \mid \partial_{n_{s, t},+} G_{Q_{\varepsilon}\left(R_{k}\right)}\left(z_{j}, z_{j+1} \mid\right) d z_{j+1}\right)\left|G_{Q_{E}(A)}\left(z_{N+1}, y\right)\right| \\
& \leq\left(c_{3 C_{15}^{\prime} L} L(E)^{2} d_{k+1} \exp \left(-m_{k}^{\prime}(E) \frac{1}{5} d_{k+1} L(E)\right)\right)^{N+1}\left(\frac{1}{\frac{1}{5} d_{k+1} L(E)}+c_{4} \varepsilon^{-1}\right) \\
& \leq\left(\delta^{\prime}\right)^{N+1}\left(\frac{1}{\frac{1}{5} d_{k+1} L(E)}+c_{4} \varepsilon^{-1}\right)
\end{aligned}
$$

where we used (5.38). Since $0<\delta^{\prime}<1$, the last member of (5.39) converges to 0 as $N \rightarrow 0$. Hence from (5.23), (5.24), (5.25) and (5.37) we have

$$
\begin{align*}
& \left|G_{Q E(A)}(x, y)\right| \tag{5.40}\\
& \quad \leq \exp \left(-m_{k}^{\prime}(E)|x-y|\right)+c_{16} \exp \left(-m_{k}^{\prime \prime}(E)|x-y|\right) .
\end{align*}
$$

Since $m_{k+1}(E)=m_{k}^{\prime}(E)-2 \nu_{k}(E)=m_{k}^{\prime \prime}(E)-\nu_{k}(E)$, from (5.40) we have
(5.41) $\left|G_{Q E(A)}(x, y)\right|$

$$
\leq\left(\exp \left(-\nu_{k}(E)|x-y|\right)+c_{16}\right) \exp \left(-\nu_{k}(E)|x-y|\right) \exp \left(-m_{k+1}(E)|x-y|\right)
$$

Since

$$
\begin{equation*}
\nu_{k}(E)|x-y| \geq m_{k}(E) d_{k}^{1-\alpha} \frac{1}{5} d_{k+1} L(E)=\frac{1}{5} m_{k}(E) d_{k} L(E) \tag{5.42}
\end{equation*}
$$

we have

$$
\left(\exp \left(-\nu_{k}(E)|x-y|\right)+c_{16}\right) \exp \left(-\nu_{k}(E)|x-y|\right) \leq 1
$$

uniformly in k for sufficiently small $E>0$. We have thus proved Lemma 5.3.
From Lemma 5.1 and Lemma 5.2, we complete the proof of step 2.
As a result we complete the induction and then we have proved Theorem 5.1.

6. Proof of Theorem 1.3

For $l>0$, we denote by B_{l} the following condition on $A \subset \boldsymbol{Z}^{3}(E)$:

$$
\frac{l}{2} \leq \min _{b \in \partial A}|b|_{E} \leq \max _{b \in \partial A}|b|_{E} \leq l
$$

Let c_{1} be as in Theorem 5.1, $m(E)=c_{1} E^{\frac{1}{2}}$ and $0<\varepsilon \leq E$. Let
$F_{l}=\cup_{k=0}^{\infty}\left\{\omega \in \Omega \mid\right.$ There exists a k-admissible set $0 \in A \subset \boldsymbol{Z}^{3}(E)$ satisfying B_{l} and

$$
\left.\left|G_{Q_{E}(A)}(\omega, E+i \varepsilon ; x, y)\right| \leq \exp (-m(E)|x-y|) \text { for }|x-y| \geq L(E) l^{r}\right\}
$$

and $\alpha>\gamma>0$. We can prove Theorem 1.3 by the following theorem.
Theorem 6.1. For any $p>0$, there exists $E^{*}>0$ such that if $0<E \leq E^{*}$, then we have

$$
P\left(F_{l}\right) \geq 1-l^{-p}
$$

for $l \geq\left(\frac{1}{5} d_{0}\right)^{\frac{1}{r}}$.
Proof. Let $p^{\prime}>\frac{\alpha}{\gamma}(3+p)$ be fixed. Let $E^{\prime}>0, E_{1}>0$ be the constant which is given in Theorem 4.1 with $p=p^{\prime}$ and Theorem 5.1 respectively. For $0<E$ $\leq \min \left(E^{\prime}, E_{1}\right)$, let $k=k(l)$ be the largest natural number such that $l^{r} \geq \frac{1}{5} d_{k}$. Let

$$
\begin{aligned}
& F_{l}^{\prime}=\{\omega \in \Omega \mid \text { There exists a }(k-1) \text {-admissible set } \\
& \left.\quad 0 \in A \subset \boldsymbol{Z}^{3}(E) \text { satisfying } B_{l} \text { and } A \cap S_{k}=\emptyset\right\} .
\end{aligned}
$$

Because of $\frac{1}{5} L(E) d_{k} \leq L(E) l^{r}$ and Theorem 5.1, we have

$$
\begin{equation*}
P\left(F_{l}^{\prime}\right) \leq P\left(F_{l}\right) \tag{6.1}
\end{equation*}
$$

Since $\frac{l}{2} \geq \frac{1}{2}\left(\frac{1}{5}\right)^{\frac{1}{\gamma}} d^{\frac{\alpha}{\gamma_{k-1}}}>12 d_{k-1}$ for sufficiently small $E>0$, from Lemma B. 1 we have
(6.2) $\boldsymbol{P}\left(F_{l}^{\prime}\right) \geq \boldsymbol{P}\left(\left\{\omega \mid B \cap S_{k}=\emptyset\right.\right.$ for any $B \subset \boldsymbol{Z}^{3}(E)$ satisfying $\left.\left.B_{l}\right\}\right)$
$\geq \boldsymbol{P}\left(\cap_{\substack{x \in z^{3}(E) \\|x| s \leq l}}\left\{\omega \mid x \notin S_{k}\right\}\right)$
$=1-\boldsymbol{P}\left(\cup_{\substack{x \in z^{3}(E) \\|x|_{s} S \mid}}^{|x| c \mid}\left\{\omega \mid x \in S_{k}\right\}\right)$
$\geq 1-(2 l+1)^{{ }^{|x| k_{3} \leq l} \boldsymbol{P}}\left(\left\{\omega \mid 0 \in S_{k}\right\}\right)$
where we use

$$
\begin{equation*}
\boldsymbol{P}\left(\left\{\omega \mid x \in S_{k}\right\}\right)=\boldsymbol{P}\left(\left\{\omega \mid 0 \in S_{k}\right\}\right) \tag{6.3}
\end{equation*}
$$

which follows from the translation invariance of \boldsymbol{P}. We have

$$
\begin{equation*}
\boldsymbol{P}\left(\left\{\omega \mid 0 \in S_{k}\right\}\right) \leq \sum_{j=k}^{\infty} \boldsymbol{P}\left(\left\{\omega \mid 0 \in S_{k}^{g}\right\}\right)+\boldsymbol{P}\left(\left\{\omega \mid 0 \in \cap_{k=0}^{\infty} S_{k}\right\}\right) \tag{6.4}
\end{equation*}
$$

We need the following Lemma which is proved in a similar fashion as in [1] and [5].

Lemma 6.1. We have $\boldsymbol{P}\left(\left\{\omega \mid 0 \in \cap_{k=0}^{\infty} S_{k}\right\}\right)=0$.
By the definition of k , we have $d_{k+1}=d_{k}^{\alpha}>5 l^{\gamma}$ and then

$$
\begin{equation*}
d_{k} \geq_{c l} \frac{\gamma}{\alpha} . \tag{6.5}
\end{equation*}
$$

From Lemma 6.1, (6.4), (6.5) and Theorem 4.1, we have

$$
\begin{equation*}
\boldsymbol{P}\left(\left\{\omega \mid 0 \in \mathrm{~S}_{k}\right\}\right) \leq \sum_{j=k}^{\infty} d_{j}^{-p^{\prime}} \leq c d_{k}^{-p^{\prime}} \leq c^{\prime} l^{-\frac{\gamma}{\alpha} p^{\prime}} \tag{6.6}
\end{equation*}
$$

where c^{\prime} is independent of $E \in\left(0, E^{*}\right]$ and l. Therefore from $p^{\prime}>\frac{\alpha}{\gamma}(3+p)$, there exists $L>0$ independent of $E \in\left(0, E^{*}\right]$ such that if $l>L$, then

$$
\begin{equation*}
c^{\prime} l^{3} l^{-\frac{\gamma}{\alpha} p^{\prime}} \leq l^{-p} . \tag{6.7}
\end{equation*}
$$

From (6.2), (6.6) and (6.7) we have

$$
\boldsymbol{P}\left(F_{l}^{\prime}\right) \geq 1-c^{\prime} l^{3} l^{-\frac{\gamma}{\alpha}} p^{\prime} \geq 1-l^{-p}
$$

for $l>L$. We have proved the Theorem by (6.1).
Proof of Theorem 1.3. Let $p>0$ be given. For this p, let E^{*} be the constants which are given Theorem 6.1. For $N \in \boldsymbol{N}$ we fix a constant $R>1$ satisfying

$$
\begin{gather*}
R L\left(E^{*}\right)-\sqrt{3} \geq\left(4^{2} R\right)^{r} L\left(E^{*}\right), \tag{6.8}\\
R>\frac{1}{5} L(E) \tag{6.9}
\end{gather*}
$$

and

$$
\begin{equation*}
2^{3} k\left(N R 4^{k}\right)^{3} \exp \left(-D_{0}\left(N R 4^{k}\right)^{r}\right) \leq 1 \text { for any } k \in \boldsymbol{N} \tag{6.10}
\end{equation*}
$$

where $D_{0}=\inf _{0<E \leq E^{*} m}(E) L(E)>0$. We put

$$
\begin{equation*}
l_{j}=N R 4^{j} \text { for } j=0,1,2 \cdots \tag{6.11}
\end{equation*}
$$

We note that from (6.8) it follows

$$
\begin{equation*}
l_{j} L(E)-\sqrt{3} \geq l_{j+2}^{r} L(E) \text { for } j=0,1,2 \cdots \tag{6.12}
\end{equation*}
$$

For $0<E \leq E^{*}$ and $\varepsilon \neq 0$, we put

$$
\begin{aligned}
& F_{l_{j}}=\left\{\omega \mid \text { There exists } k \text {-admissible set } 0 \in A \subset \boldsymbol{R}^{3} \text { satisfying } B_{l j}\right. \text { and } \\
& \left.\left|G_{Q_{E}(A)}(\omega, E+i \varepsilon ; x, y)\right| \leq \exp (-m(E)|x-y|) \text { for }|x-y| \geq L(E) l_{j}^{\frac{3}{4}}\right\} .
\end{aligned}
$$

Since $l_{j}>\frac{1}{5} L(E)$ from (6.9) and $0<E \leq E^{*}$, by Theorem 6.1 we have

$$
\begin{equation*}
P\left(F_{l_{j}}\right) \geq 1-l_{j}^{-p} \text { for } j=0,1,2, \cdots \tag{6.13}
\end{equation*}
$$

Hence we have

$$
\begin{equation*}
\boldsymbol{P}\left(\bigcap_{j=0}^{\infty} F_{l_{j}}\right) \geq 1-\sum_{j=0}^{\infty} l_{j}^{-p} \tag{6.14}
\end{equation*}
$$

$$
=1-N^{-p} R^{-p} \sum_{j=0}^{\infty} 4^{-p j}=1-\frac{K_{p, 1}}{N^{p}}
$$

where $K_{p, 1}(E)=R^{-p} \sum_{j=0}^{\infty} 4^{-p j}$. We fix $\omega \in \bigcap_{j=0}^{\infty} F_{l j}$. Then there exists a k-admissible set $0 \in A_{j} \subset \boldsymbol{Z}^{3}(E)$ satisfying $B_{l j}$ and

$$
\begin{equation*}
\left|G_{Q_{E}\left(A_{j}\right)}(\omega, E+i \varepsilon ; x, y)\right| \leq \exp (-m(E)|x-y|) \tag{6.15}
\end{equation*}
$$

for $|x-y| \geq L(E) l^{r}{ }_{j}$. We put

$$
\Lambda=\left\{x \in \boldsymbol{R}^{3} \| x \mid>l_{0} L(E)\right\}
$$

For $x \in \Lambda$, let j_{0} be the smallest natural number satisfying

$$
\begin{equation*}
|x| \leq \frac{1}{2} l_{j_{0}} L(E) \tag{6.16}
\end{equation*}
$$

By (5.1) we have inductively
(6.17) $G(x, y)$

$$
\begin{aligned}
= & G_{Q_{E}\left(A_{\left.p_{1}\right)}\right)}(x, y) \\
& +\sum_{n=j_{0}+1}^{M}(-1)^{n-j_{0}} \prod_{k=j_{0}+1}^{n}\left(\int_{r_{k}} \partial_{n_{z}} G_{Q_{E}(A k)}\left(z_{k-1}, z_{k}\right) d z_{k}\right) G_{Q_{E}(A n+1)}\left(z_{n}, y\right) \\
& +(-1)^{M-j_{0}+1} \prod_{k=j_{0}+1}^{M+1}\left(\int_{r_{k}} \partial_{n_{z}} G_{Q_{E}(A k)}\left(z_{k-1}, z_{k}\right) d z_{k}\right) G\left(z_{M+1}, y\right)
\end{aligned}
$$

for $y \in[0,1)^{3}$, where $\gamma_{j}=\partial Q_{E}\left(A_{j}\right), G(u, v)=G(\omega, E+i \varepsilon ; u, v), G_{\Lambda}(u, v)=$ $G_{\Lambda}(\omega, E+i \varepsilon ; u, v)$ and $z_{j_{0}}=x$. Since

$$
|y-x| \geq l_{j_{0-1}} L(E)-\sqrt{3} \geq l_{j_{0+1}}^{\tau} L(E),
$$

we have

$$
\begin{equation*}
\left|G_{Q_{E}\left(A_{0} 0_{1+1}\right)}(x, y)\right| \leq \exp (-m(E)|x-y|) . \tag{6.18}
\end{equation*}
$$

Since from (6.12) it follows for $\left|u-z_{k}\right| \leq 1$

$$
\begin{aligned}
& \left|z_{k-1}-u\right| \geq\left|z_{k-1}-z_{k}\right|-1 \\
& \geq \frac{1}{2} l_{k} L(E)-l_{k-1} L(E)-1 \\
& \geq l_{k-1} L(E)-1 \geq l^{r}{ }_{k} L(E)
\end{aligned}
$$

for $k \geq j_{0}+1$, by Lemma A. 5 we have

$$
\begin{align*}
& \left|\partial_{n_{3}} G_{Q_{E}\left(A_{k}\right)}\left(z_{k-1}, z_{k}\right)\right| \tag{6.19}\\
& \quad \leq \sup _{|u|}\left|G_{Q_{E}\left(A_{k}\right)}\left(z_{k-1}, u\right)\right| \leq \sup _{\mid u-z_{k} \leq 1} \exp \left(-m(E)\left|z_{k-1}-u\right|\right) \\
& \quad \leq \exp \left(-m(E)\left(\left|z_{k-1}-z_{k}\right|-1\right)\right) \leq \exp \left(-m(E) l_{k}^{\gamma} L(E)\right)
\end{align*}
$$

for $k \geq j_{0}+1$. Similary we have

$$
\begin{equation*}
\left|G_{Q_{E}\left(A_{n}\right)}\left(z_{n}, y\right)\right| \leq \exp \left(-m(E)\left|z_{n}-y\right|\right) \leq \exp (-m(E)|x-y|) . \tag{6.20}
\end{equation*}
$$

By Lemma A.4, we have

$$
\begin{equation*}
\left|G\left(z_{M+1}, y\right)\right| \leq \frac{1}{\left|z_{M+1}-y\right|}+\frac{c}{\varepsilon} \leq l_{M+1}^{-\gamma} L(E)^{-1}+\frac{c}{\varepsilon} . \tag{6.21}
\end{equation*}
$$

From (6.19), (6.20) and $\left|\gamma_{k}\right| \leq 2^{3} l_{k}^{3} L(E)^{2}$, we have

$$
\begin{align*}
& \prod_{k=j_{0}+1}^{n} \int_{r_{k}}\left|\partial n_{z_{k}} G_{Q_{E}(A k)}\left(z_{k-1}, z_{k}\right)\right| d z_{k} \tag{6.22}\\
& \quad \leq \prod_{k=j_{0}+1}^{n} 2^{3} l_{k}^{3} L(E)^{2} \exp \left(-m(E) l_{k}^{\gamma} L(E)\right) \leq \frac{\left(L(E)^{2}\right)^{n-j_{0}}}{\left(n-j_{0}\right)!}
\end{align*}
$$

where we used (6.10). From (6.20) and (6.22) we have

$$
\begin{align*}
& \left|\sum_{n=j_{0}+1}^{M} \prod_{k=j_{0}+1}^{n}\left(\int_{\gamma_{k}} \partial_{n_{2}} G_{Q_{E}(A k)}\left(z_{k-1}, z_{k}\right) d z\right) G_{Q_{E}(A n)}\left(z_{n}, y\right)\right| \tag{6.23}\\
& \quad \leq \exp (-m(E)|x-y|) \sum_{\substack{n=j_{0}+1}}^{M} \frac{\left(L(E)^{2}\right)^{n-j_{0}}}{\left(n-j_{0}\right)!} \\
& \quad=\exp (-m(E)|x-y|) \sum_{n=1}^{M-j_{0}} \frac{\left(L(E)^{2}\right)^{n}}{n!}
\end{align*}
$$

From (6.19), (6.21) and (6.10), we have

$$
\begin{align*}
& \left|\prod_{k=j_{0}+1}^{M+1}\left(\int_{r_{k}} \partial_{n_{2}} G_{Q_{E}\left(A_{k}\right)}\left(z_{k-1}, z_{k}\right) d z_{k}\right) G\left(z_{M+1}, y\right)\right| \tag{6.24}\\
& \quad \leq\left(\prod_{k=j_{0}+1}^{M+1} 2^{3} l_{k}^{3} L(E)^{2} \exp \left(-m(E) l_{k}^{\gamma} L(E)\right)\right)\left(l_{M+1}^{-\gamma} L(E)^{-1}+\frac{c}{\varepsilon}\right) \\
& \quad \leq \frac{\left(L(E)^{2}\right)^{M+1-j_{0}}}{\left(M+1-j_{0}\right)!}\left(l_{M+1}^{-\gamma} L(E)^{-1}+\frac{c}{\varepsilon}\right) \rightarrow 0 \text { as } M \rightarrow \infty .
\end{align*}
$$

From (6.17), (6.18), (6.23) and (6.24), we have

$$
\begin{equation*}
|G(x, y)| \leq \exp \left(L(E)^{2}\right) \exp (-m(E)|x-y|) \tag{6.25}
\end{equation*}
$$

for any $x \in \Lambda$ and $y \in[0,1)^{3}$.
For $x \in \boldsymbol{R}^{3} \backslash \Lambda$ and $y \in[0,1)^{3}$, we have from (5.1)
(6.26) $\quad G(x, y)$

$$
\begin{aligned}
= & G_{Q_{E}\left(A_{1}\right)}(x, y) \\
& +\sum_{n=1}^{M}(-1)^{n} \prod_{k=1}^{n}\left(\int_{r_{k}} \partial_{n_{n}} G_{Q_{E}\left(A_{k}\right)}\left(z_{k-1}, z_{k}\right) d z_{k}\right) G_{Q_{E}\left(A_{n-1}\right)}\left(z_{n}, y\right)
\end{aligned}
$$

$$
+(-1)^{M+1} \prod_{k=1}^{M+1}\left(\int_{r_{k}} \partial_{n_{2}} G_{Q_{E}(A k)}\left(z_{k-1}, z_{k}\right) d z_{k}\right) G\left(z_{M+1}, y\right) .
$$

We put

$$
F=\left\{\omega \mid \operatorname{dist}\left(\sigma\left(H_{Q_{E}\left(A_{1}\right)}(\omega)\right), E\right) \geq \exp \left(-m(E) N L(E)^{2}\right)\right\}
$$

From Proposition 4.1, we have

$$
\begin{equation*}
\boldsymbol{P}(F) \geq 1-c(2 N R L(E))^{6} \exp \left(-m(E) N L(E)^{2}\right) \tag{6.27}
\end{equation*}
$$

where c is independent of $N \in \boldsymbol{N}$ and $0<E \leq E^{*}$. Since there exist positive numbers δ_{1}, δ_{2} and δ_{3} such that

$$
\begin{equation*}
D_{0} \leq m(E) L(E) \leq \delta_{1} \tag{6.28}
\end{equation*}
$$

and

$$
\begin{equation*}
\delta_{2} E^{-\frac{1}{2}} \leq L(E) \leq \delta_{3} E^{-\frac{1}{2}} \tag{6.29}
\end{equation*}
$$

for $E>0$, we have

$$
\begin{equation*}
\exp \left(-m(E) N L(E)^{2}\right) \leq \exp \left(-D_{0} \delta_{2} N E^{-\frac{1}{2}}\right) \tag{6.30}
\end{equation*}
$$

From (6.29) and (6.30) there $N_{1} \in \boldsymbol{N}$ and $K_{p, 2}>0$ such that $N \geq N_{1}$, then we have

$$
\begin{align*}
& c(2 N R L(E))^{6} \exp \left(-m(E) N L(E)^{2}\right) \tag{6.31}\\
& \quad \leq c\left(2 N R \delta_{3} E^{-\frac{1}{2}}\right)^{6} \exp \left(-D_{0} \delta_{2} N E^{-\frac{1}{2}}\right) \\
& \quad \leq \frac{K_{p, 2}}{N^{p}}
\end{align*}
$$

for any $0<E \leq E^{*}$. Let $\omega \in F \cap\left(\cap_{j=0}^{\infty} F_{l_{j}}\right)$ be fixed. From Lemma A. 6 , we have

$$
\begin{equation*}
\left.\left|G_{Q_{E}\left(A_{1}\right)}(x, y)\right| \leq \frac{1}{|x-y|}+c \exp (m(E)) N L(E)^{2}\right) \tag{6.32}
\end{equation*}
$$

In a similar fashion as in (6.23) and (6.24), we have

$$
\begin{align*}
& \left|\sum_{n=1}^{M} \prod_{k=1}^{n}\left(\int_{r_{k}} \partial_{n_{4}} G_{Q_{E}\left(A_{k}\right)}\left(z_{k-1}, z_{k}\right) d z_{k}\right) G_{Q_{E}\left(A_{n+1}\right)}\left(z_{n}, y\right)\right| \tag{6.33}\\
& \quad \leq \exp \left(L(E)^{2}\right) \exp (-m(E)|x-y|)
\end{align*}
$$

and

$$
\begin{equation*}
\lim _{M \rightarrow \infty} \prod_{k=1}^{M+1}\left(\int_{r_{k}} \partial_{n_{k}} G_{Q_{E}\left(A_{k}\right)}\left(z_{k-1}, z_{k}\right) d z_{k}\right) G\left(z_{M+1}, y\right)=0 \tag{6.34}
\end{equation*}
$$

From (6.32), (6.33) and (6.34), we have
(6.35) $|G(x, y)|$

$$
\leq \frac{1}{|x-y|}+c \exp \left(m(E) N L(E)^{2}\right)+\exp \left(L(E)^{2}-m(E)|x-y|\right)
$$

for $0<E \leq E^{*}$ and $N \geq N_{1}$. There exists $E^{*} \geq E_{2}>0$ such that if $0<E \leq E_{2}$, then we have

$$
\begin{equation*}
\frac{L(E)^{2}}{2}-L(E)>2 R . \tag{6.36}
\end{equation*}
$$

In the following let $0<E \leq E_{2}$. There exists $N_{2} \geq N_{1}$ such that if $N \geq N_{2}$, then it follows

$$
\begin{equation*}
|x-y| \leq N R L(E)+\sqrt{3} \leq 2 N R L(E) \tag{6.37}
\end{equation*}
$$

Hence by (6.36) there exists $N_{3} \geq N_{2}$ such that if $N \geq N_{3}$, then we have

$$
\begin{align*}
& \exp \left(m(E)\left(N L(E)^{3}-|x-y|\right)\right) \tag{6.38}\\
& \quad \geq \exp \left(m(E)\left(N L(E)^{3}-2 N R L(E)\right)\right) \\
& \quad \geq \exp \left(D_{0} N\left(L(E)^{2}-2 R\right) \geq 3\right.
\end{align*}
$$

There exists $N_{4} \geq N_{3}$ such that if $N \geq N_{4}$, then

$$
\begin{equation*}
3 c \leq \frac{\exp \left(D_{0} \frac{N}{2} L(E)^{2}\right)}{2 N R L(E)} \leq \frac{\exp \left(\frac{N}{2} m(E) L(E)^{3}\right)}{2 N R L(E)} \tag{6.39}
\end{equation*}
$$

where c is as in (6.35). Then we have

$$
\begin{align*}
3 c & \exp \left(m(E) N L(E)^{2}\right) \tag{6.40}\\
& \leq \frac{\exp \left(m(E)\left(N L(E)^{3}-2 N R L(E)\right)\right)}{2 N R L(E)}(\text { by (154) and (151)) } \\
& \leq \frac{\exp \left(m(E)\left(N L(E)^{3}-|x-y|\right)\right)}{|x-y|} .
\end{align*}
$$

In a similar fashion we have

$$
\begin{equation*}
3 \exp \left(L(E)^{2}-m(E)|x-y|\right) \leq \frac{\exp \left(m(E)\left(N L(E)^{3}-|x-y|\right)\right)}{|x-y|} \tag{6.41}
\end{equation*}
$$

for sufficiently large $N>0$. From (6.35), (6.38), (6.40) and (6.41), we have

$$
\begin{equation*}
|G(x, y)| \leq \frac{\exp \left(m(E)\left(N L(E)^{3}-|x-y|\right)\right)}{|x-y|} \tag{6.42}
\end{equation*}
$$

for any $x \in \boldsymbol{R}^{3} \backslash \Lambda$ and any $y \in[0,1)^{3}$ satisfying $|x-y| \geq 1$ for sufficiently large $N>0$ and $0<E \leq E_{2}$. From (6.25), (6.42), there exists $N_{5}>0$ such that if $\omega \in$ $F \cap\left(\cap_{j=0}^{\infty} F_{l_{l}}\right), 0<E \leq E_{2}$ and $N \geq N_{5}$, then we have

$$
\begin{equation*}
|G(x, y)| \leq \exp \left(m(E)\left(N L(E)^{3}-|x-y|\right)\right) \max \left\{1, \frac{1}{|x-y|}\right\} \tag{6.43}
\end{equation*}
$$

for any $x \in \boldsymbol{R}^{3}$ and any $y \in[0,1)^{3}$. From (6.14), (6.27), (6.31) and (6.43), Theorem 1.3 is proved.

A. Appendix 1

Proof of the last equality of (2.1). Let $\psi \in L^{2}\left(\boldsymbol{R}^{3}\right)$ and let $X_{l}(x)$ be the characteristic function of $\left\{x \in \boldsymbol{R}^{3}| | x \mid \leq l\right\}$ for $l>0$. We have:

$$
\begin{aligned}
& \left(\psi, X_{l}|x| \int_{0}^{\infty} e^{-\varepsilon t} e^{i \lambda t} e^{-i t H \omega} \Psi_{\omega} d t\right) \\
& =\int_{0}^{\infty} e^{-i \lambda t}\left(\psi, X_{l}|x| e^{-i t H_{\omega}} \Psi_{\omega}\right) d t
\end{aligned}
$$

where $\Psi_{\omega}=g_{E}\left(H_{\omega}\right) \psi(x)$. Therefore by using the Plancherel theorem, we get:

$$
\begin{aligned}
& \int_{0}^{\infty}\left|\left(\psi, X_{l}|x| e^{-\varepsilon t} e^{-i t H_{\omega}} \Psi_{\omega}\right)\right|^{2} d t \\
& \quad=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|\left(\psi, X_{l}|x| \int_{0}^{\infty} e^{i \lambda t} e^{-\varepsilon t} e^{-i t H_{\omega}} \Psi_{\omega} d t\right)\right|^{2} d \lambda \\
& \quad=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|\left(\psi, X_{l}|x| R_{\omega}(\lambda+i \varepsilon) \Psi_{\omega}\right)\right|^{2} d \lambda .
\end{aligned}
$$

Let $\left\{\psi_{n}\right\}_{n=1}^{\infty}$ be a complete orthonormal system of $L^{2}\left(\boldsymbol{R}^{3}\right)$. By putting $\psi_{n}=\psi$ in the above equation and summing up with respect to n, we have

$$
\begin{align*}
& \frac{1}{2 \pi} \int_{-\infty}^{\infty}\left\|X_{l}|x| R_{\omega}(\lambda+i \varepsilon) \Psi_{\omega}\right\|^{2} d \lambda \tag{A.1}\\
& \quad=\int_{0}^{\infty} e^{-2 \varepsilon t} \| X_{l}|x|^{-i t H} \omega \\
& \Psi_{\omega} \|^{2} d t
\end{align*}
$$

If we let $l \rightarrow \infty$ and integrate the both sides of (A.1) with respect to P, then it follows from the monotone convergence theorem and the definition of $r_{E}^{2}(t)$ that:

$$
\begin{aligned}
& \int_{0}^{\infty} e^{-2 \varepsilon t} r_{\boldsymbol{E}}^{2}(t) d t \\
& \quad=\frac{1}{2 \pi} \int_{-\infty}^{\infty} \boldsymbol{E}\left[\left\||x| R_{\omega}(\lambda+i \varepsilon) \Psi_{\omega}\right\|^{2}\right] d \lambda
\end{aligned}
$$

Lemma A.1. Let $V \geq 0$ be a bounded function on \boldsymbol{R}^{3} and $H=-\Delta+V$ on $L^{2}\left(\boldsymbol{R}^{3}\right)$. Then there exists a constant $c>0$ such that for $f \in C_{0}^{\infty}(\boldsymbol{R})$ we have
$\|f(H)\|_{L_{2}^{2}+L_{2}^{2}}$

$$
\leq_{c}|\operatorname{supp} f|^{\frac{1}{2}}\left(\|f\|_{\infty}+\left\|\frac{d^{3}}{d x^{3}} f\right\|_{\infty}+\|h\|_{\infty}+\left\|\frac{d^{3}}{d x^{3}} h\right\|_{\infty}+\|k\|_{\infty}+\left\|\frac{d^{3}}{d x^{3}} k\right\|_{\infty}\right),
$$

where $h(x)=x f$ and $k=x^{2} f(x)$.

Proof of Lemma. Since

$$
f(H)=\langle x\rangle^{-2}\langle x\rangle^{2} f(H)\langle x\rangle^{-2}\langle x\rangle^{2},
$$

$\langle x\rangle^{2}$ is unitary operator from L_{2}^{2} to L^{2} and $\langle x\rangle^{-2}$ is a unitary operator from L^{2} to L_{2}^{2}, we have

$$
\begin{equation*}
\|f(H)\|_{L_{2}^{2}-L_{2}^{2}}=\left\|\langle x\rangle^{2} f(H)\langle x\rangle^{-2}\right\|_{L^{2} \rightarrow L^{2}} . \tag{A.2}
\end{equation*}
$$

Let $g(\lambda)=(1+\lambda)^{2} f(\lambda) \in C_{0}^{\infty}(\boldsymbol{R})$. We have

$$
\begin{align*}
& \langle x\rangle^{2} f(H)\langle x\rangle^{-2} \tag{A.3}\\
& \quad=\langle x\rangle^{2} f(H)(H+1)^{2}(H+1)^{-2}\langle x\rangle^{-2} \\
& \quad=\langle x\rangle^{2} g(H)(H+1)^{-2}\langle x\rangle^{-2} \\
& \quad=\frac{1}{\sqrt{2 \pi}} \int_{R} \widehat{g}(\lambda)\langle x\rangle^{2} e^{i \lambda H}(H+1)^{-2}\langle x\rangle^{-2} d \lambda,
\end{align*}
$$

where $\widehat{g}(\lambda)=\frac{1}{\sqrt{2 \pi}} \int_{R} e^{-i \lambda x g}(x) d x$. We have

$$
\begin{align*}
& \langle x\rangle^{2} e^{i \lambda H}(H+1)^{-2}\langle x\rangle^{-2} \tag{A.4}\\
& \quad=\left[\langle x\rangle^{2}, e^{i \lambda H}\right](H+1)^{-2}\langle x\rangle^{-2} \\
& \quad+e^{i \lambda H}\langle x\rangle^{2}(H+1)^{-2}\langle x\rangle^{-2},
\end{align*}
$$

where [,] is commutator. First we shall estimate the 2nd term of right hand side of (A.4). We shall show that $\langle x\rangle^{2}(H+1)^{-2}\langle x\rangle^{-2}$ is a bounded operator on $L^{2}\left(\boldsymbol{R}^{3}\right)$. Since we have

$$
\begin{aligned}
& {\left[\langle x\rangle^{2},(H+1)^{-1}\right]} \\
& \quad=(H+1)^{-1}\left[H, x^{2}\right](H+1)^{-1} \\
& \quad=6(H+1)^{-2}-4(H+1)^{-1} \nabla \cdot x(H+1)^{-1}
\end{aligned}
$$

and

$$
\begin{aligned}
& {\left[x,(H+1)^{-1}\right]=(H+1)^{-1}[H, x](H+1)^{-1}} \\
& \quad=-2(H+1)^{-1} \nabla(H+1)^{-1}
\end{aligned}
$$

it follows immediately that $\langle x\rangle^{2}(H+1)^{-2}\langle x\rangle^{-2}$ is a bounded operator on $L^{2}\left(\boldsymbol{R}^{3}\right)$. Next we shall show that

$$
\begin{equation*}
\left\|\left[\langle x\rangle^{2}, e^{i \lambda H}\right](H+1)^{-2}\langle x\rangle^{-2}\right\| \leq_{c}\left(1+\lambda^{2}\right) . \tag{A.5}
\end{equation*}
$$

We have

$$
\begin{align*}
& {\left[\langle x\rangle^{2}, e^{i \lambda H}\right]} \tag{A.6}\\
& \quad=e^{i \lambda H}\left(e^{-i \lambda H}\langle x\rangle^{2} e^{i \lambda H}-\langle x\rangle^{2}\right) \\
& \quad=i e^{i \lambda H} \int_{0}^{\lambda} e^{-i \mu H}\left[x^{2}, H\right] e^{i \mu H} d \mu
\end{align*}
$$

$$
=i e^{i \lambda H} \int_{0}^{\lambda}\left(-6+4 e^{-i \mu H} \nabla \cdot x e^{i \mu H}\right) d \mu
$$

and
(A.7)

$$
\begin{aligned}
& e^{-i \mu H} \nabla \cdot x e^{i \mu H}(H+1)^{-2}\langle x\rangle^{-2} \\
&= e^{-i \mu H} \nabla \cdot x(H+1)^{-1} e^{i \mu H}(H+1)^{-1}\langle x\rangle^{-2} \\
&= e^{-i \mu H} \nabla \cdot\left(\left[x,(H+1)^{-1}\right]+(H+1)^{-1} x\right) \\
& \times e^{i \mu H}(H+1)^{-1}\langle x\rangle^{-2}
\end{aligned}
$$

Since $\left[x,(H+1)^{-1}\right]=(H+1)^{-1}(-2 \nabla)(H+1)^{-1}$, it suffices to show that

$$
\begin{equation*}
\left\|x e^{i \mu H}(H+1)^{-1}\langle x\rangle^{-2}\right\| \leq_{c}(1+\mu) . \tag{A.8}
\end{equation*}
$$

Since

$$
\begin{aligned}
& {\left[x, e^{i \mu H}\right]} \\
& \quad=i e^{i \mu H} \int_{0}^{\mu} e^{-i \tau H}[x, H] e^{i \tau H} d \tau
\end{aligned}
$$

and $[x, H]=2 \nabla$, we have

$$
\begin{equation*}
\left\|\left[x, e^{i \mu H}\right](H+1)^{-1}\right\| \leq c \mu \tag{A.9}
\end{equation*}
$$

Since

$$
\begin{aligned}
& e^{i \mu H} x(H+1)^{-1}\langle x\rangle^{-2} \\
& \quad=e^{i \mu H}\left(\left[x,(H+1)^{-1}\right]+(H+1)^{-1} x\right)\langle x\rangle^{-2}
\end{aligned}
$$

we have $\left\|e^{i \mu H} x(H+1)^{-1}\langle x\rangle^{-2}\right\| \leq c$. Then (A.8) is shown. From (A.6), (A.7) and (A.8), we have (A.5). Therefore we have
(A.10)

$$
\begin{aligned}
& \left\|\langle x\rangle^{2} f(H)\langle x\rangle^{-2}\right\|_{L^{2}-L^{2}} \\
& \quad \leq c \int_{R}|\widehat{g}(\lambda)|\left(1+\lambda^{2}\right) d \lambda \\
& \quad=c\left(\int_{R} \frac{1}{1+\lambda^{2}} d \lambda\right)^{\frac{1}{2}}\left(\int_{R}|\widehat{g}(\lambda)|^{2}\left(1+\lambda^{2}\right)^{3} d \lambda\right)^{\frac{1}{2}} \\
& \quad \leq c\left(\int_{R} \frac{1}{1+\lambda^{2}} d \lambda\right)^{\frac{1}{2}}\left(\int_{R}|\widehat{g}(\lambda)|^{2}\left(1+\lambda^{6}\right) d \lambda\right)^{\frac{1}{2}} .
\end{aligned}
$$

We have
(A.11)

$$
\begin{aligned}
& \int_{\boldsymbol{R}}|\widehat{g}(\lambda)|^{2} d \lambda \\
& \quad=\int_{\boldsymbol{R}}|g(x)|^{2} d x=\int_{R}\left|f(x)(1+x)^{2}\right|^{2} d x \\
& \quad \leq c|\operatorname{supp} f|\left(|f|_{\infty}+|h|_{\infty}+|k|_{\infty}\right)^{2}
\end{aligned}
$$

and

$$
\int_{R}\left|\widehat{g}(\lambda) \lambda^{3}\right|^{2} d \lambda
$$

$$
\begin{aligned}
& =\int_{R}\left|\left(\frac{d}{d x}\right)^{3} f(x)(1+x)^{2}\right|^{2} d x \\
& \leq c|\operatorname{supp} f|\left(\left\|\left(\frac{d}{d x}\right)^{3} f\right\|_{\infty}+\left\|\left(\frac{d}{d x}\right)^{3} h\right\|_{\infty}+\left\|\left(\frac{d}{d x}\right)^{3} k\right\|_{\infty}\right)^{2} .
\end{aligned}
$$

Then we have proved Lemma A.1.
Lemma A.2. Let $V \geq 0$ be bounded function on \boldsymbol{R}^{3} and $H=-\Delta+V$ on $L^{2}\left(\boldsymbol{R}^{3}\right)$. If $f \in C_{0}^{\infty}(\boldsymbol{R})$, then $f(H)$ is a bounded operator from L_{2}^{2} to L_{2}^{∞}.

Proof. Noting that $H^{2}\left(\boldsymbol{R}^{3}\right) \subset L^{\infty}\left(\boldsymbol{R}^{3}\right)$, for $u \in L_{2}^{2}\left(\boldsymbol{R}^{3}\right)$ we have

$$
\begin{align*}
& \left\|\langle x\rangle^{2} f(H) u\right\|_{L^{\infty}} \tag{A.12}\\
& \quad \leq c\left\|(-\Delta+1)\langle x\rangle^{2} f(H) u\right\|_{L^{2}} \\
& \quad \leq c\left\|(H+1)\langle x\rangle^{2} f(H)\langle x\rangle^{-2}\langle x\rangle^{2} u\right\|_{L^{2}}+c\left\|V\langle x\rangle^{2} f(H)\langle x\rangle^{-2}\langle x\rangle^{2} u\right\|_{L^{2}} .
\end{align*}
$$

Since it follows from Lemma A.1, $V\langle x\rangle^{2} f(H)\langle x\rangle^{-2}$ is a bounded operator on L^{2}, we have only to show that $(H+1)\langle x\rangle^{2} f(H)\langle x\rangle^{-2}$ is a bounded operator on $L^{2}\left(\boldsymbol{R}^{3}\right)$. From Lemma A.1, we have that $\langle x\rangle^{2}(H+1) f(H)\langle x\rangle^{-2}$ is a bounded operator on $L^{2}\left(\boldsymbol{R}^{3}\right)$. It is sufficient to show that $\left[H,\langle x\rangle^{2}\right] f(H)\langle x\rangle^{-2}$ is a bounded operator on $L^{2}\left(\boldsymbol{R}^{3}\right)$. Noting that $\left[H,\langle x\rangle^{2}\right]=6-4 \Delta \cdot x$, we have only to study $\nabla \cdot x f(H)\langle x\rangle^{-2}$. We have

$$
\nabla \cdot x f(H)\langle x\rangle^{-2}=\nabla f(H) x\langle x\rangle^{-2}+\nabla[x, f(H)]\langle x\rangle^{-2} .
$$

Let $f(H)=(H+1)^{-1} g(H)$, we have

$$
[x, f(H)]=(H+1)^{-1}[H, x](H+1)^{-1} g(H)+(H+1)^{-1}(x g(H)-g(H) x)
$$

and $x g(H)\langle x\rangle^{-2}$ is a bounded operator on $L^{2}\left(\boldsymbol{R}^{3}\right)$. Hence $\nabla \cdot x f(H)\langle x\rangle^{-2}$ is bounded operator on $L^{2}\left(\boldsymbol{R}^{3}\right)$.

Lemma A.3. Let $\Omega \subset \boldsymbol{R}^{3}$ be a domain and the let $0 \leq V$ be a bounded function on \boldsymbol{R}^{3}. Let $H^{D}=-\Delta+V$ with Dirichlet boundary conditions on $L^{2}(\Omega)$. If $\inf \sigma\left(H^{D}\right) \geq 2 E>0$, then we have

$$
\left|\left(H^{D}-E-i \varepsilon\right)^{-1}(x, y)\right| \leq 5 \exp \left(-\frac{\sqrt{E}}{4}|x-y|\right)
$$

for $x, y \in \Omega,|x-y| \geq 1$ and $E \geq|\varepsilon|$. Here $\left(H^{D}-E-i \varepsilon\right)^{-1}(x, y)$ is the Green function of $H^{D}-E-i \varepsilon$.

Proof. Using the resolvent equation twice, we get

$$
\begin{align*}
& \left(H^{D}-E-i \varepsilon\right)^{-1} \tag{A.13}\\
& \quad=\left(H^{D}+E+i \varepsilon\right)^{-1}+2(E+i \varepsilon)\left(H^{D}+E+i \varepsilon\right)^{-1}\left(H^{D}-E-i \varepsilon\right)^{-1} \\
& \quad=\left(H^{D}+E+i \varepsilon\right)^{-1}+2(E+i \varepsilon)\left(H^{D}+E+i \varepsilon\right)^{-2} \\
& \quad+4(E+i \varepsilon)^{2}\left(H^{D}+E+i \varepsilon\right)^{-1}\left(H^{D}-E-i \varepsilon\right)^{-1}\left(H^{D}+E+i \varepsilon\right)^{-1} .
\end{align*}
$$

First we shall estimate the first and second terms of (A.13). We have

$$
\begin{equation*}
\left|\left(H^{D}+E+i \varepsilon\right)^{-1}(x, y)\right| \leq \frac{\exp (-\sqrt{E}|x-y|)}{4 \pi|x-y|} \tag{A.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left(H^{D}+E+i \varepsilon\right)^{-2}(x, y)\right| \leq \frac{\exp \left(-\sqrt{\frac{E}{2}}|x-y|\right)}{2 \pi E|x-y|} \tag{A.15}
\end{equation*}
$$

In fact by Feynman-Kac formura, we have

$$
\begin{aligned}
0 & \leq \exp \left(-t H^{D}\right)(x, y) \\
& \leq \exp \left(-t H_{0}^{D}\right)(x, y) \leq \exp \left(-t H_{0}\right)(x, y)=\frac{\exp \left(-\frac{|x-y|^{2}}{4 t}\right)}{(4 \pi t)^{\frac{3}{2}}}
\end{aligned}
$$

Here $H_{0}=-\Delta$ on $L^{2}\left(\boldsymbol{R}^{3}\right)$. Therefore it follows that

$$
\begin{aligned}
& \left|\left(H^{D}+E+i \varepsilon\right)^{-1}(x, y)\right| \leq \int_{0}^{\infty} \exp (-E t) \exp \left(-t H^{D}\right)(x, y) d t \\
& \quad \leq \int_{0}^{\infty} \exp (-E t) \frac{\exp \left(-\frac{|x-y|^{2}}{4 t}\right)}{(4 \pi t)^{\frac{3}{2}}} d t \\
& \quad=\left(H_{0}+E\right)^{-1}(x, y)=\frac{\exp (-\sqrt{E}|x-y|)}{4 \pi|x-y|} .
\end{aligned}
$$

and

$$
\begin{aligned}
& \left|\left(H^{D}+E+i \varepsilon\right)^{-2}(x, y)\right| \leq \int_{0}^{\infty} t \exp (-E t) \exp \left(-t H^{D}\right)(x, y) d t \\
& \quad \leq \int_{0}^{\infty} t \exp (-E t) \frac{\exp \left(-\frac{|x-y|^{2}}{4 t}\right)}{(4 \pi t)^{\frac{3}{2}}} d t \\
& \quad \leq \frac{2}{E}\left(H_{0}+\frac{E}{2}\right)^{-1}(x, y)=\frac{\exp \left(-\sqrt{\frac{E}{2}}|x-y|\right)}{2 \pi E|x-y|} .
\end{aligned}
$$

since $t \exp \left(-\frac{E}{2} t\right) \leq \frac{2}{E}$. Thus we have (A.14) and (A.15).
Next we shall estimate the third term of (A.13). Let Ψ be a bounded and C^{∞}-function such that $|\nabla \Psi| \leq 1$ and $(\partial / \partial x)^{\beta} \Psi$ are bounded for all multi-index $|\beta| \leq 2$ and let $\alpha \in \boldsymbol{C}$. Noting that $\exp (\alpha \Psi)$ is bounded, we estimate the norm of the following operator:
$e^{-\alpha \Psi}\left(H^{D}+E+i \varepsilon\right)^{-1} e^{\alpha \Psi} e^{-\alpha \Psi}\left(H^{D}-E-i \varepsilon\right)^{-1} e^{\alpha \Psi} e^{-\alpha \Psi}\left(H^{D}+E+i \varepsilon\right)^{-1} e^{\alpha \Phi}: L^{1}(\Omega) \rightarrow L^{\infty}(\Omega)$

Since $|\nabla \Psi| \leq 1$, it follows that $|\Psi(x)-\Psi(y)| \leq|x-y|$. Then by (A.14), we have

$$
\begin{align*}
& \left|e^{-\alpha \Psi}\left(H^{D}+E+i \varepsilon\right)^{-1} e^{\alpha \Psi}(x, y)\right| \tag{A.16}\\
& \quad \leq \frac{\exp (-\Omega(\alpha(\Psi(x)-\Psi(y)))) \exp (-\sqrt{E}|x-y|)}{4 \pi|x-y|} \\
& \quad \leq \frac{\exp (-(\sqrt{E}-|\alpha|)|x-y|)}{4 \pi|x-y|} \\
& \quad \leq \frac{\exp \left(-\frac{\sqrt{E}}{2}|x-y|\right)}{4 \pi|x-y|} \equiv G(x-y)
\end{align*}
$$

if $|\alpha| \leq \frac{\sqrt{E}}{2}$. We have

$$
\begin{equation*}
\left\|e^{-\alpha \Psi}\left(H^{D}+E+i \varepsilon\right)^{-1} e^{\alpha \Psi}\right\|_{L^{1}(\Omega)-L^{2}(\Omega)} \leq\|G\|_{L^{2}}=(4 \pi)^{-\frac{1}{2}} E^{-\frac{1}{4}} \tag{A.17}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|e^{-\alpha \Psi}\left(H^{D}+E+i \varepsilon\right)^{-1} e^{\alpha \Psi}\right\|_{L^{2}(\Omega)-L^{-}(\Omega)} \leq\left\|_{G}\right\|_{L^{2}}=(4 \pi)^{-\frac{1}{2}} E^{-\frac{1}{4}} . \tag{A.18}
\end{equation*}
$$

Next we estimate the norm of the following operator:

$$
e^{-\alpha \Psi}\left(H^{D}-E-i \varepsilon\right)^{-1} e^{\alpha \Psi}: L^{2}(\Omega) \rightarrow L^{2}(\Omega) .
$$

Noting that the operator $e^{-\alpha \Psi}$ is bijective and bounded on $\operatorname{Dom}\left(H^{D}\right)=H_{0}^{1}(\Omega) \cap$ $H^{2}(\Omega)$, for $u \in \operatorname{Dom}\left(H^{D}\right)$ we have
(A.19) $\left\|\left(e^{-\alpha \Psi} H^{D} e^{\alpha \Psi}-E-i \varepsilon\right) u\right\|\|u\|$

$$
\begin{aligned}
& \geq\left|\left(\left(e^{-\alpha \Psi} H^{D} e^{\alpha \Psi}-E-i \varepsilon\right) u, u\right)\right| \geq \Omega\left(\left(e^{-\alpha \Psi} H^{D} e^{\alpha \Psi}-E-i \varepsilon\right) u, u\right) \\
& =\Omega\left(\left(\nabla e^{\alpha \Psi} u, \nabla e^{-\alpha \Psi} u\right)+(V u, u)-(E-\varepsilon i)\|u\|^{2}\right)
\end{aligned}
$$

Here it follows
(A.20)

$$
\begin{aligned}
& \left(\nabla e^{\alpha \Psi} u, \nabla e^{-\alpha \Psi} u\right) \\
& \quad=(\nabla u, \nabla u)+\left(\alpha(\nabla \Psi) u,-\alpha\left(\nabla \Psi^{\prime}\right) u\right) \\
& \quad+\left\{\left(\alpha\left(\nabla \Psi^{\prime}\right) u, \nabla u\right)+\left(\nabla u,-\alpha\left(\nabla \Psi^{\prime}\right) u\right)\right\}
\end{aligned}
$$

and

$$
\left(\alpha(\nabla \Psi) u,-\alpha(\nabla \Psi)_{u}\right)=-|\alpha|^{2}\left\|\left.\nabla \Psi\right|_{u}\right\|^{2} \geq-|\alpha|^{2}\|u\|^{2}
$$

Since the third term of the right hand side of (A.20) is pure imaginary, the last member of (A.19) is bounded from below by

$$
\begin{align*}
& (\nabla u, \nabla u)+(V u, u)-|\alpha|^{2}\|u\|^{2}-E\|u\|^{2} \tag{A.21}\\
& \quad \geq\left(\inf \sigma\left(H^{D}\right)-|\alpha|^{2}-E\right)\|u\|^{2} \\
& \quad \geq\left(E-|\alpha|^{2}\right)\|u\|^{2} .
\end{align*}
$$

Therefore if $|\alpha|<\sqrt{\frac{E}{2}}$, we have

$$
\left\|e^{-\alpha \Psi}\left(H^{D}-E-i \varepsilon\right) e^{\alpha \Psi} u\right\| \geq \frac{E}{2}\|u\|
$$

and the operator $e^{-\alpha \Psi}\left(H^{D}-E-i \varepsilon\right) e^{\alpha \Psi}$ is surjective on $L^{2}(\Omega)$. Then

$$
\begin{equation*}
\left\|e^{-\alpha \Psi}\left(H^{D}-E-i \varepsilon\right)^{-1} e^{\alpha \Psi}\right\|_{L^{2}(\Omega) \rightarrow L^{2}(\Omega)} \leq \frac{2}{E} . \tag{A.22}
\end{equation*}
$$

Hence from (A.17), (A.18) and (A.22), it follows

$$
\left\|e^{-\alpha \Psi}\left(H^{D}+E+i \varepsilon\right)^{-1}\left(H^{D}-E-i \varepsilon\right)^{-1}\left(H^{D}+E+i \varepsilon\right)^{-1} e^{\alpha \Psi}\right\|_{L^{1}(\Omega) \rightarrow L^{m}(\Omega)} \leq \frac{1}{2 \pi E^{\frac{3}{2}}} .
$$

From this we have

$$
\left|e^{-\alpha(\Psi(x)-\Psi(y))}\left(H^{D}+E+i \varepsilon\right)^{-1}\left(H^{D}-E-i \varepsilon\right)^{-1}\left(H^{D}+E+i \varepsilon\right)^{-1}(x, y)\right| \leq \frac{1}{2 \pi E^{\frac{3}{2}}}
$$

and then

$$
\begin{gathered}
\left|\left(H^{D}+E+i \varepsilon\right)^{-1}\left(H^{D}-E-i \varepsilon\right)^{-1}\left(H^{D}+E+i \varepsilon\right)^{-1}(x, y)\right| \\
\leq \frac{1}{2 \pi E^{\frac{3}{2}}} \exp \Omega(\alpha(\Psi(x)-\Psi(y)))
\end{gathered}
$$

for any $\alpha \in \boldsymbol{C}$ such that $|\alpha|<\frac{\sqrt{E}}{2}$ and any bounded function $\Psi \in C^{\infty}(\boldsymbol{R}),|\nabla \Psi| \leq 1$ and $(\partial / \partial x)^{\beta} \Psi$ are bounded for all multi-index $|\beta| \leq 2$. Therefore since for fixed x and y we have

$$
\underset{\alpha, \Psi}{\operatorname{infexp}} \Omega(\boldsymbol{\alpha}(\Psi(x)-\Psi(y)))=\exp \left(-\frac{\sqrt{E}}{2}|x-y|\right),
$$

we have
$\left|\left(H^{D}+E+i \varepsilon\right)^{-1}\left(H^{D}-E-i \varepsilon\right)^{-1}\left(H^{D}+E+i \varepsilon\right)^{-1}(x, y)\right| \leq \frac{1}{2 \pi E^{\frac{3}{2}}} \exp \left(-\frac{\sqrt{E}}{2}|x-y|\right)$.
From (A.13), (A.14), (A15) and (A.23), we obtain

$$
\begin{equation*}
\left|\left(H^{D}-E-i \varepsilon\right)^{-1}(x, y)\right| \leq 5 \exp \left(-\frac{\sqrt{E}}{4}|x-y|\right) \tag{A.24}
\end{equation*}
$$

for any x and y such that $|x-y| \geq 1$ and $0<\varepsilon \leq E$. We have thus proved the lemma.

Lemma A.4. Let E^{*} and \bar{E} be two positive numbers such that $\bar{E} \leq E^{*}$. For any $z \in \boldsymbol{C}$ such that $\operatorname{Re}(z) \in\left[\bar{E}, E^{*}\right], \operatorname{Im}(z) \neq 0$ and $|\operatorname{Im}(z)|<1$ it follows that

$$
\left|\left(H_{\omega}-z\right)^{-1}(x, y)\right| \leq \frac{1}{|x-y|}+c \frac{1}{|\operatorname{Im}(z)|}
$$

where c is independent of z and ω.
Proof. As is shown in the proof of Lemma A.3, we have

$$
\begin{equation*}
\left|\left(H_{\omega}-w\right)^{-1}(x, y)\right| \leq \frac{\exp (-\sqrt{|w|}|x-y|)}{4 \pi|x-y|} \tag{A.25}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|\left(H_{\omega}-w\right)^{-2}(x, y)\right| \leq \frac{\exp \left(-\sqrt{\frac{|w|}{2}}|x-y|\right)}{2 \pi|w \| x-y|} \tag{A.26}
\end{equation*}
$$

for $w<0$. From (A.24) and (A.25) in a similar fashion to that used in the proof of Lemma A. 3 we have

$$
\begin{equation*}
\left|\left(H_{\omega}-w\right)^{-1}\left(H_{\omega}-z\right)^{-1}\left(H_{\omega}-w\right)^{-1}(x, y)\right| \leq \frac{1}{\sqrt{|w||\operatorname{Im}(z)|}} \tag{A.27}
\end{equation*}
$$

Using the resolvent equation twice, we get

$$
\begin{align*}
& \left(H_{\omega}-z\right)^{-1} \tag{A.28}\\
& \quad=\left(H_{\omega}-w\right)^{-1}+(z-w)\left(H_{\omega}-w\right)^{-1}\left(H_{\omega}-z\right)^{-1} \\
& =\left(H_{\omega}-w\right)^{-1}+(z-w)\left(H_{\omega}-w\right)^{-2} \\
& \quad+(z-w)^{2}\left(H_{\omega}-w\right)^{-2}\left(H_{\omega}-z\right)^{-1} .
\end{align*}
$$

From (A.24)-(A.27), we have

$$
\left|\left(H_{\omega}-z\right)^{-1}(x, y)\right| \leq \frac{1}{|x-y|}+c \frac{1}{|\operatorname{Im}(z)|}
$$

Lemma A.5. Let $v \in \partial \Lambda$ be not one of the corners. Then

$$
\left|\partial_{n_{0}} G_{\Lambda}(E+i \varepsilon ; u, v)\right| \leq c_{3} \sup _{v^{\prime}-v|l|} G_{\Lambda}\left(E+i \varepsilon ; u, v^{\prime}\right) \mid
$$

for any u such that $|u-v| \geq 1$. Here c_{3} is independent of Λ, E and ε.
Proof. This lemma has be shown in [5] (Lemma 3.1).
Lemma A.6. Let $\Lambda \subset \boldsymbol{R}^{3}, 0 \leq V$ be a bounded function on \boldsymbol{R}^{3} and $H=-\Delta+$ V. Let $H_{\Lambda}=\left.H\right|_{L^{2}(\Lambda)}$ with Dirichlet boundary conditions on $L^{2}(\Lambda)$. If $u, w \in \Lambda$, then it follows

$$
\left|G_{\Lambda}(E+i \varepsilon ; u, v)\right| \leq \frac{1}{|u-v|}+\frac{c_{4}}{\operatorname{dist}\left(\sigma\left(H_{\Lambda}\right), E+i \varepsilon\right)}
$$

where c_{4} is independent of Λ, u, v, E and ε.
Proof. This lemma is shown a fashion similar to that used in the proof of

Lemma A. 4.

B. Appendix 2

Lemma B.1. There exists $E^{\prime \prime}>0$ such that for $0<E \leq E^{\prime \prime}$ it follows that if $D_{1}, D_{2} \subset \boldsymbol{Z}^{3}(E), D_{1} \subset D_{2}$ and $\operatorname{dist}_{E}\left(D_{1}, D^{c}\right) \geq 12 d_{k}$, then there exists a k-admissible set A such that $D_{1} \subset A \subset D_{2}$.

Proof. We denote by P_{k} in the following assertion:
If $D_{1} \subset D_{2} \subset \boldsymbol{Z}^{3}(E)$ and $\operatorname{dist}_{E}\left(D_{1}, D_{2}^{c}\right) \geq 12 d_{k}$, then there exists a k-admissible set A such that $D_{1} \subset A \subset D_{2}$.

We shall prove P_{k} for $k \geq 0$ by induction.
Step 1. Proof of P_{0}.
We have only to show the case that there exists a component D_{0}^{x} such that

$$
D_{1} \cap W\left(D_{0}^{\kappa}, 4 d_{0}\right) \neq \emptyset
$$

Let

$$
\left.K=\left\{\kappa \mid W\left(D_{0}^{\kappa}, 4 d_{0}\right) \cap D_{1}\right) \neq \emptyset\right\}
$$

and

$$
A=D_{1} \cup \cup_{x \in K} W\left(D_{0}^{\kappa}, 4 d_{0}+1\right)
$$

Then A is 0 -admissible and $D_{1} \subset A \subset D_{2}$ by Condition $A(0)$.
Step 2. Proof of P_{k+1} under the assumption of P_{k}.
By the assumption of P_{k}, there exists k-admissible set A such that $D_{1} \subset A \subset$ $W\left(D_{1}, 12 d_{k}\right)$. Let

$$
K=\left\{\kappa \mid A \cap W\left(D_{k+1}^{\kappa}, 4 d_{k+1}\right) \neq \emptyset\right\}
$$

For $\kappa \in K$, by the assumption of P_{k}, there exists k-admissible set A^{x} such that

$$
W\left(D_{k+1}^{x}, 4 d_{k+1}+1\right) \subset A^{x} \subset W\left(D_{k+1}^{x}, 4 d_{k+1}+12 d_{k}\right) .
$$

Let $A^{\prime}=A \cup \cup_{x \in K} A^{x}$. Then by Condition $\mathrm{A}(\mathrm{k}+1), A^{\prime}$ satisfies the assertion of P_{k+1}.

> Department of Mathematics Tokyo Institute of Technology

References

[1] J. Fröhlich and T. Spencer, Absence of diffusion in the Anderson tight binding model for large disorder or low energy, Commun. Math. Phys., 88 (1983), 151-184.
[2] W. Kirsch, On a class of random Schrödinger operators, Adv. in Appl. math., 6 (1985), 177-187.
[3] W. Kirsch and F. Martinelli, On the spectrum of random Schrödinger operators, Commun. Math.

Phys., 85 (1982), 329-350.
[4] W. Kirsch and F. Martinelli, Large deviations and Lifshitz singularity of the integrated density of states of Random Hamiltonians, Commun. Math. Phys., 89 (1983), 27-40.
[5] F. Martinelli and H. Holden, On absence of diffusion near the bottom of the spectrum for a random Schrödinger operator on $L^{2}\left(R^{\nu}\right)$, Commun. Math. Phys., 93 (1984), 197-217.
[6] J.M. Combes and P. D. Hislop, Localization for some continuous, random Hamiltonians in d-dimensions, J. Funct. Anal., 124 (1994). 149-180.
[7] R. del Rio, S. Jitomirskaya, Y. Last and B. Simon, What is localization? preprint.

