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Surfaces of general type whose canonical
map is composed of a pencil of genus 3

with small invariants

By

Jin-Gen YANG * and  Masayoshi MIYANISHI

O. Introduction

Let X be a minimal surface of general type over the complex number field.
Assume tha t pg  (X )  3 , a n d  1Kx1 is com posed o f  a  p e n c il .  The existence of
such  surfaces w as know n a s  e a r ly  a s  1948 b y  Pompilij's exam ples. Later
the re  have been  s tud ies  by  Beauville, Debarre, Xiao a n d  o th e rs  ( [3 ] , [5 ] ,
[1 0 ] ,  [1 2 ] ) .  Refer to Section 2 o f [4 ] for a nice survey.

Let b denote the geometric genus of the image of the canonical map and let
g  denote  th e  genus o f  a  general m em ber o f  th e  penc il o f  w h ich  1Kx is
com posed. Assume that g 3. Then the inequality

_ ._4pg (X) +4 (b— 1) (1)

is valid with very few exceptions (cf. Theorem 2.3  o f  [4 ]).
In  this paper w e w ill give an example with pp= 3, b = 0, g =3 and K 2 =  7.

Then we will prove that is the lowest possible 10.
The other possible exception t o  (1 ) is  the case pg = 4  and Mr = 9, which

was proposed as an open problem in  [ 1 1 ] .  W e will prove that this case does
not occur, and consequently there is only one exception to  (1).

1. Preliminaries

1.1. P 2 -bumdles over P". F irs t w e  s ta te  so m e  b asic  fac ts  about
P 2 - bundles over the projective line  13 ', w hich w ill be used throughout this
p a p e r .  W e will use ig (n) to denote either the invertible sheaf of degree n on
P I o r  its corresponding line bundle, depending on the context.

Let V be a  vector bundle of rank 3 over P 1 . It is w ell-know n that V can
be decomposed into a direct sum of line bundles, i.e., V 0 (k )  ED 0 (m) 0 0 (n).
L et W =P (V ) be the  associated P 2 -bundle over P ' and let f  :  W -43 '  denote
th e  na tu ra l m a p .  Since P  ( V  L )  P ( v )  f o r  any  line  bundle  L, we may
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assume th a t V =0 ED C (m ) V  (n) with 0
T h e  subbundle (m) (13,( n )  o f  V  g i v e s  r i s e  t o  a n  irreducible

hypersurface E0 inside W . L e t  n be  a  fiber of f . Then E0 a n d  72 generate
Pic (W), and E8= — m — n, E r = 1 ,  E07,2= 773= o. The line bundle (n) gives
rise to a section e of the ruled surface E o . Obviously e2 =m — n  as a  divisor of
E0 . L e t  be a fiber of E o . Then

&(EO) E0 (e — n1 )( 2 )

The cononical divisor K w  is linearly equivalent to — 3E0
— (m + n + 2 ) 77•

Lemma 1.1. Let S be a prime d iv iso r  of the P 2 - bundle W=P (0$  (m )
$  (n ))  over P 1 with 0  . m r t .  A ssume that S  is linearly equivalent to 4E0+
br) for some b Z. Then

(1) b. 4m.
(2) x (S) = 3b —4m - 4n - 2.

Proof. (1) Since S  is irreducible and  not equal to Eo, th e  linear system
ISI in  W  cu ts  o u t  a  non-em pty subsystem  o f  th e  linear system  S 1E0 4 e  ±
(b — 4m) This implies that b — 4m

(2) The short exact sequence

0 - 0 w ( - 4E0
— b)7) — >e w

— >Vs
— >0

implies that

X (es) =1 — X (Ow ( - 4E0 — bn)) =1+ x (0.(E0+ (b m  — n — 2) i ) .  (3 )

Then the short exact sequences
— m — n — 2) 77) 'ew  (E o+  (b — m — n — 2) 77) — '

E0 (e + (b - 2m — n —2) )

and

0— *OE, ( (b — 2m — n —  2) 0 — '6E 0 (e + (b — 2m —n — 2) (b—m— 2n — 2) —>0

imply that

X (Ow (Eo+ (b — m — n - 2) 7)) )
'X  (0 , (b — m — n - 2 )77)) +X (ex o (e + (b - 2m — n - 2 ) ) )

(ew((b—m — n - 2) 77)) +x  E o ( — 2m — n — ) )  +X (Ce (b— rn- 2n- 2))
=  (b —m —n - 1) (b —2m — n —1) ± (b —m —2n —1)
=3b - 4m —4n-3.

The result follows from Equation (3).

Let y o , y ,  b e  the projective coordinates of P 1. Let r  U o  U  U1 b e  the
standard open affine covering of P 1, where Ui= {(Yo, yl) E 0 } .  Then z

Yi/Yo and =  Yo/yi a re  th e  affine coordinates o f  U0 and  U, respectively.

Let Wi= f - 1  (Ui ) , i = 0 , 1 . Obviously OP2 for i =0, 1.
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Let xo, I i ,  x2 b e  th e  fiber coordinates o f  0 , 0  (m ) a n d  0 (n) o v e r  Uo
re spec tive ly . A hypersurface So in  Wo is given by an equation

i k
C ijk rZ

r

 X OX
j

1X 2,
ij,kr 0j+j+k=d

where d O is  a  f ixed  in tege r. Let S be the closure of So in  W . L e t  t=max{r
- Fmj - knkictikr 0}. Then S  d E o

-  F trl as a  divisor o f  W . T h e  equation of S
n W1 is

i /k
C ijk r4 .Tor ix 2,

ij,k,r 0,i+j+k=d

-
where z'=1/z,x l i = z - m xi,x'2=2 n x2.

1.2. normal singularities of surfaces. M o s t  r e s u l t s  i n  this
subsection are well - known and their proofs are omitted.

L e t X  b e  a  nonsingular com plete su r fa c e . L e t A i ,  ..., A n b e  distinct
irreduc ib le  cu rves o n  X  with 1. T h e  s e t  A  = U7-1A, is  c a lle d  an
exceptional set if  A  is connected and the intersection m atrix of these curves is
negative  defin ite . A  divisor D =  7 . 1d1A  is  ca lled  a  positive cycle on  A  if
every di i s  a positive in te g e r . The integer d i is ca lled  the coefficient of A, in
D .  L et D  a n d  D ' b e  tw o  positive  cyc le s  on  an  exceptional s e t  A .  Then
denote D if D' — D is an effective d iv is o r .  Let I be a  subset of {1,...,0 and
let D = E7-id iA i b e  a positive cycle on A . A ssum e tha t the set d = U 1A i is
connected. Then we define DIA= 1A

The following two occasions of exceptional sets arise in th is paper:
(1) Let r : X — Y- b e  a  birational morphism, where X  and Y  are complete

surfaces and X  is  n o n s in g u la r . Let p  b e  a  norm al singularity  o f  Y. T h e n
rc- 1 (p) is an exceptional set.

(2) Let F  be a  fiber of a morphism TC X— >C from a  nonsingular complete
surface X  onto a  nonsingular curve C .  L e t  {A be  a  proper subset of
the set of all irreducible components of F .  If the  se t U7=1A, is connected then
it is  an exceptional set.

Let A =  U7.-1A, be an exceptional set. There is a unique positive cycle Z
=E7--1d iA, such that A,Z 0 for all i and Z  is minimal w ith this property. (cf.
[1].) This positive cycle Z  is called the fundamental cycle o f  A . I f  A  is  the
exceptional s e t  o f  a  n o r m a l  singu larity  p ,  th e n  Z  is  o f te n  c a l le d  the
fundamental cycle of p.

If every component o f an  exceptional se t is  a  nonsingular rational curve
with self - intersection — 2, th e n  it  is  the  exceptional s e t  o f  a  rational double
point (cf. [ 2 ] ) .  L et Z  b e  th e  fundamental cy c le  o f  a  ra tional double point.
Then Z2=-2.
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Lemma 1.2. L et B = U7- 1B , be the exceptional set o f  a rational double
point and let D =  7 . 1dB 1 be a positive cycle. A ssum e that DB if o r  every i
and D2 = - 2. Then D is the fundamental cycle of B.

Proof. L e t  Z  be the fundamental cycle of B .  Then Z D b y  the definition
of fundamental cy c le . L e t G=D — Z. Then G Z _ O . So —  2 =D 2 =Z 2 +2 G Z ±
G2 ._ — 2 + G .  Hence G2 =0, which implies G=0.

Lemma 1.3. L et B = U 7=1/31 be the exceptional set o f  a rational double
point. Let Z  be the fundamental cycle of B. Then — l B iZ._.0 for every i.

Proof. Easily checked for every type of rational double points.

Lemma 1.4. L et B= U7= 1B i be the exceptional set o f  a rational double
point and let D = E 'ii=i d,B , be a positive cycle. A ssum e that DB if o r  every i
and D2 = - 4. Then the coefficient of B, in D is even if  DB i <0.

Proof. Let Z  be the  fundamental cycle of B  and let G = D — Z .  Then G  is
effective and G * O. S i n c e  —4= Z2 ± 2GZ - I-  G2  a n d  G2 —  2 , we have GZ = 0
and G2 =  — 2. Let B i be a  component of Supp ( G ) .  Then B i Z = O. T h u s  B i G
=B D  Moreover, Supp (G) is connected, for G2 = — 2. By Lem m a 1.2 G
is the fundamental cycle of Supp (G).

Let Bi  b e  a  component of B  such that B iD <0 . W e claim that di > 1. To
prove th e  claim , suppose th a t  di = 1. T hen  B i i s  n o t  a  component o f  G.
Lemma 1.3 implies that B i Z = —1, B i G= O. S in c e  dj = 1, the coefficient of Bi

in  Z  is  e q u a l to  1. S o th e  ra tional double  point i s  of type  A .  We may
assume that Bi/3,+1= 1 fo r 1 — 1 .  Then it is easy to see that n 3, Z =
B i

- l- ••• ± B n  a n d  G =B 2 + • • • + B f ri-1 . T hus there  is  no B i  w ith  IV =  — 1 and
Bi G= O. This leads to a  contradiction. The claim is proved.

Since E'iz-idiBiD= —  4, it follows that di i s  2 o r 4 for every B i such that
DB,<0.

A  sequence o f  irreducible com ponents o f  A  is  c a l le d  a
computation sequence for Z  if A i k ( E ig l i A t j )  > 0 for 2  .k Kiri and Er=121,,=Z.

Computation sequence always exists and i 1 can be chosen arbitrarily.

Lemma 1.5. L et Z  be the fundamental cycle of  a rational double point
an d  le t {Ai 1 ,...,A 1„,) be a  computation sequence f or Z . T h en  A i

l Aii = 1 for
every r>1.

Proof. Easy.

Lemma 1.6. Let X  be a nonsingular complete sulface with H1 (X, ex) = 0.
Let A  =  U be an  exceptional set on X  where A,'-'=:. 1) 1  f o r every i. Let D =

be a positive cycle on A  such that AD _.<_0 for every i. A ssume that di
=1, A i (D —  A i ) =2, D 2 =A 1+2, and A ;= — 2 for i > 1 .  Then IKx - FD I* 0  and



Surfaces of general type 127

A 1 is not a fixed component of IKx+DI.

Proof. Let A'= W:=2A, and let Z=D — A i . The equality A I+ 2=D 2 =A i
+2A 1Z+Z 2 im plies that Z2 = — 2. Hence A ' is  connec ted . For every i >1 we
have A,Z It follows from  Lem m a 1.2 th a t  Z  i s  th e  fundamental
cycle of A'.

Let {A„,...,Aim )  be a computation sequence for Z .  The short exact sequence

0— *ex (Kx) - - ex (Kx -FA ti) — 'ew ( - 2) — q)

implies that h
°
 (X,Cx (Kx+A ii)) =h ° (X ,ex (Ks)) a n d  111( K  + A  i l ) )  =0.

By Lemma 1.5 we have a short exact sequence

r+1
0- ex (KX±  EA ti)— 'ex (K x +EA i i ) --*Op.( - 1)—+0

J=1 J=1

for every 0 <r<m. It follows from induction that h° (X ,Ox (K x +Z ))=h ° (X ,ex
(Ks)) a n d  H i  (X ,Ox(Kx+ Z)) = 0.

Since A 1(Kx+Z+A . 1 ) =0, we have a short exact sequence

0- 40x (Kx+Z)— ex (Kx+Z +A 1)—>ep.—q),

which implies h
°
 (X ,ex  (K x +D )) = h°

 (X ,ex (Ks)) +  1 and A 1 i s  n o t  a  fixed
component of IKx+DI.

2. p = 3, K 2 = 7

In  th is  section w e w ill g ive  th ree  d iffe ren t constructions of a m inim al
surface X  of general type with the following properties:

1. pg  (X) =3, K2=7.
2. The canonical map of X  is composed of a pencil of genus 3.

2 .1 .  as a hypersurface in a P 2 -bundle over P1 . Let m = 3, n =- 4
and the equation of So be

x 0 4 +  (x i _ x (2,) 2 ± z 6x  z 124  0 . (4 )

Then S  4 E 0 +127) . It is easy to  check that S  has only two singularities p:
= 0, x 1,1, x 1 =1, 1 2 - 0) a n d  p': (z= 0, xo = 1, x1= — 1, x 2 =  0 ). Both are
equivalent to the double point defined by

x
2+ y 3± z 6 - 0 .

It is well-known that this type of singularity is a  minimally elliptic singularity
and  the  exceptional curve is a  nonsingular elliptic curve of self-intersection
— 1.

Let no denote th e  fiber a t z = 0. Then K w +  S  E 0 + 377 —Eo + 2r) + no .
Let r  : be the minimal resolution of S, and let D= 7r -

1 (p) , D'= 71" 1 (p') .
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Then K x  7 1
-*

 (E 0 +  217) + (7r *  (fo) — D — D') . Since 71-* (17o) — D — D ' is  the
proper transform of Ni s in  X  and dimlaril =2, we have pg (x) 3. F rom  (4)
it is c lear tha t 7C*

 (E0) =  4E fo r a  rational curve E  on X .  Let F  and Z  denote
the  proper transform s o f n Is and This respectively. Then K x -4 E  + 2F +Z .
The self-intersection number of 4E in X  is equal to the intersection number EgS
in the threefold W .  Hence 16E2 =a (4E0 +120 = — 28+12= —16, whence E2

=  — 1. Obviously, F 2 =FZ -= 0, EF=EZ = 1. Since no n s is  a  quartic curve
with two cusps, Z  is  a  nonsingular elliptic curve. B y the adjunction formula,
0=2g (Z) — 2=Z (Z+Kx) =Z (4E +2F +2Z) , which implies that Z2 = —2.

In order to see that py (X) = 3, we need to know x (O x ) . Lemma 1.1 (2)
im p lie s  th a t  X  (0 s) = 6. S ince  every  m in im ally  e llip tic  s ingu la rity  has
geometric genus one, we have X (0 x) = X  (es) 2 =  4 .  Let 0  :  X— > X ' be the
contraction of the curve E .  F' = ç (F) = ç (Z) . T hen X ' i s  a minimal
surface with X (0 x,) = 4, K x, — 2F' Z ' , and K3e = 7.

Suppose that H' (Or) 4  0. Then there would exist B E  Div (X ') such that
B  is not linearly equivalent to 0 and 2 B - 0 .  By the Riemann-Roch Theorem,
we have h

° (Or (F'+B ))  + h°
 (0 x , (F' Z ' —  B ) )  3. Thus either h° (0' x , (F'

B ) )  2 o r  h
°
 (0 x , (F' Z ' —  B ) )  2. If  h

°
 ( 0  ( F '  B ) )  2, then the exact

sequence

0-q-i° ( Or  (B ) ) — '11° (ex' (F' +B) (Or (F' +B ) )

would imply that H° (Or (B)) > 0, w hich is im possib le . Hence h
° (Or (F' +Z '

— B)) 2. A s  a  nonsingular plane quartic curve, F  i s  a  non-hyperelliptic
curve  o f  genus 3. Hence h°

 (OF' (d ))  = 1  fo r  ev e ry  effective d iv isor d  of
degree 2 on F'. T h u s  h

°
 (0 (F' Z ' —  B ) =- 1. The exact sequence

0— >H° (Or (Zt
 — B) ) — '11° (0 x , (F' Z ' —  B )) — +H° (OF' (F' Z ' —  B ))

implies that H° (Or (Z' — B )) * 0 .  Since Z '(Z ' — B) <0, we have H° (ex,
 ( — B))

0, w hich  is im possib le . Therefore 111 ( 0 )  =  0 , which implies pg  (X ') = 3,
and the canonical map of X' is composed of a pencil of genus 3.

2 . 2 .  as a Galois triple cover. A general theory for triple covers of
a lg e b ra ic  v a r ie t ie s  w a s  developped b y  M ir a n d a  in  [6]. In [7] Tan
discovered a  Horikawa type  canonical resolution for G alo is trip le  covers of
su r fa c e s . It i s  a  u s e f u l  to o l  to  c o n s t r u c t  s p e c ia l  su r fa c e s  satisfying
preassigned cond itions. Here we summarize some facts o f trip le  covers that
w e  n e e d . For details readers m ay refer to [7 ] o r  [8].

Let Y be a  smooth surface, L  and M be divisors o n  Y. Assume that B, C
are effective divisors such that B -2 L — M , C -2M — L  and B ± C  is reduced.
Then the trip le  covering d a ta  (L,M,B,C) determines a G alois triple cover 7C
X—* Y from a norm al surface X  t o  Y .  The surface X  is defined in  th e  rank
two vector bundle L  M  as

X = S p e c  y [Z ,W ] / (Z2 bw , z w — bc, 14,2—  cz) ,
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where z,w are  fibre  coordinates of L, M and b 1 1 °  (2L — M), c E  ( 2 M  L)
whose zeros are B and C re spec tive ly . The branch locus of i t  is  B + C. If B
+C  is smooth then X  is nonsingular.

There are two formulas:

ir*Ox -=' ,gyeey (  —L) Ù ( — M).( 5 )
X (ex) -= 3X ( C O  (1,2±L K ) /2+ (M 2 -1- MKy) /2 (6)

W ith  th is  p rep a ra tio n  w e  s ta r t to  co n stru c t o u r ex am p le . L e t Y  b e  a
Hirzebruch surface P (Cp. e ep■ ( 3 )  )  .  Let E denote the section of Y w ith E2

= — 3 an d  le t n denote a  f ib re  o f  Y. I t  is  e a s y  to  s e e  th a t  th e re  e x is ts  an
irreducible curve D el4E+141 satisfying the following conditions:

1. D does not meet E.
2. D has two double points p, p' on a fiber no and no other singularities.
3. The double points p and p' are of type  A5, i.e ., they a re  equivalent to

the double point defined by the equation

2 y 6  O .X

N ext w e w ill construct a  sequence of blowingups o f  Y. T o  s im p lify  the
notation every irreducible curve and its proper transform  w ill share the  same
name.

Let a l  : Y be the composition of blowingups of Y  w ith centers at p
and p'. Let Ei 1 (p) = 0171 (p , ) Let q=E i nD  and q' =F i n D .  Let a2
Y2 'Y  be the blowingups of Y1 w ith centers at q and q'. Let E2 = a2 1 (q) , F2=

(qt ) . Let s= E2 n D and s1 =F 2 n D .  Let a3 :  Y3— )  Y2 be the blowingups of
Y2 with centers at s and s'. L e t  E3 = aj ( s )  F 3  =  1  CO • Then D becomes a
smooth curve on Y3.

Let r=E1 n E2 and r' =F1 CI F2. Let a4 : Y3 be the  blowingups o f Y3

w ith centers at r and r ' .  Let E4 = 0V- (r), F4 = 61. 1 (r ' ) . The configurations of
relevent curves on Y4 are illustrated in Figure 1.

E4

E2

E3

D F4

F2

Figure 1
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Let 0- = orio-20-3a4 be the composition of the blow ingups. Let L -= a* (3E +
87)) — El —  2E2 — 4E3 — 4E4 2 F 2  4 F 3 — 4F4 and M= o- * (2E + 477) — E 2 - 2 E 3

— 2E4 —F2 — 2F3 —  2F4. Let B =D+ E2 + F2 and C=E + E, + F i a s  divisors on
17 4. Then B -2L — M and C-2M — L.

L et it: X—  Y 4 b e  the  trip le  cover determined by the  tr ip le  covering data
(L, M, B, C). Since the  branch locus B +C  is smooth, X  is  a  smooth surface.
B y (5) we have

p9 (X) = h2 (x, 0) = h 2 (Y4, 0 (—L)) + h 2 (Y4, 0 ( - 1v1))
= h° (Y4, 0 ( a *  (E+3 17) —E3 —F3 )) =3.

B y (6), x  (ex) = 4 .  Hence h l  (ex) =0.
Since 7t- is totally ramified over B±C, we have

3Kx-37r *  (K 4 ) - F2r *  (B+C) (o-* (4E+ 977) +El — 3E3 +Fi — 3F3 ) .

Let E i = ir (E s) , Fi = Tr 1 (Fe) f o r  i = 1,2 ,3 ,4 . Let E=71- 1 (E) and 77 =7r - 1 (0 .
Then 3Kx-12E+6n + 3r) 0 + 12E1+9E2+ 6E 4 + 12F1+9F2+ 6F4.

Since h l  (ex) =0, Pic (X) has n o  to rs io n . So Kx -4E+2)7+n o +4E 1 +3E 2

+ 2E4 +  4 , +  3 2 +  2F 4. A  d irec t computation shows th a t Ki = 0. Since
H° (X, Ox (27))) = 3 = p, (X) , 277 is  th e  moving p a r t  o f  1Kx1. By Hurwitz's
form ula the genus o f  77 i s  3. T his show s th a t  th e  canonical m ap o f X  is
composed of pencil of genus 3.

Finally, one can easily see that E2 =E i=M =Fi=F1= — 1. and E,21= Fi=
— 3. S o  th e s e  s e v e n  c u rv e s  c a n  b e  c o n tra c te d . Let r :  X — ) S  b e  the
con trac tion . Then S is the minimal model of X w ith  la =  7. The surface S is
the desired surface.

2 .3 .  as a sextic surface in P 3 . Let xo, xi, x2, x3 be the homogeneous
coordinates of P 3 . Let SO be a sextic surface defined by the equation

xi (x8 —xi) 2  + X O  (x6—xi)A = 0. (7)

It can be checked that SO  is irreducible and  h as  no  singularities on the
hyperplane xo = 0. T ake  affine coordinates x  xi/xo, y  = x2/xo, z = x3/x0.
Then equation (7) becomes

x 2 (1 _x 2)2+ (1 _ x 2) y a+ y s+ z 6=  0.

L et bl  =  (0,0,0), 6 2 = (1,0,0), b 3 = 1 ,0 ,0 ) . T h en  1)1, b2, b 3 a r e  t h e  only
singularities of So . T he  singularity  at 1)1 is  equ iva len t to  the one defined by
x 2 + y 3 +z 6 , while both b2 a n d  b3 a re  equivalent to the one defined by x 2 +y 6 +
z6 . Meanwhile b3 are located on the line Lo: y =0, z=0.

Let p : S S  be  the m inim al re so lu tio n . Let E i = (b e )  fo r i = 1,2,3.
They are all nonsingular curves and g (E1) =1, Ef= —1, g (E2 ) =g (E3) =2, Ei
=Ei=  — 2. It is easy  to  see that Ks— p* (2H) — E l — 2E2 —  2E3, where H is  a
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hyperplane in 12 3 . T hus IKsi = {p* (Hi + H2) — E1 —  2E2 —  2E31H1, H2 are planes
passing through L o ) .  Hence the  moving part o f IKs1 is  a  pencil and Pg (S) = 3.
T he fixed p a rt o f  IK s I is  E l .  Let F be th e  proper transform  of H CI So for a
general hyperplane H passing through LO. Then Ks — 2F+E i and F2 = 1, FE
= 1. Hence =7.

3. p 9 =3, K 2 = 6

In th is  section we prove the non-existence of minimal surfaces of general
type with pg = 3, K2 =6  whose canonical map is composed of penciles.

Let W be a  smooth 3 - fold, S  be an  irreducible su rface  in  W . L e t C be a
nonsingular curve in  S. If S  is singular at eyery point of C then we say that
C  i s  a  singular locus o f  S. L et p = minpEc {Pp (S )}  , w here ,Up (s) i s  the
multiplicity o f S  a t p. Then pt is defined a s  th e  multiplicity o f the  singular
locus C . T he  se t Li= C (.5) = p) is  a  non-empty open subset of C .  If

= 2 then C is called a double locus of S.
Assume that C is  a double locus of S .  Let a l : W be the  blowingup

of W with center at C .  Let S1 b e  the proper transform of S, E l= ail l (C), C1=
S i  n E l . If C1 is  a  singular locus of S i, th e n  it  is  s till a  double locus and is
ir re d u c ib le . Let a 2 :W 1  b e  th e  blowingup o f  W1 w ith  c e n te r  a t
Repeating this process o f blowingup for finitely many steps, we may obtain a
sequence of blowingups:

(In

•—> W1— ) W

so  that Cn_i is  a double locus of W0-1 while C,, is  no t a  singular locus of 14/0 ,
although there m ight be isolated singularities of S , on Cn . T he  number n is
called the resolution length of the double locus C.

Lemma 3.1. L et S  be a surface in a nonsingular 3 - f old W . L e t C be a
double locus of  S . L et H be a nonsingular su ifa ce  in  W and pEH n C such that
C is  transversal to H at p. A ssum e that the curve D= H n S on H has a double
point of  type A n a t  p. T hen the resolution length of  C is less than or equal to
[(n+ 1)/2].

Proof. L et a l:  W1— > W  be  the  blowingup o f  W  w ith  cen ter a t C, S i and
H1 be  the proper transform s of S and H re sp ec tiv e ly . Let E1=0-1- 1 (C), C1=51
n Ei , D i  = H1 n si. Then the restriction map al: H1- 4/ is  the  blowingup of H
at p with DI as the proper transform of D.

W e use the induction on n to  p rove  ou r s ta tem en t. If n then D I  is
sm ooth at o-T1 (p). T hus S1 is  sm o o th  a t crf l (p). So C1 i s  n o t  the  singular
locus of Si. T h is im plies that the resolution length of C is  less tha t o r  equal
to  1.

If n> 2, then 0,71 (p) consists of one point p i  a n d  th is  point p i  i s  a double
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p o in t o f  ty p e  An - 2  o f  th e  c u rv e  D I o n  I/1. B y  induction hypothesis the
resolution length o f  C 1 is  le s s  th a n  o r  e q u a l  to  [(n  —  1) /2 ]. Hence the
resolution length of G is less than or equal to 1+ [ (n - 1) /2] [  (n+1) /2] .

Lemma 3.2. L et 7r: W= P (0 ED (m) (1) ( d  (n)) — >P ' be a  P 2 - bundle over
P 1 , where 0 <m n .  L et S be an  irreducible surface in W, linearly equivalent to
4Eo d - sn, where Eo is  the divisor associated with the subbundle 0 (m) ED I ( n )  and
r] is  a f ib e r.  L et 13" = Uo U U1 be the standard aff ine open covering of  P1 and let
W,= 7C- 1  (Il i ) for i -= 0,1. Let z be the affine coordinate of  U0 and let xo, x i, 1 2 be
the fiber coordinates of  the line bundles 0, (m ) and 0  (n ) over Uo  respectively.
A ssume that the equation of S o = S fl Wo i s

axl ±xo f (xo, x i, x2, z) =0,

where a is  a non-zero constant and f (x0, x i, x2, z) is homogeneous in  xo, x i, 1 2 of
degree. 3. L et n o  b e  the f iber o f  Wo over the origin o f  U o . A ssum e that C o=
no n S is  a  nonsingular conic w hich is a double locus of  S and  there is no other
singu lar locus. T h e n  th e  resolution length o f  Co i s  l e s s  t h a n  o r equal to
[(s —3n) /2].

Proo f . Since Co is  a double locus of S, we have

axl±xof (xo, x i, x2, 0) = (axi - Fx0F(x0, xi, x2) ) 2 ,

where a * 0  and r x o ,  X1, 12) =b0x0 - f- b1x1 - Fb2x2 is  a  linear f o r m . Since Co is
a nonsingular conic, 62 * 0 .  Thus the equation of So can be written as

(axf+xor(xo, x i, x2)) 2 ± 2 X 0 G  (1 0 ,  X i,  1 2 ,  z) =0,

where

G (xo, x i, x 2 , z )=  E cuk(z)xt,m .
i+j+k=3

Since C o i s  th e  only  singular locus of S, w e have c003 (z) 0 , otherwise the
curve defined by x o = x 1 = 0 would be a  singular lo c u s .  So the  equation of S
can be written as

(a x i+ x or (x o , x i, x2)) 2 +p (z)x,x3+zxo cuk (z)4xix o,
k52. i-1- j-1-4, =3

in which p (z) = l3zr±E,43izz, $ *0 , r d e g ( p ( z ) )  s —3n.
L et V = {(x o , x i, 1 2, z) Wo Ix . T hen  V  C 3  i s  an affine open

subse t o f  Wo w ith  x  x i/ x o ,  y = x2/x0, z a s  th e  a ff in e  coo rd ina te s . The
equation of S n V is

( ax + b o + b + b 20 2  - FP (z)  y' + z " - 0Cijk x y — .

k 52.
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L et H b e  th e  su r fa c e  in  V  defined  by  th e  equation y  = ux , w here u  i s  a
sufficiently general complex number. Then the equation of the curve HCIS
V is given by

a 2 ___ p i ) 2 (x m p k z iu 31 3 - 1- Z C  ijk  (2 ) u
k x j+ k  ,  0,

2, 0-,1-k=3

PI and 1,2 are two roots of the quadratic equation

ax 2 + (b2u  bi ) x  bo = O.

We may assume that p i.* 0. Substitute x' for x — p , and the equation of H n S
n V becomes

a 2x ' 2 (x'+ p i  p2) +p (z)14, 3 (x' + p i )  3 +Z E cuk (Z )U k +

k52, i - I- j+ k = 3

=  c r 2 x / 2  (Xi + p i —  p2) 2 + r  (z) + 5 (z) x' x' 2 9 (x' , ,

where

r  (z) = Szru 3 pi - f- EPiz i u3 pi±z E C (Z)UkPl+k,

i >r k52 , i+ j+ k= 3

5(z) =3p (z)u 3 pi+z E c i i k ( z ) u k  + 0 101-1- k- 1

kS2, i+j-l-k=3

and g  (x ', z ) is som e polynom ial. Since u  is sufficiently general, a 2p 2 )  2

+g (0 ,0 ) *0  and the coefficient of zr in  r (z ) is  n o n z e ro . Let el  and  e2 b e  the
coeffic ien ts of the  te rm s  o f  low est degree  i n  r ( z )  a n d  5 (z ) respectively.
Then, since u  is general, d * 4ei ( (a2p 2 )  2 + g  (0,0)) 2 a n d  th e  lowest
degrees of r (z ) and 5 (z) are  less than o r equal to r. Hence the point x'= 0, z

z 0  is  a double point of type A , w ith q — 1. By Lemma 3 .1  the  resolution
length of the double locus CO of S is less than o r equal to  [ r / 2 ] .  Since —
3n, the lemma is proved.

Lemma 3.3. L et C be an irreducible quartic curve in the projective plane
and L  be a  line. Let p be an  intersecting point of  C and L .  Let (C, L ) p  denote
the intersection number of  C and L  at p.

(1) If  C has a double point q*p of  type A s , i.e., equivalent to one defined by
the equation x 2 + y 7 = O. Then (C, L) _<3.3.

(2) If  C has two double points q,, q2 of types A m  and  A . respectively with m,
n > 1 .  A ssume that and q2*P . Then (C, L)

Proof. (1) The projection from the point q defines a  covering of C over
P I .  Hurwitz's formula im plies that there is at least one ramification point for

where



134 Jin-Gen Y ang and Masayoshi Miyanishi

this p ro jec tion . T h is means that there is a  line L ' such that C n Li =q -k q' and
(C, L ' ) q' = 2. I f  (C, L)p = 4, then the combination of rational double points of
the  reduced sextic curve C -F L - F L' would correspond to  the Dynkin diagram
D9 -FA 7 +24 3 -i-A 1. T his is  impossible since the rank  of such Dynkin diagram
cannot exceed 1 9 ,  ( [ 9 ] ) .  Hence (C, L ) p  3.

(2) Assume th a t  (C, L)p = 4. Let L ' be the line passing through qi and
q2. Then the combination of rational double points of the sextic curve CH-L+
L ' corresponds to  the Dynkin diagram D. + 3±D,,± 3-1- A7 -1- A i .  So m -l- n 5 for
the same reason a s  in  (1) . So we may assume that qi and q2 are  of types A2
and  A 3  re spec tive ly . L et xo, x i,  12 b e  th e  homogeneous coordinates o f  P 2.
W ith a  suitable linear transformation of the coordinates we may assume that
qi= (1,0,0), q2= (0,1,0) and the equation C is

xôxl -Hro zi + 2.r 0x iA -Fx1 = 0, (8)

where A is some constan t. L e t

ax 0 - 1- bx 1 - Pcx 2 =0 (9)

be the  equation o f the  line L , w ith  coefficients a ,  b, c. I f  (C, L) p = 4, there
w ould  be only  one solution to  th e  sim ultaneous equations (8 )  a n d  (9). A
direct computation show s th a t  th is  is  possible only  w hen b = 0  and c =- 0.
Thus g2 EL, contradicting the assumption that q2 *p.

Lemma 3.4. L et g  be a  coherent sheaf on a nonsingular curve C . L e t
g - denote the dual of g .  Then h

°
 (C, g.) h° (C,

Proof. Let g r  denote the torsion part of g .  Then we have a short exact
sequence

(10)

w h ere  g  i s  to rs io n -f re e . S in c e  e v e ry  to rsion -free  coheren t shea f o n  a

nonsingular curve is locally  free , g  is  loca lly  free. Hence g
T hen (10) implies the exact sequence

Taking the long exact sequence we obtain

•••--q i° (C,g) — '11°( C , ) •

Since g ,  is supported o n  a  proper closed subset of C, w e have H 1 (C  ,g) = 0.
The result follows from (11).

Theorem 3.5. There does not exist a m inim al surface of  general type X
such that

1. pg  (X) =3, I d =  6
2. T he canonical m ap of  X  composed o f  a pencil of  genus greater than or
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equal to 3.

Proof. Suppose that such a surface exists.
Let Z denote the fixed part of IKA. Then Kx— nF±Z with n where F

is  a  member of a penc il. S ince  6 =Ki_>_2FKx± ZKx2FKx, F2 = 2p, (F) — 2 —
FKx  2 g  (F) - 5 >O. Thus IFi h a s  b a se  p o in ts . Since If i. -.4F2 -F2FZ - 1- KxZ
4F2, we havse F2 = 1, which m eans that IFi has exactly  one  base  po in t. T h is
im plies that a  general member IF1 is  a  nonsingular curve o f genus g 3 .  It
follows that FZ =1, K xZ=0, n=2 and g = 3.

Since Kx Z = 0, every irreducible component of Z  is  a  (— 2) -c u rv e . W e

are going to show that Z  is  irreduc ib le . W rite  Z ==in ,A i ,  where each A i is
a  H 2) - c u r v e .  Assume th a t FA i = 1 and FA i = 0 for 2. Then ni  = 1.
Suppose that r> 1 . The equality

0=A
1
Kx=2A 1F+A1Z=2 - 2-FAiEniAi

=2

implies that AiA i =0 for i 2 .  It follows that K (D -=2niAi) = (E li=2n1li1) 2 < 0 ,
contradicting th e  assum ption that X  i s  a  m in im al su rface  o f general type.
Hence Z  is a  rational curve with Z2= — 2.

Next, we show that H1 (x, ) = 0 .  If not, there would be a  divisor e such
tha t e  is no t linearly  equivalen t to  0 b u t 2e is linearly  equivalen t to  0. A
theorem of Xiao (cf. [10]) says that q=h 1 (X,19x) _< 2. Thus x  (0x) 2 .  The
Riemann-Roch theorem implies that

h° (X,Ox (F- Fe)) (X ,ex  (F-PZ — e)) 1.

Hence either h
°
 (X  x  (F e ) )  > 0 o r  h

°
 (X  (F Z  —  e)) > 0. In the former

case, take DEIF ± el, then 2D E 12FI. Since dim 1 2 P 1 = 2 ,  D  is  a  member of IFI,
w h ic h  im p lie s  th a t e 0. T h is  i s  a  c o n tra d ic t io n . In  th e  la t te r  c a s e
h
°
 (X ,ex(FH- Z — e ))> 0. Since Z Z —  e) <0, Z is  a  fixed component of

IF±Z — el. Thus h° (X,19 (F— e)) > 0. T h i s  would lead to a contradiction by
the same argument as in the previous c a s e .  Hence q=0.

Let p be  the base point of the pencil IFI. W e discuss the  following two
cases.

Case 1: The point p is not on Z.
Let o-: X— *X be the  blowingup of X  with center at p. Let E= ct -1  (p), and

let Z ,F  denote the  proper transforms of Z  and F respectively. Then K ---2F
± 3E ±  Z . T h e r e  i s  a  na tu ra l fibration f : .k - 4131 such  tha t IF  I consists of
fibe rs. S ince  q= 0, we have a short exact sequence

0—q-r (X,0 (K) (x,0 (K+P))-H° (F,0 (Kt)  ) - 0 ,

where F is a  nonsingular fiber. T hus h° (X ,0 (K-I-f)) =6, which implies that
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f * (0 (K)) — 0 (2) C ( - 1 ) (- 1 ) .
Since the map H°

( K  F  f ) ) - - '11° , 1 0  ( 0 )  is  surjective and IKA has
no base point on a sm o o th  f ib e r  , neither E  nor k  is  a  fixed component of
Ilf+ T i .  Thus the base points of can only be located on Z . O bv iously
we have  4  h ° (X,0 (3P7 + 3 E )  )  5 .

F irs t suppose tha t h
°
 (X.,0 (3f -1- 3E)) =- 4. For an arbitrary nonsingular

fiber f ,  let x and y be the intersection points of  F  w ith  E  and Z respectively.
Then Iff - 3 x - P y .  This implies that F is a non-hyperelliptic curve of genus 3.
Let

95: (f* (CA,  (If) )") :=.'P (0 e (3) ED 0 (3) )
be the relative canonical m a p . Then 0 is  a birational map, for a general fiber
o f  f  is non - hyperelliptic. In  p a r t ic u la r ,  th e  r e s t ic t io n  o f  0  to  eve ry
nonsingular fiber is a birational morphism on to  its  im age . W e are going to
show th a t the image of q5 i s  a norm al surface. It suffices to  show th a t the
restriction of 0 to every irreducible component of any singular fiber is either
a birational map or the contraction of the curve to a point.

From the exact sequence

(k-06 (3" +3E)) —>11° (X  ,0 (K  F7)) —>11° (46 (1)) —>0

w e see that II(0- f l  has no base points. So 0  is  a birational morphism. Let F'
be  a  singular fiber. Let A  b e  the  irreducible component of F ' w ith A Z  = 1.
F irs t  assume tha t A E = 1. T h en  it is  e a sy  to  see  th a t the image of the map

H
° ( ,0 (K H° , 0  A  (K F.

-
) h a s  dimention 3 a n d  A  cannot be

hyperelliptic. T hus the restriction of 0 on A  is  a birational morphism onto
its  im age . A ll the other components of F ' have zero interestion w ith K5e ,  so
they are ( - 2)-curves and contract to points under 0 .  Next assume that A E
= 0 .  Since has no base point on A, A  is  a nonsingular rational curve
with A 2 = — 3. From A (Kg

-
F
-
A )  <0 .  It follows that A  is fixed in 1K,O-Al, so

h
°
(.kog(K1

-
FA)) = 3 .  W rite P = A + B .  Then the exact sequence

()-1P(x,e(K,o-A) )

—>H
°
 (X,C (K +f ))>Ir (B4O (K,TH- F7 )

implies that Tm ((,b) h a s  dim ension 3. T h u s 0 (B )  is  a  non-degenerate plane
c u b ic  c u rv e . W rite  B  = B 1 + C, w here B1 i s  th e  component interesting E.
T hen  C consists of (— 2) -cu rv es  and  con trac ts  to  points u n d e r  0 .  This
sh o w s t h a t  0  m a p s  B1 o n t o  i t s  im age  b ira tiona lly . N ote  th a t o n ly

( - 2)-curves c o n tra c t  to  poin ts u n d e r  çb. T herefore  0 0 7 )  i s  a normal
surface w ith  rational double points as its  o n ly  s in g u la r itie s . In particular,
X (ex) =X (Coco) =4.

Let W denote the threefold P  e C (3) e C (3) ) over P 1. Let Bo denote



Surfaces of general type 137

the divisor P (0 (3) ED (3)) of W, and let 72 denote a fiber P2 o f  W . Then as

a  divisor o f  W, ç5 (X- ) is  linea rly  equ iva len t to  4E0 +  nn fo r  some n> 0.
Lemma 1.1 (2) shows that x (0 .5?) = 3n — 26, which implies n = 10. But this
contradicts Lemma 1.1(1). H e n c e  h° (X,0 (3f±3E)) =4 is impossible.

N ext suppose th a t  h
°
 (k . 09 (317 +  3 E )) =  5. L et D  b e  a  member of

that does not contain Z .  Then D  meets Z at one point x, which is the
only base point of IK,cf- f l .  Let r  be the fiber of f  passing through x and let
A  be the irreducible component of F' passing through x .  Let a l : X 1-4X be the
blowingup of X  at x .  Let G = (x ) and let A1 be the proper transform of
A .  T he proper transform  o f E  is still denoted  by  E .  T h e  linear system

lai'(ifk+f) — Gl does not have base points.
Let f1=fai: X1— T 1 be  the fibration induced from f. Let M=fte, (at (1f +

F7 ) — G ) .  Since h
°
 (X1,0 (at —G) =6. a n d  h° (X1,0 (at (K))  — G) ) = 3,

the locally free sheaf M is isomorphic to 0(DOED (3). The natural morphism
.f-,*m—o car (K,+T-- ;) —G) induces a  morphism 0: X1— >P (M") '="P (0 ED 0 (3) ED
0 ( 3 ) ) ,  because t h e  sheaf t (01 (K,7—  G )  is generated by global
sections.

If AE= 1, then the restriction of H° (X1, 0 (at (K,7 -  FT) — G)) on A1 has
dimension 3, for h° (X1,0 (at (If )7) G  ( 01  (r ) A 1 ))) =  3. Thus 0  maps A1 to
a  nondegenerate cubic curve and G  to  a  l in e .  Using the  same argument as
before, we see that  ç S  (X i)  is  a normal surface with rational double points as
its only singularities. This would lead to a contradiction by virtue of Lemma
1.1.

Next assume that AE= 0. Since A 2 -1- 1 =- A 2 + 2pa (A ) — 2, A2 is
either — 1 o r  — 3. If A 2 = — 1, then A  is either a  smooth elliptic curve or a
rational curve with a node or cusp.

Assume that A  is a smooth elliptic curve. Then the exact sequence

0—,H° (X,0 ) ( ,19 (Ify  -I-A ) ) ,0 A )  —.0

implies that h° (k,e (K„ +A ) )  > h ° ( jd (K „ ) ) .  so A  is not a  fixed component
of IK +AI. T a k e  De 1K -1-A I which does not contain A .  Then x IV ) , for DA
= 0 .  Thus D+ (F' — A ) is a  member of IK,v-FFI which does not pass throught
x .  T his w ould  lead to  a  contradiction . Hence A  is  n o t  a  smooth elliptic
curve.

Assume that A  is a rational curve with a node or a cups y. Let 0: W— ,X
be the blowingup of X  a t  y. Let F = 0 -1 (y ) and let A ' denote the  proper
transform o f  A . Then A ' is a  smooth rational ccurve with A'2= — 5 and A T
= 2 .  The exact sequence

(Kw) - - '0w (Kw+r)—*Or(-2)
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implies that h
°
 ( W,0 (Kw+1")) = 3 and h° ( W,C (Kw+r) ) 0 .  Then the exact

sequence

0, ow (Kw+r) , ewww+r-FA1,0A•—>0
implies that h° (W,0 (Kw+A'+./")) >h ° (W,C(Kw+1")) =h ° ( W ,0 (Kw)). So A'
is not a  fixed component of 1Kw + A '+ F l .  Take D' EI.Kw+A' +11 which does
not contain A ' and let D = (,b (D '). Then DE lifx+A I and x D .  Thus D+ (F '

— A )  is  a  member o f  IKR+TI w hich does not pass throught x .  T his would
lead to a  con trad ic tion . Hence A  could only be a  smooth rational curve.

Since h
° (x (at (If x)) 3, the restriction of H° (.X1,6 (a t (K + f)  — G )) on

(r )  — G has dimension 3. T hus 0 (a t (F') — G ) is  a  non-degenerate plane
c u b ic  c u rv e . W rite  at ) = G + A1+ B1+ R, w here B1 i s  th e  irreducible
component that intersects E, and R consists o f  H  2 )-c u rv e s . T hen  0  maps
B1 and G birationally to  a  cubic curve a n d  a  line  respec tive ly . T he divisor
A l+R  is contracted to normal singularities under 0 .  Let p (A1) and Let C
= U7- i Ci be the exceptional set of the normal singularity p. W e may assume
that C I = A i. Since Ai* — 2 a n d  C does not contain ( - 1) -curves, p is no t a
ra tio n a l d o u b le  p o in t .  A s  e v e ry  hypersurface ra t io n a l s in g u la r ity  is  a
rational double point, p is  n o t  a  ra tiona l s ingu la rity . T h is  m eans that Z2 +
ZK,vi 0 ,  where Z  is  the  fundamental cycle on C .  Since ZKx1 =A1ifx 1 = 2, we
have Z2 —  2 ,  w hich im plies that Z2 = — 2 because Z2 i s  a n  even negative
in geger. In particular, this im plies that Z  A i . Let D = (A 1 + R) lc. Then
DC, for every i. Thus Z . D .  Since A2= — 3, we have A (F' — A ) =3 . So
A 1 (Z — A 1 ) 3. On the other hand, — 2 = =  AI +  (Z — Ai) 2 + 2A  ( Z  A1)

— 6+2A1(Z — A1) implies that A 1 (Z — A 1 ) 2.
If A 1 (Z — A1) =2, then A 1 is  n o t a  fixed component of IKx,+ZI by Lemma

1 .6 .  This contradicts the condition that x  is a base point of IKx+Fl.
If  A 1 (Z — A 1 )  =  3 , le t  Q = Z — A l . L et Ai ,  ••• , d s  b e  th e  connected

components of Supp (Q ) and let Qi=Q1a, for 1 T hen — 4 =Q2 Q i+  • • •

Q .  T h u s  s S ince  A  a  =  3 , th e re  is  a  component 24; o f  Q  such that
A LAJ > 0 and the coefficient of A , in  Q is  o d d . T h e n  A,Q = AJZ — A J A i  <O.
Lemma 1 .4  im plies that s 2. Since Ai (Q1 ± Q2) = 3, w e m ay assume that
A l Qi =  2 . Then A 1 is  n o t a  fixed component of IKx1 +A +Q11 be Lemma 1.6.
This contradicts the condition that x is a base point of IKx+Fl.

Case 2: The point p is on Z.
Let a: .k—>X. be  the blowingup of X with center at p. Let E=0 - 1  (p) , and

let Z, denote the proper transform s of Z and F respectively. Then 2F
+ 4E + Z .  T h e re  is  a  na tu ra l fibration f: k-- '131 s u c h  th a t  I f  c o n s is ts  of

f ib e r s .  T h e  complement o f  k  in  th e  f ib e r  is  d en o ted  b y  z °, i.e., Z° i s  an

effective divisor such that f— z+z°.
The short exact sequence
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0 - H° (x ,0 (1() ) - H° (X,19 (KO -  f) ) 4 H° (F,0 (0 )  O ,( 1 2 )

w here F is a  nonsingular fiber, implies that h
0
07,0(3T+4E+2))=h

° (Y,O(K
+f ) ) = 6. S in c e  the  map 0 in  (12) is  surjective, E is no t a  fixed component

of 13F-F4E+21. The short exact sequence

(X,0 (3E+3E+2) )— 'H° (X,0 (1(0 - F1 (E,OE)—q)

implies that

h° (X,0 (3F -F3E+2)) = 5 . (13)

W e  a re  go ing  to  show  th a t E  is  n o t  a  fixed component of I3 +  3E ± 2 1-
Suppose E is  f ix e d . T h e n  h

° (x,e (3F + 2E+ 2) =5. Since h0 (X,C(2F+2E+
= 3  and h°( 2 E ) )  2  fo r  a  general fiber F, w e  have a short exact

sequence

0—q-1° (X,19 (2E+2E+2) )—)H° (X,0 (3F + 2E +2) )
—>H° (F,0,7 (2E) ) —0.

This implies that

f,ke (2F+2E+2) -- "(0 ( - 1) 03,0 (2) .

It follow s that h
°
 (P 1, f * 0  (2F  +2E  +  v) = 2. The relative duality implies

tha t the  dual of R i f * 0  (2 +  2E) is isomorphic to f*0  ( 2 f +  2 E +  . Hence
ho J  U  (2 + 2E) ) 2  by Lemma 3 .4 .  But the Riemann-Roch theorem
im plies tha t h1 (X ,0 (2F + 2E)) = 1, w hich contradicts the L eray spectral
sequence

(40 (2F+ 2E) ) ---q -11 (0 (2F +2E)) —)
—*11° (R1f*0 (2E+ 2E)) —+O.

Therefore E cannot be a  fixed component of 13f+3E+21.
Let G  be a  general member of 13f-F3E +4 and let F be a  general fiber.

Let x= F n E .  Then G n F= {.11-x2,x3} , where x i , 1 2 , x 3 a re  d is tinc t from x.
Thus 1 1+12+13 is linearly equivalent to 3x a s  divisors on F, which shows
that F is not hyperelliptic.

Since E is not a  fixed component of 13F+4E-EZI, there exists DE13 -1- 4E
+ZI such that D does not contain E .  Since DE=-0, the curve D  does not meet
E, so  2  is  no t a  component of D .  This shows that Z is not a  fixed component
of 131"4-4E+21. Hence 4  h 0 ()Te(3F -F4E)) =h, ° ()7,0 (3T' -F3E))

We discuss the two subcases:
Case 2A: h

°
 (X, (3F +3E)) =5.
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It follows from (13) that

0— qr (X,19 (2F+ 3E + 2) ) — '1/
°
 ,0  (3 F+ 3 E  +2)) — )11° (F (3E )) —>0

i s  e x a c t .  T h u s  th e  m ap H
° (2V,C (4f+  3E ))

--,
H0 (F,C (3 E )) i s  surjective.

Hence we have a short exact sequence

0—qi
°
 (X00' (3 +  3E) )—>H

°
 (X,0 (4F+ 3E) )

—
>H

°
 (F,0 (3E) )

-
-
,
0

w hich  im p lie s  tha t h
°
 (  , C  (4T  +  3 E )) =  7 . Meanwhile, the  sho rt exac t

sequence

0—
,
110( 3 1 +4E))—>H° (X,C (4F+ 4E))--qr (FP (KT) )—■0

implies that h
°
(X,P(4F+4E)) = 8 .  Hence I4F+4E1 has no  base  poin ts. L et

0 denote the projective morphism determined by 14F+4El.
Let n be an arbitrary  nonnegative in teger. S ince F  is  a  non-hyperelliptic

curve, h
°
 ( , (2E)) = 1 .  Hence h

°
 (X,I9 ((n +1) F + 2E)) (X 09 (nF + 2E))

+1  by the short exact sequence

0—q l
°
( n F  + 2 E ) )  

—
>H

°
 ,0 ((n +1) F + 2E)) 

—
>11

°
 (F,0 f  (2E))

As F is n o t a  fixed component of I ( n ± l) F ±  2E1, we have h
°
 (X,0 ((n +1) F ±

2E)) = h
°

(Xog (n,F + 2E)) + 1. H e n c e  h
°
 (X  ,0 (n,F ± 2E)) = n + 1 for all n  O.

In particular h ° ( 4 +(4F+2E)) =5.
Since the im age of H

°
 (X,0 (4F+  4E )) in  H

°
 (Z,0 (4 ) )  h as dimension 3,

0(2) is e ither a plane quartic curve o r  a  c o n ic . Since h
°
 (X,0 (4F+2E)) =5

and h
°
(X,e(4F+3E)) =7, we have a short exact sequence

0-0H
°
 (X,C (4 +  2E) )

—,
H

°
 (X ,0 (4F+ 3E))

—
*H

°
 (E,OE (1 ) )  —>0.

Hence I4T+ 3E I has no base points on E , w hich  im plies tha t it has no base
points a t  all. L e t  G b e  a  general member o f  I4F + 3E I and  le t p  denote the
intersection of E  and Z .  Then G n z = {p1,p2,p3}, where p i, p2, p3 are distinct
from p. Thus G

-
FE - 4F

-
F4E, (G

-
FE)lz -

=P+Pi + P2+ p3 and 4El z = 4p. This
implies that 0(2) is a plane quartic curve which is smooth at 0(p ). Let L  be
the tangent line of 0 (2) a t 0 (p) , then the intersection num ber (0 (2),L) 0 (p) =
4.

Using the same argument as before, one can see that Y=0(5e) is a normal
su rface  in  W = P (0 ED (3) ED ( 4 ) ) .  Let E0 b e  th e  hypersurface o f  W
corresponding to P (0 (3) EDd (4 )), 72 be  a  general fib re  o f W and 720 be the
fiber containing 0 (2 ) . Then Y has at m ost rational double points away from
no. A s a  divisor o f  W , Y  is linearly equivalent to 4E0 +n77 fo r some n> 0.
Since the  morphism 0 is determ ined by 14T + 4E I, 4F+ 4E  0* (Eo+d7)) for
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some integer d. S in c e F O*7 1, we have 4E— 0* (E0 +  (d —4) O . It follows

from h° (4E) =1 that d = 4, so 0 * (Eo) =4E. Since the canonical system of X is
cut out by K w + Y—Eo+ (n - 9)71, we have n=12 and E0+27) +no cuts out the

canonical system . Lem m a 1.1 (2) implies x (Y) = 6 .  Since x (k) 4 x  (Y)
— 2, e ith e r  Y  h a s  o n e  singularity  o f  geom etric  genus tw o o r  Y  has tw o
singularities of geometric genus one on no. Note t h a t  0 P2 and it contains

the  singular quartic curve çS (Z .  Since th e  multiplicity o f every singularity
o f a  p lane  quartic cu rve  is  le ss  than  o r  equal to  3, s o  is  th e  multiplicity of
every singularity of Y.

If Y  has one triple point x, then x  is  a  trip le  po in t o f the  quartic curve

0 ( Z .  Obviously 0  (Z  has no other singularities and the geometric genus of
the surface singularity x is  e q u a l to  tw o . Let 7r: W1- >14/. b e  the  blowingup of
W at x .  Let G = 7r- 1  (x), and le t Yi be the proper transform  o f  Y. T h e n  Kwi

Yi  —7r* ( K w +  — G ir * (E0-1-20 +7)o, where no' is the proper transform of
no. I f  Y1 is  n o t normal, then  G contains a  curve C su ch  th a t Y1 is singular
along C .  T h is  curve C is not contained in  no', because x  is  a triple point of

. L et r: W2- *  W1 be  th e  blowingup o f  W1 w ith  c e n te r  a t  C .  Let G2 =
-1 \(c.,- )  Then Kw2 + Y 2  e i r * (E01- 4 )  r * ( 6 )  ( m — 1) G2, where m is  the

multiplicity o f  a  generic po in t o f the  singular locus C a n d  Y2 is  th e  proper
transform of Y1. But r*r* (E 0 + 2 0  r * (no") — — 1) G2 is no t an effective
d iv is o r .  T h is  con trad ic ts th e  a s se r t io n  th a t  E02 7 7  ±  no cuts out the
canonical system of Y . It follow s that Y1 is  no rm al. T he  su rface  Y1 h a s  an
essential singularity on n'o, for otherwise x would be an elliptic singularity of
geometric genus o n e .  T h is  i s  im possible, for rr o n Y 1 i s  a  smooth rational
cu rve . T here fo re  Y has no triple point.

If Y  has one double point x of geometric genus two, then x is  a double or
trip le  po in t of the  quartic curve 0  (Z  . L et 7: W be  th e  blowingup of
W at x .  Then Kw,±Yi —( E 0 + 2 1 7 )  +  72'0+  G .  The surface Y1 has double
locus along the rational curve C=G f l Y1, for otherwise x would be a  rational
double point of Y .  The curve C is not located on n'o , since 0  (Z  has at most
a triple point at x .  L et r: W 2 W 1 be the  blowingup o f W1 w ith center at C.
Then the  proper transform  Y2 of Y1 i s  normal, for otherwise the double point
x would have geometic genus greater o r  e q u a l to  th re e . F or the  same reason
as before, Y2 has an essential double point on the proper transform  Tro of n'o.
B ut yro (1 Y2 is  th e  blowingups twice o f the  quartic curve  o (2) a t  a double
point, so  n''o n Y2 has a t m ost ord inary  double points b y  (1 ) o f Lemma 3.3.
T h is  im p lie s  th a t Y2  h a s  a t  m o s t ra t io n a l d o u b le  p o in ts  o n  if°, ths i s  a
contradiction.

If  Y  has tw o essentia l double points x 1 a n d  12, then  each  o f these two
points has geometric genus o n e .  So they are minimally elliptic p o in ts . L e t F'
be  th e  fiber containing Z , then F '= 2- -I- A1 4-A 2 , w here A1 and A 2 a re  th e
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fundamental cycles of x 1 and  x2. We have 0 F ' 2 3  + 2 Z (A  + A 2 ) + A i+
A3-= —3+2 (K,,,Ai+Kp42) +Ai+Ai= — 3  — A — A . S o  w e m ay  assume that
A l=  —1 and iq =  —2. The plane quartic curve 0 ( 2)  has tw o double points
x 1 and  x 2 . Let A .  and A„ be the types of the x i  and x 2 respectively as plane
curve doub le  po in ts . Then m, 1  since x i a n d  x 2 a r e  not rational double
p o in ts  a s  s u r fa c e  s in g u la ritie s . S in ce  A i =  —  2, w e  h a v e  n >  2 .  This
contradicts (2) of Lemma 3 .3 .  Therefore Case 2A does not occur.

Case 2B: h
°
 (X, (3 +3E)) =- 4.

Since h° (3 +3E) =4 and h0 (4f+4E) =7, we have f (41 +4E)'L- 0(13.0
(De (4) and I4F+4E1 has no  base  poin ts. L et 0: X—q17 =P(CED 0 (4) 0 (4) )
be the relative morphism determined by the  line boudle 01  (4F +  4E ). Then

+ 4E — 0* (E0 +n77) f o r  some integer n. Since P. -  on, w e have 4E —
95* (Eo+ (n - 4 )77 ). It follows from h° (4E) =1 that n=4 and 475* (E0) =4E.

N ext w e take  a  lo o k  a t  the image of F  u n d e r  th e  morphism 0 for an
arbitrary  fiber F. A  f ib e r  F  can  b e  w ritten  as F  = A + B, where A  i s  an
irreducible  curve w ith  AE = 1  and  B  i s  an effective d iv iso r w ith  BE = O.
Since the  in te rsec tion  m a tr ix  o f  t h e  d iv iso r B  is negative  defin ite , B  is
contained in the fixed part of 13F+4E+BI, so h

° (3F+4E+B) =h ° (3F + 4E) =
4. The short exact sequence

0—*II° (3F + 4E +B)—>H° (4F + 4E) —>li° (A ,OA (4E) )

im p lie s  th a t th e  im a g e  o f  A  u n d e r  0  i s  a n  irreducib le  p la n e  curve not
contained i n  a  l i n e .  T h a t m e a n s  th a t 0: 0 (A ) is  e ith e r  a  birational
morphism onto  a  quartic curve  o r  a  morphism o f  degree tw o onto a conic.
W e are going to see that there is at m ost one fiber whose image under 0  is  a
conic.

B y  (13) h
° (3F ± 3E+ Z) = 5> h° (3F ± 3E) = h° (3T ± 2E + Z ),  so there

exists Di E + 3E +ZI which contains neither k  nor E .  Let D =  D 1 +  c
I4 +3E1. Then there is a unique point x ED nE which is not in Z . Let F be

a  fiber no t conta in ing  x .  L et e = n E. T h en  4e e + ei e 2  e 3 =
(E

-
I
-D)I T , where el, e2, e3 are  all distinct from e, whence 0 (f )  is  an irreducible

quartic c u r v e .  T h is show s tha t on ly  possible f ib e r  F  su c h  th a t 0 ( f )  i s  a
conic is the fiber passing through x .  In particular, 0 (Z ) is a  quartic curve.

For an  arbitrary irreducible curve B on X , ç1 (B) is  a point if and only if

B(4f +  4E) =  O. T h e s e  a r e  exactly  the  "vertica l"  cu rves aw ay  from  E.
Assume that B is such a curve and B is not a component of z°. Then BK,7 =0,
wherce B is  a  (- 2)-curve.

Let p: Y—)S be th e  normalization of S= qS (k
-
 ), an d  le t 0: X  Y be  the

morphism such that 0= p 0 . By the  above discussion, we conclude that Y -
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0 (.4  has only rational double points as its singularities.
As a divisor in  W, 0 () —4E 0 +rr7 for some integer r. Thus

16= (4F+4E) 2 = (E0+477) 2 (4E0+r77) =4Eg+r+32=r.

Hence S=0(X)-4E0+16/7, and Kw +S— E 0 -1-67)._
I f  S  i s  norm al, th e n  0 : X— >S  i s  a  resolution o f  isolated singularities.

Since all singularities on  S —  0 (Z) a re  rational double points, we have K i-
0 * (Eo +6)7) — d -4E + 6F — .6, where d is  an effective divisor and Supp (d) g
Supp (Z ° ) .  This is  im possib le . Hence there is a  fiber To such  that 0 (to )  is  a
conic Co.

Use the same notation of local coordinates as b e fo re . Let g  (x0,x1,x2,z) =0
be the equation of the surface S o=S  n Wo, where x o i s  the  fiber coordinate of
the line bundle 0 and x i, x2 are  the fiber coordinates over Uo o f the  rank two
bundle 0 (4) EDO' (4). Since 0 * (Eo ) =4E, the  line E0 fl 7) intersects the quartic
curve S  n n a t  a  sing le  poin t w ith  contact number 4. Hence g (xo,xi,x2,z) =
u (z) k (x1,x2) 4 ±X01) (XO,X1,X2,Z) for some linear form k  (x 1,x 2). Since 0  ( f )  is
a n  irreducible curve o f degree 4 o r  2 fo r  a n  a rb itra ry  fiber F, u  ( z )  * 0  for
every z E C .  Hence u (z ) is  a  nonzero constant a .  A fter a  linear change of
coordinates, we may assume that the equation of So is

art +xoy (x0,xi,x2,z) = 0 ,

where y (xo,xi,x2,z) is homogeneous in xo, x i, x2 of degree 3. W ithout loss of
generality, we may assume that CO is contained in  the  fiber z = 0. By Lemma
3.2 the resolution length of the double locus CO is less that o r equal to 2.

L e t cri: W1—  W  b e  th e  blowingup o f  W  w ith  c e n te r  a t  C o . L e t Gi =
ur l  (Co). Let S i be the proper transform of S  and let C 1  S 1  n G i .  Then Kw,
+,31- 4  (Kw+S) — G1 - 01(E0+677) — Gi.

If the resolution length of Co is  1, then S i is n o rm a l. L e t 0: X— S1 b e  the
morphism such that 0= 61 '4 . Then K,---0 *  (E0+ 6n) —0* (GO — d - 4E+5F+
0 ( 4 n  —G1) — d, w here d is  an effective divisor and Supp (d) g Supp (r).
This is  impossible, for ar 17— G1 is effective.

If the resolution length of Co i s  2, le t 0'2: W2—+1/1/1 be the  blowingup of Wi
w ith  center a t Ci . Let G 2 = ai- 1  (C 1 ) .  Let S2 be th e  proper transform  o f Si
and let C2-=S2n G2. Then S2 is  normal and Kw2±S2 - 61 (Kw, +SO  — G2 -  01 Of
(E0 ± 6/7) — olGi — G2. L et 0: k--s 2  b e  the  morphism such  tha t 0 = cr1cr20.
Then I ( )7 — 0*  (Eo+ 672) — e at (GO — 0* (G2) — d — 4E ± 4F ± 0* (at of (277) —
01 (G1) — G2) — d , w here d is  an effective d ivisor and  Supp (d) g SuPP (Z° ).
However, th e  divisor 4E +4F + 0* (4 4  (277) — 4 (G1) — G2) — d  cannot be
linearly equivalent to 4 E +2 f + 2 fo r 014(277) — 01(Gi) — G2 is effective.
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4 .  p9 = 4 , K2 = 9

In th is section we prove the non-existence of minimal surfaces of general
type with p0 =4, K2 =9 whose canonical map is composed of pencils.

Lemma 4.1. Let X be a minimal surface of  general type whose canonical
map is composed of a pencil. A ssume that the genus g  of  a general member of the
pencil is greater than or equal to 3. If  the geometric genus pg of  X is  4, then one
of the following statements holds:

1. K3c 12.
2. Ki=9 and Ks - 3F where F is a nonsingular curve of genus 3 with F2=1.

Proof . Since pg  = 4, the  canonical divisor can be w ritten a s  Kx  =  n F  Z
for 3, where Z is  the  fixed part o f 1Kx1, and F is  a  general member of the
pencil of which 1Kx1 is composed of. Consider the two cases.

Case i) F2=0:
W e m ay assum e th a t F  i s  a  general member o f  th e  p e n c il. B y  Sard's

theorem, F is  a  smooth curve of genus g . Hence F Z = F (F -F- Kx ) = 29 — 2 4.
Then Ki=nFZ±ZK x .12.

Case ii) F2 >0:
In this case n = 3 . We have

2g — 2=F 2 ±FKx =4F2±  F Z 4 F 2, (14)

and  the  equality  holds if  a n d  only  if  Z =  0. K 4  = 9F2 4- 3FZ±
2 (4F2 +FZ) =F 2 + 4g — 4. Hence 12 when g  4. If g  = 3, th e n  (14)
implies that F 2 =1 and Z -= 0.

Lemma 4.2. A ssum e that X is a sulface satisfying the second condition
of Lemma 4 . 1 .  Then 111 (X,es ) = 0.

Proof. (suggested by G. Xiao) Suppose 141 (X,ex)> 0. Then there exists
a  divisor E which is not linearly equivalent to zero but 3 s - 0 .  S u p p o s e  that
H° (X,C (F- f- E)) *0. Let D E IF  - s l. Then

3D E 13FI. (15)

Since every member o f 13F1 is  the  sum of three members o f IF1, (15) implies
that D— F, whence E — 0. T his is  a  con trad ic tion . Hence H° (X,0 (F c)) = 0.
For the same reason H° , 0  (F —  s)) = 0 halds too. T h u s  the sequence

0-41/
°
 (X,0 (2F

—
 E)) (F  F  ( 2 F  s )) (16)

is exact.
Xiao's theorem implies that q = (ex) The Riemann-Roch theorem

implies that

le (X ,0 (2F — s)) — ,0 (2F — ) = 4 (17)
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Since F (2F —  =  2, w e have the inequality h
°
 (F,6 F (2F — 2. It follows

from  (16) a n d  (17) tha t h° (X,C (2F — = h
° (F,0F (2F—  s)) = q = 2. This

implies that F is a  hyperelliptic curve with a gi= (2F
—E )I .  Since OF (4F)

= ÙF (K X + 0 F (K F) ,  th e  divisor F  (2 F ) is  a ls o  th e  91- o f  F .  Hence
F (4F E) F (4F 

—
25) F F ) )  , whence

(F,OF  (4F+E)) =3.( 1 8 )
Since the  divisor F  e  is  big and nef, Kawamata's vanishing theorem implies
111 (X ,C (4F+ s)) =0. So we have exact sequence

(X,0 (3F+ E) )
—

qi
°
 (X,C (4F+ s) )

(F,0 F  (4F- 1- a)) -0H1 (x,  (3F +s) )—>0.

Hence 3 = x (X ,0 (3F+ E)) = h
°
 (X ,0 (3F ± E)) — h l (X ,0 (3F + s)) = h ° (X ,

(4F+ s ) )E)) — h° (F,ei (4F ± s)) = h ° (X,0 (4F+ E)) —3 b y  ( 1 8 ) .  Thus

h° (X,0 (4F
-
1
-
6)) =6. (19)

O n the o ther hand, h° (X ,6 (4F ± = x  (X ,C (4F ± s)) = 2 F  x (X ,C) = 5,
contradicting (1 9 ) .  Therefore q=0 is impossible.

Theorem 4.3. There does not exist a minimal surface of general type X
such that

1. pg (x) =4, K3( = 9.
2. The canonical map of X  is composed of a pencil of genus greater than or

equal to 3.

Proof . Suppose tha t such  a surface X  exists. B y L em m a 4 .1  th e re  is  a
nonpingular curve F  of genus 3 such that Ks —  3F and F2 = 1. Let p denote
the base point of IFI. W e  k n o w  th a t q=h 1 (X ,O) =0 by Lemma 4.2.

Let cr: X—.X be the  blowingup of X  with center at p. Let E =a - 1  (p) , and
le t F  denote th e  proper transform  of F .  T hen K x  3P-7 ±  4E . T h e re  is  a
natural fibration f : X-013 '  such that If I consists o f f ib e rs . W e  m a y  assume
that F is nonsingular.

The short exact sequence

0—qr (X00' (K) (X,0 (K-FP) )% II
°
 (F,0 (K) ) O

im plies that h° (X 09 (41" ± 4E)) = h° (X ,0  (K  f ) 7. Since the  m ap 0  is
surjective, E is not a  fixed component of 14F

-
4E1. The short exact sequence

0-01/
°
 (X ,0 (4 +  3E) )

—
'1
-
1
°
 (X ,0  f -FF)) —q-1° (E,CE )—*0

implies that

(X,0 (4F+3E) ) = 6 .( 2 0 )

W e a re  go ing  to  show  th a t E  is  n o t  a  fixed component o f  14f ± 3E I.



146 fin-Gen Y ang and Masayoshi Miyanishi

Suppose E  is fixed. T h e n  h° (X ,0(417' ± 2E)) = 6 .  Since h° (X ,16(3F+2E)) =4
and h ° (F,  (2E)) 2  for a general fiber F, we have a short exact sequence

(X,0 (3 +  2E) )—>1-1° (X ,0 (4 +  2E) ) —+11 (F ( 2 E )  )  —)0.

This implies that

1-*0 (3F +2E) "=- (-1) ED (3).

It follows that h ° (P 1, f * e (3F + 2E) V) = 2. The ralative duality implies that
the dual of R if*0 (2F +2E) is isomorphic to f * C (3 F+2 E ) . Hence h° (131,R1f*0
(2F ± 2E)) 2  by Lemma 3 . 4 .  But the Riemann-Roch theorem implies that
h1 (X ,0 (2F+2E)) =1, which contradicts the Leray spectral sequence

0—>1/1 (f*0 (2F ± 2E)) —>1-11 (0 (2F ± 2E)) —q-1° (Rif *0 (2F +2E)) —>0.

Therefore E  is  n o t  a  fixed component o f  14T + 3E 1. L e t G  b e  a  general
member of 14 +3E1 and let F  be a g en e ra l f ib e r . Let x =  n E .  Then G n f
= {xi,12,13}, where xi, x2,1 3 are distinct from x .  Thus 11 -F1 2+13 is linearly
equivalent to 3x as divisors on F, which shows that F  is not hyperelliptic.

Since h° (3F -F4E) =4 and h0 (4T -F4E) =7, we have f  x, (4F + 4E) -'""." ED
ED (4 ) and I4 + 4 4  has no  base  poin ts. L et 0: P (0 ED 0 (4) ED eY (4) )
be the relative morphism determined by the  line bundle ex (4:F7 + 4 E ) .  Then
4 F + 4 E -0 * (Eo+nr)) for some integer n, where Eo and 77 are hypersurfaces of
W as defined in section 2 . 1 .  Since 0*7 , we have 4 E - 0 * (Eo+ 4) n).
It follows from h° (4E) -=1 that n= 4 and 0 * (E0) =4E.

The rest of the proof is very sim ilar to Case 2B in  the  proof of Theorem
3.5.

A n arb itra ry  fiber F  of f  can  be  w ritten  a s  F = A  + B , where A  is  an
irreducible  curve w ith  A E  = 1  and  B  i s  an effective d iv iso r w ith  B E = O.
Since the  in te rsec tion  m a tr ix  o f  t h e  d iv iso r B  is  negative  defin ite , B  is
contained in the fixed part of 13T-F4E+BI, so h° (31" +4E+B ) = h ° (3T+ 4E) =
4. The short exact sequence

0
--

qi
°
 (3F + 4E +B)

—
>1-1

°
 (4F + 4E) — > 11° (A,e A (4E))

im p lie s  th a t th e  im a g e  o f  A  u n d e r  0  i s  a n  irreducib le  p la n e  curve not
contained i n  a  l i n e .  T h a t m e a n s  th a t 0 : A—> 0(A) is  e i th e r  a  birational
morphism onto a quartic curve or a  morphism of degree two onto a  conic . L et
G be a  general member of 14F -F 3 E l. Then G  does not contain E  and meets E
a t  one point p. Let F 0 b e  th e  fiber passing through p. T h e  only  possible
fiber F  such that 0 (T) is  a  conic is F 0. So there is at m ost one fiber whose
image under 0  is a conic.
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F or an  arbitrary irreducible curve B on (B ) is  a point if and only if
B (4F ± 4E) = 0. T h e se  a r e  exac tly  the  "ve rtica l"  cu rv es  aw ay  fro m  E.
Assume that B is such a c u rv e . T h e n  BICk-=0, whence B is  a  ( - 2) -curve.

Let p: Y— *S be  th e  normalization o f S = q5 (x), a n d  le t  0:Y  b e  the
morphism such  tha t 0 = p 0 .  T he  above discussion im plies tha t Y has only
rational double points as its singularities.

A s a divisor in  W, 0(X) —4E0 +r17 for some integer r. Thus

16= (4E+4E) 2= (E0+417) 2 (4Eol- ri7) =4Eg+r+32=r.

Hence S=0 (X) —4E0+1617, and Kw- I- S—E0 +6r).
If S is  normal, then  0: ..)?— S is  a  resolution of iso la ted  singu larities. In

this case all singularities on S are  rational double points, so Kk — 0* (E0 + 677)
—4E+6T. This is obviously im possib le . Hence there is a  fiber fo such that
0(F o)  is a  conic CO.

Use the same notation of local coordinates before . Let g (xo,...Thx2,z) =0 be
the equation of the surface So =S  fl Wo , where x o is  the  fiber coordinate of the
line bundle 0 and x l , x2 a re  the  fiber coordinates of the rank two bundle 0(4)
ED 0 (4) over Uo. Since 

ç5
 =4E, th e  line Eo (1 )7 intersects the  quartic

curve S n r) a t  a  single  point w ith contact number 4. Hence g  (xo,xi,x2,z) =
u(z) k (xi,x2) 4 ±X0V (X0,X1X2,Z) for some linear form k (xi,x2). Since u (z) *0
f o r  a l l  z e  C ,  u  (z )  i s  a  nonzero constan t a .  A fte r  a  lin e a r  change of
coordinates, we may assume that the equation of So is

a r t  x ov (x 0 ,..ri,x2 ,z) =0,

where y (xo,xi,x2,4 is homogeneous in xo, Xi, x2 of degree 3. W ithout loss of
generality, we may assume that Co is contained in  the fiber z = 0. By Lemma
3.2 the resolution length of the double locus Co is less than o r equal to 2.

L e t a l :  W1— > W b e  th e  blowingup o f  W w ith  c e n te r  a t  C o . L e t G1 =
a i '  (Co). Let S i be the proper transform of S and let C1=S1 n G I .  Then Kwi
+S 1 —at (Kw+S) — G1- 4(E0 -1- 6 ) — Gi.

If the resolution length of Co i s  1, then S i i s  n o rm a l. L e t 0: .Y- - >Si  b e  the
morphism such that 0= a 10 .  Then K A, —  0* ((Eo 677) — 0 * ( G O  4E+5F +

(0177—G 1). This is impossible, for ofn — GI is effective.
If the resolution length of Co is  2, let a2: be the  blowingup of Wi

w ith  center a t C1. Let G2 = a j (C 1 ).  Let S2 be  the  proper transform  of Si.
Then 52 is normal and Kw2 +S2—at (Kwi+Si) —G2- 44 (E0±6n)
Let 0: X—'S2 be the morphism such that 0= a2a10. Then K— 0 * (E0 -1- 672) —
0* GriK (GO 0* (G2) —4E +4T+ 0 *  (44 (2)7) — (G  - G  2) . However, the
divisor 4E+4F+0 * (401(2)7) ( G 0 ) —G2) cannot be linearly equivalent to
4E+3F for a la i  (2)7) — o(G1) — G2 is  e ffec tive . T h is concludes the proof of
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the theorem.

5. Lower bound for K 2

Theorem 5.1. L e t  X  be  a m inim al surface o f  general ty pe whose
canonical map is composed o f  a  pencil. L et g  denote th e  genus o f  a  general
member of the pencil. A ssume that 3.

(1) If pg (x) = 3, then
(2) If pg (X) = 4, then K3c _ 12.
(3) If pg  (x) 5 and g =3, then K

Proof. (1) The canonical divisor can be written as K x= n F ±Z , where
Z  is  the fixed part of IK2f1, and F  is  a general member of the pencil of which
Ilfxl is composed of. Here C o n s i d e r  the two cases.

Case i )  F 2 =0:
W e may assume tha t F  is  a general member of the penc il. S ince  IFI has

no base points, F is  a smooth curve of genus g. Hence F Z = F (F + K x ) = 2g —
2  4. Then If i=nFZ ± Z K x 8

Case i i )  F 2 >1:
Then 16=4F2 +2FZ - 1- ZKx_8.
Case iii) F 2 =1:
Then n=2, and we may assume that F is  a smooth curve of genus g. We

have F Z = F (F ± K x ) —  3= 2g — 5 1. Hence K3c = 4F2 + 2 F Z + Z K x  6. By
Theorem 3.5 K i=6 is  impossible.

(2) follows from Lemma 4.1 and Theorem 4.3.
(3) In th is case K  =  nF  Z  with n_p g — 1. Since p,F2 + F Z (n  + 1) F 2

+ F Z = F K - FF 2 = 4, w e have F2 =0 and FZ=  4. This m eans that IFI h a s  no
base points. Thus K3=nFZ-I- Z K x 4p, - 4.

INSTITUTE OF MATHEMATICS

FUDAN UNIVERSITY

SHANGHAI 200433, CHINA

E-mail address: jgyang@fudan.ac.cn

DEPARTMENT OF MATHEMATICS

GRADUATE SCHOOL OF SCIENCE, OSAKA UNIVERSITY

E-mail address: miyanisi@math.sci.osaka-u.ac.jp

References

[ 1 ] M. Artin, On isolated rational singularities of surfaces, Amer. J. Math., 88 (1966), 129-136.
[ 2 ] M. Artin, Som e num erical criteria for contractibility of curves on algebraic surfaces, Amer. J.

Math., 84 (1962), 485-496.



Surfaces of general type 149

[ 3 ] A . Beauville, L 'application canonique pour les surfaces de type général Inv. M ath., 55 (1979),
121-140.

[ 4 ] F . Catanese, Canonical r in g s  a n d  "special" surfaces o f general ty p e , in: Algebraic Geometry,
Bowdoin 1985, Proc Symposia in Pure Math., 46 (1987), 175-194.

[ 5 ] 0 . D eb arre , Inégalités num ériques pour les surfaces de type général, Bull. S. M. F., 110 (1982),
319-346.

[ 6 ] R. Miranda, Triple covers in algebraic geometry, Am. J. Math., 107 (1985), 1123-1158.
[ 7 ] S. - L. Tan, Galois triple covers of surfaces, Sci. China, Ser.A., 34 (1991), 935 - 942.
[ 8 ] S. - L. Tan, Surfaces whose canonical maps are of odd degrees, Math. Ann., 292 (1992), 13-29.
[ 9 ] T . Urabe, Dynkin graphs an d  combinations of singularities on plane sextic curves, in: Randell,

R. (ed.) Singularities. Proc., U niv. Iow a 1986 AMS Contemporary Mathematics 9 0  (1989),
295 - 316.

[10] G. Xiao, L'irrégularité des surfaces de type général dont le système canonique est composé d'un
pinceau, Compositio Math, 56 (1985), 251-257.

[11] G. Xiao, Problem lis t. in : Birational geometry o f  algebraic varieties: open problems. T h e  23rd
International Symposium of the Taniguchi Foundation, (1988), 36-41.

[12] G . Xiao, S urfaces fibrées e n  c o u rb e s  d e  g e n re  d e u x , L e c tu re  N o te s  in  Mathematics 1137,
Springer - Verlag, Berlin, Heidelberg, New York, Tokyo, (1985).


