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Almost minimal embeddings of quotient
singular points into rational surfaces

By

Hideo Kojima

0. Introduction

Let £ be an algebraically closed field of characteristic zero. Let X be a
normal algebraic surface with only one quotient singular point P. Let f: X—

X be a minimal resolution of X and let D= X7-,D; be the reduced exceptional
divisor with respect to f, where the D; are irreducible components. Define a
Q-divisor D* = 2% a;D; such that (D* +Kx - D;) =0 for every 1<i <a.
Since the intersection matrix of D is negative definite and (D?) <—2, D¥ is
uniquely defined and 0 <a; <1. We say that a pair (X, D) is almost minimal
if, for every irreducible curve C, (D*+Kx + C) 20 or the intersection matrix
of C + Bk(D) is not negative definite, where Bk(D) = D — D* (see
Miyanishi-Tsunoda [11, p. 226]). We say that the singular point P is almost

minimal in X if the pair (X, D) is almost minimal. Then D* + Kx=f* (Kx),

and X is log relatively minimal (cf. Gurjar-Miyanishi [3]). By virtue of [11,
1.11], we can construct the almost minimal singular points from any quotient
singular points which might be changed from the original singularities.

In the present article, we study such singularities. In the section 1, we
study the case of the logarithmic Kodaira dimension £ (X—D) = —© using the
Mori theory [13], and classify such singular points when Supp(D) is
contained in a fiber of a certain P!-fibration (Theorem 1.1). In [17,
Proposition 2.2], Tsunoda classified all the almost minimal quotient singular
points on rational surfaces for which £(X—D) =0. In the section 2, we study
and give a classification in the case where £(X—D) =1 and X is a rational
surface (Theorem 2.5). In the section 3, we classify the almost minimal pair
(X, D) where D is irreducible by using some results in Mohan Kumar-Murthy
[14] and litaka [5]. Finally, in the section 4, we study the structure of (X,
D) and give examples when £(X—D) =0 and X is a rational surface (Theorem
4.1).

The terminology is the same as the one in [11]. By a (—n) -curve we
mean a nonsingular rational curve with self-intersection number —n. A
reduced effective divisor D is called an SNC divisor (an NC divisor, resp.) if
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78 Hideo Kojima

D has only simple normal crossings (normal crossings, resp.).
We employ the following notation.

Kx(or simply, K): the canonical divisor on X.

k(X): the Kodaira dimension of a complete surface X.

£(X—D): the logarithmic Kodaira dimension of an open surface X —D.
o (X): the Picard number of X.

F,.(#»=>0): a Hirzebruch surface of degree .

M, (®=0): a minimal section of Fy.

D* =D—Bk(D).

h'(D): =dimH' (X, Ox(D)).

The author would like to express his gratitude to Professors Masayoshi
Miyanishi and De-Qi Zhang for valuable suggestions. The author also thank
the referee for very careful reading.

1. The case £(X—D) =—o0

Let (X, D) be the same pair as in the introduction. In this section, we
assume that £(X —D) = —o0 and (X, D) is almost minimal. Since Ky is not

numerically effective, there exists an extremal rational curve lon X. Letl be

the proper transform of ! on X. Then, by [11, Lemma 2.7], one of the
following two cases takes place:
(A) The intersection matrix of /+Bk (D) is negative semidefinite, but not
negative definite. Furthermore, (1% =0.
(B) The Picard number p(X) is equal to one, and —Kj is ample.
In the subsequent arguments, we consider only the case (A), leaving the
case (B) to a forthcoming paper (cf. [7]).

Theorem 1.1. Let X be a normal projective surface with only one quotient
singular point P such that E(X —P) = — % and let (X, D) be the minimal
resolution of X. Suppose that (X, D) is almost mimimal and that the case (A)
takes place. Then the following assertions hold:

(1)  There exists a P*~fibration h: X—C over a curve C such that Supp (D)
is contained in Supp Fo, where Fy is a unique reducible fiber of h. Furthermore,
there exists a unigue (—1) -curve E on X such that Supp (E+D) coincides with
Supp (Fo).

(2) The weighted dual graph of E+D is one of the following:

(i) Case: Supp D is a linear chain. Then the dual graph of E+D is given
as in Figure 1, where m,22,a>2 and m; 21 for 2<i<a.
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(ii) Case: Supp D is not a linear chain. Then the dual graph of E+D is
given as in Figures 2 and 3. In Figure 2, n =20 and the subgraph denoted by the
encircled Sa(a=0) stands for one of the linear chains plus the (— 1) -curve E
given as in Figure 4, where m1 23 and m; =1 for 2<i<a.

(Type D)

Figure 2
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(Type Es)
Figure 3
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Proof. (1) Let f: X— X be the minimal resolution of X and let

D= >7_1D; be the decomposition of D into irreducible components.

Since X is

a normal projective surface with only one quotient singular point, there exists
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an integer N> 0 such that, for every Weil divisor G on X, NG is a Cartier
divisor on X (cf. [1, Theorem 2.3] and [11, 2.5]). By [11, Lemma 2.8], for

~ a sufficiently large #, the linear system |an* M| is composed of an irreducible
pencil, free from base points, whose general members are isomorphic to P,
Let h: X—C be the P'-fibration of X over a curve C defined by the linear

system NF*() |, Since (F* () + D) =0 for all i, 1 <i <7 and Supp(D) is
connected, it follows that Supp (D) is contained in Supp (Fo), where Fy is a
fiber h™*(a) for some a € C. Note that F, is a unique reducible fiber of h.
Hence there exists a (—1) -curve E in Supp (Fy). If (D * E) =0, then (E + D*
+Kx) =—1<0 and the intersection matrix of E+Bk (D) is negative definite.
Therefore, (E * D) =1 because Supp (D) is connected and Supp (F,) contains
no loops of curves. Since Supp (E+D) S Supp (Fy), the intersection matrix of
E + Bk (D) is negative semidefinite. Furthermore, since (E + D¥ + K) <
(E+D)—1=0 and (X, D) is almost minimal, it follows that E 4+ D is not
negative definite. Hence, Supp (E+D) =Supp (Fo). The uniqueness of such a
(—1)-curve E is clear.

(2) By virtue of (1), we know that E meets only one irreducible
component of Supp(D). Let f: X— Y be the contraction of all possible
contractible components of E+Bk (D) including E, i.e., irreducible components
of E + Bk(D) which become exceptional curves of the first kind after a
succession of several contractions. Let F = fx(F;). By (1), F is an
irreducible rational curve with self-intersection number zero. We shall
consider the following two cases separately.

Case 1: Supp(D) is a linear chain. By the above remark, we can easily
see that the weighted dual graph of E-+D is given as in Figure 1.

Case 2: Supp(D) is not a linear chain. Then there exists only one
irreducible component Dy such that (D —Dg* Do) =3. The dual graph of
Supp (D) is as follows:

Figure 5

where each connected component of Supp(D —Dy) is a linear chain. Let B=

D; be a unique irreducible component of Supp (D) which meets E. Then we
have the following:

Lemma 1.2, With the notation and assumptions as above, we have:
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(1) Bisa(—2)-curve.

(2) B#D,.

(3) Let g:X— X be the contraction of Supp(E + D) such that g« (Do) is
a(—1)-curve. Then Supp gx (E+D) is a linear chain.

Proof. (1) Let g"- X—X’ be the contraction of E. Since g’x(Fo) is a
reducible fiber of a P!-fibration, there exits a (—1)-curve in Supp g (Fo) =
Supp g+(D). Since E intersects only B=D; and each irreducible component
of Supp (D) has self-intersection number < —2, g« (B) is then a (—1) -curve.
Hence (B?) =—2.

(2) Suppose that B=D,. Then Dy is a (—2) -curve by (1). Let g”:
X— X" be the contraction of E and D,. Then Supp g« (D) =Supp g« (Fo) is a
reducible fiber of a P!-fibration which contains three irreducible components
meeting in one point. This contradicts [8, Lemma 2.2, p. 115].

(3) By virtue of (2), it is clear.

Lemma 1.3. Let D= 227_y D; be the decomposition of D into irreducible
components. Suppose that the weighted dual graph is as follows:

D,

D;

Figure 6

where a;=— (D?) =2,7=0, 3, -, v. Then the dual graph is given as in Figure
2.

Proof. By Lemma 1.2, (1), B# Do. We first consider the case B =D,
(similarly, B=D,). Then, ao=2. Let g: X— X, be the contraction of E, Dy,
and Do. Let D';: =g«(D;). Then g«(E+D) has the following configuration:

D s’
’ —a3+1 D

—a

Figure 7
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In this case, we know that P is a rational double point of Type Ds. Similarly,
if B=D,, then P is a rational double point of Type Dy+1.

Next we consider the case B=D;, 3<i<r. Let g: X—Y be a sequence of
contractions of (—1) -curve E and subsequently contractible curves in Supp
(Fo) such that ux(D,) is a (—1)-curve. Then Supp ux(E+D—D,) can be
contracted to a rational double point of Type As or D,(n=>4). Hence we
know that the weighted dual graph of E+D is one of Figure 2.

By Lemma 1.3, we may assume that the configuration of D has one of the
graphes of Types E¢, E7 and Ejs in the following arguments.
Suppose that the configuration of E+D is as follows:

Figure 8

Then, we can easily see that ap = — (D%) = 2 and this case can occur. It
suffices to show that with the above assumption, the cases except for the
above one cannot occur. We assume, for example, that the configuration of D
is as follows:

_ —2 b D3
—a
0 Y 9 ,
_ D, D,
-3
Do Ds
Figure 9

By Lemma 1.2, E meets one of Dy, >, D,. We first consider the case (E * D)
= 1. Suppose that ag= 3. Let u;: X— Y be the contraction of E and D;.
Then Supp u1%(D + E) = Supp wuix(Fo) contains no (— 1) -curves. Since
u1x (Fo) is a reducible fiber of a P'-fibration, this is a contradiction. Hence
ao=2. Let u: X—Y be the contraction of E, Dy, Dy, D3 and D,. Then, usx (Fo)
= ux(Ds) is a nonsingular rational curve with self-intersection number 1.
This is also a contradiction. Next, we consider the case (E+ D,) = 1.
Contracting E, D,, D3 and Dy, we know that ap=4 by Lemma 1.2, (3). Then
it is clear that £+ D can be contracted to a nonsingular point. This is a
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contradiction. In the case (E * Ds) =1, it is clear that E+ D can not be a
fiber of a P-fibration. In the same way as in the case (E * D;) =1, it follows
that the case (E * Ds) =1 cannot occur. The other cases with configurations
different from the above ones can be treated in similar fashions.

This completes the proof of Theorem 1.1,

Remark 1.4. Let (X, P) (or (X, D)) be the same pair as in the
introduction. Suppose that the case (B) occurs. If P is a rational double or
triple singular point, then such pairs have been classified completely. See
Miyanishi-Zhang [12] and Zhang [19].

2. The case £(X—D) =0
Let (X, D) be the same pair as in the introduction.

Lemma 2.1. Suppose that £(X—D) =0 and every irreducible component
of Disa (—2)-curve. Then £(X) 20.

Proof. Since every irreducible component of D is a (— 2) -curve, we
have

D*+Kx=Kjx.
By the assumption £ (X—D) 20, we have £(X) =0.

In the subsequent arguments, we assume that X is a nonsingular rational
surface and £(X —D) =0. Furthermore, we assume that (X, D) is an almost
minimal pair. Then, by [11, Theorem 2.11], it follows that D* + Kx is
numerically effective. Lemma 2.1 implies that there exists an irreducible

component D; of D with (D?) <—3.
Now we state the following lemma.

Lemma 2.2.  Suppose that £(X—D) 20. Then we have
(K}) <—1.

Proof. Suppose to the contrary that (K%)= 0. By the Riemann-Roch
theorem, we have

(X, Ox(—K)) = (K% +1.

Hence |—K|#0. On the other hand, since D is an SNC divisor on a rational
surface, we have [D+K|= @ (cf. Miyanishi [9, Lemma 2.1.3]). Then, by [9,
Lemma 2.1.1], po (D) =0, where ps (D) is the arithmetic genus of the divisor
D. Now the Riemann-Roch theorem yields

10 (D+2K) +h°(—D—K) z%(p+21< - D+K) +1
= (K - D+K)
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>1.

Ciam. |—D—K|=90.

In fact, suppose to the contrary that |-D—K|# @. Since £(X—D) =0, it
follows that |n (D+K)|# @ for some n>0. Hence D+K is linearly equivalent
to zero. This is a contradiction because |[D+K|= @ as remarked above.

By the above inequality and the claim,
h*(D+2K) 21,
ie, |[D+2K|# @. Combining this with |—K|# @, we have
ID+K|# 0.
This contradicts [9, Lemma 2.1.3].

In the subsequent arguments, we asssume that £(X —D) =0 or 1. We
will give the configuration of the divisor D in such cases.

Since X is a rational surface and the dual graph of D is a tree, we have
D+ K|= 0 (cf. [9, Lemma 2.1.3]). Hence, by [17, Proposition 2.2], we
have the following result:

Theorem 2.3. Let X be a normal projective rational surface with only ome

quotient singular point P and let (X, D) be the mininal resolution of X. Suppose
that (X, D) is almost minimal and £(X—D) =0. Then D+2K~0 and h°(2(D
+K))=1. Furthermore, the configuration of D is given in Figure 10, where 0<n
<8.

(4) (B»)

Figure 10

The case (A) was studied in [14]. For an example in the case (Bs), see
(20, Example 3.2].

We consider the case £(X —D) =1. The linear system |j (D* +K) | then
gives rise to an irreducible pencil of elliptic curves or rational curves h: X—
P! for a sufficiently large j by taking, if necessary, the Stein factorization of
O ;4 (cf. Kawamata [6, Theorem 2.3]). More precisely, the following
assertion holds:

Lemma 2.4. h is an elliptic fibration. Furthermore, Supp(D) is
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contained n a fiber Fo of h.

Proof. If h is a P'-fibration, D contains a component, say D, which is
a section or 2-section of h. Since (D*+Kx + F) =0 for a general fiber F of h,
the coefficient of Dy in D* must be 1. However, the coefficients of all
components of D* are less than 1. This is a contradiction. Hence h is an
elliptic fibration. Since(D*+Kx + D) =0 and Supp (D) is connected, Supp (D)
is contained in a fiber of h.

In order to state the following theorem, we define linear chains A, and
Aam(@>1,m>0) as in Figure 11, where m; =1 for 1<i{<a:

. A Ey
Am . O————O v OoO——0
-2 -2 -2 -1
m nmy—1 m,—1
—_— —(mF]) A — (3 +2) —(m, 1+2)  ———
Aem: ‘o 0—0 O OO o - O OO O
-2 —2 -2 —2 -2 -2 -2
m, 1~ 1 m—1
EO —(m,+1) ,_L/g —(m,+2) I
—O—O0—C0----- - oO——O0—----- —O0——O0 - O (a . eVen)
—1 -2 —2 —mt2y —2 —2
m my—1 m, =1
—_— . mt]D) A —(3t2) = (m, 242) ——
[OXEEERES Oo—O0—0O - oO—O0—----- —O0—O0—O0 - O—
-2 —2 -2 -2 -2 -2 —2
1 m—1
—(m,+1) E() ,—/\—m —(m, -, +2) /—’I N——
"""" o—O0 - —O0—=O0--0 (a Odd)
_1 _2 _2 — (my+2) _2 —2

Figure 11

Theorem 2.5. Let X be a normal projective rational surface with only one

quotient singular point P and let (X, D) be a minimal resolution of X. Suppose
(X, D) is almost minimal and §(X—D) =1. Then the following assertions hold:

(1) Let h be as in Lemma 2.4 and let Fy be the fiber of h which contains D.
Then theve exists a unique (— 1) -curve Eq such that Supp (D + E,) = Supp (Fo).
Furthermore, all the fibers of h except for Fo contain no (—1) -curves.

(2) The configuration or the weighted dual graph of D+ E, is given as in
Figures 12, 13 and 14:
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(a) Cases Bz and Bs.

—2 -5 —3 -3
@ Eo Ey
—4
Eo
Figure 12
(b) Case AL
-5 —2—m —2 —5—m
—4
& (4] (4]
—5 —3—m —2 —6—m
Figure 13

-3 -2 —2 —3—m

Figure 14

Proof. Let h: X—P! be the elliptic fibration as above. By Lemma 2.2,

h is not a minimal elliptic fibration. Hence there exists a (— 1) -curve E,
such that E, is contained in a fiber of k. By the almost minimality of (X, D)
and by Lemma 2.4, E, is contained in the same fiber Fy as Supp(D) is

connected.

Let D= 2.%_, D; be the irreducible decomposition of D and write D*=

n
i=1
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a;D; where &; €Q. Then, by Lemma 2.1 and by the fact that a; =0 for some
i if and only if D consists of (—2) -curves, we have 0 <a; <1 for any i, 1<i
<n. Since (D*+K * Eo) =0, it follows that (D* + Eo) =1.
We first consider the case where D is irreducible. Then,
a—2
a

D*= D with a=—(D?.

In this case, the theorem follows from the claim below.
CLamM 1. We have a=4. Furthermore, Fo is a multiple of D+2E,
Proof. Since (D*+K)2=0, we have

(K?) =4—a—2,
a

Since (K?) is an integer and a =2, it follows that a =2 or 4. By Lemma 2.1,
we have a=4. Then, since D*+K=1/2D+K, it follows that (D * Eo;) =2 and
(D+2Eo)?=0. Hence Fy is a multiple of D+2E,.

We may hereafter assume that D is reducible. Then Fy is obtained from
G, which is a fiber of a minimal elliptic fibration on a nonsingular surface Xo,
by blowing up some points or infinitely near points on Supp(G). Let g: X—
Xo be the converse which is the contraction of all possibly contractible
components of Supp (Fo) including E,, i.e., irreducible components of Supp (Fo)
which become exceptional curves of the first kind after a succession of several
contractions. We put X =dilp, - °dilp, (Xo) and p; =dilp - >dilp, where dilp,
is the blowing-up with center P; and p-1=1idx,.

CLAIM 2. P; is a singular point on ¢, (G) for every i>0. In particular,
G is a singular fiber of the minimal elliptic fibration.

Proof. Suppose to the contrary that there exists i (0 <i<I) such that
P; is a smooth point on ¢ ,(G). Let F be the total transform of P; € p;_; (Xo)
on X. Let E be a (—1)-curve which is contained in Supp (Fp). It is then
clear that ((Fo)rea—E * E) <2. In particular, if ((Fo)rea—E * E) =2, then we
have E N Supp ((Fo) rea — (Fo)rea) = @ . Since (Fo)rea is an SNC divisor and

Supp (Fo) contains no loops of curves, we have one of the following cases:
(a) Supp((Fo)rea—E) has two connected components, say A and B.

(b) Supp ((Fo)rea—E) is connected and E is an end component of Fy.

Suppose that the case (b) occurs. Then, since ((Fo) rea— (F0) rea * (Fo) rea) =
1, E meets at most one irreducible component of D. This contradicts the
above remark (D*+ E) =1. Hence the case (a) occurs. Then D is contained
in A or B because D is connected. On the other hand, since (E * (Fo) rea—E)
= 2, E meets at most one irreducible component of D. This is also a
contradiction.
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CraiM 3. Eo meets just two irreducible components of D.

Proof. First, suppose that G is a singular fiber of type Bs, where our
naming of the fiber types accords with the one in Shafarevich [16].

Figure 15

Then, by Claim 2 and the assumption that D is reducible, Supp (Fo) —E, has
two connected components A and B. Since Supp(D) is connected, D is
contained in A or B. This is a contradiction because E, then meets at most
one irreducible component of D and (Fo) res is an SNC divisor.

Next, we consider the case G is of type Bz or Bs. By the above argument
and the assumption that D is reducible, the configuration of Fo is one of the
following:

Ey Ey

-3 -3 —2 -5
Figure 16

Hence, in this case, the assertion is verified.
We may assume that G is not of the type B, Bs or By, Then G is an NC
or SNC sivisor. Hence, by Claim 2, the assertion is verified.

Using the arguments in the proof of Claims 2 and 3, we have the following:

CLaiM 4. Supp ((Fo) rea—Eo) is connected.

CLaM 5. G is of type A, (n=1), By or Bs. Hence the dual graph of D is a
linear chain.

Proof. By the proof of Claim 3, we know that G is not of type B

Suppose that G is of type A, ®=>0), Bs, Bs, Bs, or By, Then, by Claim 2,
Supp ((Fo) rea—Eo) is disconnected. This contradicts Claim 4.

By Claims 1, 2, 4 and 5, we can easily verify the following claim:

CLAIM 6. Fy contains only one (— 1) -curve. Furthermore, for all i (0 <i
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<1), u¥(G) has only ome (—1)-curve.

Using the above claims, we can easily verify the theorem.

3. Irreducible curves with negative self intersection on
rational surfaces

Let X be a nonsingular projective rational surface and let D be a
nonsingular rational curve on X with n: =— (D?) >2.

Definition 3.1. (cf. litaka [5]). A pair (X, D) is relatively minimal if
(E + D) 22 for every (—1)-curve E on X.

Then we have the following lemma.

Lemma 3.2. A pair (X, D) is almost minimal if and omly if it is
relatively minimal.

Proof. Assume that (X, D) is almost minimal. Suppose to the
contrary that there exists a (—1) -curve E such that (E + D) <1. It is then
clear that (E * D) =1. Then we have

n=Z_j=—_2,
n n

(D*+Kx*E) =
because n=> 2. Furthermore, the intersection matrix of E + Bk (D) is then
negative definite. This contradicts the hypothesis that (X, D) is almost
minimal. Hence (X, D) is relatively minimal.

Conversely, assume that (X, D) is relatively minimal. Suppose to the
contrary that (X, D) is not almost minimal. Then there exists an irreducible
curve C such that (C + D*+K) <0 and the intersection matrix of C+Bk (D) is
negative definite. We note that C# D. Then we have clearly (C? <0 and
(C+K)<O0,ie., Cisa (—1)-curve. We have

o _n—2 —
(€ D)===(-D)<—=(C-K) =1
Since (X, D) is relatively minimal, we have (C + D) 22. Hence, by the above
inequality, we have n=2 or 3. On the other hand, we have

(c+D)=(c®+2(c+D)+ (D*»)=—1+2(C - D) —3=>0.

This contradicts the hypothesis that the intersection matrix of C+ Bk(D) is
negative definite. Hence (X, D) is almost minimal.

Using Lemma 3.2 and the results in [5] and [14], we have the following:

Theorem 3.3. Let X be a nonsingular projective rational surface and let
D be a(—n)-curve m=2) on X. Suppose that (X, D) is an almost minimal pair.
Then the following assertions hold:
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(1) E(X—D)=—o0 if and only if X is a Hirzebruch surface ¥, of degree n
and D is a minimal section My of X.

(2) £(X—D)=0if and only if n=4 and D+2Kx is linearly equivalent to
zero. Furthermore, if E is any (— 1) -curve, the linear system |D + 2E|is an
irreducible pencil of elliptic curves. We also have a birational morphism f. X—P?
such that f (D) is a sextic with ten double points (possibly including infinitely near
points) .

(3) E(X—D)=11if and only if n=4 and ID+3K|# @ . There exists a
unigue (— 1) -curve Eo such that (Eo * D) = 2. Furthermore, the linear system
|D+ 2Eo| is an irreducible pencil of elliptic curves. There also exists a birational
morphism f: X— P? such that f(D) is a curve of degree 3m, m= 3 with nine
m-tuple points and one double point (possibly including infinitely near points).

(4) If E(X—D) =2, then we have n=>5.

Proof. (2) and (3) If £(X—D) =0 or 1, then by Theorems 2.3 and
2.5, it follows that n =4 and (K?) = — 1. Hence, by Lemma 3.2, (X, D)
satisfies the hypothesis in [14, Theorem 3.3]. Hence follow our assertions.

(1) Letf X— X be the contraction of D to a quotient singular point P.

If £(X—D) = — oo, then Ky is not numerically effective. If there exists an
extremal rational curve ! with (%) =0, D must be reducible by virtue of

Theorem 1.1. Hence X is a log del Pezzo surface of rank one with
contractible boundary (for the definition, see [18]). Then we have po(X) =2.
Hence X is a Hirzebruch surface F, of degree » and D is a minimal section of
X.

(4) Since (X, D) is almost minimal and £ (X—D) =2, we have

— 2
(D*+K)2= (0" - ) + (k) =24 (k3) >0,
By Lemma 2.2, we have

<=2

n
Since n=>2 it follows that n=>5.

Let D be an irreducible complete curve and let X and X be nonsingular
projective surfaces. Let i: D ==X and i": D =X’ be two closed immersions of
the curve D. We say that (X, D) and (X', D) are equivalent if there exist
Zariski-open neighbourhoods UCX and U'CX’ of i (D) and i (D’) respectively,
and an isomorphism g: U—U’ such that gei=1".

We state the following theorem due to Mohan Kummar and Murthy [14,
Theorem 2.1]. They proved the theorem by using Fujita-Miyanishi-Sugie
theory (cf. [2] and [10]). Our proof depends on the Mori theory.

Theorem 3.4. Let X be a nonsingular projective rational surface and D a
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(—n)-curve m=1) on X. Then the following conditions are equivalent:
(i) (X, D) is equivalent to (Fn, My).
(i) E(X—D)=—0c0.

Proof. It suffices to show that (i) follows from (ii). If n =1 then
(X, D) is equivalent to (F;, M) by Nagata [15, Theorem 3]. Hence we may
assume that n=>2. Let X'=dilp(X) with PED and D’ the proper transform of
D in X’. We note that (X, D) is equivalent to(F,, M,) if and only if (X’, D)
is equivalent to (Fnt1, Mu+1). If there exists a (—1)-curve E with (E * D) =
1, then (X, D) is equivalent to (F. M,) by the above remark and the
induction hypothesis. So, we may assume that (E *+ D) 22 or (E + D) =0 for
any (—1)-curve E on X. By contracting all (—1) -curves with (E * D) =0,
we may assume that

(E-D)=2

for any (—1)-curve E on X. Then, by Lemma 3.2, (X, D) is almost minimal.
Hence X=F, and D=M, by Theorem 3.3, (1). This proves the theorem.

By Theorem 3.4, we have the following:

Corollary 3.5. (cf. [14]). Let (X, D) be the same as in Theorem 3.4.
Let f: X—X be the contraction of D to a quotient singular point P and A the local
ring of)? at P. If E(X—D)=—00, then we have

AEk[X", X"_IY, e, Xﬂ—iyi' . yn]m'

where m is the maximal ideal corresponding to the origin.

4. The structure of surfaces X—D for the case ¥(X—D) =0

Let (X, D) be as in the introduction. We assume that (X, D) is almost
minimal and £(X —D) =0. By Theorem 2.3, we know the configuration of
such a divisor D. In this section, we shall study the structure of such a pair
(X, D) and give some examples.

If (X, D) is of Type (A) in Theorem 2.3, then |D+2E| is an irreducible
pencil of elliptic curves for any (—1)-curve E (cf. Theorem 3.3, (2)). This
is the case also in Type (B,) with additional conditions. More precisely, we
have the following structure therem on such a pair (X, D).

Theorem 4.1. Let (X, D) be the same as in Theorem 2.3. If (X, D) is
of Type (A) or (B,) (n#8), then there exists a (—1) ~curve E on X such that
ID 4+ 2E | is an irreducible pencil of elliptic curves. Namely, X has an elliptic
fibration over P* which contains D in a fiber.

In the case (B,), let D= 227}D; be the irreducible decomposition of the
above D with (D%) = (D%,;)) = —3 and (D?) = —2, 1 <i <u. To prove
Theorem 4.1, we need the following lemma.
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Lemma 4.2, Suppose that (X, D) is of Type (By) and that there exists a
(— 1) -curve E such that (E *+ Do) = (E * Dpy1) =1 and (E * D;) =0 for all
i (1<i<n). Then |D+2E| gives an irreducible pencil of elliptic curves.

Proof. First, we shall prove that h°(D + 2E) = 2. By the Riemann-
Roch theorem,

h°(E—K) 2%(5—1{ «E—2K)+1=1,

where we note that the hypothesis D + 2K ~ 0 implies (K?) = — 1. Hence
[E—K|# @. In the same way, we have h°(D+E+K) >1, ie., |[D+E+K|# 0.
Meanwhile, by [9, Lemma 2.1.3], we have [D+K|= @ . We also note that
|—K|=@. Indeed, suppose to the contrary that | —K|# @. We have

D+K=(D+2K)+ (—K).

Since D+2K~0 and |—K|# @, we have [D+K|# @. This is a contradiction.
Since [D+K|= @, E is not a fixed component of [E+D+K|. Furthermore,
since |—K|= @, E is not a fixed component of |[E—K|. Since

D+2E= (D+E+K)+ (E—K),

the above remark implies that E is not a fixed component of D+ 2E|. Since
D+2E is effective, this implies that h®(D+2E) >2.

Next, we shall prove that h°(D + 2E) <2, hence h°(D + 2E) = 2. The
following exact sequence

0—’@)( (Do+ +Dn+2E) _'6X (D+2E) _’01.)..,_'0

implies that h°(D+2E) <h°(Do+ - +D,+2E) +1. From the following exact
sequence

0—0x Do+ +Dy_1+2E)
—0x(Do+++++Dy+2E)—0,, (—1)—0,

it follows that h°(Do++-++D,+2E) =h°(Dy+++-+D,_1+2E). Hence we know
that

h*(D+2E) <h°(Do+2E) +1.
Furthermore, from the following exact sequence
0—0x (2E)—0x (Do +2E) —0,,(—1)—0,
we have

h°(Do+2E) =h°(2E) =1.
Hence h°(D+2E) <2, ie., h°(D+2E) =2.
From the above argument, it follows that none of Dy, D,+; and E are fixed
components of |[D+2E|. Suppose that there exists an integer i (1<i<n) such
that D; is contained in the fixed part of [D+2E|. Then we can easily verify
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that Do, ***, D» and D41 are also contained in the fixed part of |[D+2E|. This
is a contradiction. Hence |D + 2E | contains no fixed conponents. Since
(D+2E)?=0, it follows that [D+2E| is a pencil of curves without base points.
Hence |D+2E| is an irreducible pencil of elliptic curves because p, (D+2E) =
1 and D+2E is a connected member of |D+2E]|.

Proof of Theorem 4.1. We shall prove the case n =4 only. The other
cases can be proved in the same way. The configuration of D is given as
follows:

Figure 17

By Lemma 4.2 it suffices to show that there exists a (—1)-curve E such
that

(E + Do) =(E + Ds) =1.

We prove our assertion by the reductio absurdum. Namely, suppose that there
exist no (—1)-curves which meet Dy and Ds.

Since (K%) = — 1, there exist (— 1) -curves on X. Now D+ 2Kx~ 0
implies that (E + D) =2 for any (—1) -curve E. Then we have one of the
following two cases:

(I) There exists a (— 1) -curve E which intersects two distinct

irreducible components of D.

(II) For any (—1) -curve E, there exists an integer i (0<i<5) such

that

(D+E)=(D;+E)=2.

We consider the above two cases separately.
Case (I). Let E be a (—1)-curve as above. By the above hypothesis,
we may assume that one of the following nine cases takes place:

(I-1)(E-Ds)=(E - Dy =1,
(1'2) (E'Ds)z(E'Dl)zl.
(I-3)(E-Ds)=(E Dy =1,
(1‘4) (E'Ds):(E‘D3)=1,
(1-5)(E-Dy)=(E - Dy)=1,
(1-6) (E'D4)=(E‘Dz)=1.
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(I-7)(E-Ds)=(E - Ds) =1,
(I1-8)(E+D3s)=(E - Dy =1,
(I1-9)(E-Ds)=(E - Dy)=1.

We shall consider separately each of the above cases.

Case (I -1). Let g: X— Y be the contraction of E, Ds, Ds, D; and D;.
Then we have

(% (Do) ?) = =2, (ux(Ds)®) =14, (ux (Do) * (1% (Ds)) =2.

Let f: Y—F, be a birational morphism. Put Do= (f°u) (Do) and Ds= (fop) %
(Ds).

Case (1 -1-a): Doy=M,. Since Do+ Ds~ — 2Kp, Ds~3M,+2mn+2) 1,
where [ is a fiber of the ruling on F,. By making use of the hypothesis that
there are no (—1) -curves meeting D, and Ds, we can readily show that n=2.
Hence Y dominates a surface obtained by blowing up a point P on F; lying
outside of M,. Let Ip be the fiber of the ruling on F; which passes through P.

Since (lp - D—s) =3, the proper transform of Ip on X is a (— 1) -curve which
intersects Do and Ds. This contradicts the hypothesis of the reductio
absurdum.

Case (I-1-b): [Tf#M,,. We prove the following claims 1 and 2.

Ciamm 1. n<2.

Proof. Since Do, Ds# My, we have

(M * Do+Ds) = (M, + —2Kg) =2(2—n) >0.

Hence it follows that n<2.
CLaIM 2. We have (170 . 175) = (ﬂ*(Do) * Uk (Ds)) =2.

Proof. It is clear that (Do+ Ds) > 2. Suppose that (Do* Ds) > 3.
Since px (Do) + % (Ds) +2Ky~0, there exists a (—1) -curve C on Y such that

(C* ux(Do)) = (C * ux(Ds)) =1. The proper transform C of C on X is then a
(—1) -curve with (C * Do) = (C * Ds) =1. This contradicts the hypothesis of
the reductio absurdum.

If n =2 then Supp(Do+ Ds) N Mz = @ . Hence Y dominates a surface
obtained by blowing up a point on F lying outside of M; and hence dominates
F.. If n=0 then Y dominates a surface obtained by blowing up a point on
Fo=P'X P! and hence dominates F;. Hence by the hypothesis of the reductio
absurdum, there exists a birational morphism g: X— P? such that g« (D) =
g% (Do) +gx (D1) ~ —2Kp: and (g« (Do) * g« (Ds)) =2. This is a contradiction.

Case (1-2). Let gr: X—Y be the contraction of E, Dy, D2, D3 and Ds.
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Then we have
(% (Do)?) =1, (ux(Ds)?) =5, (ux (Do) * % (Ds)) =5.

Let f: Y—F, be a birational morphism. Put B,: (few) x(Dy) (i=0,5). Asin
Claims 1 and 2, it follows that # <2 and (Do * Ds) =5. Hence, as in Case ( I
-1-b), there exists a birational morphism g: Y—P? such that (g°u) (D) = (g°
1) % (Do) + (g°p) «(Ds) ~ —2Kp:, # (gop1) « (Do) N (gep) x(Ds) =1 and ((g=p)
+(D) -+ (g°p) «(Ds)) =5.

Put Dy =(g° ) «(Do) and Ds: = (g°p) «(Ds). Then P=DyND; is a
double point of I%. Since Ds is singular and (D, * D5) =5, it follows that D is
a line and Ds an irreducible rational curve of degree 5. Then Ds has another
double point, say Q. Let H be a line which passes through P and Q. Then
we have one of the following three cases, where i(Ds+ H;P) is a local
intersection number of Ds and H at P.

(i) i(Ds-H;, P)=i(Ds* H; Q) =2.

(i) i(Ds+ H;P)=3andi(Ds* H; Q) =2.

(iii) i(Ds+ H; P)=2and i(Ds* H; Q) =3.

We consider the above three cases separately.

Case (i). There exists a point RE€DsN H other than P and Q. Then Ds
is smooth at R. Let H be the proper transform of H on X. Since R is not a
fundamental point of g, H is a (—1) -curve with (H+ D, =(H+ Ds) =1. By
arguing as in Case (I -1), we have a contradiction.

Case (ii). Let v: F;—P? be the inverse of a blowing up with center P.
Then we have

(V' (Ds) + v (H)) =3, (' (Do) *+ v (H))=0,i(v (D5) - v (H); v (Q)) =2.

Hence P =v'(Ds) N v/ (H) N v~ (P) is a smooth point of ' (Ds). Let H be the

proper transform of H on X. Then His a (—1)-curve with (H + Ds) = (H -
D,) =1. By arguing as in Case (I -1), we have a contradiction.
Case (iii). By an argument similar to Case (ii), we have a contradiction.
Case (1-3). Let g X—V be the contractions of E, Dy, D3 and Ds. Then
we have

(ﬂ* (Do) 2) =-3, (#* (Dl) 2) =1, (/l* (Ds) %) =4,
(% (Do) * s (Ds)) =0, (ux(Dy) * ux(Ds)) =4.

Let f: X—F, be a birational morphism. Put (D;) = (fex) «(D;) (i=0, 1, 5).
Case (I1-3-a): Dy=M,. As in Case (] -1-a), we know that there exists

a (—1)-curve E on X such that E intersects two of the three components Do,
D; and Ds. By returning to Case (I-1) or (I-2), we have a contradiction.
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Case (1-3-b): Do#*M,. As in Claim 2, it follows that
(D * Dy) =1, (Do * Ds) =0, (D; * D5) =4.

Furthermore, as in Claim 1, we know that » <2. By arguing as in Case
(I1-1-b), we have a contradiction.

By an argument similar to Case (I -3), we can show that Cases (I -4) ~
(I-9) do not occur.

Case (II). Let f: X—F, be a birational morphism. Note that f«(D) +
2Kp,~0 and f(D;) #0 for any i (0<i<5). We consider the following two
cases (II1-1) and (I[-2) separately.

Case (Il -1): f«(D;) = M, for some i. Then by arguing as in Case
(I -1-a), there exists a (—1) -curve E” on X which meets two irreducible
components of D. This contradicts the hypothesis in Case (II).

Case (Il -2): f«(D;) # M, for any i. Then, by the hypothesis in Case
(II), we have

1 ifli—j|=1
«Di) * f«(D;) =
VD) - £+ D) =] if [i—j [>1
whenever i # j. Hence by arguing as in Case (I -1-b), we have a
contradiction.

This completes the proof of Therem 4.1.

Remark 4.3. Let (X, D) be the same as above. Gurjar and Zhang
proved that there exists a (—1) -curve C on X such that C meets a terminal
component of D (cf. [4, Proposition 3.1]).

Corollary 4.4. Let (X, D) be the same pair as in Theorem 2.3. If
(X, D) is of Type (By), there is a one-to-ome correspondence between the following
sets (X) and (Y):
(X) consists of (—1)-curves E on X such that (E * Do) = (E * Dpy1) =1 and
(E * D;) =0 for any i(1<i<n).
(Y) comsists of irreducible elliptic pencils A such that Supp (D) is contained
in a member of A.
If (X, D) is of Type (A), there exists a one-to-one correspondence between the set
of (—1)-curves on X and the above set (Y).

Proof. Let A be an irreducible elliptic pencil which contains Supp (D)
in a member Cp. Then Cy is a reducible member whose components have all
self-intersection numbers <—1. Since (Co— D * Kx) = — 2, there exists a
component E of Co such that (E * Kx) <0. Then E is a (—1) -curve. Since
(D+2E)%2=0, we have that Co=n(D+2E), where n>0. If D is irreducible
then, by Theorem 3.3, (2), the assertion is clear. If D is reducible then
(E* Do) = (E* Dyy1) =1 and (E+ D;) =0 for any i (1 <i <u). Hence by
Lemma 4.2 |D+2E| is an irreducible elliptic pencil and hence A=|D+2E |.
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Now we shall give several examples.

Example 4.5. (cf. [14]). Let C be a rational sextic plane curve with
ten double points. Let g X—P? be the minimal resolution of singularities of
C and let D be the proper transform of C on X. Then we have that (D?) =
—4 and D+2Kx~0. Hence the pair (X, D) is of Type (4).

Concerning the above example, we shall explain a construction due to
Miyanishi of the pair of Type(A4).

Example 4.6. Let k be an algebraically closed field whose
transcendence degree over the prime field Il is infinite. Let P;, -, Pg be
independent generic points of P? over a field ko (not necessarily an algebraic

closure of II) and let A: =|31— 2%, P;| be the linear pencil of cubic curves
passing through Py, **-, Pg, where I is a line on P2 Let C be a generic member
of A over ko (Py, ***, Pg) and let Py be a point of C such that 2(P,+--++Py) =0
is a unique relation among Py, ***, Py In particular, Py is not a base point B of
A. In fact, the tangent line Iz of C at B meets C at a point @, and there are
three other lines through @ which are tangent to C. The point Py is one of
the three points whose tangent line [y, passes through Q. Then there exists

an irreducible sextic curve So such that So* C=2%-; 2P;. Let L be a linear
pencil spanned by S, and 2C.

Let o: Y—P? be the blowing-up with centers Py, ***, Py, and let L": =p’L
the proper transform of L. Then L’ is a linear elliptic pencil without base
points, in which 20" (C) is a unique multiple member. Since ¢;(Y) =12, L’ has
singular members. In fact, all fibers are irreducible. Let & be the number of
members which have nodes, and let 8 be the number of members which have
cusps. Then we have a + 28 = 12. Namely, L’ has at most 12 singular
members (except 20" (C)) and at least 6 singular members (except 20 (C)).
Let S” be one of the singular members of p'L and let Pj, be the singular point
of . Let o: X—Y be the blowing-up with center Py, and let D: =0’ (S’) be
the proper transform of S” on X. Then it is clear that (D?) = —4 and D+ 2Ky
~0. Hence the pair (X, D) is of Type (4).

We shall give some examples of the pairs (X, D) of Type(B,).

Example 4.7. Let Cy, Cz be two cuspidal cubic curves on P? such that
C; has a cusp P, and C; has a cusp P, where Py #P,. Furthermore, assume
that C; and C, meet each other in nine distinct points{Ps, ***, P;;}. Let ¢ X—
P? be the blowing-up with centers Pj, ***, Py and let D;; = ¢’ (Cy), i =1, 2.
Then the pair (X, D1+D;) is of Type (Bo).

Example 4.8. Let C;, C; and Cs be three nonsingular conics on P2
Put C; N C,= {Pl, e, P4}. C, n Cs;= {Ps, .y, Ps} and Cs N C. = {Pg, (A Plz}.
Assume that P; # P; whenever i #j. Let @ X—P? be the blowing up with
centers Py, ***, P1; except for P, and Ps and let D;=p'(C;) (=1, 2, 3). Then
(X, D1 +Dy+Ds) is of Type(By).
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