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A control problem in biconvective flow

By

Anca CAPATiNA and Ruxandra STAVRE

1. Introduction

A n  im p o rta n t b io logical problem  is b iconvective  flow, "biconvection"
being a convection caused  by  the concentration of upward swimming micro-
organisms in  c u ltu re  f lu id . A  model for this problem  w as introduced in  [4]
a n d  [5 ]  independently. They discuss biological and physical aspects related
to  th is  p rob lem . This model, consisting of the equations for the motion of the
c u ltu re  f lu id  a s s u m e d  to  b e  v is c o u s  a n d  in c o m p re s s ib le  a n d  fo r  th e
concentration of m icroorganism s, w as studied from  a  mathematical point of
vue  in  [3 ]. T he  authors prove the existence of a solution and the positivity of
th e  c o n c e n tra t io n  fo r  th e  s ta tio n a ry  p ro b lem  a n d  th e y  a ls o  s tu d y  the
nonstationary case.

T he purpose o f  th is  paper is  to  in troduce  and  s tudy  a  control problem
related to biconvective f lo w . O u r  aim  is to characterize the  mean values a of
the concentrations which lead us to a given field of concentration c.

W e beg in  by  estab lish ing  an  ex is ten ce  an d  un iqueness resu lt for the
stationary  biconvective f lo w  ( S e c t io n  2 ) .  O u r  m athem atical approach is
different from that o f  [3 ]  a n d  allows u s  to  obtain the existence of a solution
for a less restrictive assumption.

In Section 3 w e introduce a  control problem associated to the  stationary
biconvective flow . The existence of an optim al con tro l is  p roved . W hen  the
relation mean value a -  concentration c  is m ulti-valued, the  derivation of the
necessary conditions of optimality is perfomed by introducing an  approximate
fam ily o f  co n tro l p ro b lem s. I n  t h e  uniqueness ca se , th e se  conditions are
obtained directly, as in [1].

2. Model of biconvective flow. Existence and uniqueness results

T h e  s ta t io n a ry  f lo w  o f  a  c u l t u r e  v isc o u s , incom pressible f lu id  is
conside red . W e  suppose th a t  the  flow  reg io n  is  a  bounded domain Q
with Lipschitz boundary, 5Q.

W e seek fo r  a  vector function u representing the  velocity of the culture
f lu id  a n d  tw o  sca la r func tions c  a n d  p  representing the concentration of
microorganisms and the pressure of the culture fluid, respectively, which are

Communicated by Prof. K. Ueno, January 24, 1997



586 Anca Cdpa1-1-nd and Ruxandra Stavre

defined in  Q  a n d  sa tisfy  th e  following system o f  equations a n d  boundary
conditions:

(2.1) - - v L u +  (u • 17)u+  vp= — g(1-Frc)i 3 + f  in  Q,

(2.2) div u=0 in  Q,

ac (2.3) —19Lc-I-u •  V c + U ., , ,  = 0  in  Q,ux3

(2.4) u= 0 on aQ,
ac (2.5) 8U c n

3 
= 0 on aQ,an 

w here f i s  a  given external force, g  th e  acceleration o f  g rav ity  ,  v >  0  the
kinem atic viscosity o f  th e  c u ltu re  f lu id , 0> 0  th e  d iffu s io n  ra te  o f  micro-
organism s, U > 0  th e  m ean speed o f  upw ard sw im m ing o f  microorganisms,

T-= -
°

-
)

 — 1> 0, Po, Pm being the  density of an  individual organism and of the
Pm

culture fluid, respectively, i3 th e  u n it  vector in  the  vertical d irection, n  the
outward unit normal to  a2 and n3 = n • i 3 .

We introduce the new function:

(2. 6) q=p+gx3.

Therefore, the problem  (2.1)- (2.5) is equivalent to:

(2.7) - -v L u + (u  •  1 7 )u +  Vq= — Kci3 - Ef in  Q,

(2.8) div u=0 in  Q,

c
— 0Lcd - u  I7c+U

a
  = 0 in Q,ux3

u 0 on asz,
ac0 —an —  Ucn3= 0 o n  5Q,

where IC— gr.
It can be easily proved that a  variational formulation of (2 .7)- (2 .11) is

the following:

(u, C) Y o  X (Q) ,

(2.12) vao (u, z)d
-
bo (u, u, - =  — KLCi3 • zdx + <1; z)

ar 
Oa (c, + b  (u , c , 

—
U f  c dx= 0 V rEill (Q) ,

LIX3

where:

ao (u, z ) =  f  Vu •  17zdx,

V zE Yo,
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(2.13) bo(u, w, = f  (u • 17)w  • z dx ,

a (c, 7 = f  Vc• Vrdx,

b (u, c, =  f  ( u  •  r 7  c)rdx,

t h e  sy m b o l <• , •> d e n o te s  t h e  d u a lity  p a ir in g  b e tw e e n  (1-1- 1 (Q)) 3  a n d
(1-4(Q )) 3 an d  Yo is  the separable Hilbert space (see [6 ]):

Yo= {vE (Fiô (Q)) 3 /div Y=0},

embedded with the scalar product: (y, w) y o = a o (v , w ). The known function f
has been taken in  (1/- 1 (Q)) 3 .

W e rem ark  th a t (uo , 0 ) i s  a  so lu tion  o f (2 .12 ), w here  uo satisfies the
Navier - Stokes problem for incom pressib le  flu id . Since this solution does not
describe the biconvective flow, we shall study the following problem:

(ua , ca ) E Yo X H 1 (Q) ,

vao (u a , z) - Fbo(ua, ua, z)= — /£1  C a i3  •  zdx+ <f, z>(2.14)
Or Oa (ca , - 1 - b(u a , ca , — Uf ca ( 0V  r E I - 1 1 (Q),D O

V zE

Lc a dx= a,

where a is  a positive constant.
In  the  sequel w e shall prove (w ith som e assum ptions about 0, U, v and

a) the existence and uniqueness of the solution of ( 2 .1 4 ) .  For this purpose,
we define:

(2.15)3 7 c t — C a Qc

and we obtain the following equivalent problem to (2.14):

(u a , F.a ) E  yo x

(2.16) vao (ua , - Fbo (ua , u a , z) =- —  f3 -a i3 • zdx <f, z> V z E Yo ,

Oa (Fa , +b (u a , Fa , — U grx  3 d X = -foala arx3 dx VrEfil,

where is the following Hilbert space:

{ r E  (Q) rdx =0} ,

em bedded  w ith  t h e  s c a la r  p ro d u c t  (c, r) 17 =  a (c, .  W e  s h a ll  u se  the
following estimates:
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II( S 2 ) ) '  CI' y  y 0V  v E  Y o ,

(2.17) lIc IL(su cII clifi,V  c E

lbo (u, w, z ) I C 1llU lIy ll IV 6011 V u, w, zE Yo,

lb (11, C, r) I c1Il U  II Yoll C r V uE Yo, V c, r Elu ,

where C, C1 are positive constants depending only on Q.
In the following we shall suppose (see [3] ):

(2.18) U < .C
.

Proposition 2.1. I f  (u a , a )  i s  a solution of (2.16), then we have the
following estimates:

(2.19) Fa t j a'11QI ( 0—  UC)

(2.20) K C 2 U a  
.11QI (0 —  UC)

Proof. F o r  obtain ing (2.19) a n d  (2.20) w e take  r Fa and  z =  ua  in
(2.16) and we u se  (2.17), (2.18) and the equalities:

bo (u, w, =0V u, w Yo,
b (u, c, c) =0 V uEY 0, V c

In the sequel we shall establish the main result of th is Section:

Theorem 2.2. For every a  0, the problem (2.16) has at least one solution
( l i a ,  F a ) .  Moreover, for

(2.21) 1)2 >C111 f ( I I '  (o ) ) ' ,

there exists a '>0  such that for every aE [0, , (2.16) has a unique solution.

Proof. For obtaining the existence we define the mapping

G: YoX (Yox 179'

<G (u, c), (z, =A  (vao (u, +bo (u, u, z) + K f  C i 3  •  zdx —  <f, z>) +

(2.22) ± ea (c, + 6  ( u ,  c ,  —  U  f c
o r

 dx Ua r  Or  ,
ax3I Q '  J ax,ax

(u, c), (z, r) E  Yo X

where , • » denotes the duality pairing between (Yo
 X  179' and Yoa n d

is a positive fixed constant, 2 < 
4 v  ( 6 —  U C )  

2 c  4 It can be easily proved that, if
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(2.18) holds, there exists r>0 such that V (1-1, C) E  Yow i t h  I I  (11, c)Ily,xfp =

r we have:

(2.23) <G (u, c) , (u, c) O.

Moreover G  is  a  continuous mapping with respect to  the  weak topologies

of Yo x IT' and (Yo x
Therefore, from the  Gossez' theorem  (see [2 ]) it follows the existence of

an element (U a, Ea) E g y  ( 0 )  C Y 0 X  i l l  such  tha t G ( 11a ,  Fa) =  0, and, hence, the
first assertion of the Theorem holds.

F o r  proving th e  uniqueness, w e assum e t h a t  (2.16) h a s  tw o  solutions
(u«, F«) a n d  (W, C «). By subtracting th e  corresponding equations fo r z=
4 — W, and r=C-c1, — Fc2, and by using (2.17)-(2.20) w e get:

)IIF
a

1 F c 2rIIIP -   
0—  uc 2

/

I Q  

C

(

I ( J a  44-141 Yo,

114 Yo (a) 114 — 1411Y0,

where:

(2.24) C (a) flicll- -F 
aA O  

C2 CiII (1 4 _ 1  
+ (e— UC)v\l) 0 — GC l'

It follows that, i f  (2.21) holds, then we obtain C (a) <1 for all aE [0, a l
where:

(2.25)a ' <  (1)' — Cillf16-1(s2»3) 0Q1(0—  UC) 2 

C2 CIU (0 —  UC±

and the proof of the Theorem is achieved.

W e rem ark  that w e have obtained th e  uniqueness of the solution of the
coupled system (2.16) for the same condition (2.21) as in the case of Navier-
Stokes problem (see [6]).

3. A control problem

In this Section, we suppose th a t  (2.18) is satisfied.
We consider the functional J: K (Q)

(3.1) J (a, c) = -21 f o (c— cd) 201x± -y-N a2,

w here K c [0, + c o )  i s  a  closed, n o n  em pty interval, N  i s  a  nonnegative
constant and cd EL 2 (Q) is a  given function.

We formulate the optimal control problem as follows:
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(3.2) min { J (a, c)/ (a, c) E T } ,

where T is the nonempty, weakly closed set:

(3.3) T= { (a, c) ER ' X Hi- (Q)/ 3 uE  Yo such  tha t (u, c) satisfies (2.14))

W e remark that the minimum problem (3 .2 ) may be also written:

min {minlj(a, c)/cETO/aEKI,

where T a = {c EH ' (Q)/ 3 uE Yo such that (u, c) satisfies (2 .14)).
1The physical relevant term  in  (3 .1 ) is (c —cd)2c/x which provides an

estim ate o f  th e  difference between th e  component c  o f  a n  e lem ent (u, c)
satisfying (2 .14) and a given configuration cd of concentration.

In the sequel, we suppose that K is bounded or N> O.
The first result to prove is the existence of a solution of (3.2).

Proposition 3.1. T he optim al control problem ( 3 .2 )  h as  at  le as t  one
solution.

Proof. It can be easily proved that any minimizing sequence { (an, cn)}nC
T  of J  is  bounded  in  K  X ( Q ) .  Moreover, J  is w eakly  continuous on
K X PP (Q) and T  is weakly closed. Hence the assertion of Proposition holds.

W e rem ark  that, in  general, i f  (a, c ) C  T , th e  correspondence c ri-c  is
m ulti-valued. H ence the  derivation of the necessary conditions of optimality
is not obvious.

In  order to  obtain  these conditions we approximate J  (in  the  sense that
w e  m ake  p rec ise  in  P roposition  3 .3 )  b y  a  fam ily o f  functionals Je )  e>o,

Yo X 10—

1(3.4) JE(w, a) =j (a, c (w, a)) u (w  a) — w2E

w here (u(w, a), c (w, a )) is the unique solution of:

(u, c) E Yo X 1-11 (Q) ,

(3.5) vao(u, bo(w, u, — _ f  c i 3  '  zdx+ <f, z>

Oa (c, b(w, c, — U f c dx= 0 V rEI-11 (Q),
UX3

L cdx= a.

W e  re m a rk  th a t  t h e  correspodence (w, a) (u(w , a ), c (w, a ) )  is
u n i-v a lu e d . T h is  allows u s  to  obtain the  necessary conditions of optimality
for the following control problem:

V zE Yo,
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(3.6) minIJE (w, a)/ (w, a) EYox

Then, by passing to the lim it, we derive the  desired conditions for a solution
of the control problem (3.2).

We begin by proving the existence of an optimal control fo r  (3.6).

Proposition 3.2. There exists at least one solution of (3.6).

Proof. T h e  p ro o f  r e l ie s  o n  tw o  p ro p e rtie s :  t h e  boundedness o f  any
m inim izing sequence { (We', a ij ) )„  o f  JE o n  Yo x K  a n d  t h e  low er w eak
semicontinuity of JE .

The next result establishes the relation between the  problem s (3.2) and
(3 6)

Proposition 3 .3 .  For any e> 0, le t  (we , a e ) b e  a  minimum point of Je .
Then there exists (a*, c* , 11* ) E K ( Q )  X  Y o such that on a subsequence we
have, when p —>00:

(3.7) ce ,—>c* weakly in H i  (Q) ,
ue „

—>u*w e a k l y  in  Yo,
w€

- - u weakly in  yo,

where (u„, c„) = (u (w 0 0 , a e ,), c (w e i„ a e 0 )). Moreover, (u * , c* ) is  a solution of
(2.14), corresponding to a= a* and:

(3.8) limh(wE, a e )  =  (a*, c*) =m in{j(a , c)/  (a, c) E T).

Proof. W e first prove that IaElE>0 is bounded. Indeed, this is obvious if
K is  b o u n d ed . If K is not bounded, then we have:

N  -
—

2  
aE_I (ae, cE) crE) -Je(uo, ao) =I (ao, Co),

w here  (ao, co) is  an optimal control f o r  (3.2) a n d  (uo, co) verifies (2.14) for
ae  a=  ao ; hence uo = u (u o , a o). F o r u, and c, w e obtain from  (3.5) the

s a m e  e s t im a te s  (2 .19 ), (2 .20 ), w i t h  a= a e . T h e re fo re , t h e  sequence
{(u E , c0))0>0 is bounded in  Yo x I-11 (Q).

On the other hand, we have:

V 110— WE Pro - 26JE (wE, a0) -2s.j(ao, co).

For the previous observations we deduce that, there exists
(u * , c* ) E Yo X (Q ), a* EK such  that (3.7) holds.

By passing to th e  limit when p - 0 0  i n  (3.5) corresponding to (w, a) =
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(wE„, aE,), w e  o b ta in  th a t (u * , c * ) sa tis f ie s  (2.14) fo r  a = a* a n d  hence
(a * , c* ) E T.

F in a lly , (3 .8 ) i s  a  consequence o f  t h e  f a c t s  th a t  {j, (w0, crE)1E>0 is
bounded and has only one limit point.

For obtaining the necessary conditions of optimality fo r  (3.6) we proceed
as follows: for any t>0, 2E (0, 1), wo, wE Yo and ao, aEK, we denote by:

/ b . =  (wo + tw, ao),
c c (wo + tw, ao),

and

(3.10) u2a= u (wo , a,+2 (a—  ao)) ,
c aa =c (w o , ao + /1(a— a, ) )

Lemma 3 .4 .  L et (1.1tw, ctw) and  (u,za , c2a )  be defined by (3.9) an d  (3.10)
. Then, when t\O a n d  \,0, we obtain:

U t w  uo ctw — co)(3.11) (uw, c), w eak ly  in  Yo

(3.12)   CAct —00 

2
)

' 2 (ua, ca), weakly in Yo x1-11 (Q) ,

where uo= u (wo, ao), co=c (wo, ao), (u., c .) is the unique solution of:

vao (u., z) bo (wo, uw , =

(3.13) K f  C w i 3  •  zdx—bo (w, uo, V zE Yo ,

@a (c ,  +b  (w ,, cw , f  c ,
UX

dx= —b(w, co , r) V re Fr,
12 3

and (u a , Ca) is the unique solution of  (3 . 5) corresponding to f=  0, w= wo and
a=--  a —  ao.

Proof. I t  c a n  b e  e a s ily  p ro v e d  th a t  t h e  sequences from  (3.11) and
(3.12) a re  bounded in  Yo

 X  i l l a n d  Yo X H I (Q), respectively. B y passing to
( um —  ctw—co)the limit on subsequences in  the  problems satisfied by andt ' t

( U2a —  U 0  C 2 a  Co)
'  w e obtain that their w eak lim its (uw, cw) a n d  (lia, c a )  are

solutions for (3.13) and, respectively, f o r  (3.5) w ith f=  0, w= w o a n d  a=
a — ao . T h e  uniqueness o f  th e  s o lu t io n  o f  (3.13) i s  a  consequence of
Lax - Milgram's theorem, hence the proof is achieved.

It can be proved that J, is differentiable and a direct computation gives:

afe (3.14) (wo ao) • w= f  c. (co —cd )d x + -
1

w, uo —  wo),

(3.9)
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1
( 3 . 1 5 )  6 '(wo ao) (a —  ao) = f  ca(co — cd)dx+— ao(ua, uo —  wo) ±Nao(a — ao).aa 

We are now in a position to derive the necessary conditions of optimality
for a solution of (3.6).

Theorem 3 .5 . L e t (w€ ,  a €) be an optimal control f o r  (3.6) . Then, there
exists the unique elements (i.4, CE ) E  Yo X 111 (Q )  and (pE, qe) E Yo X 17 1 which
satisfy:

vao(u,, + b o ( WE, UE, =  K f  C e i 3  •  zdx + <f, .2>
(3 . 16) Oa (CE, r) +1) (wE, — U f  c dx=- 0 VrEI-11(Q),ar 

aX3

cedx= cre,

2.4 0z )  — bo(we, PE, z)+bo(z, u e , pe) =b (z, qE, CE )V  z E  Yo,

(3.17) ea (q, —  b(wE, qE, r) — U f  r clx = —  f  ri3  • p Ed x + f  r(c e
— cd)dx

UX3 .r2 12

V rE f i l ,

(3.18) (UL a
a x

ge
3dx+ (IQIN  +1) f  c ddx) (a—ae ) aE K .

Proof. I t  is  o b v io u s  th a t (3 .1 6 ) h a s  a  u n iq u e  so lu tio n . W e denote by
(pe , qs) EY o x FP the unique solution (by Lax-Milgram's theorem) of:

vao (pe, z) — bo(we, pE, z)= -
1

ao (UE —  WE ,  z) V zE Yo,

(3.19)O a  (q, — b (WE , qe , — U  f  r a
n

g8 dx
UX3

ri 3 •  A d x + f  r (c E
— ca)dx

From  (3 .13 ), (3 .14 ) a n d  (3 .19) we obtain:

aj s (3.20) a E' E(w  a  ) • w=b (w, qE, CE ) — bo(w, uE, PE) - - l ao(ue —
 W E , W ),w 

and from  (3.5) for f=0, w= w o and a= cr—cro, (3 .15) a n d  (3 .19) we obtain:

(3.21) 
alc; (w e , ae) ( a  cre) = (U L a

a
q
x :dx+( Q IN+ 1) ce, L c ddx) a

ic2 r

F ro m  (3 .1 9 ), (3 .2 0 ), (3 .2 1 ) and  the  fa c t th a t (w e, ae) i s  a minimum point
for ,h on Yo x K , we deduce (3 .17) a n d  (3.18).

The main result of this Section is a consequence of the above Theorem.

V z E Yo,
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C o ro lla ry  3 .6 .  There exists an optim al control (a*, c* )  f o r  (3 .2 ) and
there exists the elements u * E yo ,  (p*, q*) E Yo X FP and A E {0, 1} such that:

vao (u * , z) +6 0 (u * , u * , = f  C * i3 • zdx+ <f, z>

(3 . 22) Oa (c* , r) + b (u * , c* , — U  f c *
r
 dx=0 V rE111(Q ),

O 
D (./X3

f f j c*dx= a * ,

vao (p * , — bo (u * , p*, + 6 0 (z, u*, p*) =b (z, q*, c*) V zE

Oa (q*, r) — b(u * , q* , — U f r -dx=
D  -X 2

(3.23) f  ri 3 • p *d x+  2 f r(c *— cd )dx VrEFP,

(3.24) ( u f t d x  ±  ( (IQ 1N  +1) a* —  c  d dx)) (a — a*) V aEK,

(3.25) 4-119*11/7.> O.

Proof. It is obvious that (3.22) follows by passing to the  limit in (3.16)
on the subsequence obtained in Proposition 3.3.

If  {pels>0 is bounded in  (L2 (Q)) 3 then, from  (3.17) 2 and the boundedness
of {c€} > 0  in  H 1 (Q) w e deduce that  {q,} > 0  is bounded i n  i .  M oreover, from
(3.17) 1 and the inequality (see [6]):

II Ps114.4(s)))3 211 PE (L2 (Q))311 Pe u 2 » 3 ,

the boundedness of Ipds>0 in  Yo follows.
T herefore , there  ex ists (p*, q* ) a  w eak lim it p o in t o f  {(A , (IJ ) €>0

y o x  171.
By using Proposition 3.3 and by passing to the  limit on  a  subsequence in

(3.17) - (3.18) w e obta in  (3 .23)-(3 .25) w ith  2=1.
I f  (pd s > 0 is not bounded in  (1.2 ( Q ) )  3 w e define the  following sequences:

{Ps}s>0={ 1
and {Q

Pc
J>0= s } s > o = s (L2(9»31e>0.

D ividing (3.17) -(3.18) by 'In II (.a»3 we obtain, a s  in  the  previous case,
th e  boundedness o f th e  sequences { ( P s ,  (2E)) e>o in  Yo x  H 1 . H e n c e  w e  g e t
(3.23)-(3.24) for 2=0  a n d  (p*, q* )  a weak limit point of {(Ps, Qs)}s>o.

Finally , (3.25) is  a  consequence of the fact that, if  II q* Ilip= 0 then, from
11 /..2(12»3= 1.(3.23) it follows that p*=0 which is in contradiction w i t h  n

I n  th e  seque l w e  d iscuss  th e  con tro l p rob lem  (3 .2 ) w h e n  (2 .21 ) is
satisfied; hence, fo r  any  a E K  =  [0, a l  w ith  a ' a s  in  (2.25), th e  problem
(2.14) h as a  unique solution, (u a , c a ) . Since the  correspondence cri--.c a  i s

V zE

in
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uni-valued, we can write the functional J: KI- +11 as follows:

(3.26) J (a) -= -12 fQ (c. — c d )
2dx+1- ce ,

and the control problem (3 .2) becomes:

(3.27) min { J(a)/aElf } .

In  th is case, the necessary conditions of optimality, obtained directly (as
in [1] ) from the differentiability off on K, are:

Proposition 3 .7 .  Let a* E K  be an optimal control of (3 .2 7 ) . Then, there

exists the unique elem ents (u *, c * ) E  Yo ( Q )  and (p *, q * ) E  17
0 x f i' which

satisfy  (3.22) - (3.25) for 2= 1.
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