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Surfaces of general type whose canonical
map is composed of a pencil of genus 3
with small invariants

By

Jin-Gen YANG" and Masayoshi MIYANISHI

0. Introduction

Let X be a minimal surface of general type over the complex number field.
Assume that p,(X) =3, and |Kx| is composed of a pencil. The existence of
such surfaces was known as early as 1948 by Pompilij’s examples. Later
there have been studies by Beauville, Debarre, Xiao and others ([3], [5],
[10], [12]). Refer to Section 2 of [4] for a nice survey.

Let b denote the geometric genus of the image of the canonical map and let
g denote the genus of a general member of the pencil of which |Kx | is
composed. Assume that §=3. Then the inequality

K3>4p,(X) +4(b—1) (1)

is valid with very few exceptions (cf. Theorem 2.3 of [4]).

In this paper we will give an example with p,=3, b=0, ¢ =3 and K*=7.
Then we will prove that is the lowest possible K2

The other possible exception to (1) is the case p,=4 and K% =9, which
was proposed as an open problem in [11]. We will prove that this case does
not occur, and consequently there is only one exception to (1).

1. Preliminaries

1.1. P?-bumdles over P. First we state some basic facts about
P2-bundles over the projective line P!, which will be used throughout this
paper. We will use @ (n) to denote either the invertible sheaf of degree n on
P! or its corresponding line bundle, depending on the context.

Let V be a vector bundle of rank 3 over P!. It is well-known that V can
be decomposed into a direct sum of line bundles, i.e, V=0 (k) @0 (m) ®0 ).
Let W=P (V) be the associated P?-bundle over P' and let f : W—P! denote
the natural map. Since P(V ® L) = P(V) for any line bundle L, we may
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assume that V=0®0 (m) ®0 (n) with 0<m <n.

The subbundle O (m) ® O(m) of V gives rise to an irreducible
hypersurface Eo inside W. Let 1 be a fiber of f. Then Eo, and 7 generate
Pic (W), and E§=—m—n, Ein=1, E;p?*=n%=0. The line bundle & (n) gives
rise to a section ¢ of the ruled surface E,. Obviously e2=m —# as a divisor of
E,. Let & be a fiber of E;. Then

O, (Eo) Z0p, (e —mE). (2)
The cononical divisor Ky is linearly equivalent to —3Eo— (m+n+2)7.

Lemma 1.1. Let S be a prime divisor of the P*~bundle W=P (0D 0 (m)
@0 (n)) over P with 0<m <n. Assume that S is linearly equivalent to 4E,+
bn for some bEZ. Then

1) b=>4m.

2) x(S)=3p—4m—4n—2.

Proof. (1) Since S is irreducible and not equal to E,, the linear system
|S| in W cuts out a non-empty subsystem of the linear system S |go~ 4e +
(b—4m)E. This implies that b—4m >0.
(2) The short exact sequence
0_’0w(_4E0_b7])_’0w_"05—"0
implies that
x (05) =1—x (0w (—4E,—b1)) =1+ x (0 (Ey+ (b—m—n—2)7). (3)

Then the short exact sequences

0—0,((b—m—n—2)1)—0,(Est+ (b—m—n—2)n)—
Og,le+ (b—2m—n—2)&)—0

and
0—0g, ((b—2m—n—2) &) =0g, (e + (b—2m—n—2) §)—0, (b—m—Zn;Z)—>O
imply that

x (Oy(Ept (b—m—n—2)7))
=x (0u(b—m—n—=2)1)) +x O e+ (b—2m—n—2)§))
=3 (0w ((b—m—n—2)1)) +x O, ((b—2m—n—2)&)) +x (O, (b—m—2n—2))
=(b—-m—un—1)+0G—2m—n—1)+G—m—2n—1)
=3b—4m—4n—3.
The result follows from Equation (3).
Let yo, y1, be the projective coordinates of P!. Let P'=Uy U U, be the

standard open affine covering of P!, where U;={(yo, y1) €Py;*0}. Then z
=1y1/yo and 2z = yo/y, are the affine coordinates of Uy, and U, respectively.

Let W;=f"1(U;),i=0, 1. Obviously W;=A'®P? for i=0, 1.
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Let xo, x1, x2 be the fiber coordinates of @, O (m) and @(n) over U
respectively. A hypersurface So in Wy is given by an equation

v i ik
Cijkrd X 0X1X 2,
ijkr20i+j+k=d

where d >0 is a fixed integer. Let S be the closure of Spin W. Let t=max{r
+mj +nklcijiy¥0}. Then S~dEo+1tn as a divisor of W. The equation of S
N W] is

It—r—mj—nk i ./j /k
Cijkrd ToX 1L 2,

ijkr20i+j+k=d

where z2=1/zx 1=z "x1,x 2=2 "X

1.2. normal singularities of surfaces. Most results in this
subsection are well-known and their proofs are omitted.
Let X be a nonsingular complete surface. Let Ai, .., An be distinct

irreducible curves on X with = 1. The set A = U%7.,A4; is called an
exceptional set if A is connected and the intersection matrix of these curves is
negative definite. A divisor D = 2J7-,d;A; is called a positive cycle on A if
every d; is a positive integer. The integer d; is called the coefficient of A; in
D. Let D and D’ be two positive cycles on an exceptional set A. Then
denote DD’ if D'—D is an effective divisor. Let I be a subset of {1,..n} and
let D=227,d;A; be a positive cycle on A. Assume that the set 4= U ;c;A; is
connected. Then we define D|s= XZicidiA:.

The following two occasions of exceptional sets arise in this paper:

(1) Let w : X—Y be a birational morphism, where X and Y are complete
surfaces and X is nonsingular. Let p be a normal singularity of Y. Then
w71 (p) is an exceptional set.

(2) Let F be a fiber of a morphism 7 : X—C from a nonsingular complete
surface X onto a nonsingular curve C. Let {4,,..A,} be a proper subset of

the set of all irreducible components of F. If the set U7-14; is connected then
it is an exceptional set.

Let A= U?.1A; be an exceptional set. There is a unique positive cycle Z
=2>"_,d;A; such that A;Z<0 for all i and Z is minimal with this property. (cf.
[1].) This positive cycle Z is called the fundamental cycle of A. If A is the
exceptional set of a normal singularity p, then Z is often called the
fundamental cycle of p.

If every component of an exceptional set is a nonsingular rational curve
with self-intersection — 2, then it is the exceptional set of a rational double

point (cf. [2]). Let Z be the fundamental cycle of a rational double point.
Then Z2=—2.
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Lemma 1.2. Let B= U7_\B; be the exceptional set of a rational double

point and let D= 27_1d;B; be a positive cycle. Assume that DB; <0 for every i
and D*=—2. Then D is the fundamental cycle of B.

Proof. Let Z be the fundamental cycle of B. Then Z<D by the definition
of fundamental cycle. Let G=D—Z. Then GZX0. So—2=D?*=7242GZ+
G?*<—2+G. Hence G*=0, which implies G=0.

Lemma 1.3. Let B= U7_1B; be the exceptional set of a rational double
point. Let Z be the fundamental cycle of B. Then—1<B;Z<0 for every i.

Proof. Easily checked for every type of rational double points.

- Lemma 1.4. Let B= U7_\B; be the exceptional set of a rational double
point and let D= 237-,d;B; be a positive cycle. Assume that DB; <0 for every i
and D*=—4. Then the coefficient of B; in D is even if DB;<0.

Proof. Let Z be the fundamental cycle of B and let G=D—Z. Then G is
effective and G*0. Since —4=2*+2GZ+G? and G2< —2, we have GZ=0
and G®= —2. Let B; be a component of Supp (G). Then B;Z=0. Thus B;G
=B;D<0. Moreover, Supp (G) is connected, for G?=—2. By Lemma 1.2 G
is the fundamental cycle of Supp (G).

Let B; be a component of B such that B;D <0. We claim that d;>1. To
prove the claim, suppose that d; = 1. Then B; is not a component of G.
Lemma 1.3 implies that B;Z= —1, B;G=0. Since d;=1, the coefficient of B;
in Z is equal to 1. So the rational double point is of type A,. We may
assume that B;Bi;;=1 for 1<i<n—1. Then it is easy to see that n=3, Z=
B,+:++B, and G=B;+ - +B,-1. Thus there is no B; with B;Z= —1 and
B;G=0. This leads to a contradiction. The claim is proved.

Since 27-1d;B:iD = —4, it follows that d; is 2 or 4 for every B; such that
DB;<0.

A sequence {A;,..,Ai,} of irreducible components of A is called a
computation sequence for Z if Ay (X¥tA;5) >0 for 2<k<m and 2™,A;;=7Z.
Computation sequence always exists and 7, can be chosen arbitrarily.

Lemma 1.5. Let Z be the fundamental cycle of a rational double point

and let {Aiy,...,Aim} be a computation sequence for Z. Then A, 2721A;=1 for
every r>1.

Proof. Easy.

Lemma 1.6. Let X be a nonsingular complete surface with H' (X, Ox) =0.
Let A= U"1A; be an exceptional set on X where A; =P for every i. Let D=
2"_1d;A; be a positive cycle on A such that A;D <0 for every i. Assume that d;
=1, A, (D—A,) =2, D*=A}+2 and A?=—2 fori>1. Then |[Kx+D|>* 0 and
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Ay is not a fixed component of |Kx=+D|.

Proof. Let A”=U7_3A4; and let Z=D—A,. The equality A2+2=D*=A}
+2A,Z+Z?% implies that Z2=—2. Hence A’ is connected. For every i>1 we
have A;Z <A;D <0. 1t follows from Lemma 1.2 that Z is the fundamental
cycle of A”.

Let {4;,..,Ai,} be a computation sequence for Z. The short exact sequence

0—0x (Kx)—0x (Kxt+Ai,) =0 (—2)—0
implies that h°(X,0x (Kx+A;)) =h°(X,0x (Kx)) and H' (X,0x(Kx+A;)) =0.
By Lemma 1.5 we have a short exact sequence

7 r+1
0—0x (Kx+ ) Ai)—0x (Kx+ ) A0) =00 (—1)—0
i=1 j=1

for every 0<r<m. It follows from induction that h®(X,0x (Kx+2)) =h°(X,0x
(Kx)) and I‘I1 (X,@x(Kx"‘Z)) =0
Since A, (Kx+Z+A,) =0, we have a short exact sequence

0_’0)( (Kx+Z)_’0x (Kx+Z+A1)_’0pI_’O.

which implies h° (X,0x (Kx+ D)) =h° (X,0x (Kx)) +1 and A; is not a fixed
component of |[Kx+D|.

2. p,=3, K*=17

In this section we will give three different constructions of a minimal
surface X of general type with the following properties:

1. p,(X)=3, K?=7.
2. The canonical map of X is composed of a pencil of genus 3.

2.1. as a hypersurface in a P?>-bundle over P'. Let m=3, n=4
and the equation of Sy be

roxd+ (xi—xd) 2 +20rh+2' 28 =0. (4)
Then S~4FE,+12n. 1t is easy to check that S has only two singularities p: (z
=0, 20=1, 21=1, 2,=0) and . (z=0, zo=1, x1=—1, 2,=0). Both are
equivalent to the double point defined by
x2+yi+2=0.

It is well-known that this type of singularity is a minimally elliptic singularity
and the exceptional curve is a nonsingular elliptic curve of self-intersection
—1.

Let no denote the fiber at z=0. Then Ky+S~E;+3n~E,+ 20+ n,.
Let 7 : X—S be the minimal resolution of S, and let D=7"1(p), D'=7""(p').
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Then Kx~ n* (Eo+2n) + (x* (n,) —D—D’). Since n*(ny) —D — D’ is the
proper transform of Nols in X and dim|2n|=2, we have p;(X) =3. From (4)
it is clear that 7*(E,) =4E for a rational curve E on X. Let F and Z denote
the proper transforms of nl|s and 7ols respectively. Then Kx~4E +2F+ Z.

The self-intersection number of 4E in X is equal to the intersection number E3S

in the threefold W. Hence 16E?=E}(4E,+12n) = —28+12= —16, whence E*
=—1. Obviously, F2=FZ=0, EF=EZ=1. Since 10N S is a quartic curve
with two cusps, Z is a nonsingular elliptic curve. By the adjunction formula,
0=29 (Z) —2=Z(Z+Kx) =Z(4E+2F+2Z), which implies that Z?=—2.

In order to see that p,(X) =3, we need to know x (Ox). Lemma 1.1 (2)
implies that x(0s) = 6. Since every minimally elliptic singularity has
geometric genus one, we have x (Ox) =x (Os) —2=4. Let ¢ : X=X  be the
contraction of the curve E. F'=¢({F)~2 = ¢(Z). Then X’ is a minimal
surface with x (Ox) =4, Ky ~2F'+Z', and K¥=7.

Suppose that H*(Ox) *0. Then there would exist BE Div (X’) such that
B is not linearly equivalent to 0 and 2B~0. By the Riemann-Roch Theorem,
we have h®(Ox (F"+B)) +h°(Ox (F"+Z2Z —B)) 23. Thus either h°(Ox (F'+
B))=>2or h°®(Ox (FF+2Z —B))=22. If h° (Ox (F’+ B)) =2, then the exact
sequence

0—H*(Ox (B))—H"(0Ox (F'+B))—H* (0 (F"+B))

would imply that H° (Ox (B)) >0, which is impossible. Hence h° (Ox (F'+ 2
—B))=>2. As a nonsingular plane quartic curve, F is a non-hyperelliptic

curve of genus 3. Hence h°(0r (d)) = 1 for every effective divisor d of
degree 2 on F'. Thus h°(0p (FF+2Z'—B) =1. The exact sequence

0—H*(Ox (Z’—B))—H*(Ox (FF+2Z'—B))—H*(Or (FF+2Z'—B))

implies that H*(Ox (Z—B)) *0. Since Z'(Z'—B) <0, we have H° (Ox (—B))
%0, which is impossible. Therefore H! (Ox) =0, which implies p, (X") =3,
and the canonical map of X’ is composed of a pencil of genus 3.

2.2. as a Galois triple cover. A general theory for triple covers of
algebraic varieties was developped by Miranda in [6]. In [7] Tan
discovered a Horikawa type canonical resolution for Galois triple covers of
surfaces. It is a useful tool to construct special surfaces satisfying
preassigned conditions. Here we summarize some facts of triple covers that
we need. For details readers may refer to [7] or [8].

Let Y be a smooth surface, L and M be divisors on Y. Assume that B, C
are effective divisors such that B~2L—M, C~2M—L and B+ C is reduced.
Then the triple covering data (L.M,B,C) determines a Galois triple cover 7 :
X—Y from a normal surface X to Y. The surface X is defined in the rank
two vector bundle L®M as

X=Spec Oy[zw]/ (22— bw, zw—bc, w*—cz),
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where zw are fibre coordinates of L, M and bEH* (2L—M), cEH*(2M —L)
whose zeros are B and C respectively. The branch locus of wis B+C. If B
+C is smooth then X is nonsingular.

There are two formulas:

TxOx=0y®0y(—L) ®0y(—M). (5)
x (Ox) =3x (Oy) + (L*+LKy) /2+ (M*+MKy) /2 (6)

With this preparation we start to construct our example. Let Y be a
Hirzebruch surface P (Op ® 0p (—3)). Let E denote the section of ¥ with E?
= — 3 and let 1 denote a fibre of Y. It is easy to see that there exists an
irreducible curve D €[4E+127]| satisfying the following conditions:

1. D does not meet E.

2. D has two double points p, p” on a fiber 9o and no other singularities.

3. The double points p and p” are of type As, i.e., they are equivalent to

the double point defined by the equation

x?+y®=0.

Next we will construct a sequence of blowingups of Y. To simplify the
notation every irreducible curve and its proper transform will share the same
name.

Let 01 : Y1—Y be the composition of blowingups of Y with centers at p
and p’. Let Ey=o7'(p), Fy=07'(’). Letg=E;ND and ¢ =F,ND. Leto,:
Y,—Y be the blowingups of Y, with centers at g and ¢’. Let E;=0a3'(q), F,=
05'(¢)). Let s=E,ND and s"=F,ND. Let g; : Ys—Y; be the blowingups of
Y, with centers at s and s". Let Es=03'(s), Fs=05'(s’). Then D becomes a
smooth curve on Ys.

Let r=E;NE; and ¥ =F N F;. Let 04 . Y;— Y3 be the blowingups of Y3
with centers at 7 and 7. Let Eq=0;'(r), Fy=0:'(+"). The configurations of
relevent curves on Y, are illustrated in Figure 1.

E4
) E, E,
E,
D F,
Fy By F

_/

Figure 1
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Let 0= 01020304 be the composition of the blowingups. Let L=¢* (3E+
8n) —E1—2E;—4E;—4Es—F\— 2F,—4F3—4F, and M=0* (2E+4n) —E;—2E;
—2E4,—F,—2F3;—2F,. Let B=D+E;+F; and C=E+E,+F, as divisors on
Y+ Then B~2L—M and C~2M—L.

Let m: X— 7Y, be the triple cover determined by the triple covering data
(L, M, B, C). Since the branch locus B+C is smooth, X is a smooth surface.
By (5) we have

pe(X) =h*(X, 0) =h*(Yy, O(—L)) +h*(Y,, O(—M))
=h°(Yq, O(c*(E+3n) —E3s—F3)) =3.

By (6), x (Ox) =4. Hence h'(0x) =0.
Since 7 is totally ramified over B+C, we have

3Kx~3n*(Ky,) +2n*(B+C) ~n*(6* (4E+9n) +E,—3E;+F,—3F3).

Let E;=n"Y(E;), Fi=n"'(F;) fori=1234. Let E=n"'(E) and n=7""().
Then 3Kx~12E+60+300+12E,+9E,+6E,+12F,+9F,+6F,.

Since h' (0x) =0, Pic (X) has no torsion. So Kx~4E~+2n+n,+4E,+3E,
+2E,+4F,+3F,+2F, A direct computation shows that k¥ =0. Since
H(X, Ox(2n)) =3=1p, (X), 21 is the moving part of |Kx|. By Hurwitz's
formula the genus of 77 is 3. This shows that the canonical map of X is
composed of pencil of genus 3.

Finally, one can easily see that E2=E}=E3=F;=F3=—1. and E;=F}=
—3. So these seven curves can be contracted. Let 7: X— S be the

contraction. Then S is the minimal model of X with K4=7. The surface S is
the desired surface.

2.3. as a sextic surface in P°. Let xo, 21, X2, x3 be the homogeneous
coordinates of P®. Let Sy be a sextic surface defined by the equation

22 (3 —x}) *+xo (3 —ax}) 2+ 2§+ 25=0. (7)

It can be checked that Sy is irreducible and has no singularities on the
hyperplane xo = 0. Take affine coordinates x = x1/xo, y = x2/x0, 2 = x3/X0.
Then equation (7) becomes

22 (1—2?) %+ (1—x?) y3+y*+25=0.

Let b, = (0,0,0), b, = (1,0,0), bs = (—1,0,0). Then by, by, bs are the only
singularities of So. The singularity at b; is equivalent to the one defined by
2% +y3+2% while both b, and bs are equivalent to the one defined by x*+y°+
2%, Meanwhile by, by, b3 are located on the line Lo: y =0, 2=0.

Let 0: S—So be the minimal resolution. Let E; = p~* (b;) for i =123,
They are all nonsingular curves and g (E;) =1, E}=—1, g (E;) =g (E3) =2, E}

=FE%=—2. 1t is easy to see that Ks~ o* (2H) —E;— 2E;— 2E;, where H is a
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hyperplane in P3.  Thus |Ks|= {o* (H,+H;) —E,—2E;—2E3|H,, H, are planes
passing through Lo}. Hence the moving part of |Ks| is a pencil and p, (S) =3.
The fixed part of |Ks|is E;. Let F be the proper transform of HN S, for a
general hyperplane H passing through L. Then Ks~2F+E; and F*=1, FE,

=1. Hence K%=7.

3. pg=3, K2=6

In this section we prove the non-existence of minimal surfaces of general
type with p,=3, K2=6 whose canonical map is composed of penciles.

Let W be a smooth 3-fold, S be an irreducible surface in W. Let C be a
nonsingular curve in S. If S is singular at eyery point of C then we say that
C is a singular locus of S. Let g = minyec {¢tp (S)}, where g, (S) is the
multiplicity of S at p. Then g is defined as the multiplicity of the singular
locus C. The set U={pEC |up(S) =g} is a non-empty open subset of C. If
#=2 then C is called a double locus of S.

Assume that C is a double locus of S. Let 0: Wi— W be the blowingup

of W with center at C. Let S; be the proper transform of S, E;=o7*(C), C,=
SiNE,. If C,is a singular locus of Sy, then it is still a double locus and is
irreducible. Let g,: W,— W; be the blowingup of W; with center at Ci.
Repeating this process of blowingup for finitely many steps, we may obtain a
sequence of blowingups:

on a1
W= Wy — W= W

so that Cn-1 is a double locus of W,—; while C, is not a singular locus of W,,
although there might be isolated singularities of S, on Cy. The number » is
called the resolution length of the double locus C.

Lemma 3.1. Let S be a surface in a nonsingular 3-fold W. Let C be a
double locus of S. Let H be a nonsingular surface in W and p €EH N C such that
C is transversal to H at p. Assume that the curve D=HNS on H has a double
point of type An at p. Then the resolution length of C is less than ov equal to

[m+1)/2].

Proof. Let 01: Wi— W be the blowingup of W with center at C, S; and
H, be the proper transforms of S and H respectively. Let E;=07!(C), C,=S;
NE;, Dy=H,NS;. Then the restriction map o0,: Hi—H is the blowingup of H
at p with D; as the proper transform of D.

We use the induction on n to prove our statement. If n <2, then D, is
smooth at o7! (p). Thus S; is smooth at 67! (p). So C; is not the singular
locus of S;. This implies that the resolution length of C is less that or equal
to 1.

If n>2, then 07! (p) consists of one point p; and this point p; is a double
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point of type A2 of the curve D; on H:. By induction hypothesis the
resolution length of C; is less than or equal to [(n — 1) /2]. Hence the
resolution length of C is less than or equal to 14+ [(n—1)/2] =[(n+1)/2].

Lemma 3.2. Let . W=P(0® 0 (m) ®0 (n))—P* be a P*-bundie over
P!, where 0<m <n. Let S be an irreducible surface in W, linearly equivalent to
4Eo+sm, where Ey is the divisor associated with the subbundle € (m) ® 0 (n) and
n is a fiber. Let P'=UyU U, be the standard affine open covering of P* and let

Wi=n"(U;) for i=0,1. Let z be the affine coordinate of Uo and let xy, x1, X2 be
the fiber coordinates of the line bundles O, O (m) and O (n) over U, respectively.
Assume that the equation of Soe=S N Wy is

axt+xof(xo, x1, 12, 2) =0,

where a is a non-zero constant and f (xo, 1, T2, 2) is homogeneous in xo, X1, X2 of
degree. 3. Let Mo be the fiber of Wy over the origin of Uy Assume that Co =
Mo NS is a nonsingular conic which is a double locus of S and there is no other
singular locus. Then the vesolution length of Co is less than or equal to

[(s—3n)/2].
Proof. Since Cy is a double locus of S, we have
axt+xo f (xo, x1, 22, 0) = (axt+aol (0, 21, x2)) 2
where @0 and I'(xo, 11, x2) =boro+bix,+boxs is a linear form. Since Cy is
a nonsingular conic, b,¥0. Thus the equation of Sy can be written as
(axi+aol (xo, x1, x2) ) 2+ 220G (0, 21, X2, 2) =0,

where
G (xo, x1, 22, 2) = Z cijk (2) xhrixh.
i+itk=3

Since Co is the only singular locus of S, we have coos (2) * 0, otherwise the
curve defined by xo=x; =0 would be a singular locus. So the equation of S
can be written as

(axt+aol (xo, 21, 22)) 2+p (2) xoxd 220 Z cize (2) chrixk=0,
k<2, it+j+k=3
in which p (2) =Bz"+ 2;5,8i2', B0, r<deg (p(2)) <s—3n.
Let V="{(xo x1, 22, 2) EWo | 2o¥0}. Then V=C3? is an affine open

subset of W, with x = x1/xo, y = x2/x0, z as the affine coordinates. The
equation of SNV is

(ax?+bot+bixr+by)i+p(z)y’+z Z ciik (@) x'y*=0.

k<2, i+j+k=3
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Let H be the surface in V defined by the equation y = ux, where u is a
sufficiently general complex number. Then the equation of the curve HNSN
V is given by

a?(x—01) 2 (x—p02) 2 +p (@D u’x+z Z cijk 2 ukx k=0,
k<2, i+j+k=3
where p; and 0, are two roots of the quadratic equation
ax?+ (b +by) 2 +bo=0.

We may assume that p;#0. Substitute £’ for x—p; and the equation of HNS
NV becomes

a?x? (&' + 01— 02) 2 +p (@) u® (' +01) 3 +2 Z cijk @) uk (X" +p,) 7"
k<2, i+j+E=3

=a% (' +01—02) 2+ 7(2) +0 ()" +x%g («, 2),

where

r(z)=Bz’u3p?+Eszi“30?+ z Z cisn (&) u'oi,
i>r k<2, itj+E=3

6 =3pulotts ), cole)ut () of

k2, i+j+k=3

and ¢ (z/, z) is some polynomial. Since u is sufficiently general, a? (o, — 02) 2
+9(0,0) %0 and the coefficient of 2” in 7(z) is nonzero. Let ¢, and e, be the
coefficients of the terms of lowest degree in 7(z) and 0(z) respectively.
Then, since u is general, e % 4e; ((a® (01 — p2) 2+9 (0,0)) 2 and the lowest
degrees of 7(z) and 0(z) are less than or equal to r. Hence the point x'=0, z
=0 is a double point of type Ay with ¢g<r—1. By Lemma 3.1 the resolution
length of the double locus Co of S is less than or equal to [#/2]. Since r<s—
3n, the lemma is proved.

Lemma 3.3. Let C be an irreducible quartic curve in the projective plane
and L be a line. Let p be an intersecting point of C and L. Let (C, L), denote
the intersection number of C and L at p.

(1) If C has a double point q3p of type As, i.e., equivalent to one defined by
the equation x2+y’=0. Then (C, L),<3.

(2) If C has two double points qu, gz of types Am and Ay respectively with m,
n>1. Assume that m+n>5, q1%p and q2%p. Then (C,L),<3.

Proof. (1) The projection from the point g defines a covering of C over
P!. Hurwitz’s formula implies that there is at least one ramification point for
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this projection. This means that there is a line L’ such that CNL =¢q+¢" and
(C, L)¢=2. 1If (C, L)»=4, then the combination of rational double points of
the reduced sextic curve C+L +L" would correspond to the Dynkin diagram
Do+ A;+ A3+ A, This is impossible since the rank of such Dynkin diagram
cannot exceed 19, ([9]). Hence (C, L),<3.

(2) Assume that (C, L),=4. Let L’ be the line passing through ¢, and
g2. Then the combination of rational double points of the sextic curve C+L+
L corresponds to the Dynkin diagram Dm+3+Dpy3tA7:+A;. So m+n<5 for
the same reason as in (1). So we may assume that g, and gz are of types A,
and Aj; respectively. Let xo, x1, 2 be the homogeneous coordinates of P2
With a suitable linear transformation of the coordinates we may assume that
1= (1,0,0), g2=(0,1,0) and the equation C is

xér}txorit Axerixcd+x3=0, (8)
where A is some constant. Let
axotbxtcx,=0 (9)

be the equation of the line L, with coefficients a, b, ¢. If (C, L), =4, there
would be only one solution to the simultaneous equations (8) and (9). A
direct computation shows that this is possible only when b =0 and ¢ = 0.
Thus ¢z €L, contradicting the assumption that g;=p.

Lemma 3.4. Let F be a coherent sheaf on a nonsingular curve C. Let
F denote the dual of . Then h°(C, F) 2h°(C, F7).

Proof. Let . denote the torsion part of #. Then we have a short exact
sequence

0—F —F—F—0, (10)

where ¥ is torsion-free. Since every torsion-free coherent sheaf on a
nonsingular curve is locally free, F is locally free. Hence F=F =g
Then (10) implies the exact sequence

0—F —F—-F—0.
Taking the long exact sequence we obtain

—H(C.F)—H (C.F)—H' (C.F.)—+- (11)

Since % is supported on a proper closed subset of C, we have H' (C.%:) =0.
The result follows from (11).

Theorem 3.5. There does not exist a minimal surface of gemeral type X
such that

1. p(X) =3, K5=6

2. The canonical map of X composed of a pencil of genus greater than or
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equal to 3.

Proof. Suppose that such a surface exists.

Let Z denote the fixed part of |Kx|. Then Kx~nF+Z with n=>2, where F
is a member of a pencil. Since 6 =K%>2FKx+ ZKx>2FKx, F2=2p,(F) —2—
FKx>2g (F) —5>0. Thus |F| has base points. Since K¥=4F?+2FZ+KxZ=>
4F?, we havse F2=1, which means that |F| has exactly one base point. This
implies that a general member |F| is a nonsingular curve of genus §=3. It
follows that FZ=1, KxZ=0,n=2 and g =3.

Since KxZ =0, every irreducible component of Z is a (—2)-curve. We
are going to show that Z is irreducible. Write Z=27_m;A;, where each A; is
a (—2)-curve. Assume that FA;,=1 and FA; =0 for i=2. Then n, = 1.
Suppose that »>1. The equality

0=A1KX=2A1F+A1222_2+AlzniA,’

i=2

implies that 4,4;=0 for i>2. It follows that K (Z7_m;A;) = (Zi-miA;)?<0,
contradicting the assumption that X is a minimal surface of general type.
Hence Z is a rational curve with Z2=—2.

Next, we show that H' (X,0x) =0. If not, there would be a divisor e such
that ¢ is not linearly equivalent to 0 but 2Ze is linearly equivalent to 0. A
theorem of Xiao (cf. [10]) says that g=h'(X,0x) <2. Thus x (Ox) =22. The
Riemann-Roch theorem implies that

W (X,0x(F+e)) +h°(X,0x (F+Z—e)) 21.

Hence either h® (X,0x (F+¢)) >0 or h® (X,0 (F+Z—¢))>0. In the former
case, take DE|F+e¢|, then 2DE|2F|. Since dim |2F|=2, D is a member of |F|,
which implies that ¢ ~ 0. This is a contradiction. In the latter case
W (X0x(F+Z—e¢))>0. Since Z(F+Z—e) <0, Z is a fixed component of
|[F+Z—e|l. Thus h®(X,0 (F—e)) >0. This would lead to a contradiction by
the same argument as in the previous case. Hence ¢=0.

Let p be the base point of the pencil |F| We discuss the following two
cases.

Case 1: The point p is not on Z.
Let 0 X—X be the blowingup of X with center at p. Let E=06"'(p), and
let Z, F denote the proper transforms of Z and F respectively. Then K‘,?~2I~:

+3E+Z. There is a natural fibration f: X— P! such that |F| consists of
fibers. Since ¢=0, we have a short exact sequence

0—H*(X,0 (K))—H"(X,0 (K+F))—H"(F,0 (K7) ) —0,

where F is a nonsingular fiber. Thus h°(X,0 (K+F)) =6, which implies that
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f«(0z(K))~0(2)®0(—1) ®0(—1).

Since the map H° (X,0 (K +F))—H®(F,0 (K;)) is surjective and |Kz| has
no base point on a smooth fiber F, neither E nor Z is a fixed component of
|[K+F|. Thus the base points of |[K+F| can only be located on Z. Obviously
we have 4<h°(X,0(3F+3E)) <5.

First suppose that h°(X,0 (3F+3E)) =4. For an arbitrary nonsingular
fiber F, let  and y be the intersection points of F with E and Z respectively.

Then K7;~3x+y. This implies that Fisa non-hyperelliptic curve of genus 3.
Let

¢: X-+—P(fx (0 (K))) =P (000 (3) ®0 (3))

be the relative canonical map. Then ¢ is a birational map, for a general fiber
of f is non-hyperelliptic. In particular, the restiction of ¢ to every
nonsingular fiber is a birational morphism onto its image. We are going to
show that the image of ¢ is a normal surface. It suffices to show that the
restriction of ¢ to every irreducible component of any singular fiber is either
a birational map or the contraction of the curve to a point.

From the exact sequence

0—H®(X,0 3F+3E))—H' (X,0 (K+F))—H*(Z,0(1))—0

we see that |Kz+F| has no base points. So ¢ is a birational morphism. Let F’

be a singular fiber. Let A be the irreducible component of F’ with AZ = 1.
First assume that AE = 1. Then it is easy to see that the image of the map

HX,0 (K+F)—H (A04 (Ky + F)) has dimention 3 and A cannot be
hyperelliptic. Thus the restriction of ¢ on A is a birational morphism onto
its image. All the other components of F’ have zero interestion with K3, so
they are (—2)-curves and contract to points under ¢. Next assume that AE

=(0. Since |K,?+F—‘| has no base point on A, A is a nonsingular rational curve
with A2=—3. From A (Kz+A) <0. 1t follows that A is fixed in |[Kz+Al, so

h(X,0(Kg+A))=3. Write F=A-+B. Then the exact sequence

— _ ¢
0—H*(X,0 (Kz+A))—H (X0 (K+F))—H°(B,0 (Kz+F) )=

implies that Im (¢) has dimension 3. Thus ¢(B) is a non-degenerate plane
cubic curve. Write B = B; + C, where B, is the component interesting E.
Then C consists of (— 2)-curves and contracts to points under ¢. This
shows that ¢ maps B; onto its image birationally. Note that only
(—2)-curves contract to points under ¢. Therefore ¢ (X) is a normal
surface with rational double points as its only singularities. In particular,
X (@g) =X (0¢()7)) =4

Let W denote the threefold P (0® 0 (3) ® 0 (3)) over P'. Let E, denote
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the divisor P (0 (3) ®0(3)) of W, and let 7 denote a fiber P? of W. Then as
a divisor of W, ¢ (X) is linearly equivalent to 4E, + nn for some n> 0.
Lemma 1.1 (2) shows that x (05) =3n — 26, which implies » =10. But this
contradicts Lemma 1.1(1). Hence h°(X,0 (3F+3E)) =4 is impossible.

Next suppose that h° (X 0 (3F + 3E)) = 5. Let D be a member of
|K,7+F_‘| that does not contain Z. Then D meets Z at one point x, which is the
only base point of |K;+F_|. Let F' be the fiber of f passing through x and let
A be the irreducible component of F’ passing through x. Let o1 X1—X be the
blowingup of X at . Let G=o07'(x) and let A, be the proper transform of
A. The proper transform of E is still denoted by E. The linear system
lo* (Kz+F) — G| does not have base points.

Let fi=f01: X;—P! be the fibration induced from f. Let M=ff0 (o} (K;+
F) —G). Since h°(X,,0 (o% (Kz+F) —G) =6. and h°(X,,0 (¢} (Ky) —G)) =3,
the locally free sheaf M is isomorphic to 0® O ® 0 (3). The natural morphism
f*M—0 (oFf (K;+F) —G) induces a morphism ¢: X,—P (M) =P (0&0(3) ®
0(3)), because the sheaf O(df(Ky + F)— G) is generated by global
sections.

If AE =1, then the restriction of H® (X, 0 (¢f (Ky+F) —G)) on A; has
dimension 3, for h°(X,,0 (0¥ (Kz) —G (of (F)) —A1))) =3. Thus ¢ maps A to
a nondegenerate cubic curve and G to a line. Using the same argument as
before, we see that ¢ (X1) is a normal surface with rational double points as

its only singularities. This would lead to a contradiction by virtue of Lemma
1.1

Next assume that AE=0. Since A*+1=A"+AK;=2p,(4) —2, A% is
either —1 or —3. If A*= —1, then A is either a smooth elliptic curve or a
rational curve with a node or cusp.

Assume that A is a smooth elliptic curve. Then the exact sequence

0—H*(X,0 (K3))—H° (X,0 (Kz+A))—H*(4,04)—0

implies that h° (X,0 (Kz+A4)) >h°(X,0 (Kz)). So A is not a fixed component
of [Kz+Al. Take DE|Kz+A| which does not contain A. Then €D, for DA
=0. Thus D+ (F'—A) is a member of |[Kz+F| which does not pass throught
x. This would lead to a contradiction. Hence A is not a smooth elliptic
curve.

Assume that A is a rational curve with a node or a cups y. Let ¢: w—X

be the blowingup of X at y. Let I'=¢! (y) and let A’ denote the proper
transform of A. Then A’ is a smooth rational ccurve with A”?= —5 and A'T"
=2. The exact sequence

0—0w(Kw)—0w (Kw+I)—0r(—2)—0
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implies that h® (W,0 (Kw+1T)) =3 and h° (W,0 (Kw+1)) =0. Then the exact
sequence

0—’@W (Kw+n—’@w(Kw+F+A,) —’@A'_’O

implies that h®(W,0 (Kw+A'+1)) >h® (W0 (Kw+1)) =h*(W,0(Kw)). So A’
is not a fixed component of |Kw+A+T1. Take D' E€|Kw+ A"+ I which does
not contain A’ and let D=¢ (D’). Then DE|Kz+A| and x€D. Thus D+ (F’

—A) is a member of |K/\7+F_| which does not pass throught x. This would
lead to a contradiction. Hence A could only be a smooth rational curve.

Since h° (X1,0 (0% (K3)) =3, the restriction of H°(X;,0 (¢} (Kz+F) —G)) on
oF (F') —G has dimension 3. Thus ¢ (6f (F) —G) is a non-degenerate plane
cubic curve. Write of (F) =G + A, + B, + R, where B; is the irreducible
component that intersects E, and R consists of (—2)-curves. Then ¢ maps
B; and G birationally to a cubic curve and a line respectively. The divisor
A1+R is contracted to normal singularities under @¢. Let p=¢(A4,) and Let C
= U%.,C; be the exceptional set of the normal singularity p. We may assume
that C;=A,. Since A?% —2 and C does not contain (—1)-curves, p is not a
rational double point. As every hypersurface rational singularity is a
rational double point, p is not a rational singularity. This means that Z%+
ZKx, =0, where Z is the fundamental cycle on C. Since ZKx,=A1Kx, =2, we
have Z2> — 2, which implies that Z> = — 2 because Z? is an even negative
ingeger. In particular, this implies that Z¥A,. Let D= (4;+R) [c. Then
DC;<0 for every i. Thus Z<D. Since A*=—3, we have A (FF—A)=3. So
A1 (Z—A;) <3, On the other hand, —2=2?=A}+ (Z—A,)2+24,(Z—A))
<—6+24,(Z—A,) implies that A, (Z—A4,) =2.

If A;(Z—A,) =2, then A, is not a fixed component of |Kx,+Z| by Lemma
1.6. This contradicts the condition that x is a base point of |Kx+Fl.

If A,(Z—A) =3, let Q=Z— A, Let 4, **, As be the connected
components of Supp (Q) and let Qi=0Ql|s, for 1<i<s. Then —4=Q*=Qi+--
Q% Thus s <2. Since A;Q = 3, there is a component A; of @ such that
A1A;>0 and the coefficient of A; in @ is odd. Then A;Q = A;Z — A;A, <0.
Lemma 1.4 implies that s =2. Since A; (@ +Qz) =3, we may assume that
A1Q:=2. Then A, is not a fixed component of |Kx,+A:+ Q| be Lemma 1.6.
This contradicts the condition that x is a base point of |Kx+Fl|.

Case 2: The point p is on Z.

Let 0: X—X be the blowingup of X with center at p. Let E=0"'(p), and
let Z, F denote the proper transforms of Z and F respectively. Then K,;~2F_
+4E+ Z. There is a natural fibration f; X— P! such that |F| consists of
fibers. The complement of Z in the fiber is denoted by Z° ie, Z° is an
effective divisor such that F~Z+Z°.

The short exact sequence
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0—H (R0 (Ky) ) —HO (X0 (K;+ 7)) >H (FO (K:)—0,  (12)

where F is a nonsingular fiber, implies that h° (X,0 3F+4E+Z2)) =h*(X,0 (K;
+F))=6. Since the map ¢ in (12) is surjective, E is not a fixed component
of |3F+4E+Z]. The short exact sequence

0—H(X,0 BF+3E+2))—H" (X0 (K;+F))—H"(E,0)—0

implies that
h°(X,0(3F+3E+2Z)) =5. (13)

We are going to show that E is not a fixed component of |3F + 3E + Z|.
Suppose E is fixed. Then h®(X,0 (3F+2E+Z) =5. Since h°(X,0 2F+2E+

Z) =3 and h° (F,0; (2E)) <2 for a general fiber F, we have a short exact
sequence

0—H(X,0 (2F+2E+2))—H* (X,0 BF+2E+2))
—H (F0; (2E))—0.

This implies that
f+OCF+2E+2Z)=0(—1)®0(2).

It follows that h° (P!, f40 (2F +2E+Z) V) =2. The relative duality implies
that the dual of RY«0 (2F + 2E) is isomorphic to f«0 (2F +2E +Z). Hence
K (PR 4«0 (2F + 2E)) > 2 by Lemma 3.4. But the Riemann-Roch theorem

implies that k' (X ,0 (2F + 2E)) = 1, which contradicts the Leray spectral
sequence

0—H'(fx0 (2F+2E))—H' (0 (2F+2E) ) —
—H° (RY+0 (2F+2E) ) —0.

Therefore E cannot be a fixed component of |3F+3E+Z].

Let G be a general member of |3F+3E+Z| and let F be a general fiber.
Let x=FNE. Then G NF={x1x,x3, where x1, x2, x; are distinct from .
Thus x; +x2+x3 is linearly equivalent to 3x as divisors on F, which shows
that F is not hyperelliptic.

Since E is not a fixed component of |[3F+4E+Z|, there exists DE|3F+4E
+Z| such that D does not contain E. Since DE=0, the curve D does not meet
E, so Z is not a component of D. This shows that Z is not a fixed component

of |3F+4E+Z]. Hence 4<h®(X,0 (3F+4E)) =h°(X,0 (3F+3E)) <5.
We discuss the two subcases:

Case 2A: h°(X, (3F+3E)) =5.
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It follows from (13) that
0—H*(X,0 (2F+3E+2))—H' (X.0 (3F+3E+2))—H(F.0 (3E))—0

is exact. Thus the map H® (X,0 (4F + 3E))— H° (F 0 (3E)) is surjective.
Hence we have a short exact sequence

0—H°(X,0 (3F +3E)) —H*(X,0 (4F+3E) ) —H° (F,0 (3E) ) —0

which implies that h° (X ,0 (4F + 3E)) = 7. Meanwhile, the short exact
sequence

0—H*(X,0 (3F+4E) ) —H"(X,0 (AF+4E) ) —H° (F.0 (K7) ) —0

implies that h° (X,0 (4F+4E)) =8. Hence |[4F +4E| has no base points. Let
¢ denote the projective morphism determined by |[4F+4E]|.

Let # be an arbitrary nonnegative integer. Since F is a non-hyperelliptic

curve, h° (F.0:(2E)) =1. Hence h®(X,0((n+1)F+2E)) <h°(X,0 WF+2E))
+1 by the short exact sequence

0—H"(X,0 (WF+2E))—H"(X,0 ((n+1) F+2E))—H"(F.0;(2E))

As F is not a fixed component of | (n+1) F+2E|, we have h®(X,0 ((n+1) F+
2E)) =h°(X,0 mF+2E)) +1. Hence h°(X,0 WF+2E)) =n+1 for all =0,
In particular h°(X,0 (4F+2E)) =5.

Since the image of H® (X,0 (4F +4E)) in H° (Z,0 (4)) has dimension 3,
@(Z) is either a plane quartic curve or a conic. Since h°(X,0 (4F+2E)) =5
and h®(X,0 (4F+3E)) =7, we have a short exact sequence

0—H*(X,0 (4F+2E))—H"(X,0 (4F +3E) ) —H°(E,0£ (1) ) —0.

Hence |4F + 3E| has no base points on E, which implies that it has no base
points at all. Let G be a general member of |[4F + 3E| and let p denote the
intersection of E and Z. Then G NZ = {py,psps}, where py, pa, ps are distinct
from p. Thus G+E~4F+4E, (G+E)|,=p+p+p.+ps and 4E|;=4p. This
implies that ¢ (Z) is a plane quartic curve which is smooth at ¢ (p). Let L be

the tangent line of ¢ (Z) at ¢ (p), then the intersection number (¢ (Z) L) s =
4.

Using the same argument as before, one can see that Y=¢()a is a normal
surface in W=P (0 ® 0 (3) ® 0 (4)). Let Eo be the hypersurface of W
corresponding to P (0 (3) ® 0 (4)), n be a general fibre of W and 7o be the
fiber containing ¢(Z_>. Then Y has at most rational double points away from
No. As a divisor of W, Y is linearly equivalent to 4E,+nn for some n>0.
Since the morphism ¢ is determined by |[4F +4E|, 4F +4E ~ ¢* (Eo+dn) for
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some integer d. Since F~ ¢*n, we have 4E~ ¢* (Eq+ (d—4) n). 1t follows

from h°(4E) =1 that d =4, so ¢* (E;) =4E. Since the canonical system of X is
cut out by Kw+Y~Eo+ n—9)n, we have n =12 and Eo+2n+no cuts out the
canonical system. Lemma 1.1(2) implies x (Y) =6. Since x (X) =4=yx (V)
— 2, either Y has one singularity of geometric genus two or Y has two
singularities of geometric genus one on 7. Note that 7o =P? and it contains

the singular quartic curve ¢ (Z). Since the multiplicity of every singularity
of a plane quartic curve is less than or equal to 3, so is the multiplicity of
every singularity of Y.

If Y has one triple point x, then x is a triple point of the quartic curve
¢(Z). Obviously ¢ (Z) has no other singularities and the geometric genus of
the surface singularity x is equal to two. Let m: W,— W be the blowingup of
W atx. Let G=n"'(x), and let Y, be the proper transform of Y. Then Kw,
+Yi~n*Kw+Y) —G~n*(Eo+2n) + 10, where 1o is the proper transform of
No. If Y1 is not normal, then G contains a curve C such that Y, is singular
along C. This curve C is not contained in 7o, because x is a triple point of
¢(Z). Let . Wy;— W, be the blowingup of W; with center at C. Let G, =
71(C) Then Kw,+ Yo~ t*n* (Eo+2n) +7* (no) — (m —1) G,, where m is the
multiplicity of a generic point of the singular locus C and Y: is the proper
transform of Y;. But t*r* (E;+2n) +7* (o) — (m—1) G; is not an effective
divisor. This contradicts the assertion that Eq + 2n + 1o cuts out the
canonical system of X. It follows that Y; is normal. The surface Y; has an
essential singularity on %', for otherwise x would be an elliptic singularity of
geometric genus one. This is impossible, for n’9 N Y, is a smooth rational
curve. Therefore Y has no triple point.

If Y has one double point x of geometric genus two, then x is a double or
triple point of the quartic curve ¢ (Z). Let m Wy— W be the blowingup of
W atx. Then Kw,+YV,~n*(Eo+2n) +70+G. The surface Y; has double
locus along the rational curve C=G N Y}, for otherwise x would be a rational

double point of Y. The curve C is not located on 1’ since ¢(Z) has at most
a triple point at x. Let 7. W,— W, be the blowingup of W; with center at C.
Then the proper transform Y, of Y, is normal, for otherwise the double point
x would have geometic genus greater or equal to three. For the same reason
as before, Y, has an essential double point on the proper transform 1"y of 7.
But 1”9 N Y; is the blowingups twice of the quartic curve ¢ (Z) at a double
point, so 7”¢ N Y, has at most ordinary double points by (1) of Lemma 3.3.
This implies that Y, has at most rational double points on 1", ths is a
contradiction.

If Y has two essential double points x; and x; then each of these two
points has geometric genus one. So they are minimally elliptic points. Let F’

be the fiber containing Z, then ' =Z+ A, + A, where A, and A, are the
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fundamental cycles of x; and x;. We have 0=F?=—34+2Z (4,+A4,) +42+
A= —3+42(KzA1+KzA,) +Ai+A3=—3—A}—A3% So we may assume that
A}=—1 and A3=—2. The plane quartic curve ¢ (Z) has two double points

x; and x2. Let A, and A, be the types of the x; and x; respectively as plane
curve double points. Then m, n>1 since x; and x, are not rational double

points as surface singularities. Since A% = — 2, we have n> 2. This
contradicts (2) of Lemma 3.3. Therefore Case 2A does not occur.

Case 2B: h° (X, (3F+3E)) =4.

Since h° (B3F+3E) =4 and h°(4F+4E) =7, we have fx0; 4F+4E) =0 &0
@0 (4) and [4F+4E| has no base points. Let ¢: X2 W=P(0®0(4) @0 (4))
be the relative morphism determined by the line boudle Oy (4F +4E). Then
4F +4E ~ ¢* (Eo +nn) for some integer n. Since F ~ ¢*n, we have 4E ~
¢* (Eo+ (n—4)7n). It follows from h°(4E) =1 that n=4 and ¢* (E,) =4E.

Next we take a look at the image of F under the morphism ¢ for an

arbitrary fiber F. A fiber F can be written as F=A4 + B, where 4 is an
irreducible curve with AE =1 and B is an effective divisor with BE = 0.
Since the intersection matrix of the divisor B is negative definite, B is

contained in the fixed part of |3F+4E+B|, so h®(3F+4E+B) =h° (3F+4E) =
4. The short exact sequence

0—H’(3F+4E+B)—H° (A4F +4E)—H(A,04 (4E))

implies that the image of A under ¢ is an irreducible plane curve not
contained in a line. That means that ¢: A— ¢ (A) is either a birational
morphism onto a quartic curve or a morphism of degree two onto a conic.
We are going to see that there is at most one fiber whose image under ¢ is a
conic.

By (13) h® (3F+3E+2) =5>h" (3F +3E) = h° (3F +2E + Z), so there
exists D1 € |3F +3E + Z| which contains neither Z nor E. Let D=D,+2Z°€
|4F+3E|. Then there is a unique point x EDNE which is not in Z. Let F be
a fiber not containing x. Let e =F N E. Then 4¢e ~¢ +e1 + ez + es =
(E+D) |,,'~, where e, e, e3 are all distinct from e, whence ¢(F_‘) is an irreducible
quartic curve. This shows that only possible fiber F such that ¢ (F) is a
conic is the fiber passing through x. In particular, ¢(Z) is a quartic curve.

For an arbitrary irreducible curve B on X, ¢ (B) is a point if and only if

B(4F + 4E) = 0. These are exactly the “vertical” curves away from E.
Assume that B is such a curve and B is not a component of Z°. Then BK3z=0,
wherce B is a (—2)-curve.

Let p: Y—S be the normalization of S= ¢ (X), and let ¢: X—Y be the
morphism such that ¢ =p¢. By the above discussion, we conclude that ¥ —
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¢(Z) has only rational double points as its singularities.
As a divisor in W, ¢ (X) —~4E,+rn for some integer . Thus

16= (4F+4E)%= (Eo+4n)? (4E,+vn) =4E3+r+32=7.

Hence S=¢ (X) ~4E,+161, and Ky+S~E,+67.

If S is normal, then ¢: X— S is a resolution of isolated singularities.
Since all singularities on S— ¢ (Z) are rational double points, we have Kz~
¢*(Eo+61) —A~4E+6F—A, where 4 is an effective divisor and Supp (4) S
Supp(Z°). This is impossible. Hence there is a fiber Fo such that ¢ (Fo) is a
conic Cy.

Use the same notation of local coordinates as before. Let g (xox;,x22) =0
be the equation of the surface So=S N W,, where x, is the fiber coordinate of
the line bundle € and x,, x; are the fiber coordinates over U, of the rank two
bundle 0 (4) ®0 (4). Since ¢* (E;) =4E, the line E;N n intersects the quartic
curve SN 7y at a single point with contact number 4. Hence ¢ (xrox1,x22) =
u (2) k (x1,22) * + 2w (rox1,x22) for some linear form k (x1x2). Since ¢ (F) is

an irreducible curve of degree 4 or 2 for an arbitrary fiber F, u(2) %0 for
every z€ C. Hence u(z) is a nonzero constant a. After a linear change of
coordinates, we may assume that the equation of Sy is

axt+zow (xox1x22) =0,

where v (xox1,r22) is homogeneous in xo, x1, 2 of degree 3. Without loss of
generality, we may assume that Co is contained in the fiber z=0. By Lemma
3.2 the resolution length of the double locus Cy is less that or equal to 2.

Let 01: Wi— W be the blowingup of W with center at Co. Let G1 =
07 (Co). Let Si be the proper transform of S and let C;=S:1NGi. Then Kw,
+S1~0f (Kw+S) — G~ 0¥ (Eo+671) —Gi.

If the resolution length of Cy is 1, then S; is normal. Let ¢: X—S; be the
morphism such that §=01¢. Then Kz~ ¢* (Eo+6n) —¢*(G,) —A~4E+5F+
¢* (0fn —G1) — A4, where 4 is an effective divisor and Supp (4) S Supp (2°).
This is impossible, for ofn—G; is effective.

If the resolution length of Cy is 2, let g: W;— W, be the blowingup of W,

with center at Ci. Let G, =o07'(Cy). Let S, be the proper transform of S;
and let C;=S2N G, Then S; is normal and Ky, +S;~ 0% (Kw, +S1) —G,~ df o
(Eo+6n) — 05G1— G, Let ¢: X—S, be the morphism such that ¢ = 0102¢.
Then K¢~ ¢* (Eo+61) — ¢*0f (G1) — ¢* (G2) —A~4E+4F + ¢* (d¥ot (2n) —
05 (G1) —G3z) — 4, where 4 is an effective divisor and Supp (4) S Supp (2°).
However, the divisor 4E +4F + ¢* (0¥ (2n) — of (G1) — G2) — 4 cannot be
linearly equivalent to 4E+2F+Z for dfo¥ (2n) —df (G1) —G, is effective.
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4. p,=4, K,=9

In this section we prove the non-existence of minimal surfaces of general
type with p,=4, K*=9 whose canonical map is composed of pencils.

Lemma 4.1. Let X be a minimal surface of general type whose canonical
map 1s composed of a pencil. Assume that the genus g of a general member of the
pencil is greater than or equal to 3. If the geometric genus p, of X is 4, then one
of the following statements holds:

1. K%=>12.

2. K%=9 and Kx—~3F where F is a nonsingular curve of genus 3 with F?=1.

Proof. Since p; =4, the canonical divisor can be written as Kx=unF +Z
for n=3, where Z is the fixed part of |Kx|, and F is a general member of the
pencil of which |Ky| is composed of. Consider the two cases.

Case i) F*=0:

We may assume that F' is a general member of the pencil. By Sard’s
theorem, F is a smooth curve of genus §. Hence FZ=F (F+Kx) =29 —2>4.
Then K¥=nFZ+ZKx>12.

Case ii) F2>0:

In this case n=3. We have

29 —2=F2+FKy=4F*+FZ>4F2, (14)

and the equality holds if and only if Z=0. K=9F*+3FZ+ ZKx>F*+

2(4F?+FZ) =F*+4g —4. Hence K¥=>12 when g>4. 1If g =3, then (14)
implies that F2=1 and Z=0.

Lemma 4.2. Assume that X is a surface satisfying the second condition
of Lemma 4.1. Then H'(X,0x) =0.

Proof. (suggested by G. Xiao) Suppose h'(X,0x) >0. Then there exists
a divisor € which is not linearly equivalent to zero but 3¢ ~0. Suppose that
H (X0 (F+¢)) %0. Let DE|F+e|. Then

3DE|3F|. (15)

Since every member of |3F| is the sum of three members of |F|, (15) implies
that D~F, whence e~0. This is a contradiction. Hence H® (X,0 (F+¢)) =0.
For the same reason H°(X,0 (F—e¢)) =0 halds too. Thus the sequence

0—H’(X,0 (2F —¢) )—H'(F,0r (2F—¢)) (16)

is exact.
Xiao’s theorem implies that ¢ =h' (0x) <2. The Riemann-Roch theorem
implies that

R (X,0(2F—¢)) —h' (X0 (2F—¢)) =4—q22. (17)
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Since F (2F —e) =2, we have the inequality h° (F,0r (2F —¢)) <2. It follows
from (16) and (17) that h°(X,0 2F —¢)) =h° (F,0r 2F —¢)) =¢=2. This
implies that F is a hyperelliptic curve with a g3=|0r (2F—E)|. Since Or (4F)
=0r (Kx + F) = Op (Kg), the divisor Or (2F) is also the g} of F. Hence
Or(4F+¢€) =0r (4F —2¢) =0r (Kr)), whence

WO (F.0r (4F+¢)) =3, (18)

Since the divisor F+¢ is big and nef, Kawamata’s vanishing theorem implies
H'(X,0(4F+¢)) =0. So we have exact sequence

0—H*(X,0 (3F+¢))—H(X,0 (4F +¢))
—H(F,0p (4F+¢))—H' (X,0 (3F+¢) )—0.

Hence 3=x (X,0 BF+¢)) =h* (X0 BF +¢)) —h* (X0 BF +¢)) =h° (X,
O(4F+e)) —h°(F.0 (4F+¢)) =h°(X,0 (4F+¢)) —3 by (18). Thus

h°(X,0 (4F +¢)) =6. (19)

On the other hand, h°® (X,0(4F +¢)) = x (X,0 4F +¢)) = 2F*+ x (X,0) =5,
contradicting (19). Therefore ¢=0 is impossible.

Theorem 4.3. There does not exist a minimal surface of gemeral type X
such that

1. p,(X) =4, K%4=9.

2. The canonical map of X is composed of a pencil of genus greater than or
equal to 3.

Proof. Suppose that such a surface X exists. By Lemma 4.1 there is a
nonpingular curve F of genus 3 such that Kx~3F and FZ=1. Let p denote
the base point of |[F|. We know that g=h!(X,0) =0 by Lemma 4.2.

Let 0: X—X be the blowingup of X with center at p. Let E=0"'(p), and
let F denote the proper transform of F. Then Kx ~ 3F +4E. There is a
natural fibration f: X—P! such that |F| consists of fibers. We may assume

that F is nonsingular.
The short exact sequence

O0—H (X0 (K))—H (X0 (K+F) ) —H® (F.0 (K.) ) —0

implies that h® (X,0 4F +4E)) =h° (X,0 (K+F)) =7. Since the map ¢ is
surjective, E is not a fixed component of |4I~:—4E|. The short exact sequence
0—H"(X,0 (4F +3E) ) —H*(X,0 (Kz+F) ) —H" (E.05) —0
implies that
h°(X,0 (4F+3E)) =6. (20)

We are going to show that F is not a fixed component of |[4F + 3E|.
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Suppose E is fixed. Then h®(X,0 (4F+2E)) =6. Since h°(X,0 (3F+2E)) =4
and h°(F,0x(2E)) <2 for a general fiber F, we have a short exact sequence

0—H°(X,0 (3F+2E))—H(X,0 (4F +2E) )—H (F,0(2E) ) —0.
This implies that

f+0 (3F+2E)=0(—1) @0 (3).

It follows that h° (P!, f«0 (3F +2E) V) =2. The ralative duality implies that
the dual of RYf«0 (2F+2E) is isomorphic to f«0 (3F+2E). Hence h° (P! RY+0
(2F+2E)) 22 by Lemma 3.4. But the Riemann-Roch theorem implies that
h'(X,0 (2F+2E)) =1, which contradicts the Leray spectral sequence

0—H' (f«0 (2F+2E) ) —H" (0 (2F +2E) ) —H® (R'f+0 (2F +2E) ) —0.

Therefore E is not a fixed component of |[4F + 3E|. Let G be a general

member of [4F+3E| and let F be a general fiber. Let x=FNE. Then GNF
= {x1,x2,x3}, where xy, xs, x3 are distinct from x. Thus x,+x,+xs is linearly

equivalent to 3x as divisors on F, which shows that F is not hyperelliptic.

Since h°(3F+4E) =4 and h°(4F+4E) =7, we have f«03 (4F+4E) =00
®0 (4) and |4F+4E| has no base points. Let ¢: X—>W=P(0®0(4) 80 (4))
be the relative morphism determined by the line bundle Oy (4F +4E). Then
4F+4E~¢* (Eo+nn) for some integer n, where Eo and 7 are hypersurfaces of
W as defined in section 2.1. Since F~¢*n, we have 4E~¢* (Eo+ (n—4) 7).
It follows from A°(4E) =1 that n=4 and ¢™* (E,) =4E.

The rest of the proof is very similar to Case 2B in the proof of Theorem
3.5.

An arbitrary fiber F of f can be written as F=A+B, where 4 is an
irreducible curve with AE =1 and B is an effective divisor with BE = 0.
Since the intersection matrix of the divisor B is negative definite, B is
contained in the fixed part of |3F+4E+B|, so h° (3F+4E+B) =h° (3F+4E) =
4. The short exact sequence

0—H(3F+4E+B)—H* (AF +4E)—H"(A 0,4 (4E))

implies that the image of A under ¢ is an irreducible plane curve not
contained in a line. That means that ¢: A— ¢(A) is either a birational
morphism onto a quartic curve or a morphism of degree two onto a conic. Let
G be a general member of |4I~:+ 3E|. Then G does not contain E and meets E
at one point p. Let Fo be the fiber passing through p. The only possible
fiber F such that ¢ (F) is a conic is Fo. So there is at most one fiber whose
image under ¢@ is a conic.
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For an arbitrary irreducible curve B on X, ¢ (B) is a point if and only if
B(AF + 4E) = 0. These are exactly the “vertical” curves away from E.
Assume that B is such a curve. Then BKz=0, whence B is a (—2)=curve.

Let p: Y—S be the normalization of S=¢ (X), and let ¢: X—Y be the
morphism such that ¢ = p¢. The above discussion implies that Y has only
rational double points as its singularities.

As a divisor in W, ¢ (X) ~4Eo+7n for some integer 7. Thus
16= (4F +4E) %= (Eo+4n)2 (4Ey+rn) =4E3+r+32=r.

Hence S=¢ (X) ~4E,+167, and Kw+S~E+67.

If S is normal, then ¢: X—5S is a resolution of isolated singularities. In
this case all singularities on S are rational double points, so Kz~ @* (E,+6n)
~4E+6F. This is obviously impossible. Hence there is a fiber Fo such that
@ (Fo) is a conic Co.

Use the same notation of local coordinates before. Let g (xox1,222) =0 be
the equation of the surface So=S N W,, where x, is the fiber coordinate of the
line bundle @ and x,, x; are the fiber coordinates of the rank two bundle 0 (4)
® 0 (4) over Uy Since ¢* (E,) =4E, the line E, N 7 intersects the quartic
curve SN 7y at a single point with contact number 4. Hence ¢ (rox1,222) =
u (2) b (x1,22) * + 20 (To,x1,x2,2) for some linear form k (r;,xs). Since u (z) #0
for all z € C, u (z) is a nonzero constant a. After a linear change of
coordinates, we may assume that the equation of Sy is

axttxw (xoxi,xaz) =0,

where v (xox1,x22) is homogeneous in xo, x1, 2 of degree 3. Without loss of
generality, we may assume that Co is contained in the fiber z=0. By Lemma
3.2 the resolution length of the double locus Cy is less than or equal to 2.

Let 01: Wi— W be the blowingup of W with center at Co. Let G =

07 (Co). Let Si be the proper transform of S and let C;=S1NGi. Then Kw,
+S1~0f (Kw+S) —Gi~df (Eo+67) —G..

If the resolution length of C, is 1, then S; is normal. Let ¢: X—S, be the
morphism such that ¢ =01¢. Then Kz~ ¢* ((Eo+67) —¢* (G,) ~4E+5F+
¢*(dfn—Gy). This is impossible, for o0fn—G, is effective.

If the resolution length of Co is 2, let g2 W;— W, be the blowingup of W)
with center at C;. Let G,=o07'(Cy). Let S, be the proper transform of S;.
Then S; is normal and Kw,+S2~0F (Kw,+S1) —G,~0¥0F (Eo+6n) —0%5G,—G..
Let ¢: X—S; be the morphism such that ¢=0,01¢). Then Kz~ ¢* (Eo+671) —
O*o% (Gy) — ¢* (Go) —4E +4F + ¢* (dfoF (2n) — 0% (G1) —G,). However, the
divisor 4E+4F + ¢* (o¥0% (21) — 0% (G1) —G2) cannot be linearly equivalent to
4E +3F for dfo¥ (2n) — 0% (G1) —G, is effective. This concludes the proof of
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the theorem.

5. Lower bound for K?

Theorem 5.1. Let X be a minimal surface of geneval type whose
canonical map is composed of a pencil. Let g denote the genus of a general
member of the pencil. Assume that g=3.

(1) Ifp,(X)=3, then K}¥>7.

(2) I py(X) =4, then K%=>12.

(3) Ifpy(X) =5 and g =3, then K%=>4p,—4.

Proof. (1) The canonical divisor can be written as Kx=nF +Z, where
Z is the fixed part of |Kx|, and F is a general member of the pencil of which
|Kx| is composed of. Here n=2. Consider the two cases.

Case i) F?=0:

We may assume that F is a general member of the pencil. Since |F| has
no base points, F is a smooth curve of genus . Hence FZ=F (F+Kx) =29 —
2>4. Then K¥y=nFZ+ZKx2>8

Case ii) F2>1:

Then K¥=4F?+2FZ+7Kx>8.

Case iii) F?=1:

Then n=2, and we may assume that F' is a smooth curve of genus g. We
have FZ=F (F+Kx) —3=29 —521. Hence K¥=4F*+2FZ+ZKx>6. By

Theorem 3.5 K%=6 is impossible.

(2) follows from Lemma 4.1 and Theorem 4.3.

(3) In this case K=nF+Z with n=>p,— 1. Since p,F?+FZ< (n+1)F?
+FZ=FK+F?=4, we have F2=0 and FZ=4. This means that |F| has no
base points. Thus K¥=nFZ+ZKx>4p,—4.
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