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Almost minimal embeddings of quotient
singular points into rational surfaces

By

Hideo KOJIMA

O. Introduction

Let k b e  an  algebraically closed field of characteristic z e ro . L e t X be  a
normal algebraic surface with only one quotient singular point P .  Let f: X — )
X be a minimal resolution of X  and let D = E7=1D, be the  reduced exceptional
divisor w ith respect to f, where the D i a re  irreducible com ponents. D efine a
Q- divisor Du =  Er=i criDi s u c h  th a t  (D# K x  • Di )  = 0  fo r  ev e ry  1
Since the intersection m atrix  of D is negative definite a n d  (Dy) — 2, I)* is
uniquely defined and 0 <a i < 1. W e say that a  p a ir  (X, D) is almost minimal
if, for every irreducible curve C, (Du K x  •  C ) 0 or the intersection matrix
o f  C Bk ( D )  is  n o t  n e g a tiv e  d e f in ite , w h e re  Bk ( D )  = D  — D* (see
Miyanishi-Tsunoda [11, p. 2 2 6 ] ) .  W e say that the singular point P is almost
m in im al in  Y if the  p a i r  (X , D ) is alm ost m in im a l. Then D *  K x f *

and .-X7  is  log relatively minimal (cf. G urjar-M iyan ish i [3 ]). By virtue o f  [11,
1 .11], we can construct the  almost minimal singular points from any quotient
singular points which might be changed from the original singularities.

In  the  present article, w e  study  such  singu la ritie s . In  the section 1, we
study the case of the logarithmic Kodaira dimension e(X—D) = — co using the
M o r i th e o ry  [1 3 ] ,  a n d  c la s s ify  su c h  s in g u la r  p o in ts  w h e n  Supp (D ) is
contained i n  a  f ib e r  o f  a  c e r t a in  P 1 -fib ratio n  (Theorem  1 . 1 ) .  I n  [17,
Proposition 2 .2 ] , Tsunoda classified all the  almost minimal quotient singular
points on rational surfaces for w h ic h  (X —D)D) = 0 . In the section 2, we study
and give a classification in the case w here e(X— D) = 1  and X  is  a  rational
surface (Theorem 2 . 5 ) .  In the section 3, we classify the almost minimal pair
(X, D ) where D is irreducible by using some results in  Mohan Kumar-Murthy
[14] and I it a k a  [5 ] .  Finally, in the section 4, w e study the  struc tu re  o f (X,
D) and give examples when e x —D) = 0  and X  is  a  rational surface (Theorem
4.1)

The terminology is th e  same a s  th e  o n e  in  [ 1 1 ] .  B y a  (—n) -curve we
m ean a  nonsingu la r ra tiona l cu rve  w ith  self-intersection n u m b er —  n . A
reduced effective divisor D is called an  SNC d iv iso r  (an NC divisor, resp .) if
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D has only simple normal crossings (normal crossings, resp.).
We employ the following notation.

Kx (or simply, K ): the canonical divisor on X.
K (X) :  the Kodaira dimension of a complete surface X .

—D): the logarithmic Kodaira dimension of an open surface X — D.
p (X ) : the Picard number of X.
Fn . 0): a Hirzebruch surface of degree n.

a minimal section of F .
D* : =D — Bk(D).
h i (D): =dimkH i (X , 0 x(D)).

The author would like to express his gratitude to Professors Masayoshi
Miyanishi and De-Qi Zhang for valuable suggestions. The author also thank
the referee for very careful reading.

1. The case e(x—D)= —co

L et (X , D) be the same pair as in  the in troduction. In  th is section, we
assume that k(X —D) = — 0 0  and  (X , D ) is almost m inim al. Since K.  is not
numerically effective, there exists an extremal rational curve I on X .  Let I be
th e  proper transform  o f  ï  on  X .  Then, by  [11 , L em m a 2 .7], one of the
following two cases takes place:

(A) The intersection matrix of 1+Bk (D) is negative semidefinite, but not
negative definite. Furthermore, (P) = 0.

(B) The Picard number p (Y) is equal to one, and — KA,  is  ample.
In the subsequent arguments, we consider only the case (A ), leaving the

case (B) to a forthcoming paper (cf. [7]).

Theorem 1.1. Let X be a normal projective su ifa ce with only one quotient
singular point P  such that e(k — =  —  0 0  an d  le t  (X , D )  be the minimal
resolution of X .  Suppose that (X , D ) is almost mim imal and that the case (A)
takes place. Then the following assertions hold:

(1) There exists a P 1 -fibration  h: X— )C over a curve C such that Supp (D)
is contained in  Supp Fo, where Fo is  a unique reducible fiber of h. Furthermore,
there exists a unique ( - 1) -curve E an X such that Supp (E - 1- D ) coincides with
Supp (Fo).

(2) The weighted dual graph of EH- D is one of the following:
(i) Case: Supp D is a linear chain. T hen the dual graph of E+D is given

as in Figure 1, where a  2  and m 1 for 2
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Figure 1

(ii) Case: Supp D is not a linear chain. T hen the dual graph of E ± D  is
given as in Figures 2 an d  3. In Figure 2, 0  and the sub graph denoted by the
encircled S a (a 0) stands for one of  the linear chains p lus the  ( - 1) - curve E
given as in Figure 4, where m  and m  for 2

(Type D)

Figure 2
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(Type E6)

Figure 3

Sa (a >2)
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Figure 4

Proof. (1) Let f : X  b e  th e  m in im a l reso lu tion  o f  X  and  le t
D =  E;1=1.D: be the decomposition of D into irreducible components. Since X  is
a normal projective surface with only one quotient singular point, there exists
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an integer N > 0  such  tha t, for every Weil divisor 5 on X--", N G  is  a Cartier
divisor on X  (cf. [1, Theorem 2 .3 ]  and [1 1 , 2 .5 ] ) .  B y  [11, Lemma 2 .8 ], for
a sufficiently large n, the linear system I nNf* (i) I is composed of an irreducible
pencil, free from base points, whose general members are isomorphic to P 1 .

Let h: X —C b e  the P 1-fibration of X  over a curve C defined by the linear

system  InNf* (i) I. S in c e  (f*
a )  • D i) =  0 for a ll i, 1  i  r  and Supp (D ) is

connected, it follow s that Supp (D ) is contained in  Supp (F0), where Fo i s  a
fiber h-1  (a) for some a E  C. Note tha t Fo i s  a unique reducible fiber of h.
Hence there exists a  ( - 1) -curve E in Supp (Fo). If  (D • E) =0, th en  (E • D*
+ K )  =  —1 < 0 and the intersection m atrix of E +Bk (D ) is negative definite.
Therefore, (E • D) = 1 because Supp (D ) is connected and Supp(Fo) contains
no loops of cu rves. S ince  Supp (E +D) g Supp (Fo), the intersection matrix of
E  B k ( D )  is  n e g a tiv e  sem idefinite. F urthe rm ore , s ince  (E • D* + K) <
(E • D ) — 1 = 0  a n d  (X , D )  is a lm ost minimal, it fo llow s that E + D is not
negative definite. Hence, Supp (E+D) =Supp (F 0). The uniqueness of such a
( - 1) -curve E is clear.

(2) B y  v ir tu e  o f  (1 ) ,  w e  k n o w  th a t  E  m e e ts  o n ly  o n e  irreducible
component o f  Supp (D ) .  Let f :  Y  b e  the  contraction  of a l l  possible
contractible components of E± Bk (D) including E, i.e., irreducible components
of E  Bk (D ) w hich becom e exceptional curves o f  th e  f ir s t  k in d  a f te r  a
succession of se v e ra l contractions. L et F  =  f* (F 0 ). B y  ( 1 ) ,  F  i s  an
ir re d u c ib le  ra tio n a l c u rv e  w ith  self-intersection n u m b e r z e ro . W e shall
consider the following two cases separately.

Case 1: Supp (D ) is  a  lin ea r  ch a in . B y  the above remark, we can easily
see that the weighted dual graph of E + D is given as in Figure 1.

Case 2: Supp (D ) i s  n o t  a  lin e a r  c h a in . T h e n  th e re  e x is ts  o n ly  one
irreducible component D o s u c h  th a t  (D — Do • Do) = 3. T he dua l g raph  of
Supp (D) is as follows:

where each connected component of Supp (D — Do)  i s  a  lin e a r  c h a in . Let B -=
D i b e  a unique irreducible component of Supp (D ) which meets E .  Then we
have the following:

Lemma 1.2. With the notation and assumptions as above, we have:
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(1) B is  a H 2 )  -curve.
(2) B *D o .
(3 ) L et -g:X —  X  be the contraction of Supp (E D )  such that -g*(D 0) is

a ( - 1) - curv e . Then Supp -""g* (E - FD) is a linear chain.

Proof. (1) Let g': X — 'X ' be the contraction of E .  Since g' (F0) i s  a
reducible fiber of a V-fibration, there exits a  ( - 1) -curve in Supp g  (Fo) =
Supp g:g (D) . Since E  intersects only B =D  i and each irreducible component
of Supp (D) has self-intersection num ber — 2, g ;(B )  is  then  a  H 1) - curve.
Hence (132 ) = —2.

(2) Suppose tha t B = D o . Then D o is a  (— 2) -c u rv e  b y  (1). Let g":

X—>X" be the contraction of E  and Do. T h e n  Supp g*-  (D)=Supp g*-  (F0)  is  a
reducible fiber of a P 1 -fibration which contains three irreducible components
meeting in one point. This contradicts [8, Lemma 2.2, p. 115].

(3) By virtue of (2), it is  clear.

Lemma 1.3. L et D= =o  D i b e  the decomposition of D into irreducible
com ponents. Suppose that the weighted dual graph is as follows:

 

Dr
o

— a,

 

Figure 6

where ai= — 2, j  = 0, 3, •••, r. Then the dual graph is given as in Figure
2.

Proof. By Lemma 1 .2 ,  (1) , B D o . W e first consider the case B  =
(similarly, B = D 2). Then, ao =-- 2. Let g: X—>X 0  b e  the contraction of E,
and D o . Let D's: g *  ( D i) .  T h e n  g*(E+D) has the following configuration:

Figure 7
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In this case, we know that P is  a  rational double point of Type D 4 .  Similarly,
if B =D r , then P is a  rational double point of Type Dr+1.

Next we consider the case B =D i, 3  i < r .  Let g: X— >Y be a  sequence of
contractions of H  1 ) -curve E and subsequently contractible curves in  Supp
(Fo )  such that p*  (D  r) is  a  ( - 1) - c u rv e . T h e n  Supp ti* (E+D — Dr )  can be
contracted to  a  ra tiona l double point of Type  A3  o r  Dn (n_ ._ 4 ) .  Hence we
know that the weighted dual graph of E+D is one of Figure 2.

By Lemma 1 .3 , we may assume that the configuration of D  has one of the
graphes of Types E6, E7 and E8 in the following arguments.

Suppose that the configuration of E+D is  as follows:

— 2 —2 —3
— ao

Do

Figure 8

Then, w e  can  easily  see  tha t ao = — (D20)  =  2  and  th is  case  can  o c c u r .  It
suffices to  show  th a t  w ith  th e  above assumption, th e  c a se s  except for the
above one cannot o c c u r .  W e assume, for example, that the configuration of D
is as follows:

D4

By Lemma 1.2 , E meets one of DI , •••, D . W e  f irs t c o n s id e r  the case (E • DO
=  1 .  Suppose th a t  a o 3 .  L et u1:  X— > Y  b e  the  contrac tion  of E  a n d  DI.
Then Supp ui.*(D  + E) =  Sup p  u i* (F 0 ) contains n o  (— 1) - curves. S ince
ui*(F o)  is  a  reducible fiber o f a  V -fib ration , th is  is  a  con trad ic tion . Hence
a0 = 2 .  Let u: X—>17  b e  the contraction of E, D1, D2, D3 and D 4 .  Then, u*(F0)
= u* (D 5) i s  a  nonsingular ra tional curve  w ith  self - intersection num ber 1.
T h is  i s  a l s o  a  c o n tra d ic tio n . N ex t, w e  conside r t h e  c a s e  (E •  D2 )  =  1.
Contracting E, D2 , D3 and D4, we know that a 0 4  by  L em m a 1 .2 , (3 ). T hen
it  is  c le a r  th a t E + D can  be  contrac ted  to  a  nonsingular p o in t .  T h is  i s  a
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co n trad ic tio n . In  th e  ca se  (E • D3) = 1, it  is  c le a r  th a t E -  D can  no t be  a
fiber of a P -fib ra tio n . In the same way as in  the case (E • D2)=1, it follows
that the  case  (E • D4) =1 cannot o c c u r . T h e  other cases w ith configurations
different from the above ones can be treated in similar fashions.

This completes the proof of Theorem 1.1.

Remark 1.4. L e t  (X , P )  ( o r  (X , D ) )  b e  th e  sam e p a ir  a s  in  th e
introduction. Suppose tha t the  case  (B ) o c c u r s .  If P is  a  rational double or
tr ip le  singular point, th en  su ch  p a irs  h av e  been classified com pletely. See
Miyanishi-Zhang [12] and Zhang [19].

2 .  The case ïe(X — D ) 0

L et (X, D ) be the same pair as in the introduction.

Lemma 2.1. Suppose that e(X —D) o and every irreducible component
of D is a ( - 2) - curve. T h e n  e(x) o.

Proof. Since every irreducible component of D  i s  a  (— 2) -curve, we
have

D*-i-Kx=Kx.

By the assumption iT (X — D) we have e(X)

In  the subsequent arguments, we assume that X is  a  nonsingular rational
s u r fa c e  a n d  (X — D )  O. F u rth e rm o re , w e  assume th a t  (X, D ) is  an  almost
m in im a l p a ir . T h e n , b y  [11 , Theorem  2 .1 1 ] , it  fo llo w s  th a t  D* +  K x  i s
numerically effective. Lemma 2 .1  im p lie s  th a t th e re  ex is ts  a n  irreducible
component D i of D w ith  (M )  —3.

Now we state the following lemma.

Lemma 2.2. Suppose that e(X—D) Then we have

(K1) —1.

Proof. Suppose t o  th e  con tra ry  tha t (K 2 ) O .  B y  the Riemann-Roch
theorem, we have

h° (X , ex (— K )) (K2 ) +1.

Hence I — K I*O . O n the other hand, since D is  an SNC divisor on  a  rational
surface, we have 1D-f-K1= 0  (cf. Miyanishi [9, Lemma 2 . 1 . 3 ] ) .  Then, b y  [9,
Lemma 2 .1 .1 ], pa  (D) = 0, where pa (D ) is  the  arithmetic genus of the divisor
D .  Now the Riemann-Roch theorem yields

0(D+2K) -i- h° ( —D—K) 4 D + 2 K  •  D + K )+ 1

= (K • D+K)
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CLAIM. I— D— Kl=  0.
In fact, suppose to the contrary that I — D — K1* 0 .  S in c e  e o, it

follows that In (D±K)1# 0 for some n > 0 . Hence D+K is linearly equivalent
to zero . T h is is  a contradiction because ID

-
1
-Kl= 0 as remarked above.

By the above inequality and the claim,

h
° (D + 2K )1 ,

i.e., ID+2K1* 0 . C om bin ing  th is  w ith  1
—

KI # 0 , w e  have

ID+KI# 0.

This contradicts [9, Lemma 2.1 .3].

In  the subsequent arguments, w e asssume th a t e(x— D) = 0 o r  1. We
will give the configuration of the divisor D in such cases.

Since X is  a  rational surface and the dual graph of D  is  a  tree, w e have
ID

-
f
-K I=  0  (cf. [9, Lemma 2 .1 .3 ] ) .  H ence, by  [17, Proposition 2 .2 ], we

have the following result:

Theorem 2.3. Let X  be a normal projective rational surface with only one
quotient singular point P and let (X , D ) be the mininal resolution of X .  Suppose
that (X , D ) is almost minimal and IT(X—D) =0. Then D+2K — 0 and h

°
 (2(D

+ K )) = 1 . Furthermore, the configuration of D is given in Figure 10, where 0

 

—4

  

Figure 10

The case (A ) w as studied in  [1 4 ] .  For an example in the case (B8), see
[20, Example 3.2].

W e consider the case W(X—D) = 1 .  The l in e a r  s y s te m  (D*±K) I then
gives rise to an irreducible pencil of elliptic curves or rational curves h: X- - +
13 1  fo r  a  sufficiently large j  by taking, if necessary, the Stein factorization of
(
pli(.9.1-iol (cf. Kawamata [6, Theorem  2 .3 ] ) .  More precisely, the  following
assertion holds:

Lem m a 2.4. h  i s  a n  elliptic f ib ra t io n . Furtherm ore, Supp(D) is
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contained in a f iber Fo of h.
Proof. If h  is  a  V - fibration, D  contains a  component, say DI, which is

a section or 2-section of h. Since (D '±Kx • F) = 0 for a  general fiber F of h,
the  coeffic ien t o f D1 i n  D* m u s t  b e  1. However, the  coe ffic ien ts  o f all
components o f D* a r e  le ss  th a n  1. T h is  is  a  co n trad ic tio n . Hence h  i s  an
elliptic fib ration . Since (D*-1-Kx • D) = 0 and Supp(D) is connected, Supp(D)
is contained in a fiber of h.

In  o rder to  sta te  th e  following theorem, we define linear chains A m  and
Aa,m(a_>1,m_>0) as in Figure 11, where for

A m  : o o
— 2 — 2

Eo
O

—2 — 1

1112-1 m„-1
—(,, + 1) ( +2)—  (m „  +2)

A a ,m 0 0  - - - - - - - - - - - - - - 0 0  - - - - - - - - - -0  ............  O O 0 O -
- 2 — 2 — 2  — 2 —2 — 2  — 2

1n„ 1 -1
E o — (m„+ 1) — (111„ _T + 2)
O 0  - - - - - - 0  - - - - - - - - - -0   - - - - -  0  - - - - - - 0  - - - - - - 0 ..................(a : even)

—1 — 2  — 2- ( 2+2) — 2 — 2

Figure 11

Theorem 2.5. Let X

-  

be a normal projective rational surface with only one

quotient singular point P an d  le t (X , D )  be a m inimal resolution of X . S uppose
(X, D ) is almost minimal and g (X D )  = 1 . Then the following assertions hold:

(1) L et h be as in Lemma 2.4 and let Fo be the f iber of h which contains D.
Then there ex ists a unique  H 1) - curve Eo such that Supp (D  E 0 ) -= Supp (Fo)
Furthermore, all the f ibers of  h except for F o contain no  ( - 1) - curves.

(2) The configuration or the w eighted dual graph of D + E o is giv en as in
Figures 12, 13 and 14:



5 —2—2 — m —5—m
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(a) Cases B2 and B3.

Figure 12

(b) Case A .

— 5 — 3 — m  — 2 — 6 — m

Figure 13

(c) Case A (n 2 )  .

— 3 — 2 — 2 —3 — m  — 3 — 2 —2 —4—m

Figure 14

Proof. Let h: X-41" be the elliptic lib ra tion  as above. By Lem m a 2.2,
h  is  n o t  a m inim al elliptic libration. H e n c e  th e re  e x is ts  a  (— 1) - curve E0
such that El )  is contained in  a  fiber of h. By the  almost minimality o f  (X, D)
a n d  by L em m a 2.4, E 0 is  c o n ta in e d  in  th e  sam e  fibe r F0 a s  Supp (D )  is
connected.

Let D= E7=1 D, be the irreducible decomposition of D and write D#=Er=i
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a il) , where ai e Q .  Then, by Lemma 2.1 and by the fact that ai = 0 for some
i  if and only if D consists of (— 2) - curves, we have 0 <a i <1 for any i,

n. Since (D*-1-K • Eo) =0, it follows that (D# • E o) =1.
W e first consider the case where D is  ir re d u c ib le . Then,

D # =   a-2   D
a

In this case, the theorem follows from the claim below.

CLAIM 1 .  We have a = 4 .  Furthermore, Fo is a multiple of D  2E0

Proof. Since (Dst+K) 2=0, we have

(K2 ) =4 — a- 1 .a

Since (K 2 )  i s  an integer and a  2, it follows that a= 2 o r  4. By Lemma 2.1,
we have a 4. T h e n , since Ds +K =1/2D-I-K , it follow s that (D • E0)=2 and
(D ± 2E0) 2 =  0. Hence Fo is a multiple of D+2E0.

W e may hereafter assume that D is  reduc ib le . T hen  Fo is obtained from
G, w hich is a fiber of a minimal elliptic fibration on a nonsingular surface Xo,
by blowing up some points or infinitely near points on Supp ( G ) .  Let kt: X— *
X o b e  the converse w h ic h  is  the contraction of all possibly contractible
components of Supp (Fo) including Eo, i.e., irreducible components of Supp (Fo)
which become exceptional curves of the first kind after a succession of several
contractions. We put X  = dilp,°••• .dilpo (X0)  and p i = dilp,. •-• ° dilpo, where dilp,
is the blowing-up with center P, and p-i=idx o.

CLAIM 2 . P i is  a singular point on i41 (G) fo r  every i In particular,
G is a singular fiber of the minimal elliptic libration.

Proof. Suppose to  the contrary that there exists i (0 such that
P i is  a smooth point on i i  (G) . Let Fo' be the total transform of P i etti-i (X0)
on X .  Let E  be  a  ( - 1) -curve w hich is contained in Supp (F'0). It is then
clear that ((PI) red — E • E) 2. In particular, if ((F'0) red — E • E) =2, then we
have E (1 Supp ( (F0) red — (F '0) red ) =  0 . Since  (Fo') red is an SNC divisor and
Supp (F'o )  contains no loops of curves, we have one of the following cases:

(a) Supp ( (F0) red — E ) has two connected components, say A and B.
(b) Supp ( (Fo) red — E ) is connected and E is an end component of F'0.

Suppose tha t the case (b) o c c u r s . Then, since  ((Fo) red (F'0) red •  (F0) red ) =
1 , E  m eets a t m ost one irreducible component of D .  T h is  contradicts the
above rem ark (V ' •  E )  =1 . Hence the case (a) o ccu rs . T h en  D is contained
in A or B  because D is  connec ted . On the other hand, since  (E  • (Fo) red — E)
= 2 , E  m e e ts  a t  m o s t  o n e  irreducible com ponent o f  D .  T h is  i s  a l s o  a
contradiction.

w i t h  a= — (D2 ).
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CLAIM 3. Eo meets just two irreducible components of D.

Proof. F irs t, suppose th a t G  is  a  singular fiber of type B4, where our
naming of the fiber types accords with the one in Shafarevich [16].

Figure 15

Then, by Claim 2 and the assumption that D  is reducible, Supp (Fo) — Eo has
tw o connected com ponents A  an d  B .  S ince  Supp (D ) is connected , D  is
contained in  A  or B .  This is  a contradiction because E0 then meets at most
one irreducible component of D  and (Fo) red _Si an SNC divisor.

Next, we consider the case G is of type B2 or B3. By the above argument
and the assumption that D  is reducible, the configuration of Fo is  one of the
following:

Eo Eo

— 5

Figure 16

Hence, in this case, the assertion is verified.
W e may assume tha t G is not of the type B2, B3 or B 4 .  Then G is  an NC

or SNC sivisor. Hence, by Claim 2, the assertion is verified.

Using the arguments in the proof of Claims 2 and 3, we have the following

CLAIM 4. Supp ( (Fo) red — E0) is connected.

CLAIM 5. G is of ty pe A  (n , B2 or B 3 .  Hence the dual graph of D is a
linear chain.

Proof. B y  th e  p ro o f o f  Claim  3, w e  k n o w  th a t G  i s  n o t  of type  B4.

Suppose th a t G  is  of type A  , B6, B 7, B8, or B10 . Then, by C laim  2,
Supp ( (F0) red — .E 0 )  is d isconnected . This contradicts Claim 4.

By Claims 1, 2, 4 and 5, we can easily verify the following claim:

CLAIM 6. F o contains only  one H  1) - curve. Furthermore, for all i (0
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l e  (G) has only one ( - 1) - curve.

Using the above claims, we can easily verify the theorem.

3. Irreducible curves with negative self intersection on
rational surfaces

L e t X  b e  a  nonsingular projective ra tio n a l s u r fa c e  a n d  le t  D  b e  a
nonsingular rational curve on X  with n: = — (D2) 2.

Definition 3.1. (cf. Iitaka [5]). A  p a ir  (X , D ) is relatively m inim al if
(E • D) for every  ( - 1) - curve E on X.

Then we have the following lemma.

Lemma 3.2. A  p air (X , D )  is  alm ost m in im al if  and  only  i f  i t  is
relatively minimal.

Proof. A ssum e t h a t  (X ,  D )  is a l m o s t  m in im a l. S uppose  t o  the
contrary that there exists a  ( - 1) - curve E  su ch  th a t (E • D) It is then
clear that (E • D) = 1 .  Then we have

(D# +K x • E) = n ; 2  1 —  — 2  <0n '

because 2. Furtherm ore, the intersection m atrix  o f  E  + Bk (D ) is then
nega tive  defin ite . T h is  contradicts th e  h y p o th e s is  th a t (X , D )  is alm ost
m in im a l. Hence (X, D ) is relatively minimal.

Conversely, assum e t h a t  (X , D )  is  re la tive ly  m inim al. Suppose to  the
contrary  that (X , D )  is not alm ost m in im al. Then there exists an  irreducible
curve C such  that (C • D '±K ) < 0 and the intersection matrix of C+Bk (D ) is
negative defin ite . W e note th a t C D .  Then w e have c lea rly  (C2) < 0  and
(C • K) <0, i.e., C is a  ( - 1) -c u rv e . W e  have

(C • D# ) = n : 2  (C • D) < — (C • K) =1.

Since (X , D )  is relatively minimal, we have  (C • D )  2. Hence, by the above
inequality, we have n= 2 or 3. On the other hand, we have

(C+D) = (C2) +2 (C • D) + (D2) — 1 + 2  (C • D) —  3 O.

T his contradicts the  hypothesis that the intersection m atrix  of C+ Bk (D ) is
negative definite. H ence (X , D ) is almost minimal.

Using Lemma 3.2 and the results in  [5 ] and  [14] , we have the following:

Theorem 3.3. Let X  be a nonsingular projective rational suiface and let
D be a (— n)-curv e (n_2) on X .  Suppose that (X , D ) is an almost minimal pair.
Then the following assertions hold:
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(1) e(x—D)= —00 if and only if X  is a Hirzebruch surface F„ of degree n
and D is a minimal section M . of X.

(2) e (X — D) = 0 if and only if n =4  and D +2K x  is linearly equivalent to
zero. Furthermore, i f  E  is any  (—  1) - curve, the linear system ID + 2E I is  an
irreducible pencil of elliptic curves. W e  also  have a birational morphism f: X — >P 2

such that f (D) is a sextic with ten double points (possibly including infinitely near
points).

(3) e(x —D) =1 if and only if n= 4 and ID + 3K I*  0 . T here  ex ists a
unique ( - 1) - curve E o such that (E o •  D) = 2. Furthermore, the linear system
ID +2E01 is an irreducible pencil of elliptic curves. T here also ex ists a birational
morphism f: X — >P 2 su ch  th at f (D ) is  a curve of degree 3 m , m  3  with nine
m-tuple points and one double point (possibly including infinitely near points).

(4) If  - -e(x —D) = 2, then we have

Proof. (2 ) a n d  (3 )  If  e(x — D) = 0 o r  1, then by Theorem s 2 .3  and
2 .5 , it fo llow s tha t n =  4 a n d  (K2 )  =  —  1. Hence, by Lemma 3 .2 ,  (X , D)
satisfies the hypothesis in  [14, Theorem 3 . 3 ] .  Hence follow our assertions.

(1) Let f : X —X  be the contraction of D to  a quotient singular point P.
If  e(x — D) = — 00 , then  K  is  no t num erica lly  e ffec tiv e . If  there  ex ists an
extremal ra tiona l curve  1 w ith  (12 ) =  0 , D  m ust be  reduc ib le  by  v irtue  of
T heorem  1 .1 .  Hence i s  a  l o g  d e l  Pezzo s u r f a c e  o f  r a n k  o n e  with
contractible boundary (for the definition, see [ 1 8 ] ) .  Then we have p (X ) = 2.
Hence X  is  a  Hirzebruch surface F„ of degree n  and D is  a minimal section of
X.

(4) Since (X, D ) is almost minimal and g(X —D) = 2, we have

(D# ±K) 2 = (D#  • K ) + (K2 )  = 
(n —

n

2 )  2  

 ± (K2 ) >0.

By Lemma 2.2 , we have

1< (n 2) 2  

-n

Since it follows that

Let D  be  an  irreducible complete curve and let X  and X ' be nonsingular
projective surfaces. Let i: D c—

, X  and D c---0X' be two closed immersions of
the  curve D .  W e  sa y  th a t  (X , D )  a n d  (X ', D )  a re  equivalent if  there exist
Zariski-open neighbourhoods U c X  and U 'C X ' of i (D) and i (D ') respectively,
and an isomorphism g: U—•U' such that g ° =

W e state the  following theorem due to M ohan Kummar and  Murthy [14,
Theorem 2 . 1 ] .  T hey  proved  th e  theorem  by  using  Fujita-Miyanishi-Sugie
theory  (cf. [2 ] and  [ 1 0 ] ) .  Our proof depends on the Mori theory.

Theorem 3.4. Let X  be a nonsingular projective rational surface and D a
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(— n) - curve(n 1) on X . T h en  the following conditions are equivalent:
(i) (X, D) is equivalent to (Fa, Mn)
(ii) IT (X—  D) = — co .

Proof. It suffices to  show th a t  ( i )  follows from (ii). If n =  1 then
(X, D ) is equivalent to (F1, Mi.) by Nagata [15, Theorem 3 ] .  Hence we may
assume that Let X'=dilp(X) with PED  and D' the proper transform of
D in X '.  We note th a t (X, D ) is equivalent to (Fa, Mn) if and only if  (X ', D')
is equivalent to (Fn+1, Mn+1). If there exists a  ( - 1) -curve E  w ith  (E • D) =
1 , th e n  (X , D ) is  equ iva len t to  (F a , M n) b y  th e  above rem ark and the
induction hypothesis. So, we may assume th a t (E • D )  2 o r  (E • D) = 0 for
any  ( - 1) -curve E on X .  By contracting all ( - 1) -curves with (E • D) = 0,
we may assume that

(E • D)

for any  ( - 1 )  -curve E on X .  Then, by Lemma 3 .2 , (X, D ) is almost minimal.
Hence X= Fn and D Mn  by Theorem 3 .3 ,  ( 1 ) .  This proves the theorem.

By Theorem 3.4, we have the following:

Corollary 3 .5 . (cf. [14]).L e t  (X, D ) be the same as in  Theorem 3.4.
Let f: be the contraction of D to a quotient singular point P and A  the local
ring of :Y. at P .  I f  k .(X — D )= — 0 0  , then we have

Xn- l Y ,•••,

where m is the maximal ideal corresponding to the origin.

4 . The structure of surfaces X — D for the case k(X—D) =0

L et (X , D ) be as in the introduction. We assume th a t  (X , D )  is almost
m in im al and  (X — D) 0. By Theorem 2 .3 , we know the configuration of
such a  divisor D . In this section, we shall study the structure of such a pair
(X, D ) and give some examples.

I f  (X, D ) is of Type (A ) in Theorem 2.3 , then ID 2E1 is  an irreducible
pencil of elliptic curves for any  ( - 1) - curve E  (cf. Theorem 3 .3 ,  ( 2 ) ) .  This
is the case also in Type (Bu) with additional conditions. M ore precisely, we
have the following structure therem on such a  pair (X, D).

Theorem 4.1. L et (X, D ) be the same as in Theorem 2 . 3 .  I f  (X, D) is
of Type (A ) or ( B r )  ( n  8 ), then there exists a ( - 1) -curve E on X  such that
ID - 1-  2E I is an  irreducible pencil of  elliptic curves. N am ely , X  has an  elliptic

fibratian over P 1 which contains D in a fiber.
In the case (B r), le t  D = E7i-1Di b e  the irreducible decomposition of the

above D  w ith  (D2 0) = (.01+1) = — 3 a n d  (Dy) = — 2, 1 i  n .  T o  p r o v e
Theorem 4.1 , we need the following lemma.
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Lemma 4.2. Suppose that (X, D ) is of Type (Ba )  and that there exists a
( - 1 )  -curve E  such that (E • Do) = (E • D n + 1 )  =  1  an d  (E • D i) = 0 f o r all
i Then ID

-
F2EI gives an irreducible pencil of elliptic curves.

Proof. First, w e shall prove that h
°
(D +  2 E )  2 .  B y the  Riemann-

Roch theorem,

h° (E
—

( E  —  K  •  E  —  2 K )  +1 = 1,

where we note tha t th e  hypothesis D ±  2 K  0  im plies (K 2 )  = — 1. Hence
IE

—
K I±  0 .  In the same way, we have h

°
(D+E

-
I
-
K) 1, i.e., ID

-
FE+KI* 0 .

Meanwhile, by [9, Lemma 2 .1 .3 ], we have ID +KI= O . W e also note that
= 0. In d e e d , suppose to the contrary that I —KI* 0 .  W e  have

D±K= (D ± 2K) ± (
—

K).

Since D+2K —0 and I 
—

KI* 0 , we have ID+KI* 0 . T h i s  is a contradiction.
Since ID +K 0, E  is not a  fixed component of IE + D + K I .  Furthermore,
since I 

—
Kl= ø ,E   is not a fixed component of Since

D-F2E=(D-FE-FK)±(E
—

K),

the above remark implies that E  is not a  fixed component of ID + 2E I. Since
D

-
F2E is effective, this implies that h

°
(D+2E) 2.

Next, we shall prove that h
°
(D + 2E) hence h

°
(D +  2E) =  2. The

following exact sequence

0—+Ox (Do+ • • d - Dn +2E)-0x (D 2E) —■0

implies that h
°
(D + 2 E )  h

°
(D0+•••±Dii

-
F2E) ± 1 .  From the following exact

sequence

x (Do+ • • • ± D -1± 2E)
x (Do+ • • • ± Dii±2E)—*0 D„ (— 1) —>0,

it follows that h
°
(Do +•-• ±D-1-2E) =h

°
 (Do + ••• ±D,i _i ± 2 E ) . Hence we know

that

h° (D + 2E) h
°
 (D0 +2E) +1.

Furthermore, from the following exact sequence

0
—

*ex (2E)
—

'ex (Do + 2E) 
—

>eD o (—

we have

h° (Do + 2E) = h
°
 (2E) =1.

Hence h
°
(D+2E) 2, i.e., h

°
(D+2E) =2.

From the above argument, it follows that none of Do, Dn+1 and E are fixed
components of ID+2E1. Suppose that there exists an integer i (1 

.
1/) such

that Di is contained in the fixed part of ID  + 2E . Then we can easily verify
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that Do, •••, D , and Dn-F1 are also contained in the fixed part of ID+2E1. This
i s  a  c o n tra d ic tio n . Hence ID  + 2E I contains n o  f ix e d  conponents. Since
(D+2E) 2 =0, it follows that ID+2EI is  a  pencil of curves without base points.
Hence ID+2E1 is an irreducible pencil of elliptic curves because Pa (D +2E)2E) =
1 and D +2 E  is a  connected member of ID+2El.

Proof of  Theorem 4.1. W e shall prove the case n = 4 o n ly .  The other
cases can  be  p roved  in  th e  sam e w ay. T he configura tion  of D  is  g iven  as
follows:

Figure 17

By Lemma 4 .2  it suffices to show that there exists a  ( - 1) -curve E  such
that

(E • Do) = (E • D5)=1.

W e prove our assertion by the red uctio absurd urn. N a m e ly , suppose that there
exist n o  ( - 1) -curves which meet Do and D5.

S in c e  ( la )  = — 1, th e re  e x is t  H  1 ) -cu rves on  X .  Now D ± 2K x  0
im plies tha t ( E  D) = 2  fo r  a n y  (— 1) -curve E .  T hen w e have one of the
following two cases:

(  I )

 

T h e re  e x is ts  a  (— 1) -c u rv e  E  w h ic h  in te rse c ts  tw o  distinct
irreducible components of D.

(11)
 

F or a n y  (— 1) -curve E , there  exists a n  integer i  (0  i  _. 5 )  such
that

(D • E) = (Di • E) =2.

We consider the above two cases separately.
Case ( I )  . Let E  be a  H 1 ) -curve a s  a b o v e . B y  the  above hypothesis,

we may assume that one of the following nine cases takes place:

( I  - 1) (E • DO= (E • D4) =1,
( I  - 2) (E • D5) = (E • D1) =1,
( 1 - 3) (E • D5) = (E • D 2 ) =1,
( 1 -4) (E • D 5 ) = (E • D 3 ) =1,
( I  - 5) (E • D4) = (E • D1) =1,
( I  - 6) (E • D4) = (E • D2) =1,
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( I — 7) (E • D4) -= (E • D3)=1,
( 1 - 8) (E • D3) = (E • D1) =1,
( I —9) (E • D3) = (E • D2) =1.

W e shall consider separately each of the above cases.

Case ( I  —1). L et ,u: X— > Y b e  the contraction of E , D 4 , D 3 , D2 and Di.
Then we have

(ft* (Do) 2 ) = 2, (,u* (D 5) 2 ) = 14, (,u* (Do) • (p* (D5) ) = 2.

Let f : Y - 4 ' n b e  a  birational m orphism . Put Do= V ° ( i i ) )
(D5) .

*11 ** (130 )  and D5 =

C ase ( I  -1-a) : Do = M n . Since D o +  D5 -  2 K F „ ,  D 5  -  3Mn + 2 (n + 2) /,
where 1 is  a  fiber of the ruling on F .  By making use of the hypothesis that
there are no ( - 1) -curves meeting Do and  D 5 , we can readily show that n =2.
Hence Y dominates a  su rface  obtained by blow ing up a  po in t P  on  F 2  lying
outside of M 2 .  Let /p be the fiber of the ruling on F 2  which passes through P.
Since Op • D 5)  =  3 , the  proper transform  of /p on X  is  a (—  1) -curve which
in te rse c ts  D o  a n d  D 5 .  T h i s  con trad ic ts t h e  hypo thesis  o f  th e  re d u c tio
absurdum.

Case ( I  - 1- b): Do*M n . We prove the following claims 1 and 2.

CLAIM 1. n

Proof. Since Do, D5*M n, we have

(Mn • Do ±D5) = (Mn • — 2KF„) = 2 (2 — n )  O .

Hence it follows that

CLAIM 2. We hav e (Do • D5) =- (p* (Do) • p * (D5)) =2.

Proof. I t  is  c le a r  th a t (D o  •  D 5 ) 2. Suppose that (D o • D 5) 3.
Since p* (Do) + (D5 ) +2K y — 0, there exists a  ( - 1) - curve C on Y such that
(C • ,u* (Do)) = • tt* (D5)) =- 1. The proper transform  b-  of C on X  is then a
(- 1 )  -curve  w ith  (C • Do) = (C • D 5)  = 1 .  T his contradicts the hypothesis of
the reductio absurdum.

If  n  =  2  then Supp (Do ± 55) n Af2 = 0  . Hence Y  dominates a surface
obtained by blowing up a point on F 2  lying outside of M 2  and hence dominates
F 1. If n  =  0  then  Y dominates a  surface obtained by blow ing up a point on
F0=13 1  x  P l  and  hence dominates F1. Hence by the hypothesis of the reductio
absurdum, the re  ex is ts  a birational m orphism  g: X— > P2 s u c h  th a t  g *(D) =
g* (Do ) + g * (D i ) — —2Kr  a n d  (g* (Do) • g* (D5)) = 2. T h i s  is  a contradiction.

Case ( I  - 2 ) .  Let X—>Y be the contraction of E, Di, D2, D 3  and D4.
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Then we have

(g* (Do) 2 ) = 1, (g* (D5) 2 ) = 5, (g* (Do) • g * (D5) ) =5 .

Let !: Y— T  b e  a  birational morphism. Put Di= V- g) * (Di) (i = 0, 5 ) .  As in
Claims 1 and 2, it follows that n 2 and  (Do • D5)  = 5 .  Hence, as in Case ( I
-1-b ), there exists a birational morphism g: Y—T2 , such that (gop)*(D)= (g°
1.1) * (Do) (g°,u) *(D5) # (9°14 * (Do) n (g .tt)*  (D5) =1 and  ( (go ,g)
* (D) • (g° g) * (D5)) = 5.

Put D'o: = ( g  g) * (Do) and D : =  (g - g) * (D5) Then P fl L i s  a
double point of D ;. Since D '5 is singular and  (DI; • DD =5, it follows that De, is
a  line and TX an irreducible rational curve of degree 5. Then .1X  has another
double point, say Q .  Let H  be a  line which passes through P and Q .  Then
w e  h a v e  o n e  o f  th e  following three cases, w here i (g 5 • H; P) i s  a local
intersection number of I); and H at P.

(i) i (EY5 • H; = i ( g 5 • H; Q )  2.
(ii) i (Ii5 • H; P) =3 and i (D; • H; Q) =2.
(iii) j  W s  • H; P) =2 and i (D's • H; Q) =3.

We consider the above three cases separately.
Case (i). There exists a point R E 13'5 nH  other than P and Q .  T h e n  D5

is smooth at R .  Let H  be  the proper transform of H on X .  Since R  is not a
fundamental point of g, H  is a  ( - 1) -curve with (i/-  • D4 ) = ( -H- • D 5) = 1. By
arguing as in Case ( I  -1 ), we have a contradiction.

Case (ii). Let 1): F 1
- 4 "  be the inverse of a blowing up with center P.

Then we have

(11(g5) • V (H)) =3, (V (D) • (H)) =0, i (V (g 5 ) • V  (H); (Q)) = 2.

Hence P' (D'5) n (H) n (p )  is a  smooth point of V  (D 5). Let H be the
proper transform of H on X .  Then i f  is  a  ( - 1) - curve with (17 • D5) =  (ii •
D4 ) -- = 1 .  By arguing as in Case ( I  -1 ), we have a contradiction.

Case (iii). By an argument similar to Case (ii), we have a contradiction.
Case (1 - 3) . Let be the contractions of E, D 2 , D3 and D 4 .  Then

we have

(14 (Do) 2 )  =  3 ,  (II* (D1) 2 ) = 1 ,  (iu * (D5) 2 ) =4 ,

(It* (Do) • g* (D5)) =0, (g* (DO • ,a*(D5)) =4 .

Let f: X- 0 F , be a birational morphism. Put (Di) = V ° *(Di) (i= 0, 1, 5).

Case ( I  -3-a): D o= M n. As in Case ( I  -1 -a ), we know that there exists
a  ( - 1 )  -curve fi on X  such that f i intersects two of the three components D o ,
D1 and D 5 .  By returning to Case ( I  - 1) o r  ( I  -2 ), we have a contradiction.
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Case ( I -3-h): D o * M n .  As in Claim 2, it follows that

(Do • D 1 ) = 1, (Do • D5 ) =0, (D 1 • D 5 ) =4.

Furtherm ore, a s  in  C laim  1 , w e know  tha t n B y argu ing  as in  C ase
( - 1 - b ) ,  we have a contradiction.

By an argument similar to C ase ( I - 3), we can show that C ases (1  - 4) —
( I - 9) do not occur.

Case ( I I ) .  L e t  f :  X- 0 F .  be a  birational morphism. Note that f (D )
2KF „— 0  and f (D i )  *  0  for any i (0 W e consider the  following two
cases (II -1 ) a n d  ( il - 2 ) separately.

Case ( I I  - 1) : f* (D i) =  M n f o r  som e i. T h e n  b y  a rg u in g  as in  C ase
(1  -1 -a ) , the re  ex ists  a  (— 1) -curve E ' on  X  which meets two irreducible
components of D .  This contradicts the hypothesis in Case (II).

C ase ( i l  - 2) : f* (D i) *  M n f o r  any  i. Then, b y  th e  hypothesis in Case
(II), w e  have

V*Di) • f1)* ()) = 1 0
1

if -; 1=1
if k -;

w henever i  *  j. H e n c e  b y  a rg u in g  a s  i n  C a s e  ( I  - 1- b ) ,  w e  h a v e  a
contradiction.

This completes the proof of Therem 4.1.

Remark 4.3. L e t (X , D )  be  th e  sam e a s  a b o v e . Gurjar and  Zhang
proved that there exists a  ( - 1) -curve C  on X  such  that C  meets a terminal
component of D  (cf. [4, Proposition 3 .1 ]) .

Corollary 4.4. L e t  (X , D )  be the  sam e pair a s  in  Theorem 2 . 3 .  If
(X, D ) is of Type (B u ), there is a one-to-one correspondence between the following
sets (X ) and (Y ):

(X) consists of  ( - 1) - curves E on X such that ( E  Do ) = (E • Dn+1) 
=

1 and
(E • D i) =0 for any i(1.<i n).

(Y ) consists of irreducible elliptic pencils A such that Supp (D ) is contained
in a member of A.

I f  (X, D ) is of  Type (A ), there exists a one-to-one correspondence between the set
o f  ( - 1) - curves on X and the above se t (Y).

Proof. Let A be  a n  irreducible elliptic pencil which contains Supp (D)
in  a  member C o. T h e n  C o i s  a  reducible member whose components have all
self-intersection n u m b e r s  —  1. Since (C o — D • Kx) = — 2 , th e re  ex is ts  a
component E of Co su c h  th a t  (E • Kx) < 0 .  Then E is  a  ( - 1) -curve . S ince
(D+2E) 2  = 0, w e have that C o = n ( D  2E), where n  >  0 . If D  is irreducible
then , by  T heorem  3 .3 ,  (2 ) ,  th e  a sse rtion  i s  c le a r .  I f  D  is reducible then
( E  Do )  = (E • Dn+1) = 1  a n d  (E • Di) = 0 f o r  any i(1  . n ) .  Hence by
Lemma 4.2 1D+2E1 is  an  irreducible elliptic pencil and hence A= ID+2E I.



98 Hideo Kojima

Now we shall give several examples.

Example 4.5 . (cf. [1 4 ]) . Let C be a  rational sex tic  plane curve with
ten double  poin ts. L et te: X— >P 2 b e  the minimal resolution of singularities of
C and let D be the  proper transform  of C on X .  Then w e have th a t  (D2 ) =
—4 and D +2 K x - 0 .  Hence the  pa ir  (X, D ) is of Type (A).

Concerning th e  above exam ple, w e shall explain a  construc tion  due  to
M iyanish i of the pair of Type (A).

Example 4.6. L e t  k  b e  a n  a lg e b ra ic a lly  c lo se d  f i e ld  whose
transcendence degree over the  p rim e fie ld  II is  in f in ite .  L et P1, •••, P g  be
independent generic points of P 2 o v e r a field ko (not necessarily an  algebraic
closure of II) and le t A: =131 —  E=1 Pi be the  linear pencil of cubic curves
passing through P1, •••, P g , where 1 is a  line on P 2 . Let C be a generic member
of A over ko (P1, •••, P O  and let P g  be a point of C such that 2 (Pi +••• +P 9 ) = 0
is a unique relation among P1, •••, P g  In particular, P g  is not a base point B  of
A. In fact, the tangent line 1B of C a t B  meets C a t  a  point Q, and there  are
three other lines through Q which are tangent to  C. The point P g  is  one of
the  th ree  points whose tangent line 1, p a sse s  th rough  Q . T hen  there  ex ists
an  irreducible sex tic  curve So such that So • C=- E?=1 2P1. Let L  be a  linear
pencil spanned by So and  2C.

Let p :  Y—*P2 b e  the  blowing-up with centers P i ,  •••, P 9 ,  and let L ': = p'L
th e  proper transform  of L .  Then L ' i s  a  linear elliptic pencil w ithout base
points, in which 2p ' (C ) is a unique multiple m em ber. Since c2 ( Y) =12, L ' has
singular m em bers. In fact, all fibers are  ir re d u c ib le . Let a be the number of
members which have nodes, and let S  be the number of members which have
c u s p s . T h e n  w e  h a v e  a ±  2 S  =  1 2 .  Namely, L ' h a s  a t  m o s t  1 2  singular
members (except 2 p ' (C ) )  and  a t le a s t 6  singular m em bers (except 2p' (C)).
Let S ' be one of the singular members of p l  and let P 10 b e  the singular point
of S'. Let a: X— >I7  b e  the  blowing-up with center Pi° and let D: =  ( S ')  be
the proper transform of S ' on X .  Then it is clear that (D2 ) =  — 4  and D± 2Kx

— O. Hence the  pa ir  (X, D ) is of Type (A).

We shall give some examples of the pairs (X, D) of Type (Bu).
Example 4.7. Let C1, C2 be two cuspidal cubic curves on P 2 such that

C1 h a s  a  cusp P1 and C 2  has a  cusp P 2 ,  where P 1 * P 2 . Furthermore, assume
that C1 an d  C2 meet each other in  nine distinct points (P 3 , •-•, P11 ) . Let p: X -0
P 2 b e  the  blow ing-up w ith centers P1, •••, Plo and let D 1: =  (C1), j = 1 , 2.
Then the  pa ir (X, D 1 +D 2 ) i s  of Type (Bo).

Example 4.8. L et C1, C 2  and C 3  be three nonsingular conics o n  P 2 .
P ut c 1 n c, = fp1, P 4 ) ,  c 2 n c3 = tp,, P81 and c 3 n C 1 = {P9,
Assume th a t P ,*  Pi  w henever i  * j .  Let p: X— >P 2 b e  th e  blowing up with
centers P1, •••, P12 except for P 4  and P 5  and let Di= jet' (C,) (i = 1 ,  2 ,  3 ) .  Then
(X, D1+D2+D3) is of Type (BO.
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