Surfaces of general type whose canonical map is composed of a pencil of genus 3 with small invariants

By

Jin-Gen YANG* and Masayoshi MIYANISHI

0. Introduction

Let X be a minimal surface of general type over the complex number field. Assume that $p_q(X) \ge 3$, and $|K_X|$ is composed of a pencil. The existence of such surfaces was known as early as 1948 by Pompilij's examples. Later there have been studies by Beauville, Debarre, Xiao and others ([3], [5], [10], [12]). Refer to Section 2 of [4] for a nice survey.

Let b denote the geometric genus of the image of the canonical map and let g denote the genus of a general member of the pencil of which $|K_X|$ is composed. Assume that $g \ge 3$. Then the inequality

$$K_X^2 \ge 4p_g(X) + 4(b-1) \tag{1}$$

is valid with very few exceptions (cf. Theorem 2.3 of [4]).

In this paper we will give an example with $p_g=3$, b=0, g=3 and $K^2=7$. Then we will prove that is the lowest possible K^2 .

The other possible exception to (1) is the case $p_g = 4$ and $K_X^2 = 9$, which was proposed as an open problem in [11]. We will prove that this case does not occur, and consequently there is only one exception to (1).

1. Preliminaries

1.1. \mathbf{P}^2 -bundles over \mathbf{P}^1 . First we state some basic facts about \mathbf{P}^2 -bundles over the projective line \mathbf{P}^1 , which will be used throughout this paper. We will use $\mathcal{O}(n)$ to denote either the invertible sheaf of degree n on \mathbf{P}^1 or its corresponding line bundle, depending on the context.

Let V be a vector bundle of rank 3 over \mathbf{P}^1 . It is well-known that V can be decomposed into a direct sum of line bundles, i.e., $V \cong \mathcal{O}(k) \oplus \mathcal{O}(m) \oplus \mathcal{O}(n)$. Let $W = \mathbf{P}(V)$ be the associated \mathbf{P}^2 -bundle over \mathbf{P}^1 and let $f : W \to \mathbf{P}^1$ denote the natural map. Since $\mathbf{P}(V \otimes L) \cong \mathbf{P}(V)$ for any line bundle L, we may

^{*}Communicated by Prof. K. Ueno, February 3, 1997

Supported by the Tian Yuan Fund of China.

assume that $V = \mathcal{O} \oplus \mathcal{O}(m) \oplus \mathcal{O}(n)$ with $0 \le m \le n$.

The subbundle $\mathcal{O}(m) \oplus \mathcal{O}(n)$ of V gives rise to an irreducible hypersurface E_0 inside W. Let η be a fiber of f. Then E_0 and η generate $\operatorname{Pic}(W)$, and $E_0^3 = -m - n$, $E_0^2 \eta = 1$, $E_0 \eta^2 = \eta^3 = 0$. The line bundle $\mathcal{O}(n)$ gives rise to a section e of the ruled surface E_0 . Obviously $e^2 = m - n$ as a divisor of E_0 . Let ξ be a fiber of E_0 . Then

$$\mathcal{O}_{E_0}(E_0) \cong \mathcal{O}_{E_0}(e - m\xi). \tag{2}$$

The cononical divisor K_W is linearly equivalent to $-3E_0 - (m+n+2)\eta$.

Lemma 1.1. Let S be a prime divisor of the \mathbf{P}^2 -bundle $W = \mathbf{P}(\mathcal{O} \oplus \mathcal{O}(m) \oplus \mathcal{O}(n))$ over \mathbf{P}^1 with $0 \le m \le n$. Assume that S is linearly equivalent to $4E_0 + b\eta$ for some $b \in \mathbb{Z}$. Then

(1) $b \ge 4m$.

(2) χ (*S*) = 3*b* - 4*m* - 4*n* - 2.

Proof. (1) Since S is irreducible and not equal to E_0 , the linear system |S| in W cuts out a non-empty subsystem of the linear system $S|_{E0} \sim 4e + (b-4m)\xi$. This implies that $b-4m \ge 0$.

(2) The short exact sequence

$$0 \rightarrow \mathcal{O}_{W}(-4E_{0}-b\eta) \rightarrow \mathcal{O}_{w} \rightarrow \mathcal{O}_{s} \rightarrow 0$$

implies that

$$\chi(\mathcal{O}_{s}) = 1 - \chi(\mathcal{O}_{w}(-4E_{0} - b\eta)) = 1 + \chi(\mathcal{O}_{w}(E_{0} + (b - m - n - 2)\eta)).$$
(3)

Then the short exact sequences

$$\begin{array}{c} 0 \longrightarrow \mathcal{O}_{w}((b-m-n-2)\eta) \longrightarrow \mathcal{O}_{w}(E_{0}+(b-m-n-2)\eta) \longrightarrow \\ \mathcal{O}_{E_{0}}(e+(b-2m-n-2)\xi) \longrightarrow 0 \end{array}$$

and

$$0 \longrightarrow O_{E_0}((b-2m-n-2)\xi) \longrightarrow \mathcal{O}_{E_0}(e+(b-2m-n-2)\xi) \longrightarrow \mathcal{O}_e(b-m-2n-2) \longrightarrow \mathcal{O}_e(b-m-2n$$

imply that

$$\begin{split} &\chi\left(\mathcal{O}_{w}(E_{0}+(b-m-n-2)\eta)\right) \\ &=\chi\left(\mathcal{O}_{w}(b-m-n-2)\eta\right) +\chi\left(\mathcal{O}_{E_{0}}\left(e+(b-2m-n-2)\xi\right)\right) \\ &=\chi\left(\mathcal{O}_{w}\left((b-m-n-2)\eta\right)\right) +\chi\left(\mathcal{O}_{E_{0}}\left((b-2m-n-2)\xi\right)\right) +\chi\left(\mathcal{O}_{e}\left(b-m-2n-2\right)\right) \\ &=(b-m-n-1)+(b-2m-n-1)+(b-m-2n-1) \\ &=3b-4m-4n-3. \end{split}$$

The result follows from Equation (3).

Let y_0, y_1 , be the projective coordinates of \mathbf{P}^1 . Let $\mathbf{P}^1 = U_0 \cup U_1$ be the standard open affine covering of \mathbf{P}^1 , where $U_i = \{(y_0, y_1) \in \mathbf{P}^1 | y_i \neq 0\}$. Then $z = y_1/y_0$ and $z' = y_0/y_1$ are the affine coordinates of U_0 and U_1 respectively. Let $W_i = f^{-1}(U_i), i = 0, 1$. Obviously $W_i \cong \mathbf{A}^1 \otimes \mathbf{P}^2$ for i = 0, 1.

Let x_0 , x_1 , x_2 be the fiber coordinates of \mathcal{O} , $\mathcal{O}(m)$ and $\mathcal{O}(n)$ over U_0 respectively. A hypersurface S_0 in W_0 is given by an equation

$$\sum_{ij,k,r\geq 0,i+j+k=d}c_{ijkr}z^rx_0^ix_1^jx_2^k,$$

where $d \ge 0$ is a fixed integer. Let S be the closure of S_0 in W. Let $t = \max\{r + mj + nk | c_{ijkr} \ne 0\}$. Then $S \sim dE_0 + t\eta$ as a divisor of W. The equation of $S \cap W_1$ is

$$\sum_{i,j,k,r\geq 0, i+j+k=d} c_{ijkr} z'^{t-r-mj-nk} x_0^i x'_1^j x'_2^k,$$

where $z' = 1/z_{*}x'_{1} = z^{-m}x_{1*}x'_{2} = z^{-n}x_{2}$.

1.2. normal singularities of surfaces. Most results in this subsection are well-known and their proofs are omitted.

Let X be a nonsingular complete surface. Let $A_1, ..., A_n$ be distinct irreducible curves on X with $n \ge 1$. The set $A = \bigcup_{i=1}^n A_i$ is called an *exceptional set* if A is connected and the intersection matrix of these curves is negative definite. A divisor $D = \sum_{i=1}^n d_i A_i$ is called a *positive cycle* on A if every d_i is a positive integer. The integer d_i is called the coefficient of A_i in D. Let D and D' be two positive cycles on an exceptional set A. Then denote $D \le D'$ if D'-D is an effective divisor. Let I be a subset of $\{1,...,n\}$ and let $D = \sum_{i=1}^n d_i A_i$ be a positive cycle on A. Assume that the set $\Delta = \bigcup_{i \in I} A_i$ is connected. Then we define $D|_{\Delta} = \sum_{i \in I} d_i A_i$.

The following two occasions of exceptional sets arise in this paper:

(1) Let $\pi : X \to Y$ be a birational morphism, where X and Y are complete surfaces and X is nonsingular. Let p be a normal singularity of Y. Then $\pi^{-1}(p)$ is an exceptional set.

(2) Let F be a fiber of a morphism $\pi : X \to C$ from a nonsingular complete surface X onto a nonsingular curve C. Let $\{A_1, \dots, A_n\}$ be a proper subset of the set of all irreducible components of F. If the set $\bigcup_{i=1}^n A_i$ is connected then it is an exceptional set.

Let $A = \bigcup_{i=1}^{n} A_i$ be an exceptional set. There is a unique positive cycle $Z = \sum_{i=1}^{n} d_i A_i$ such that $A_i Z \leq 0$ for all *i* and *Z* is minimal with this property. (cf. [1].) This positive cycle *Z* is called the *fundamental cycle* of *A*. If *A* is the exceptional set of a normal singularity *p*, then *Z* is often called the fundamental cycle of *p*.

If every component of an exceptional set is a nonsingular rational curve with self-intersection -2, then it is the exceptional set of a rational double point (cf. [2]). Let Z be the fundamental cycle of a rational double point. Then $Z^2 = -2$.

Lemma 1.2. Let $B = \bigcup_{i=1}^{n} B_i$ be the exceptional set of a rational double point and let $D = \sum_{i=1}^{n} d_i B_i$ be a positive cycle. Assume that $DB_i \leq 0$ for every i and $D^2 = -2$. Then D is the fundamental cycle of B.

Proof. Let Z be the fundamental cycle of B. Then $Z \le D$ by the definition of fundamental cycle. Let G=D-Z. Then $GZ \le 0$. So $-2=D^2=Z^2+2GZ+G^2\le -2+G$. Hence $G^2=0$, which implies G=0.

Lemma 1.3. Let $B = \bigcup_{i=1}^{n} B_i$ be the exceptional set of a rational double point. Let Z be the fundamental cycle of B. Then $-1 \le B_i Z \le 0$ for every i.

Proof. Easily checked for every type of rational double points.

Lemma 1.4. Let $B = \bigcup_{i=1}^{n} B_i$ be the exceptional set of a rational double point and let $D = \sum_{i=1}^{n} d_i B_i$ be a positive cycle. Assume that $DB_i \leq 0$ for every i and $D^2 = -4$. Then the coefficient of B_i in D is even if $DB_i < 0$.

Proof. Let Z be the fundamental cycle of B and let G=D-Z. Then G is effective and $G \neq 0$. Since $-4=Z^2+2GZ+G^2$ and $G^2 \leq -2$, we have GZ=0 and $G^2=-2$. Let B_i be a component of Supp (G). Then $B_iZ=0$. Thus $B_iG = B_iD \leq 0$. Moreover, Supp (G) is connected, for $G^2=-2$. By Lemma 1.2 G is the fundamental cycle of Supp (G).

Let B_j be a component of B such that $B_jD < 0$. We claim that $d_j > 1$. To prove the claim, suppose that $d_j = 1$. Then B_j is not a component of G. Lemma 1.3 implies that $B_jZ = -1$, $B_jG = 0$. Since $d_j = 1$, the coefficient of B_j in Z is equal to 1. So the rational double point is of type A_n . We may assume that $B_iB_{i+1}=1$ for $1 \le i \le n-1$. Then it is easy to see that $n \ge 3$, Z = $B_1 + \cdots + B_n$ and $G = B_2 + \cdots + B_{n-1}$. Thus there is no B_j with $B_jZ = -1$ and $B_jG = 0$. This leads to a contradiction. The claim is proved.

Since $\sum_{i=1}^{n} d_i B_i D = -4$, it follows that d_i is 2 or 4 for every B_i such that $DB_i < 0$.

A sequence $\{A_{i_1,\ldots,A_{i_m}}\}$ of irreducible components of A is called a computation sequence for Z if $A_{i_k}(\sum_{j=1}^{k-1}A_{i_j}) > 0$ for $2 \le k \le m$ and $\sum_{j=1}^m A_{i_j} = Z$.

Computation sequence always exists and i_1 can be chosen arbitrarily.

Lemma 1.5. Let Z be the fundamental cycle of a rational double point and let $\{A_{i_1,...,A_{i_m}}\}$ be a computation sequence for Z. Then $A_{i_r} \sum_{j=1}^{r-1} A_{i_j} = 1$ for every r > 1.

Proof. Easy.

Lemma 1.6. Let X be a nonsingular complete surface with $H^1(X, \mathcal{O}_X) = 0$. Let $A = \bigcup_{i=1}^n A_i$ be an exceptional set on X where $A_i \cong \mathbf{P}^1$ for every i. Let $D = \sum_{i=1}^n d_i A_i$ be a positive cycle on A such that $A_i D \leq 0$ for every i. Assume that $d_1 = 1$, $A_1(D-A_1) = 2$, $D^2 = A_1^2 + 2$, and $A_i^2 = -2$ for i > 1. Then $|K_X + D| \neq \emptyset$ and A_1 is not a fixed component of $|K_X + D|$.

Proof. Let $A' = \bigcup_{i=2}^{n} A_i$ and let $Z = D - A_1$. The equality $A_1^2 + 2 = D^2 = A_1^2 + 2A_1Z + Z^2$ implies that $Z^2 = -2$. Hence A' is connected. For every i > 1 we have $A_iZ \leq A_iD \leq 0$. It follows from Lemma 1.2 that Z is the fundamental cycle of A'.

Let $\{A_{i_1,...,A_{i_m}}\}$ be a computation sequence for Z. The short exact sequence

$$0 \longrightarrow \mathcal{O}_{X}(K_{X}) \longrightarrow \mathcal{O}_{X}(K_{X} + A_{i_{1}}) \longrightarrow \mathcal{O}_{\mathbf{P}^{i}}(-2) \longrightarrow 0$$

implies that $h^0(X, \mathcal{O}_X(K_X + A_{i_1})) = h^0(X, \mathcal{O}_X(K_X))$ and $H^1(X, \mathcal{O}_X(K_X + A_{i_1})) = 0$.

By Lemma 1.5 we have a short exact sequence

$$0 \rightarrow \mathcal{O}_{X}(K_{X} + \sum_{j=1}^{r} A_{ij}) \rightarrow \mathcal{O}_{X}(K_{X} + \sum_{j=1}^{r+1} A_{ij}) \rightarrow \mathcal{O}_{\mathbf{P}^{1}}(-1) \rightarrow 0$$

for every $0 \le r \le m$. It follows from induction that $h^0(X, \mathcal{O}_X(K_X + Z)) = h^0(X, \mathcal{O}_X(K_X))$ and $H^1(X, \mathcal{O}_X(K_X + Z)) = 0$.

Since $A_1(K_X + Z + A_1) = 0$, we have a short exact sequence

$$0 \longrightarrow \mathcal{O}_X(K_X + Z) \longrightarrow \mathcal{O}_X(K_X + Z + A_1) \longrightarrow \mathcal{O}_{\mathbf{P}} \longrightarrow 0,$$

which implies $h^0(X, \mathcal{O}_X(K_X + D)) = h^0(X, \mathcal{O}_X(K_X)) + 1$ and A_1 is not a fixed component of $|K_X + D|$.

2. $p_a = 3, K^2 = 7$

In this section we will give three different constructions of a minimal surface X of general type with the following properties:

- 1. $p_g(X) = 3, K^2 = 7.$
- 2. The canonical map of X is composed of a pencil of genus 3.

2.1. as a hypersurface in a P²-bundle over P¹. Let m = 3, n = 4 and the equation of S_0 be

$$x_0 x_2^3 + (x_1^2 - x_0^2)^2 + z^6 x_0^4 + z^{12} x_0^4 = 0.$$
(4)

Then $S \sim 4E_0 + 12\eta$. It is easy to check that S has only two singularities $p: (z = 0, x_0 = 1, x_1 = 1, x_2 = 0)$ and $p': (z = 0, x_0 = 1, x_1 = -1, x_2 = 0)$. Both are equivalent to the double point defined by

$$x^2 + y^3 + z^6 = 0.$$

It is well-known that this type of singularity is a minimally elliptic singularity and the exceptional curve is a nonsingular elliptic curve of self-intersection -1.

Let η_0 denote the fiber at z = 0. Then $K_W + S \sim E_0 + 3\eta \sim E_0 + 2\eta + \eta_0$. Let $\pi : X \rightarrow S$ be the minimal resolution of S, and let $D = \pi^{-1}(p)$, $D' = \pi^{-1}(p')$. Then $K_X \sim \pi^* (E_0 + 2\eta) + (\pi^* (\eta_0) - D - D')$. Since $\pi^* (\eta_0) - D - D'$ is the proper transform of $\eta_0|_S$ in X and dim $|2\eta|=2$, we have $p_g(X) \ge 3$. From (4) it is clear that $\pi^*(E_0) = 4E$ for a rational curve E on X. Let F and Z denote the proper transforms of $\eta|_S$ and $\eta_0|_S$ respectively. Then $K_X \sim 4E + 2F + Z$. The self-intersection number of 4E in X is equal to the intersection number E_0^2 in the threefold W. Hence $16E^2 = E_0^2 (4E_0 + 12\eta) = -28 + 12 = -16$, whence $E^2 = -1$. Obviously, $F^2 = FZ = 0$, EF = EZ = 1. Since $\eta_0 \cap S$ is a quartic curve with two cusps, Z is a nonsingular elliptic curve. By the adjunction formula, $0 = 2g(Z) - 2 = Z(Z + K_X) = Z(4E + 2F + 2Z)$, which implies that $Z^2 = -2$.

In order to see that $p_g(X) = 3$, we need to know $\chi(\mathcal{O}_X)$. Lemma 1.1 (2) implies that $\chi(\mathcal{O}_S) = 6$. Since every minimally elliptic singularity has geometric genus one, we have $\chi(\mathcal{O}_X) = \chi(\mathcal{O}_S) - 2 = 4$. Let $\psi: X \to X'$ be the contraction of the curve E. $F' = \psi(F), Z' = \psi(Z)$. Then X' is a minimal surface with $\chi(\mathcal{O}_{X'}) = 4, K_{X'} \sim 2F' + Z'$, and $K^2_{X'} = 7$.

Suppose that $H^1(\mathcal{O}_{X'}) \neq 0$. Then there would exist $B \in \text{Div}(X')$ such that *B* is not linearly equivalent to 0 and $2B \sim 0$. By the Riemann-Roch Theorem, we have $h^0(\mathcal{O}_{X'}(F'+B)) + h^0(\mathcal{O}_{X'}(F'+Z'-B)) \geq 3$. Thus either $h^0(\mathcal{O}_{X'}(F'+B)) \geq 2$ or $h^0(\mathcal{O}_{X'}(F'+Z'-B)) \geq 2$. If $h^0(\mathcal{O}_{X'}(F'+B)) \geq 2$, then the exact sequence

$$0 \longrightarrow H^{0}(\mathcal{O}_{\mathbf{X}'}(B)) \longrightarrow H^{0}(\mathcal{O}_{\mathbf{X}'}(F'+B)) \longrightarrow H^{0}(\mathcal{O}_{\mathbf{F}'}(F'+B))$$

would imply that $H^0(\mathcal{O}_{X'}(B)) > 0$, which is impossible. Hence $h^0(\mathcal{O}_{X'}(F'+Z'-B)) \ge 2$. As a nonsingular plane quartic curve, F is a non-hyperelliptic curve of genus 3. Hence $h^0(\mathcal{O}_{F'}(d)) = 1$ for every effective divisor d of degree 2 on F'. Thus $h^0(\mathcal{O}_{F'}(F'+Z'-B)=1$. The exact sequence

$$0 \longrightarrow H^{0}(\mathcal{O}_{X'}(Z'-B)) \longrightarrow H^{0}(\mathcal{O}_{X'}(F'+Z'-B)) \longrightarrow H^{0}(\mathcal{O}_{F'}(F'+Z'-B))$$

implies that $H^0(\mathcal{O}_{X'}(Z'-B)) \neq 0$. Since Z'(Z'-B) < 0, we have $H^0(\mathcal{O}_{X'}(-B)) \neq 0$, which is impossible. Therefore $H^1(\mathcal{O}_{X'}) = 0$, which implies $p_g(X') = 3$, and the canonical map of X' is composed of a pencil of genus 3.

2.2. as a Galois triple cover. A general theory for triple covers of algebraic varieties was developped by Miranda in [6]. In [7] Tan discovered a Horikawa type canonical resolution for Galois triple covers of surfaces. It is a useful tool to construct special surfaces satisfying preassigned conditions. Here we summarize some facts of triple covers that we need. For details readers may refer to [7] or [8].

Let Y be a smooth surface, L and M be divisors on Y. Assume that B, C are effective divisors such that $B \sim 2L - M$, $C \sim 2M - L$ and B + C is reduced. Then the triple covering data (L,M,B,C) determines a Galois triple cover π : $X \rightarrow Y$ from a normal surface X to Y. The surface X is defined in the rank two vector bundle $L \oplus M$ as

$$X = \operatorname{Spec} \mathcal{O}_{Y}[z,w] / (z^{2} - bw, zw - bc, w^{2} - cz),$$

where z,w are fibre coordinates of L, M and $b \in H^0(2L - M)$, $c \in H^0(2M - L)$ whose zeros are B and C respectively. The branch locus of π is B+C. If B + C is smooth then X is nonsingular.

There are two formulas:

$$\pi_* \mathcal{O}_X \cong \mathcal{O}_Y \oplus \mathcal{O}_Y (-L) \oplus \mathcal{O}_Y (-M).$$
(5)

$$\chi(\mathcal{O}_X) = 3\chi(\mathcal{O}_Y) + (L^2 + LK_Y)/2 + (M^2 + MK_Y)/2$$
(6)

With this preparation we start to construct our example. Let Y be a Hirzebruch surface $\mathbf{P}(\mathcal{O}_{\mathbf{P}'} \oplus \mathcal{O}_{\mathbf{P}'}(-3))$. Let E denote the section of Y with $\mathbf{E}^2 = -3$ and let η denote a fibre of Y. It is easy to see that there exists an irreducible curve $D \in |4E+12\eta|$ satisfying the following conditions:

- 1. D does not meet E.
- 2. D has two double points p, p' on a fiber η_0 and no other singularities.
- 3. The double points p and p' are of type A_5 , i.e., they are equivalent to the double point defined by the equation

 $x^2 + y^6 = 0.$

Next we will construct a sequence of blowingups of Y. To simplify the notation every irreducible curve and its proper transform will share the same name.

Let $\sigma_1 : Y_1 \rightarrow Y$ be the composition of blowingups of Y with centers at p and p'. Let $E_1 = \sigma_1^{-1}(p)$, $F_1 = \sigma_1^{-1}(p')$. Let $q = E_1 \cap D$ and $q' = F_1 \cap D$. Let $\sigma_2 :$ $Y_2 \rightarrow Y$ be the blowingups of Y_1 with centers at q and q'. Let $E_2 = \sigma_2^{-1}(q)$, $F_2 = \sigma_2^{-1}(q')$. Let $s = E_2 \cap D$ and $s' = F_2 \cap D$. Let $\sigma_3 : Y_3 \rightarrow Y_2$ be the blowingups of Y_2 with centers at s and s'. Let $E_3 = \sigma_3^{-1}(s)$, $F_3 = \sigma_3^{-1}(s')$. Then D becomes a smooth curve on Y_3 .

Let $r = E_1 \cap E_2$ and $r' = F_1 \cap F_2$. Let $\sigma_4 : Y_4 \to Y_3$ be the blowingups of Y_3 with centers at r and r'. Let $E_4 = \sigma_4^{-1}(r)$, $F_4 = \sigma_4^{-1}(r')$. The configurations of relevent curves on Y_4 are illustrated in Figure 1.

Figure 1

Let $\sigma = \sigma_1 \sigma_2 \sigma_3 \sigma_4$ be the composition of the blowingups. Let $L = \sigma^* (3E + 8\eta) - E_1 - 2E_2 - 4E_3 - 4E_4 - F_1 - 2F_2 - 4F_3 - 4F_4$ and $M = \sigma^* (2E + 4\eta) - E_2 - 2E_3 - 2E_4 - F_2 - 2F_3 - 2F_4$. Let $B = D + E_2 + F_2$ and $C = E + E_1 + F_1$ as divisors on Y_4 . Then $B \sim 2L - M$ and $C \sim 2M - L$.

Let $\pi: X \to Y_4$ be the triple cover determined by the triple covering data (L, M, B, C). Since the branch locus B+C is smooth, X is a smooth surface. By (5) we have

$$p_{g}(X) = h^{2}(X, \mathcal{O}) = h^{2}(Y_{4}, \mathcal{O}(-L)) + h^{2}(Y_{4}, \mathcal{O}(-M))$$

= $h^{0}(Y_{4}, \mathcal{O}(\sigma^{*}(E+3\eta) - E_{3} - F_{3})) = 3.$

By (6), $\chi(\mathcal{O}_X) = 4$. Hence $h^1(\mathcal{O}_X) = 0$.

Since π is totally ramified over B+C, we have

$$3K_X \sim 3\pi^*(K_{Y_4}) + 2\pi^*(B+C) \sim \pi^*(\sigma^*(4E+9\eta) + E_1 - 3E_3 + F_1 - 3F_3).$$

Let $\overline{E}_i = \pi^{-1}(E_i)$, $\overline{F}_i = \pi^{-1}(F_i)$ for i = 1, 2, 3, 4. Let $\overline{E} = \pi^{-1}(E)$ and $\overline{\eta} = \pi^{-1}(\eta)$. Then $3K_X \sim 12\overline{E} + 6\overline{\eta} + 3\overline{\eta}_0 + 12\overline{E}_1 + 9\overline{E}_2 + 6\overline{E}_4 + 12\overline{F}_1 + 9\overline{F}_2 + 6\overline{F}_4$.

Since $h^1(\mathcal{O}_X) = 0$, Pic (X) has no torsion. So $K_X \sim 4\overline{E} + 2\overline{\eta} + \overline{\eta}_0 + 4\overline{E}_1 + 3\overline{E}_2$ + $2\overline{E}_4 + 4\overline{F}_1 + 3\overline{F}_2 + 2\overline{F}_4$. A direct computation shows that $K_X^2 = 0$. Since $H^0(X, \mathcal{O}_X(2\eta)) = 3 = p_g(X), 2\overline{\eta}$ is the moving part of $|K_X|$. By Hurwitz's formula the genus of $\overline{\eta}$ is 3. This shows that the canonical map of X is composed of pencil of genus 3.

Finally, one can easily see that $\overline{E}^2 = \overline{E}_1^2 = \overline{E}_2^2 = \overline{F}_1^2 = \overline{F}_2^2 = -1$. and $\overline{E}_4^2 = \overline{F}_4^2 = -3$. So these seven curves can be contracted. Let $\tau: X \to S$ be the contraction. Then S is the minimal model of X with $K_s^2 = 7$. The surface S is the desired surface.

2.3. as a sextic surface in \mathbf{P}^3 . Let x_0 , x_1 , x_2 , x_3 be the homogeneous coordinates of \mathbf{P}^3 . Let S_0 be a sextic surface defined by the equation

$$x_1^2 (x_0^2 - x_1^2)^2 + x_0 (x_0^2 - x_1^2) x_2^3 + x_2^6 + x_3^6 = 0.$$
⁽⁷⁾

It can be checked that S_0 is irreducible and has no singularities on the hyperplane $x_0 = 0$. Take affine coordinates $x = x_1/x_0$, $y = x_2/x_0$, $z = x_3/x_0$. Then equation (7) becomes

$$x^{2}(1-x^{2})^{2}+(1-x^{2})y^{3}+y^{6}+z^{6}=0.$$

Let $b_1 = (0,0,0)$, $b_2 = (1,0,0)$, $b_3 = (-1,0,0)$. Then b_1 , b_2 , b_3 are the only singularities of S_0 . The singularity at b_1 is equivalent to the one defined by $x^2+y^3+z^6$, while both b_2 and b_3 are equivalent to the one defined by $x^2+y^6+z^6$. Meanwhile b_1 , b_2 , b_3 are located on the line L_0 : y=0, z=0.

Let $\rho: S \to S_0$ be the minimal resolution. Let $E_i = \rho^{-1}(b_i)$ for i = 1,2,3. They are all nonsingular curves and $g(E_1) = 1$, $E_1^2 = -1$, $g(E_2) = g(E_3) = 2$, $E_2^2 = E_3^2 = -2$. It is easy to see that $K_S \sim \rho^*(2H) - E_1 - 2E_2 - 2E_3$, where *H* is a hyperplane in \mathbf{P}^3 . Thus $|K_S| = \{\rho^* (H_1 + H_2) - E_1 - 2E_2 - 2E_3|H_1, H_2 \text{ are planes} passing through <math>L_0\}$. Hence the moving part of $|K_S|$ is a pencil and $p_g(S) = 3$. The fixed part of $|K_S|$ is E_1 . Let F be the proper transform of $H \cap S_0$ for a general hyperplane H passing through L_0 . Then $K_S \sim 2F + E_1$ and $F^2 = 1$, $FE_1 = 1$. Hence $K_S^2 = 7$.

3. $p_g = 3, K_2 = 6$

In this section we prove the non-existence of minimal surfaces of general type with $p_g=3$, $K^2=6$ whose canonical map is composed of penciles.

Let W be a smooth 3-fold, S be an irreducible surface in W. Let C be a nonsingular curve in S. If S is singular at every point of C then we say that C is a singular locus of S. Let $\mu = \min_{p \in C} \{\mu_p(S)\}$, where $\mu_p(S)$ is the multiplicity of S at p. Then μ is defined as the multiplicity of the singular locus C. The set $U = \{p \in C \mid \mu_P(S) = \mu\}$ is a non-empty open subset of C. If $\mu = 2$ then C is called a *double locus* of S.

Assume that C is a double locus of S. Let $\sigma_1: W_1 \rightarrow W$ be the blowingup of W with center at C. Let S_1 be the proper transform of S, $E_1 = \sigma_1^{-1}(C)$, $C_1 = S_1 \cap E_1$. If C_1 is a singular locus of S_1 , then it is still a double locus and is irreducible. Let $\sigma_2: W_2 \rightarrow W_1$ be the blowingup of W_1 with center at C_1 . Repeating this process of blowingup for finitely many steps, we may obtain a sequence of blowingups:

$$W_n \xrightarrow{\sigma_n} W_{n-1} \longrightarrow \cdots \longrightarrow W_1 \xrightarrow{\sigma_1} W$$

so that C_{n-1} is a double locus of W_{n-1} while C_n is not a singular locus of W_n , although there might be isolated singularities of S_n on C_n . The number n is called the *resolution length* of the double locus C.

Lemma 3.1. Let S be a surface in a nonsingular 3-fold W. Let C be a double locus of S. Let H be a nonsingular surface in W and $p \in H \cap C$ such that C is transversal to H at p. Assume that the curve $D = H \cap S$ on H has a double point of type A_n at p. Then the resolution length of C is less than or equal to [(n+1)/2].

Proof. Let $\sigma_1: W_1 \rightarrow W$ be the blowingup of W with center at C, S_1 and H_1 be the proper transforms of S and H respectively. Let $E_1 = \sigma_1^{-1}(C)$, $C_1 = S_1 \cap E_1$, $D_1 = H_1 \cap S_1$. Then the restriction map $\sigma_1: H_1 \rightarrow H$ is the blowingup of H at p with D_1 as the proper transform of D.

We use the induction on *n* to prove our statement. If $n \leq 2$, then D_1 is smooth at $\sigma_1^{-1}(p)$. Thus S_1 is smooth at $\sigma_1^{-1}(p)$. So C_1 is not the singular locus of S_1 . This implies that the resolution length of *C* is less that or equal to 1.

If n > 2, then $\sigma_1^{-1}(p)$ consists of one point p_1 and this point p_1 is a double

point of type A_{n-2} of the curve D_1 on H_1 . By induction hypothesis the resolution length of C_1 is less than or equal to $\lfloor (n-1)/2 \rfloor$. Hence the resolution length of C is less than or equal to $1 + \lfloor (n-1)/2 \rfloor = \lfloor (n+1)/2 \rfloor$.

Lemma 3.2. Let π : $W = \mathbf{P}(\mathcal{O} \oplus \mathcal{O}(m) \oplus \mathcal{O}(n)) \rightarrow \mathbf{P}^1$ be a \mathbf{P}^2 -bundle over \mathbf{P}^1 , where $0 \le m \le n$. Let S be an irreducible surface in W, linearly equivalent to $4E_0 + s\eta$, where E_0 is the divisor associated with the subbundle $\mathcal{O}(m) \oplus \mathcal{O}(n)$ and η is a fiber. Let $\mathbf{P}^1 = U_0 \cup U_1$ be the standard affine open covering of \mathbf{P}^1 and let $W_i = \pi^{-1}(U_i)$ for i = 0, 1. Let z be the affine coordinate of U_0 and let x_0, x_1, x_2 be the fiber coordinates of the line bundles $\mathcal{O}, \mathcal{O}(m)$ and $\mathcal{O}(n)$ over U_0 respectively. Assume that the equation of $S_0 = S \cap W_0$ is

$$ax_1^4 + x_0 f(x_0, x_1, x_2, z) = 0,$$

where a is a non-zero constant and $f(x_0, x_1, x_2, z)$ is homogeneous in x_0, x_1, x_2 of degree. 3. Let η_0 be the fiber of W_0 over the origin of U_0 . Assume that $C_0 = \eta_0 \cap S$ is a nonsingular conic which is a double locus of S and there is no other singular locus. Then the resolution length of C_0 is less than or equal to [(s-3n)/2].

Proof. Since C_0 is a double locus of *S*, we have

$$ax_1^4 + x_0 f(x_0, x_1, x_2, 0) = (\alpha x_1^2 + x_0 \Gamma(x_0, x_1, x_2))^2$$

where $\alpha \neq 0$ and $\Gamma(x_0, x_1, x_2) = b_0 x_0 + b_1 x_1 + b_2 x_2$ is a linear form. Since C_0 is a nonsingular conic, $b_2 \neq 0$. Thus the equation of S_0 can be written as

$$(\alpha x_1^2 + x_0 \Gamma(x_0, x_1, x_2))^2 + z x_0 G(x_0, x_1, x_2, z) = 0,$$

where

$$G(x_0, x_1, x_2, z) = \sum_{i+j+k=3} c_{ijk}(z) x_0^i x_1^j x_2^k.$$

Since C_0 is the only singular locus of S, we have $c_{003}(z) \neq 0$, otherwise the curve defined by $x_0 = x_1 = 0$ would be a singular locus. So the equation of S can be written as

$$(\alpha x_1^2 + x_0 \Gamma(x_0, x_1, x_2))^2 + p(z) x_0 x_2^3 + z x_0 \sum_{k \le 2, i+j+k=3} c_{ijk}(z) x_0^i x_1^j x_2^k = 0,$$

in which $p(z) = \beta z^r + \sum_{i>r} \beta_i z^i$, $\beta \neq 0$, $r \leq \deg(p(z)) \leq s - 3n$.

Let $V = \{ (x_0, x_1, x_2, z) \in W_0 \mid x_0 \neq 0 \}$. Then $V \cong \mathbb{C}^3$ is an affine open subset of W_0 with $x = x_1/x_0$, $y = x_2/x_0$, z as the affine coordinates. The equation of $S \cap V$ is

$$(\alpha x^{2}+b_{0}+b_{1}x+b_{2}y)^{2}+p(z)y^{3}+z\sum_{k\leq 2,\ i+j+k=3}c_{ijk}(z)x^{i}y^{k}=0.$$

Let *H* be the surface in *V* defined by the equation y = ux, where *u* is a sufficiently general complex number. Then the equation of the curve $H \cap S \cap V$ is given by

$$\alpha^{2}(x-\rho_{1})^{2}(x-\rho_{2})^{2}+p(z)u^{3}x^{3}+z\sum_{k\leq 2,\ i+j+k=3}c_{ijk}(z)u^{k}x^{j+k}=0,$$

where ρ_1 and ρ_2 are two roots of the quadratic equation

$$\alpha x^2 + (b_2 u + b_1) x + b_0 = 0.$$

We may assume that $\rho_1 \neq 0$. Substitute x' for $x - \rho_1$ and the equation of $H \cap S \cap V$ becomes

$$\alpha^{2} x^{\prime 2} (x^{\prime} + \rho_{1} - \rho_{2})^{2} + p(z) u^{3} (x^{\prime} + \rho_{1})^{3} + z \sum_{\substack{k \leq 2, i+j+k=3 \\ k \leq 2$$

where

$$\gamma(z) = \beta z^{r} u^{3} \rho_{1}^{3} + \sum_{i>r} \beta_{i} z^{i} u^{3} \rho_{1}^{3} + z \sum_{k \leq 2, i+j+k=3} c_{ijk}(z) u^{k} \rho_{1}^{j+k},$$

$$\delta(z) = 3p(z) u^{3} \rho_{1}^{2} + z \sum_{k \leq 2, i+j+k=3} c_{ijk}(z) u^{k}(j+k) \rho_{1}^{j+k-1},$$

and g(x', z) is some polynomial. Since u is sufficiently general, $\alpha^2 (\rho_1 - \rho_2)^2 + g(0,0) \neq 0$ and the coefficient of z^r in $\gamma(z)$ is nonzero. Let e_1 and e_2 be the coefficients of the terms of lowest degree in $\gamma(z)$ and $\delta(z)$ respectively. Then, since u is general, $e_2^2 \neq 4e_1 ((\alpha^2 (\rho_1 - \rho_2)^2 + g(0,0))^2$ and the lowest degrees of $\gamma(z)$ and $\delta(z)$ are less than or equal to r. Hence the point x'=0, z=0 is a double point of type A_q with $q \leq r-1$. By Lemma 3.1 the resolution length of the double locus C_0 of S is less than or equal to [r/2]. Since $r \leq s - 3n$, the lemma is proved.

Lemma 3.3. Let C be an irreducible quartic curve in the projective plane and L be a line. Let p be an intersecting point of C and L. Let $(C, L)_p$ denote the intersection number of C and L at p.

(1) If C has a double point $q \neq p$ of type A_6 , i.e., equivalent to one defined by the equation $x^2 + y^7 = 0$. Then $(C, L)_p \leq 3$.

(2) If C has two double points q_1 , q_2 of types A_m and A_n respectively with m, n > 1. Assume that $m + n \ge 5$, $q_1 \ne p$ and $q_2 \ne p$. Then $(C, L)_p \le 3$.

Proof. (1) The projection from the point q defines a covering of C over \mathbf{P}^1 . Hurwitz's formula implies that there is at least one ramification point for

this projection. This means that there is a line L' such that $C \cap L' = q + q'$ and $(C, L')_{q'} = 2$. If $(C, L)_p = 4$, then the combination of rational double points of the reduced sextic curve C + L + L' would correspond to the Dynkin diagram $D_9 + A_7 + A_3 + A_1$. This is impossible since the rank of such Dynkin diagram cannot exceed 19, ([9]). Hence $(C, L)_p \leq 3$.

(2) Assume that $(C, L)_p = 4$. Let L' be the line passing through q_1 and q_2 . Then the combination of rational double points of the sextic curve C+L+L' corresponds to the Dynkin diagram $D_{m+3}+D_{n+3}+A_7+A_1$. So $m+n \le 5$ for the same reason as in (1). So we may assume that q_1 and q_2 are of types A_2 and A_3 respectively. Let x_0, x_1, x_2 be the homogeneous coordinates of \mathbf{P}^2 . With a suitable linear transformation of the coordinates we may assume that $q_1 = (1,0,0), q_2 = (0,1,0)$ and the equation C is

$$x_0^2 x_1^2 + x_0 x_2^3 + \lambda x_0 x_1 x_2^2 + x_2^4 = 0, \tag{8}$$

where λ is some constant. Let

$$ax_0 + bx_1 + cx_2 = 0 \tag{9}$$

be the equation of the line L, with coefficients a, b, c. If $(C, L)_p = 4$, there would be only one solution to the simultaneous equations (8) and (9). A direct computation shows that this is possible only when b = 0 and c = 0. Thus $q_2 \in L$, contradicting the assumption that $q_2 \neq p$.

Lemma 3.4. Let \mathcal{F} be a coherent sheaf on a nonsingular curve C. Let \mathcal{F} denote the dual of \mathcal{F} . Then $h^0(C, \mathcal{F}) \ge h^0(C, \mathcal{F}^{\sim})$.

Proof. Let \mathscr{F}_{τ} denote the torsion part of \mathscr{F} . Then we have a short exact sequence

$$0 \longrightarrow \mathcal{F}_{\tau} \longrightarrow \mathcal{F} \longrightarrow \bar{\mathcal{F}} \longrightarrow 0, \tag{10}$$

where $\overline{\mathscr{F}}$ is torsion-free. Since every torsion-free coherent sheaf on a nonsingular curve is locally free, $\overline{\mathscr{F}}$ is locally free. Hence $\overline{\mathscr{F}} \cong \overline{\mathscr{F}} \cong \mathscr{F}^{\sim}$. Then (10) implies the exact sequence

 $0 \longrightarrow \mathcal{F}_{\tau} \longrightarrow \mathcal{F} \longrightarrow \mathcal{F}^{**} \longrightarrow 0.$

Taking the long exact sequence we obtain

$$\cdots \to H^0(C, \mathscr{F}) \to H^0(C, \mathscr{F}^{\sim}) \to H^1(C, \mathscr{F}_{\tau}) \to \cdots$$
(11)

Since \mathscr{F}_{τ} is supported on a proper closed subset of *C*, we have $H^1(C,\mathscr{F}_{\tau}) = 0$. The result follows from (11).

Theorem 3.5. There does not exist a minimal surface of general type X such that

- 1. $p_g(X) = 3, K_X^2 = 6$
- 2. The canonical map of X composed of a pencil of genus greater than or

equal to 3.

Proof. Suppose that such a surface exists.

Let Z denote the fixed part of $|K_X|$. Then $K_X \sim nF + Z$ with $n \ge 2$, where F is a member of a pencil. Since $6 = K_X^2 \ge 2FK_X + ZK_X \ge 2FK_X$, $F^2 = 2p_a(F) - 2 - FK_X \ge 2g(F) - 5 > 0$. Thus |F| has base points. Since $K_X^2 \ge 4F^2 + 2FZ + K_XZ \ge 4F^2$, we have $F^2 = 1$, which means that |F| has exactly one base point. This implies that a general member |F| is a nonsingular curve of genus $g \ge 3$. It follows that FZ = 1, $K_XZ = 0$, n = 2 and g = 3.

Since $K_X Z = 0$, every irreducible component of Z is a (-2)-curve. We are going to show that Z is irreducible. Write $Z = \sum_{i=1}^{r} n_i A_i$, where each A_i is a (-2)-curve. Assume that $FA_1 = 1$ and $FA_i = 0$ for $i \ge 2$. Then $n_1 = 1$. Suppose that r > 1. The equality

$$0 = A_1 K_X = 2A_1 F + A_1 Z = 2 - 2 + A_1 \sum_{i=2}^r n_i A_i$$

implies that $A_1A_i = 0$ for $i \ge 2$. It follows that $K(\sum_{i=2}^{r} n_i A_i) = (\sum_{i=2}^{r} n_i A_i)^2 < 0$, contradicting the assumption that X is a minimal surface of general type. Hence Z is a rational curve with $Z^2 = -2$.

Next, we show that $H^1(X, \mathcal{O}_X) = 0$. If not, there would be a divisor *e* such that *e* is not linearly equivalent to 0 but 2e is linearly equivalent to 0. A theorem of Xiao (cf. [10]) says that $q = h^1(X, \mathcal{O}_X) \leq 2$. Thus $\chi(\mathcal{O}_X) \geq 2$. The Riemann-Roch theorem implies that

$$h^0(X, \mathcal{O}_X(F+e)) + h^0(X, \mathcal{O}_X(F+Z-e)) \ge 1.$$

Hence either $h^0(X, \mathcal{O}_X(F+e)) > 0$ or $h^0(X, \mathcal{O}(F+Z-e)) > 0$. In the former case, take $D \in |F+e|$, then $2D \in |2F|$. Since dim |2F|=2, *D* is a member of |F|, which implies that $e \sim 0$. This is a contradiction. In the latter case $h^0(X, \mathcal{O}_X(F+Z-e)) > 0$. Since Z(F+Z-e) < 0, *Z* is a fixed component of |F+Z-e|. Thus $h^0(X, \mathcal{O}(F-e)) > 0$. This would lead to a contradiction by the same argument as in the previous case. Hence q=0.

Let p be the base point of the pencil |F|. We discuss the following two cases.

Case 1: The point p is not on Z.

Let $\sigma: \overline{X} \to X$ be the blowingup of X with center at p. Let $E = \sigma^{-1}(p)$, and let $\overline{Z}, \overline{F}$ denote the proper transforms of Z and F respectively. Then $K_{\overline{X}} \sim 2\overline{F}$ $+ 3E + \overline{Z}$. There is a natural fibration $f: \overline{X} \to \mathbf{P}^1$ such that $|\overline{F}|$ consists of fibers. Since q=0, we have a short exact sequence

$$0 \longrightarrow H^{0}(\overline{X}, \mathcal{O}(K)) \longrightarrow H^{0}(\overline{X}, \mathcal{O}(K+\overline{F})) \longrightarrow H^{0}(\overline{F}, \mathcal{O}(K_{\overline{F}})) \longrightarrow 0,$$

where \overline{F} is a nonsingular fiber. Thus $h^0(\overline{X}, \mathcal{O}(K + \overline{F})) = 6$, which implies that

 $f_{\ast}(\mathcal{O}_{\bar{X}}(K)) \sim \mathcal{O}(2) \oplus \mathcal{O}(-1) \oplus \mathcal{O}(-1).$

Since the map $H^0(\overline{X}, \mathcal{O}(K+\overline{F})) \to H^0(\overline{F}, \mathcal{O}(K_{\overline{F}}))$ is surjective and $|K_{\overline{F}}|$ has no base point on a smooth fiber \overline{F} , neither E nor \overline{Z} is a fixed component of $|K+\overline{F}|$. Thus the base points of $|K+\overline{F}|$ can only be located on \overline{Z} . Obviously we have $4 \leq h^0(\overline{X}, \mathcal{O}(3\overline{F}+3E)) \leq 5$.

First suppose that $h^0(\overline{X}, \mathcal{O}(3\overline{F}+3E)) = 4$. For an arbitrary nonsingular fiber \overline{F} , let x and y be the intersection points of \overline{F} with E and \overline{Z} respectively. Then $K_{\overline{F}} \sim 3x + y$. This implies that \overline{F} is a non-hyperelliptic curve of genus 3. Let

$$\phi: \overline{X} \cdots \to \mathbf{P} \left(f_{\ast} \left(\mathcal{O}_{\overline{X}} \left(K \right) \right)^{\star} \right) \cong \mathbf{P} \left(\mathcal{O} \oplus \mathcal{O} \left(3 \right) \oplus \mathcal{O} \left(3 \right) \right)$$

be the relative canonical map. Then ϕ is a birational map, for a general fiber of f is non-hyperelliptic. In particular, the restiction of ϕ to every nonsingular fiber is a birational morphism onto its image. We are going to show that the image of ϕ is a normal surface. It suffices to show that the restriction of ϕ to every irreducible component of any singular fiber is either a birational map or the contraction of the curve to a point.

From the exact sequence

$$0 \longrightarrow H^{0}(\overline{X}, \mathcal{O}(3\overline{F} + 3E)) \longrightarrow H^{0}(\overline{X}, \mathcal{O}(K + \overline{F})) \longrightarrow H^{0}(\overline{Z}, \mathcal{O}(1)) \longrightarrow 0$$

we see that $|K_{\bar{X}} + \bar{F}|$ has no base points. So ϕ is a birational morphism. Let F' be a singular fiber. Let A be the irreducible component of F' with $A\bar{Z} = 1$. First assume that AE = 1. Then it is easy to see that the image of the map $H^0(\bar{X}, \mathcal{O}(K + \bar{F})) \rightarrow H^0(A, \mathcal{O}_A(K_{\bar{X}} + \bar{F}))$ has dimention 3 and A cannot be hyperelliptic. Thus the restriction of ϕ on A is a birational morphism onto its image. All the other components of F' have zero interestion with $K_{\bar{X}}$, so they are (-2)-curves and contract to points under ϕ . Next assume that AE = 0. Since $|K_{\bar{X}} + \bar{F}|$ has no base point on A, A is a nonsingular rational curve with $A^2 = -3$. From $A(K_{\bar{X}} + A) < 0$. It follows that A is fixed in $|K_{\bar{X}} + A|$, so $h^0(\bar{X}, \mathcal{O}(K_{\bar{X}} + A)) = 3$. Write F' = A + B. Then the exact sequence

$$0 \to H^{0}(\overline{X}, \mathcal{O}(K_{\overline{X}} + A)) \to H^{0}(\overline{X}, \mathcal{O}(K + \overline{F})) \xrightarrow{\phi} H^{0}(B, \mathcal{O}(K_{\overline{X}} + \overline{F})) \to \cdots$$

implies that Im (ϕ) has dimension 3. Thus $\phi(B)$ is a non-degenerate plane cubic curve. Write $B = B_1 + C$, where B_1 is the component interesting E. Then C consists of (-2)-curves and contracts to points under ϕ . This shows that ϕ maps B_1 onto its image birationally. Note that only (-2)-curves contract to points under ϕ . Therefore $\phi(\overline{X})$ is a normal surface with rational double points as its only singularities. In particular, $\chi(\mathcal{O}_{\overline{X}}) = \chi(\mathcal{O}_{\phi(\overline{X}})) = 4$.

Let W denote the threefold $\mathbf{P}(\mathcal{O} \oplus \mathcal{O}(3) \oplus \mathcal{O}(3))$ over \mathbf{P}^1 . Let E_0 denote

136

the divisor $\mathbf{P}(\mathcal{O}(3) \oplus \mathcal{O}(3))$ of W, and let η denote a fiber \mathbf{P}^2 of W. Then as a divisor of W, $\phi(\overline{X})$ is linearly equivalent to $4E_0 + n\eta$ for some n > 0. Lemma 1.1 (2) shows that $\chi(\mathcal{O}_{\overline{X}}) = 3n - 26$, which implies n = 10. But this contradicts Lemma 1.1(1). Hence $h^0(\overline{X}, \mathcal{O}(3\overline{F} + 3E)) = 4$ is impossible.

Next suppose that h^0 $(\overline{X}, \mathcal{O}(3\overline{F} + 3E)) = 5$. Let D be a member of $|K_{\overline{X}} + \overline{F}|$ that does not contain \overline{Z} . Then D meets \overline{Z} at one point x, which is the only base point of $|K_{\overline{X}} + \overline{F}|$. Let F' be the fiber of f passing through x and let A be the irreducible component of F' passing through x. Let $\sigma_1: X_1 \rightarrow \overline{X}$ be the blowingup of \overline{X} at x. Let $G = \sigma_1^{-1}(x)$ and let A_1 be the proper transform of A. The proper transform of E is still denoted by E. The linear system $|\sigma_1^*(K_{\overline{X}} + \overline{F}) - G|$ does not have base points.

Let $f_1 = f\sigma_1: X_1 \rightarrow \mathbf{P}^1$ be the fibration induced from f. Let $M = f_1^* \mathcal{O}(\sigma_1^*(K_{\bar{X}} + \bar{F}) - G)$. Since $h^0(X_1, \mathcal{O}(\sigma_1^*(K_{\bar{X}} + F) - G) = 6$. and $h^0(X_1, \mathcal{O}(\sigma_1^*(K_{\bar{X}}) - G)) = 3$, the locally free sheaf M is isomorphic to $\mathcal{O} \oplus \mathcal{O} \oplus \mathcal{O}(3)$. The natural morphism $f_1^* M \rightarrow \mathcal{O}(\sigma_1^*(K_{\bar{X}} + \bar{F}) - G)$ induces a morphism $\phi: X_1 \rightarrow \mathbf{P}(M^*) \cong \mathbf{P}(\mathcal{O} \oplus \mathcal{O}(3) \oplus \mathcal{O}(3))$, because the sheaf $\mathcal{O}(\sigma_1^*(K_{\bar{X}} + \bar{F}) - G)$ is generated by global sections.

If AE = 1, then the restriction of $H^0(X_1, \mathcal{O}(\sigma_1^*(K_{\bar{X}} + \bar{F}) - G))$ on A_1 has dimension 3, for $h^0(X_1, \mathcal{O}(\sigma_1^*(K_{\bar{X}}) - G(\sigma_1^*(F') - A_1))) = 3$. Thus ϕ maps A_1 to a nondegenerate cubic curve and G to a line. Using the same argument as before, we see that $\phi(X_1)$ is a normal surface with rational double points as its only singularities. This would lead to a contradiction by virtue of Lemma 1.1.

Next assume that AE = 0. Since $A^2 + 1 = A^2 + AK_{\bar{x}} = 2p_a(A) - 2$, A^2 is either -1 or -3. If $A^2 = -1$, then A is either a smooth elliptic curve or a rational curve with a node or cusp.

Assume that A is a smooth elliptic curve. Then the exact sequence

$$0 \longrightarrow H^{0}(\bar{X}, \mathcal{O}(K_{\bar{X}})) \longrightarrow H^{0}(\bar{X}, \mathcal{O}(K_{\bar{X}} + A)) \longrightarrow H^{0}(A, \mathcal{O}_{A}) \longrightarrow 0$$

implies that $h^0(\bar{X}, \mathcal{O}(K_{\bar{X}} + A)) > h^0(\bar{X}, \mathcal{O}(K_{\bar{X}}))$. So A is not a fixed component of $|K_{\bar{X}} + A|$. Take $D \in |K_{\bar{X}} + A|$ which does not contain A. Then $x \notin D$, for DA = 0. Thus D + (F' - A) is a member of $|K_{\bar{X}} + \bar{F}|$ which does not pass throught x. This would lead to a contradiction. Hence A is not a smooth elliptic curve.

Assume that A is a rational curve with a node or a cups y. Let $\psi: W \rightarrow \overline{X}$ be the blowingup of \overline{X} at y. Let $\Gamma = \phi^{-1}(y)$ and let A' denote the proper transform of A. Then A' is a smooth rational ccurve with $A'^2 = -5$ and $A'\Gamma = 2$. The exact sequence

$$0 \longrightarrow \mathcal{O}_{W}(K_{W}) \longrightarrow \mathcal{O}_{W}(K_{W} + \Gamma) \longrightarrow \mathcal{O}_{\Gamma}(-2) \longrightarrow 0$$

implies that $h^0(W, \mathcal{O}(K_W + \Gamma)) = 3$ and $h^0(W, \mathcal{O}(K_W + \Gamma)) = 0$. Then the exact sequence

$$0 \longrightarrow \mathcal{O}_{W}(K_{W} + \Gamma) \longrightarrow \mathcal{O}_{W}(K_{W} + \Gamma + A') \longrightarrow \mathcal{O}_{A'} \longrightarrow 0$$

implies that $h^0(W, \mathcal{O}(K_W + A' + \Gamma)) > h^0(W, \mathcal{O}(K_W + \Gamma)) = h^0(W, \mathcal{O}(K_W))$. So A' is not a fixed component of $|K_W + A' + \Gamma|$. Take $D' \in |K_W + A' + \Gamma|$ which does not contain A' and let $D = \psi(D')$. Then $D \in |K_{\bar{X}} + A|$ and $x \notin D$. Thus D + (F' - A) is a member of $|K_{\bar{X}} + \bar{F}|$ which does not pass throught x. This would lead to a contradiction. Hence A could only be a smooth rational curve.

Since $h^0(X_1, \mathcal{O}(\sigma_1^*(K_{\bar{x}})) = 3)$, the restriction of $H^0(X_1, \mathcal{O}(\sigma_1^*(K_{\bar{x}} + \bar{F}) - G))$ on $\sigma_1^*(F') - G$ has dimension 3. Thus $\phi(\sigma_1^*(F') - G)$ is a non-degenerate plane cubic curve. Write $\sigma_1^*(F') = G + A_1 + B_1 + R$, where B_1 is the irreducible component that intersects E, and R consists of (-2)-curves. Then ϕ maps B_1 and G birationally to a cubic curve and a line respectively. The divisor $A_1 + R$ is contracted to normal singularities under ϕ . Let $p = \phi(A_1)$ and Let C $= \bigcup_{i=1}^{n} C_i$ be the exceptional set of the normal singularity p. We may assume that $C_1 = A_1$. Since $A_1^2 \neq -2$ and C does not contain (-1)-curves, p is not a rational double point. As every hypersurface rational singularity is a rational double point, p is not a rational singularity. This means that Z^2 + $ZK_{X_1} \ge 0$, where Z is the fundamental cycle on C. Since $ZK_{X_1} = A_1K_{X_1} = 2$, we have $Z^2 \ge -2$, which implies that $Z^2 = -2$ because Z^2 is an even negative ingeger. In particular, this implies that $Z \neq A_1$. Let $D = (A_1 + R)|_c$. Then $DC_i \leq 0$ for every *i*. Thus $Z \leq D$. Since $A^2 = -3$, we have A(F' - A) = 3. So $A_1(Z-A_1) \leq 3$. On the other hand, $-2 = Z^2 = A_1^2 + (Z-A_1)^2 + 2A_1(Z-A_1)^2$ $\leq -6 + 2A_1(Z - A_1)$ implies that $A_1(Z - A_1) \geq 2$.

If $A_1(Z-A_1) = 2$, then A_1 is not a fixed component of $|K_{X_1}+Z|$ by Lemma 1.6. This contradicts the condition that x is a base point of $|K_X+F|$.

If $A_1(Z - A_1) = 3$, let $Q = Z - A_1$. Let $\Delta_1, \dots, \Delta_s$ be the connected components of Supp (Q) and let $Q_i = Q|_{\Delta_i}$ for $1 \le i \le s$. Then $-4 = Q^2 = Q_1^2 + \dots$ Q_s^2 . Thus $s \le 2$. Since $A_1Q = 3$, there is a component A_j of Q such that $A_1A_j > 0$ and the coefficient of A_j in Q is odd. Then $A_jQ = A_jZ - A_jA_1 < 0$. Lemma 1.4 implies that s = 2. Since $A_1(Q_1 + Q_2) = 3$, we may assume that $A_1Q_1 = 2$. Then A_1 is not a fixed component of $|K_{X_1} + A_1 + Q_1|$ be Lemma 1.6. This contradicts the condition that x is a base point of $|K_X + F|$.

Case 2: The point p is on Z.

Let $\sigma: \overline{X} \to X$ be the blowingup of X with center at p. Let $E = \sigma^{-1}(p)$, and let \overline{Z} , \overline{F} denote the proper transforms of Z and F respectively. Then $K_{\overline{X}} \sim 2\overline{F}$ $+ 4E + \overline{Z}$. There is a natural fibration $f: \overline{X} \to \mathbf{P}^1$ such that $|\overline{F}|$ consists of fibers. The complement of \overline{Z} in the fiber is denoted by Z° , i.e., Z° is an effective divisor such that $\overline{F} \sim \overline{Z} + Z^\circ$.

The short exact sequence

$$0 \longrightarrow H^{0}(\overline{X}, \mathcal{O}(K_{\overline{X}})) \longrightarrow H^{0}(\overline{X}, \mathcal{O}(K_{\overline{X}} + \overline{F})) \xrightarrow{\varphi} H^{0}(\overline{F}, \mathcal{O}(K_{\overline{F}})) \longrightarrow 0,$$
(12)

where \overline{F} is a nonsingular fiber, implies that $h^0(\overline{X}, \mathcal{O}(3\overline{F}+4E+\overline{Z})) = h^0(\overline{X}, \mathcal{O}(K_{\overline{X}}+\overline{F})) = 6$. Since the map ψ in (12) is surjective, E is not a fixed component of $|3\overline{F}+4E+\overline{Z}|$. The short exact sequence

$$0 \longrightarrow H^{0}(\overline{X}, \mathcal{O}(3\overline{F} + 3E + \overline{Z})) \longrightarrow H^{0}(\overline{X}, \mathcal{O}(K_{\overline{X}} + \overline{F})) \longrightarrow H^{0}(E, \mathcal{O}_{E}) \longrightarrow 0$$

implies that

$$h^{0}(\bar{X},\mathcal{O}(3\bar{F}+3E+\bar{Z})) = 5.$$
 (13)

We are going to show that E is not a fixed component of $|3\overline{F} + 3E + \overline{Z}|$. Suppose E is fixed. Then $h^0(\overline{X}, \mathcal{O}(3\overline{F} + 2E + \overline{Z}) = 5$. Since $h^0(\overline{X}, \mathcal{O}(2\overline{F} + 2E + \overline{Z}) = 3$ and $h^0(\overline{F}, \mathcal{O}_{\overline{X}}(2E)) \leq 2$ for a general fiber \overline{F} , we have a short exact sequence

$$0 \rightarrow H^{0}(\overline{X}, \mathcal{O}(2\overline{F} + 2E + \overline{Z})) \rightarrow H^{0}(\overline{X}, \mathcal{O}(3\overline{F} + 2E + \overline{Z}))$$
$$\rightarrow H^{0}(\overline{F}, \mathcal{O}_{\overline{Y}}(2E)) \rightarrow 0.$$

This implies that

$$f_*\mathcal{O}(2\bar{F}+2E+\bar{Z})\cong\mathcal{O}(-1)\oplus\mathcal{O}(2).$$

It follows that $h^0(\mathbf{P}^1, f_*\mathcal{O}(2\overline{F}+2E+\overline{Z})^{\vee}) = 2$. The relative duality implies that the dual of $R^1f_*\mathcal{O}(2\overline{F}+2E)$ is isomorphic to $f_*\mathcal{O}(2\overline{F}+2E+\overline{Z})$. Hence $h^0(\mathbf{P}^1, R^1f_*\mathcal{O}(2\overline{F}+2E)) \ge 2$ by Lemma 3.4. But the Riemann-Roch theorem implies that $h^1(\overline{X}, \mathcal{O}(2\overline{F}+2E)) = 1$, which contradicts the Leray spectral sequence

$$0 \longrightarrow H^{1}(f_{*}\mathcal{O}(2\bar{F}+2E)) \longrightarrow H^{1}(\mathcal{O}(2\bar{F}+2E)) \longrightarrow$$
$$\longrightarrow H^{0}(R^{1}f_{*}\mathcal{O}(2\bar{F}+2E)) \longrightarrow 0.$$

Therefore *E* cannot be a fixed component of $|3\vec{F}+3E+\vec{Z}|$.

Let G be a general member of $|3\overline{F}+3E+\overline{Z}|$ and let \overline{F} be a general fiber. Let $x = \overline{F} \cap E$. Then $G \cap \overline{F} = \{x_1, x_2, x_3\}$, where x_1, x_2, x_3 are distinct from x. Thus $x_1 + x_2 + x_3$ is linearly equivalent to 3x as divisors on \overline{F} , which shows that \overline{F} is not hyperelliptic.

Since *E* is not a fixed component of $|3\bar{F}+4E+\bar{Z}|$, there exists $D \in |3\bar{F}+4E+\bar{Z}|$ + $\bar{Z}|$ such that *D* does not contain *E*. Since DE=0, the curve *D* does not meet *E*, so \bar{Z} is not a component of *D*. This shows that \bar{Z} is not a fixed component of $|3\bar{F}+4E+\bar{Z}|$. Hence $4 \leq h^0(\bar{X},\mathcal{O}(3\bar{F}+4E)) = h^0(\bar{X},\mathcal{O}(3\bar{F}+3E)) \leq 5$.

We discuss the two subcases:

Case 2A: $h^0(\bar{X}, (3\bar{F}+3E)) = 5$.

It follows from (13) that

$$0 \longrightarrow H^{0}(\overline{X}, \mathcal{O}(2\overline{F} + 3E + \overline{Z})) \longrightarrow H^{0}(\overline{X}, \mathcal{O}(3\overline{F} + 3E + \overline{Z})) \longrightarrow H^{0}(\overline{F}, \mathcal{O}(3E)) \longrightarrow 0$$

is exact. Thus the map $H^0(\overline{X}, \mathcal{O}(4\overline{F}+3E)) \rightarrow H^0(\overline{F}, \mathcal{O}(3E))$ is surjective. Hence we have a short exact sequence

$$0 \longrightarrow H^{0}(\bar{X}, \mathcal{O}(3\bar{F}+3E)) \longrightarrow H^{0}(\bar{X}, \mathcal{O}(4\bar{F}+3E)) \longrightarrow H^{0}(\bar{F}, \mathcal{O}(3E)) \longrightarrow 0$$

which implies that $h^0(\overline{X}, \mathcal{O}(4\overline{F} + 3E)) = 7$. Meanwhile, the short exact sequence

$$0 \longrightarrow H^{0}(\overline{X}, \mathcal{O}(3\overline{F} + 4E)) \longrightarrow H^{0}(\overline{X}, \mathcal{O}(4\overline{F} + 4E)) \longrightarrow H^{0}(\overline{F}, \mathcal{O}(K_{\overline{F}})) \longrightarrow 0$$

implies that $h^0(\overline{X}, \mathcal{O}(4\overline{F}+4E)) = 8$. Hence $|4\overline{F}+4E|$ has no base points. Let ϕ denote the projective morphism determined by $|4\overline{F}+4E|$.

Let *n* be an arbitrary nonnegative integer. Since \overline{F} is a non-hyperelliptic curve, $h^0(\overline{F}, \mathcal{O}_{\overline{F}}(2E)) = 1$. Hence $h^0(\overline{X}, \mathcal{O}((n+1)\overline{F}+2E)) \leq h^0(\overline{X}, \mathcal{O}(n\overline{F}+2E)) + 1$ by the short exact sequence

$$0 \longrightarrow H^{0}(\overline{X}, \mathcal{O}(n\overline{F}+2E)) \longrightarrow H^{0}(\overline{X}, \mathcal{O}((n+1)\overline{F}+2E)) \longrightarrow H^{0}(\overline{F}, \mathcal{O}_{\overline{F}}(2E))$$

As \overline{F} is not a fixed component of $|(n+1)\overline{F}+2E|$, we have $h^0(\overline{X},\mathcal{O}((n+1)\overline{F}+2E)) = h^0(\overline{X},\mathcal{O}(n\overline{F}+2E)) + 1$. Hence $h^0(\overline{X},\mathcal{O}(n\overline{F}+2E)) = n+1$ for all $n \ge 0$. In particular $h^0(\overline{X},\mathcal{O}(4\overline{F}+2E)) = 5$.

Since the image of $H^0(\overline{X}, \mathcal{O}(4\overline{F}+4E))$ in $H^0(\overline{Z}, \mathcal{O}(4))$ has dimension 3, $\phi(\overline{Z})$ is either a plane quartic curve or a conic. Since $h^0(\overline{X}, \mathcal{O}(4\overline{F}+2E)) = 5$ and $h^0(\overline{X}, \mathcal{O}(4\overline{F}+3E)) = 7$, we have a short exact sequence

$$0 \longrightarrow H^{0}(\overline{X}, \mathcal{O}(4\overline{F}+2E)) \longrightarrow H^{0}(\overline{X}, \mathcal{O}(4\overline{F}+3E)) \longrightarrow H^{0}(E, \mathcal{O}_{E}(1)) \longrightarrow 0.$$

Hence $|4\overline{F}+3E|$ has no base points on E, which implies that it has no base points at all. Let G be a general member of $|4\overline{F}+3E|$ and let p denote the intersection of E and \overline{Z} . Then $G \cap \overline{Z} = \{p_{1,}p_{2,}p_{3}\}$, where p_{1}, p_{2}, p_{3} are distinct from p. Thus $G+E\sim 4\overline{F}+4E$, $(G+E)|_{\overline{Z}}=p+p_{1}+p_{2}+p_{3}$ and $4E|_{\overline{Z}}=4p$. This implies that $\phi(\overline{Z})$ is a plane quartic curve which is smooth at $\phi(p)$. Let L be the tangent line of $\phi(\overline{Z})$ at $\phi(p)$, then the intersection number $(\phi(\overline{Z}),L)_{\phi(p)}=$ 4.

Using the same argument as before, one can see that $Y = \phi(\bar{X})$ is a normal surface in $W = \mathbf{P}(\mathcal{O} \oplus \mathcal{O}(3) \oplus \mathcal{O}(4))$. Let E_0 be the hypersurface of W corresponding to $\mathbf{P}(\mathcal{O}(3) \oplus \mathcal{O}(4))$, η be a general fibre of W and η_0 be the fiber containing $\phi(\bar{Z})$. Then Y has at most rational double points away from η_0 . As a divisor of W, Y is linearly equivalent to $4E_0 + n\eta$ for some n > 0. Since the morphism ϕ is determined by $|4\bar{F} + 4E|$, $4\bar{F} + 4E \sim \phi^*(E_0 + d\eta)$ for

140

some integer d. Since $\overline{F} \sim \phi^* \eta$, we have $4E \sim \phi^* (E_0 + (d-4)\eta)$. It follows from $h^0(4E) = 1$ that d = 4, so $\phi^*(E_0) = 4E$. Since the canonical system of \overline{X} is cut out by $K_W + Y \sim E_0 + (n-9)\eta$, we have n = 12 and $E_0 + 2\eta + \eta_0$ cuts out the canonical system. Lemma 1.1(2) implies $\chi(Y) = 6$. Since $\chi(\overline{X}) = 4 = \chi(Y)$ -2, either Y has one singularity of geometric genus two or Y has two singularities of geometric genus one on η_0 . Note that $\eta_0 \cong \mathbf{P}^2$ and it contains the singular quartic curve $\phi(\overline{Z})$. Since the multiplicity of every singularity of a plane quartic curve is less than or equal to 3, so is the multiplicity of every singularity of Y.

If Y has one triple point x, then x is a triple point of the quartic curve $\phi(Z)$. Obviously $\phi(Z)$ has no other singularities and the geometric genus of the surface singularity x is equal to two. Let $\pi: W_1 \rightarrow W$ be the blowingup of W at x. Let $G = \pi^{-1}(x)$, and let Y_1 be the proper transform of Y. Then K_{W_1} $+Y_1 \sim \pi^*(K_W + Y) - G \sim \pi^*(E_0 + 2\eta) + \eta_0$, where η'_0 is the proper transform of η_0 . If Y_1 is not normal, then G contains a curve C such that Y_1 is singular along C. This curve C is not contained in η'_0 , because x is a triple point of $\phi(\overline{Z})$. Let $\tau: W_2 \rightarrow W_1$ be the blowingup of W_1 with center at C. Let $G_2 =$ $\tau^{-1}(C)$ Then $K_{W_2} + Y_2 \sim \tau^* \pi^* (E_0 + 2\eta) + \tau^* (\eta'_0) - (m-1) G_2$, where m is the multiplicity of a generic point of the singular locus C and Y_2 is the proper transform of Y_1 . But $\tau^*\pi^*(E_0+2\eta)+\tau^*(\eta'_0)-(m-1)G_2$ is not an effective divisor. This contradicts the assertion that $E_0 + 2\eta + \eta_0$ cuts out the canonical system of \overline{X} . It follows that Y_1 is normal. The surface Y_1 has an essential singularity on η'_0 , for otherwise x would be an elliptic singularity of geometric genus one. This is impossible, for $\eta'_0 \cap Y_1$ is a smooth rational curve. Therefore Y has no triple point.

If Y has one double point x of geometric genus two, then x is a double or triple point of the quartic curve $\phi(\overline{Z})$. Let $\pi: W_1 \rightarrow W$ be the blowingup of W at x. Then $K_{W_1} + Y_1 \sim \pi^*(E_0 + 2\eta) + \eta'_0 + G$. The surface Y_1 has double locus along the rational curve $C = G \cap Y_1$, for otherwise x would be a rational double point of Y. The curve C is not located on η'_0 , since $\phi(\overline{Z})$ has at most a triple point at x. Let $\tau: W_2 \rightarrow W_1$ be the blowingup of W_1 with center at C. Then the proper transform Y_2 of Y_1 is normal, for otherwise the double point x would have geometic genus greater or equal to three. For the same reason as before, Y_2 has an essential double point on the proper transform η''_0 of η'_0 . But $\eta''_0 \cap Y_2$ is the blowingups twice of the quartic curve $\phi(\overline{Z})$ at a double point, so $\eta''_0 \cap Y_2$ has at most ordinary double points by (1) of Lemma 3.3. This implies that Y_2 has at most rational double points on η''_0 , ths is a contradiction.

If Y has two essential double points x_1 and x_2 , then each of these two points has geometric genus one. So they are minimally elliptic points. Let F'be the fiber containing \overline{Z} , then $F' = \overline{Z} + A_1 + A_2$, where A_1 and A_2 are the fundamental cycles of x_1 and x_2 . We have $0 = F'^2 = -3 + 2\overline{Z}(A_1 + A_2) + A_1^2 + A_2^2 = -3 + 2(K_{\overline{X}}A_1 + K_{\overline{X}}A_2) + A_1^2 + A_2^2 = -3 - A_1^2 - A_2^2$. So we may assume that $A_1^2 = -1$ and $A_2^2 = -2$. The plane quartic curve $\phi(\overline{Z})$ has two double points x_1 and x_2 . Let A_m and A_n be the types of the x_1 and x_2 respectively as plane curve double points. Then m, n > 1 since x_1 and x_2 are not rational double points as surface singularities. Since $A_2^2 = -2$, we have n > 2. This contradicts (2) of Lemma 3.3. Therefore Case 2A does not occur.

Case 2B: $h^0(\overline{X}, (3\overline{F}+3E)) = 4$.

Since $h^0(3\overline{F}+3E) = 4$ and $h^0(4\overline{F}+4E) = 7$, we have $f_*\mathcal{O}_{\bar{X}}(4\overline{F}+4E) \cong \mathcal{O} \oplus \mathcal{O}$ $\oplus \mathcal{O}(4)$ and $|4\overline{F}+4E|$ has no base points. Let $\phi: \overline{X} \to W = \mathbf{P}(\mathcal{O} \oplus \mathcal{O}(4) \oplus \mathcal{O}(4))$ be the relative morphism determined by the line boudle $\mathcal{O}_{\bar{X}}(4\overline{F}+4E)$. Then $4\overline{F}+4E \sim \phi^*(E_0+n\eta)$ for some integer *n*. Since $\overline{F} \sim \phi^*\eta$, we have $4E \sim \phi^*(E_0+(n-4)\eta)$. It follows from $h^0(4E) = 1$ that n=4 and $\phi^*(E_0) = 4E$.

Next we take a look at the image of \overline{F} under the morphism ϕ for an arbitrary fiber \overline{F} . A fiber \overline{F} can be written as $\overline{F} = A + B$, where A is an irreducible curve with AE = 1 and B is an effective divisor with BE = 0. Since the intersection matrix of the divisor B is negative definite, B is contained in the fixed part of $|3\overline{F}+4E+B|$, so $h^0(3\overline{F}+4E+B) = h^0(3\overline{F}+4E) = 4$. The short exact sequence

$$0 \rightarrow H^{0}(3\overline{F} + 4E + B) \rightarrow H^{0}(4\overline{F} + 4E) \rightarrow H^{0}(A, \mathcal{O}_{A}(4E))$$

implies that the image of A under ϕ is an irreducible plane curve not contained in a line. That means that $\phi: A \rightarrow \phi(A)$ is either a birational morphism onto a quartic curve or a morphism of degree two onto a conic. We are going to see that there is at most one fiber whose image under ϕ is a conic.

By (13) $h^0(3\overline{F}+3E+\overline{Z})=5>h^0(3\overline{F}+3E)=h^0(3\overline{F}+2E+\overline{Z})$, so there exists $D_1 \in |3\overline{F}+3E+\overline{Z}|$ which contains neither \overline{Z} nor E. Let $D=D_1+Z^o \in |4\overline{F}+3E|$. Then there is a unique point $x \in D \cap E$ which is not in \overline{Z} . Let \overline{F} be a fiber not containing x. Let $e = \overline{F} \cap E$. Then $4e \sim e + e_1 + e_2 + e_3 = (E+D)|_{\overline{F}}$, where e_1, e_2, e_3 are all distinct from e, whence $\phi(\overline{F})$ is an irreducible quartic curve. This shows that only possible fiber \overline{F} such that $\phi(\overline{F})$ is a conic is the fiber passing through x. In particular, $\phi(\overline{Z})$ is a quartic curve.

For an arbitrary irreducible curve B on \overline{X} , $\phi(B)$ is a point if and only if $B(4\overline{F} + 4E) = 0$. These are exactly the "vertical" curves away from E. Assume that B is such a curve and B is not a component of Z° . Then $BK_{\overline{X}}=0$, wherce B is a (-2)-curve.

Let $\rho: Y \to S$ be the normalization of $S = \phi(\overline{X})$, and let $\psi: \overline{X} \to Y$ be the morphism such that $\phi = \rho \psi$. By the above discussion, we conclude that $Y - \phi$

 $\psi(\overline{Z})$ has only rational double points as its singularities.

As a divisor in W, $\phi(\overline{X}) \sim 4E_0 + r\eta$ for some integer r. Thus

 $16 = (4\overline{F} + 4E)^2 = (E_0 + 4\eta)^2 (4E_0 + r\eta) = 4E_0^3 + r + 32 = r.$

Hence $S = \phi(\overline{X}) \sim 4E_0 + 16\eta$, and $K_W + S \sim E_0 + 6\eta$.

If S is normal, then $\phi: \overline{X} \to S$ is a resolution of isolated singularities. Since all singularities on $S - \phi(\overline{Z})$ are rational double points, we have $K_{\overline{X}} \sim \phi^*(E_0 + 6\eta) - \Delta \sim 4E + 6\overline{F} - \Delta$, where Δ is an effective divisor and $\operatorname{Supp}(\Delta) \subseteq \operatorname{Supp}(Z^\circ)$. This is impossible. Hence there is a fiber \overline{F}_0 such that $\phi(\overline{F}_0)$ is a conic C_0 .

Use the same notation of local coordinates as before. Let $g(x_0,x_1,x_2,z) = 0$ be the equation of the surface $S_0 = S \cap W_0$, where x_0 is the fiber coordinate of the line bundle \mathcal{O} and x_1, x_2 are the fiber coordinates over U_0 of the rank two bundle $\mathcal{O}(4) \oplus \mathcal{O}(4)$. Since $\phi^*(E_0) = 4E$, the line $E_0 \cap \eta$ intersects the quartic curve $S \cap \eta$ at a single point with contact number 4. Hence $g(x_0,x_1,x_2,z) =$ $u(z) k(x_1,x_2)^4 + x_0v(x_0,x_1,x_2,z)$ for some linear form $k(x_1,x_2)$. Since $\phi(\overline{F})$ is an irreducible curve of degree 4 or 2 for an arbitrary fiber \overline{F} , $u(z) \neq 0$ for every $z \in \mathbf{C}$. Hence u(z) is a nonzero constant α . After a linear change of coordinates, we may assume that the equation of S_0 is

$$\alpha x_1^4 + x_0 v (x_0, x_1, x_2, z) = 0,$$

where $v(x_0,x_1,x_2,z)$ is homogeneous in x_0, x_1, x_2 of degree 3. Without loss of generality, we may assume that C_0 is contained in the fiber z=0. By Lemma 3.2 the resolution length of the double locus C_0 is less that or equal to 2.

Let $\sigma_1: W_1 \rightarrow W$ be the blowingup of W with center at C_0 . Let $G_1 = \sigma_1^{-1}(C_0)$. Let S_1 be the proper transform of S and let $C_1 = S_1 \cap G_1$. Then $K_{W_1} + S_1 \sim \sigma_1^* (K_W + S) - G_1 \sim \sigma_1^* (E_0 + 6\eta) - G_1$.

If the resolution length of C_0 is 1, then S_1 is normal. Let $\psi: \overline{X} \to S_1$ be the morphism such that $\phi = \sigma_1 \psi$. Then $K_{\overline{X}} \sim \phi^*(E_0 + 6\eta) - \psi^*(G_1) - \Delta \sim 4E + 5\overline{F} + \psi^*(\sigma_1^*\eta - G_1) - \Delta$, where Δ is an effective divisor and Supp $(\Delta) \subseteq$ Supp (Z°) . This is impossible, for $\sigma_1^*\eta - G_1$ is effective.

If the resolution length of C_0 is 2, let $\sigma_2: W_2 \to W_1$ be the blowingup of W_1 with center at C_1 . Let $G_2 = \sigma_1^{-1}(C_1)$. Let S_2 be the proper transform of S_1 and let $C_2 = S_2 \cap G_2$. Then S_2 is normal and $K_{W_2} + S_2 \sim \sigma_2^* (K_{W_1} + S_1) - G_2 \sim \sigma_2^* \sigma_1^*$ $(E_0 + 6\eta) - \sigma_2^* G_1 - G_2$. Let $\psi: \overline{X} \to S_2$ be the morphism such that $\phi = \sigma_1 \sigma_2 \phi$. Then $K_{\overline{X}} \sim \phi^* (E_0 + 6\eta) - \psi^* \sigma_2^* (G_1) - \psi^* (G_2) - \Delta \sim 4E + 4\overline{F} + \psi^* (\sigma_2^* \sigma_1^* (2\eta) - \sigma_2^* (G_1) - G_2) - \Delta$, where Δ is an effective divisor and Supp $(\Delta) \subseteq$ Supp (Z°) . However, the divisor $4E + 4\overline{F} + \psi^* (\sigma_2^* \sigma_1^* (2\eta) - \sigma_2^* (G_1) - G_2) - \Delta$ cannot be linearly equivalent to $4E + 2\overline{F} + \overline{Z}$ for $\sigma_2^* \sigma_1^* (2\eta) - \sigma_2^* (G_1) - G_2$ is effective. 4. $p_g = 4, K_2 = 9$

In this section we prove the non-existence of minimal surfaces of general type with $p_g=4$, $K^2=9$ whose canonical map is composed of pencils.

Lemma 4.1. Let X be a minimal surface of general type whose canonical map is composed of a pencil. Assume that the genus g of a general member of the pencil is greater than or equal to 3. If the geometric genus p_g of X is 4, then one of the following statements holds:

1. $K_X^2 \ge 12$.

2. $K_X^2 = 9$ and $K_X \sim 3F$ where F is a nonsingular curve of genus 3 with $F^2 = 1$.

Proof. Since $p_g = 4$, the canonical divisor can be written as $K_X = nF + Z$ for $n \ge 3$, where Z is the fixed part of $|K_X|$, and F is a general member of the pencil of which $|K_X|$ is composed of. Consider the two cases.

Case i) $F^2 = 0$:

We may assume that F is a general member of the pencil. By Sard's theorem, F is a smooth curve of genus g. Hence $FZ = F(F+K_X) = 2g-2 \ge 4$. Then $K_X^2 = nFZ + ZK_X \ge 12$.

Case ii) $F^2 > 0$: In this case n=3. We have

$$2g - 2 = F^2 + FK_X = 4F^2 + FZ \ge 4F^2, \tag{14}$$

and the equality holds if and only if Z = 0. $K_X^2 = 9F^2 + 3FZ + ZK_X \ge F^2 + 2(4F^2 + FZ) = F^2 + 4g - 4$. Hence $K_X^2 \ge 12$ when $g \ge 4$. If g = 3, then (14) implies that $F^2 = 1$ and Z = 0.

Lemma 4.2. Assume that X is a surface satisfying the second condition of Lemma 4.1. Then $H^1(X, \mathcal{O}_X) = 0$.

Proof. (suggested by G. Xiao) Suppose $h^1(X, \mathcal{O}_X) > 0$. Then there exists a divisor ε which is not linearly equivalent to zero but $3\varepsilon \sim 0$. Suppose that $H^0(X, \mathcal{O}(F+\varepsilon)) \neq 0$. Let $D \in |F+\varepsilon|$. Then

$$3D \in |3F|. \tag{15}$$

Since every member of |3F| is the sum of three members of |F|, (15) implies that $D \sim F$, whence $\varepsilon \sim 0$. This is a contradiction. Hence $H^0(X, \mathcal{O}(F+\varepsilon)) = 0$. For the same reason $H^0(X, \mathcal{O}(F-\varepsilon)) = 0$ halds too. Thus the sequence

$$0 \longrightarrow H^{0}(X, \mathcal{O}(2F - \varepsilon)) \longrightarrow H^{0}(F, \mathcal{O}_{F}(2F - \varepsilon))$$
(16)

is exact.

Xiao's theorem implies that $q = h^1(\mathcal{O}_X) \leq 2$. The Riemann-Roch theorem implies that

$$h^{0}(X, \mathcal{O}(2F - \varepsilon)) - h^{1}(X, \mathcal{O}(2F - \varepsilon)) = 4 - q \ge 2.$$

$$(17)$$

144

Since $F(2F-\varepsilon) = 2$, we have the inequality $h^0(F, \mathcal{O}_F(2F-\varepsilon)) \leq 2$. It follows from (16) and (17) that $h^0(X, \mathcal{O}(2F-\varepsilon)) = h^0(F, \mathcal{O}_F(2F-\varepsilon)) = q = 2$. This implies that F is a hyperelliptic curve with a $g_2^1 = |\mathcal{O}_F(2F-\varepsilon)|$. Since $\mathcal{O}_F(4F)$ $= \mathcal{O}_F(K_X + F) = \mathcal{O}_F(K_F)$, the divisor $\mathcal{O}_F(2F)$ is also the g_2^1 of F. Hence $\mathcal{O}_F(4F+\varepsilon) = \mathcal{O}_F(4F-2\varepsilon) \cong \mathcal{O}_F(K_F)$, whence

$$h^{0}(F,\mathcal{O}_{F}(4F+\varepsilon)) = 3.$$
(18)

Since the divisor $F + \varepsilon$ is big and nef, Kawamata's vanishing theorem implies $H^1(X, \mathcal{O}(4F + \varepsilon)) = 0$. So we have exact sequence

Hence $3 = \chi (X, \mathcal{O} (3F + \varepsilon)) = h^0 (X, \mathcal{O} (3F + \varepsilon)) - h^1 (X, \mathcal{O} (3F + \varepsilon)) = h^0 (X, \mathcal{O} (4F + \varepsilon)) - h^0 (F, \mathcal{O} (4F + \varepsilon)) = h^0 (X, \mathcal{O} (4F + \varepsilon)) - 3$ by (18). Thus

 $h^{0}(X,\mathcal{O}(4F+\varepsilon)) = 6.$ (19)

On the other hand, $h^0(X, \mathcal{O}(4F + \varepsilon)) = \chi(X, \mathcal{O}(4F + \varepsilon)) = 2F^2 + \chi(X, \mathcal{O}) = 5$, contradicting (19). Therefore q=0 is impossible.

Theorem 4.3. There does not exist a minimal surface of general type X such that

1. $p_g(X) = 4, K_X^2 = 9.$

2. The canonical map of X is composed of a pencil of genus greater than or equal to 3.

Proof. Suppose that such a surface X exists. By Lemma 4.1 there is a nonpingular curve F of genus 3 such that $K_X \sim 3F$ and $F^2 = 1$. Let p denote the base point of |F|. We know that $q = h^1(X, \mathcal{O}) = 0$ by Lemma 4.2.

Let $\sigma: \overline{X} \to X$ be the blowingup of X with center at p. Let $E = \sigma^{-1}(p)$, and let \overline{F} denote the proper transform of F. Then $K_X \sim 3\overline{F} + 4E$. There is a natural fibration $f: \overline{X} \to \mathbf{P}^1$ such that $|\overline{F}|$ consists of fibers. We may assume that \overline{F} is nonsingular.

The short exact sequence

$$0 \longrightarrow H^{0}(\overline{X}, \mathcal{O}(K)) \longrightarrow H^{0}(\overline{X}, \mathcal{O}(K + \overline{F})) \xrightarrow{\phi} H^{0}(\overline{F}, \mathcal{O}(K_{\overline{F}})) \longrightarrow 0$$

implies that $h^0(\overline{X}, \mathcal{O}(4\overline{F} + 4E)) = h^0(\overline{X}, \mathcal{O}(K + \overline{F})) = 7$. Since the map ψ is surjective, E is not a fixed component of $|4\overline{F} - 4E|$. The short exact sequence

$$0 \longrightarrow H^{0}(\overline{X}, \mathcal{O}(4\overline{F} + 3E)) \longrightarrow H^{0}(\overline{X}, \mathcal{O}(K_{\overline{X}} + \overline{F})) \longrightarrow H^{0}(E, \mathcal{O}_{E}) \longrightarrow 0$$

implies that

$$h^{0}(\overline{X}, \mathcal{O}(4\overline{F}+3E)) = 6.$$
⁽²⁰⁾

We are going to show that E is not a fixed component of $|4\overline{F} + 3E|$.

Suppose *E* is fixed. Then $h^0(\overline{X}, \mathcal{O}(4\overline{F}+2E)) = 6$. Since $h^0(\overline{X}, \mathcal{O}(3F+2E)) = 4$ and $h^0(\overline{F}, \mathcal{O}_{\overline{F}}(2E)) \leq 2$ for a general fiber \overline{F} , we have a short exact sequence

$$0 \longrightarrow H^{0}(\overline{X}, \mathcal{O}(3\overline{F}+2E)) \longrightarrow H^{0}(\overline{X}, \mathcal{O}(4\overline{F}+2E)) \longrightarrow H(\overline{F}, \mathcal{O}_{\overline{F}}(2E)) \longrightarrow 0.$$

This implies that

$$f_*\mathcal{O}\left(3\overline{F}+2E\right)\cong\mathcal{O}\left(-1\right)\oplus\mathcal{O}\left(3\right).$$

It follows that $h^0(\mathbf{P}^1, f_*\mathcal{O}(3\overline{F}+2E)^{\vee}) = 2$. The relative duality implies that the dual of $R^1f_*\mathcal{O}(2\overline{F}+2E)$ is isomorphic to $f_*\mathcal{O}(3\overline{F}+2E)$. Hence $h^0(\mathbf{P}^1, R^1f_*\mathcal{O}(2\overline{F}+2E)) \ge 2$ by Lemma 3.4. But the Riemann-Roch theorem implies that $h^1(\overline{X}, \mathcal{O}(2\overline{F}+2E)) = 1$, which contradicts the Leray spectral sequence

$$0 \longrightarrow H^{1}(f_{\ast}\mathcal{O}(2\overline{F}+2E)) \longrightarrow H^{1}(\mathcal{O}(2\overline{F}+2E)) \longrightarrow H^{0}(R^{1}f_{\ast}\mathcal{O}(2\overline{F}+2E)) \longrightarrow 0.$$

Therefore *E* is not a fixed component of $|4\bar{F} + 3E|$. Let *G* be a general member of $|4\bar{F} + 3E|$ and let \bar{F} be a general fiber. Let $x = \bar{F} \cap E$. Then $G \cap \bar{F} = \{x_1, x_2, x_3\}$, where x_1, x_2, x_3 are distinct from *x*. Thus $x_1 + x_2 + x_3$ is linearly equivalent to 3x as divisors on \bar{F} , which shows that \bar{F} is not hyperelliptic.

Since $h^0(3\overline{F}+4E) = 4$ and $h^0(4\overline{F}+4E) = 7$, we have $f_*\mathcal{O}_{\bar{X}}(4\overline{F}+4E) \cong \mathcal{O} \oplus \mathcal{O}$ $\oplus \mathcal{O}(4)$ and $|4\overline{F}+4E|$ has no base points. Let $\phi: \overline{X} \to W = \mathbf{P}(\mathcal{O} \oplus \mathcal{O}(4) \oplus \mathcal{O}(4))$ be the relative morphism determined by the line bundle $\mathcal{O}_{\bar{X}}(4\overline{F}+4E)$. Then $4\overline{F}+4E \sim \phi^*(E_0+n\eta)$ for some integer *n*, where E_0 and η are hypersurfaces of *W* as defined in section 2.1. Since $\overline{F} \sim \phi^*\eta$, we have $4E \sim \phi^*(E_0+(n-4)\eta)$. It follows from $h^0(4E) = 1$ that n=4 and $\phi^*(E_0) = 4E$.

The rest of the proof is very similar to Case 2B in the proof of Theorem 3.5.

An arbitrary fiber \overline{F} of f can be written as $\overline{F} = A + B$, where A is an irreducible curve with AE = 1 and B is an effective divisor with BE = 0. Since the intersection matrix of the divisor B is negative definite, B is contained in the fixed part of $|3\overline{F}+4E+B|$, so $h^0(3\overline{F}+4E+B) = h^0(3\overline{F}+4E) = 4$. The short exact sequence

$$0 \longrightarrow H^{0}(3\overline{F} + 4E + B) \longrightarrow H^{0}(4\overline{F} + 4E) \longrightarrow H^{0}(A, \mathcal{O}_{A}(4E))$$

implies that the image of A under ϕ is an irreducible plane curve not contained in a line. That means that $\phi: A \rightarrow \phi(A)$ is either a birational morphism onto a quartic curve or a morphism of degree two onto a conic. Let G be a general member of $|4\overline{F}+3E|$. Then G does not contain E and meets Eat one point p. Let \overline{F}_0 be the fiber passing through p. The only possible fiber \overline{F} such that $\phi(\overline{F})$ is a conic is \overline{F}_0 . So there is at most one fiber whose image under ϕ is a conic. For an arbitrary irreducible curve B on \overline{X} , $\phi(B)$ is a point if and only if $B(4\overline{F} + 4E) = 0$. These are exactly the "vertical" curves away from E. Assume that B is such a curve. Then $BK_{\overline{X}}=0$, whence B is a (-2)-curve.

Let $\rho: Y \to S$ be the normalization of $S = \phi(\overline{X})$, and let $\psi: \overline{X} \to Y$ be the morphism such that $\phi = \rho \psi$. The above discussion implies that Y has only rational double points as its singularities.

As a divisor in W, $\phi(\bar{X}) \sim 4E_0 + r\eta$ for some integer r. Thus

$$16 = (4\bar{F} + 4E)^2 = (E_0 + 4\eta)^2 (4E_0 + r\eta) = 4E_0^3 + r + 32 = r.$$

Hence $S = \phi(\overline{X}) \sim 4E_0 + 16\eta$, and $K_W + S \sim E_0 + 6\eta$.

If S is normal, then $\phi: \overline{X} \to S$ is a resolution of isolated singularities. In this case all singularities on S are rational double points, so $K_{\overline{X}} \sim \phi^*(E_0 + 6\eta)$ $\sim 4E + 6\overline{F}$. This is obviously impossible. Hence there is a fiber \overline{F}_0 such that $\phi(\overline{F}_0)$ is a conic C_0 .

Use the same notation of local coordinates before. Let $g(x_0,x_1,x_2,z) = 0$ be the equation of the surface $S_0 = S \cap W_0$, where x_0 is the fiber coordinate of the line bundle \mathcal{O} and x_1, x_2 are the fiber coordinates of the rank two bundle $\mathcal{O}(4)$ $\oplus \mathcal{O}(4)$ over U_0 . Since $\phi^*(E_0) = 4E$, the line $E_0 \cap \eta$ intersects the quartic curve $S \cap \eta$ at a single point with contact number 4. Hence $g(x_0,x_1,x_2,z) =$ $u(z) k(x_1,x_2)^4 + x_0 v(x_0,x_1,x_2,z)$ for some linear form $k(x_1,x_2)$. Since $u(z) \neq 0$ for all $z \in \mathbf{C}$, u(z) is a nonzero constant α . After a linear change of coordinates, we may assume that the equation of S_0 is

$$\alpha x_1^4 + x_0 v (x_0, x_1, x_2, z) = 0,$$

where $v(x_0,x_1,x_2,z)$ is homogeneous in x_0, x_1, x_2 of degree 3. Without loss of generality, we may assume that C_0 is contained in the fiber z=0. By Lemma 3.2 the resolution length of the double locus C_0 is less than or equal to 2.

Let $\sigma_1: W_1 \rightarrow W$ be the blowingup of W with center at C_0 . Let $G_1 = \sigma_1^{-1}(C_0)$. Let S_1 be the proper transform of S and let $C_1 = S_1 \cap G_1$. Then $K_{W_1} + S_1 \sim \sigma_1^* (K_W + S) - G_1 \sim \sigma_1^* (E_0 + 6\eta) - G_1$.

If the resolution length of C_0 is 1, then S_1 is normal. Let $\psi: \overline{X} \to S_1$ be the morphism such that $\phi = \sigma_1 \psi$. Then $K_{\overline{X}} \sim \phi^* ((E_0 + 6\eta) - \psi^* (G_1) \sim 4E + 5\overline{F} + \psi^* (\sigma_1^* \eta - G_1)$. This is impossible, for $\sigma_1^* \eta - G_1$ is effective.

If the resolution length of C_0 is 2, let $\sigma_2: W_2 \rightarrow W_1$ be the blowingup of W_1 with center at C_1 . Let $G_2 = \sigma_1^{-1}(C_1)$. Let S_2 be the proper transform of S_1 . Then S_2 is normal and $K_{W_2} + S_2 \sim \sigma_2^* (K_{W_1} + S_1) - G_2 \sim \sigma_2^* \sigma_1^* (E_0 + 6\eta) - \sigma_2^* G_1 - G_2$. Let $\psi: \overline{X} \rightarrow S_2$ be the morphism such that $\phi = \sigma_2 \sigma_1 \psi$. Then $K_{\overline{X}} \sim \phi^* (E_0 + 6\eta) - \psi^* \sigma_2^* (G_1) - \psi^* (G_2) \sim 4E + 4\overline{F} + \psi^* (\sigma_2^* \sigma_1^* (2\eta) - \sigma_2^* (G_1) - G_2)$. However, the divisor $4E + 4\overline{F} + \psi^* (\sigma_2^* \sigma_1^* (2\eta) - \sigma_2^* (G_1) - G_2)$ cannot be linearly equivalent to $4E + 3\overline{F}$ for $\sigma_2^* \sigma_1^* (2\eta) - \sigma_2^* (G_1) - G_2$ is effective. This concludes the proof of the theorem.

5. Lower bound for K^2

Theorem 5.1. Let X be a minimal surface of general type whose canonical map is composed of a pencil. Let g denote the genus of a general member of the pencil. Assume that $g \ge 3$.

- (1) If $p_g(X) = 3$, then $K_X^2 \ge 7$.
- (2) If $p_g(X) = 4$, then $K_X^2 \ge 12$.
- (3) If $p_g(X) \ge 5$ and g = 3, then $K_X^2 \ge 4p_g 4$.

Proof. (1) The canonical divisor can be written as $K_X = nF + Z$, where Z is the fixed part of $|K_X|$, and F is a general member of the pencil of which $|K_X|$ is composed of. Here $n \ge 2$. Consider the two cases.

Case i) $F^2 = 0$:

We may assume that F is a general member of the pencil. Since |F| has no base points, F is a smooth curve of genus g. Hence $FZ = F(F+K_x) = 2g - 2g$

$$2 \ge 4$$
. Then $K_X^2 = nFZ + ZK_X \ge 8$

Case ii) $F^2 > 1$:

Then $K_X^2 = 4F^2 + 2FZ + ZK_X \ge 8$.

Case iii) $F^2 = 1$:

Then n=2, and we may assume that F is a smooth curve of genus g. We have $FZ = F(F + K_X) - 3 = 2g - 5 \ge 1$. Hence $K_X^2 = 4F^2 + 2FZ + ZK_X \ge 6$. By Theorem 3.5 $K_X^2 = 6$ is impossible.

(2) follows from Lemma 4.1 and Theorem 4.3.

(3) In this case K = nF + Z with $n \ge p_g - 1$. Since $p_g F^2 + FZ \le (n+1)F^2 + FZ = FK + F^2 = 4$, we have $F^2 = 0$ and FZ = 4. This means that |F| has no base points. Thus $K_X^2 = nFZ + ZK_X \ge 4p_g - 4$.

INSTITUTE OF MATHEMATICS FUDAN UNIVERSITY SHANGHAI 200433, CHINA E-mail address: jgyang@fudan.ac.cn

DEPARTMENT OF MATHEMATICS GRADUATE SCHOOL OF SCIENCE, OSAKA UNIVERSITY E-mail address: miyanisi@math.sci.osaka-u.ac.jp

References

- [1] M. Artin, On isolated rational singularities of surfaces, Amer. J. Math., 88 (1966), 129-136.
- M. Artin, Some numerical criteria for contractibility of curves on algebraic surfaces, Amer. J. Math., 84 (1962), 485-496.

- [3] A. Beauville, L'application canonique pour les surfaces de type général Inv. Math., 55 (1979), 121-140.
- [4] F. Catanese, Canonical rings and "special" surfaces of general type, in: Algebraic Geometry, Bowdoin 1985, Proc Symposia in Pure Math., 46 (1987), 175-194.
- [5] O. Debarre, Inégalités numériques pour les surfaces de type général, Bull. S. M. F., 110 (1982), 319-346.
- [6] R. Miranda, Triple covers in algebraic geometry, Am. J. Math., 107 (1985), 1123-1158.
- [7] S.-L. Tan, Galois triple covers of surfaces, Sci. China, Ser.A., 34 (1991), 935-942.
- [8] S.-L. Tan, Surfaces whose canonical maps are of odd degrees, Math. Ann., 292 (1992), 13-29.
- [9] T. Urabe, Dynkin graphs and combinations of singularities on plane sextic curves, in: Randell, R. (ed.) Singularities. Proc., Univ. Iowa 1986 AMS Contemporary Mathematics 90 (1989), 295-316.
- [10] G. Xiao, L'irrégularité des surfaces de type général dont le système canonique est composé d'un pinceau, Compositio Math, 56 (1985), 251-257.
- [11] G. Xiao, Problem list. in: Birational geometry of algebraic varieties: open problems. The 23rd International Symposium of the Taniguchi Foundation, (1988), 36-41.
- [12] G. Xiao, Surfaces fibrées en courbes de genre deux, Lecture Notes in Mathematics 1137, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo, (1985).