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Global deformations of 1'2 -bundles over P I

By

ik11 NAKAMURA

§ 0 .  Introduction

In  th e  present artic le  w e study com plex analytic global deformations of
P 2 -b u n d le s  o v e r  P l . I n  t h e  tw o  d im e n s io n a l c a s e  t h e r e  a r e  two
homeomorphism c lasses o f P ' - bundles over e a c h  c l a s s  b e i n g  stable (or
closed) and transitive under global deformation. In the three dimensional case
there are exactly three homeomorphism classes of P 2 - bundles over P1 , tha t is,
first of all those w ith the  f irs t Chern class divisible by three, secondly those
homeomorphic to  P I  X  P 2 ,  and  the  re st. W e note th a t no  P 2 -bundle over P I

with the  first Chern class divisible by  three  is homeomorphic to  P ' x  P 2 . Any
P 2 -bundle over P ' is something like a  Fano threefold of index greater than 3
but less than 4, though its anti-canonical line bundle may not be ample. Using
this Fano-like character of P 2 -bundles over P I , we prove the following

Theorem 0 . 1 .  The set consisting of all P 2 - bundles over P l  w ith  the f irst
Chern class divisible by three is closed and transitive under global deformation.

Theorem 0.2. The set consisting of all P 2 - bundles over P l  whose f irst
Chem class is indivisible by three and which are not homeomorphic to P ' x  P 2 is
closed and transitive under global deformation.

Theorem 0.3. The set consisting of all P 2 - bundles over P I  homeomorphic
to I:" x p2 and of all P i - bundles over P 2 homeomorphic to P I x  P 2 is closed and
transitive under global deformation.

See Theorems 2 .3  and 4.1 . See also Koll [Ko], Peternell [Pl] [P2], Siu
[S1] [S2] and Nakamura [N1] [N2] [N3] [N5] [N6] [N7] for the related topics.

W e note I3 1  X  P 2 can be deform ed both a s  a  P l - bundle over P 2 an d  a s  a
P 2 -bundle over P l .  T h is  i s  th e  reason  w hy  P 2 -bundles o v e r P I a p p e a r  in
Theorem 0.3.

T he present artic le  is organized a s  follows. In section one w e recall the
structures of P 2 -bundles over P I . W e prepare a  few lemmas. In sections two
and three, we prove Theorems 0 .1  and 0.2 . In section 3, w e show that there
are infinitely many non-isomorphic P l -bundles over P 2 homeomorphic to  P I  x
P 2 , which arise  from topologically triv ia l unstable rank tw o bundles over P 2 .
W e prove that they are global deformations of pl x p2.
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In section 4  w e study  global deformations o f P 1 x  P 2 a n d  settle  the
remaining case of the study in section 2  so  a s  to prove Theorem 0 .3 . The
major part of the results of the present article was announced in  [N2].

Acknowledgement. T h e  a u th o r  w o u ld  lik e  to  exp ress  his hearty
gratitude to Professors T . Fujita, F . Hidaka, M. Maruyama, I . Nakai and K.
Sugawara for their advices during the preparation of the article.

Notation.
BsILI
c (E)
c, (E)
c, (X)
disc (E)
E(C, L, 0)
g  (a, b, c)

the scheme - theoretic base locus of ILI
the total Chern class LEzci (E) of a vector bundle E
the i-th Chern class of a vector bundle E
the i - th Chern class of X
the discriminant of a vector bundle E on P 2 , (3.2)
(3 . 7)
Op, (a) (DOI- (6) @OF. (C)

Fb Proj (Or (b)(1)01, )
g * IL1 tg*D;
hq (X, F) dim Ilq (X, F) for a coherent sheaf F
Ncix the normal bundle of C in X
Ox, Os, Oz the structure sheaf of X, S, Z respectively
Oxt h e  formal completion of Ox
P( (a, b, C) ) Proj (g  (a, b, C) )
sp+ (E) the spectrum of a vector bundle E on P 2 , (6.2)

(X, F) Egez ( — 1) qhq (X, F)
( )  s ,  (  ) x  the intersection numbers on S, X

the linear equivalence
(p. q) Theorem p . q, or Lemma p . q, or Proposition p . q

Paragraph or Equation (p. q)

§ 1 .  13 2 -bundles over P 1

(1.1) The structure of P 2 bundles. First we review P 2
- bundles over

P 2 . Let k = 0, 1 or 2. Choose integers a b 0 such that a ± b — k is divisible by
3. Let 3n = a  + 1)—k  0. Let g := g  (a, b, 0) = Op, (a) ED0p, (b) @ Or, X= P (g )
and let z : X— T I be  the natural projection. Let H be a tautological line bundle
of X  with 7r*H=g. Then the canonical sheaf Kx of X  is given by the formula,

Kx= —  3H+ r * (det +Kp.) = —3H+ (a + b —  2)F

where F is a fiber of 7E. Letting L:= L (g) = H —nF, we have K x= — 3L — (2 —

k) F, L 3 = deg r * L =k . Since 7r*L = g0O r ( — n), and Rqz*L=0 (q .1 )  ,  we have

Hq (X, L) --=Hq (gO0p , ( — n)) (q 0)

We see that Rqr* ( — pL) = 0 0, p = 1, 2), whence .1-1q (X , — pL) = 0 for the
same values of q and p . There are 3 cases.
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Case 1. n=0, a b O.
Case 2.
Case 3. a_n>b

Case 1-1 . Assume that k= 2 and a =b =1. Then h,° (X, L) 5 and Bs ILI = 0.
The morphism X—>134 associated with IL I h a s  a  hyperquadric W with
Hessian-rank 4 as its  image. In fact, we can choose elements xo, Xj (resp. x2,
x 3)  from H°  (Or (a — n) 0)0E1)0) (resp. H° (00)0p , (b —n) GO)) such that x 0x 3 =
11x2 . pi, is  a  small resolution of W whose exceptional set is  P (Op) =P I with
normal bundle '=Or ( - 1) e0p , ( -1 ).
Case 1-2 . Assume that k= 2, a 2, b= 0. Then h° (X, L) = 5 and Bs ILI= 0 .
T he  morphism pL : X—, P 4 associated  w ith  IL I h as  a  hyperquadric W with
Hessian-rank 3 a s  its  image. In fact, we can choose elements xo, x i  and 12
from H° (Or (2) E D  ED 0 ) such that x i = xox2. Pt. i s  a  divisorial contraction
whose exceptional set is E:= P (Op, (b) @ Op) = P 1 X P 1. The restriction map
PLIE: E— T ' is  a P I -bundle whose arbitrary fiber C has the normal bundle Nchy

OreOp. ( - 2) .
Case 1-3 . Assume that k= a = 1 and b= 0. Then h° (X, L) = 4 and BsIL I = 0 .
The morphism X - 4 ' 3 associated with ILI is a  divisorial contraction whose
exceptional set is P (Or (b) ED0p.) =PI X  13 '. The morphism P L  i s  a  monoidal
transfomation of P 3 w ith  a  line center. This is seen as follows. Let I be a  line
of P 3, and p: Y—T 3 th e  monoidal transform of P 3 w ith I center. Let L be the
pull back of the hyperplane bundle of P 3 by p, E:=p -1

 (/) . Then E=P (N p )
X  p l.  Since h° (Y, L — E) =  2 and B s IL — E I= 0 ,  w e  have a surjective

morphism r: Y- 4 )1 w ith any fiber = P 2. Defining ,7:=7r* (L), then we have Y
P (g) . Let g = g  (a', b', c') (a' b' c'). Then L3=a' d- c' =1 and a'

c'_10 because Bs ILI= 0. Hence d=1, b' =c'=0. Hence X= Y.
Case 1-4 . If k =a= b = 0, then x = P i x P2 , h° (X, L) =3 and B s  IL I=  .
Case 2. In this case, h° (X, L) =n +k+ 2, B:= Bs ILI (Op) =PI. Since rr* L

(— n) , any element of 110 (X, L ) is w ritten as so (x)YO ± SI (X) y l +
s2 (x) y 2 f o r  some (so, si, 52) H °  (7 0  OP' ( n ) )  and suitable homogeneous
coordinates y  of fibers (= P 2). In particular, h° (X, L) =a+ b —2n +2=n +k +
2. Since s2 (x) O ,  B:= Bs ILI= {Yo=Y 1=0} = P i  and NBoc=0B (— a) eoB

Let f: Y—*X be the blowing-up of X with B center, E the total transform
of B, and N:= f*L — E. We see also that E P (N , )  = F a - b —b .

Let NE: = N O  O E , and eo (resp. e. or fo) a  section (resp. a section or a
fiber) of fIE: E— >13 w ith (d) E= a —  (resp. E = — a -I- b) . Then we see

(f*I') E
=f * (LE)n f o ,  NE

=
 eo+ (b —n)fo, EE

= e0 bf0,
(Ni) E =  n  k , Bs INI = 0 , H° (X, L) (Y , (E, NE) .

Let C . be a  line in F ( —P2) , C. a  proper transform of C . by f. Since C.,
intersects B transversally at one point, we have (EC.) = 1 and ( N C )  y  = O.
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Hence the  morphism g : Y- 4 P" ± k + 1  associated with IN I h as an image g (Y ) =
g (E). Since (A C E = n + k  and h° (E, N E )= n + k +  2  5 , the image g (E ) is  a
cone over a  smooth variety of minimal degree. In fact, if b>n, then g  (E) =.E=
F a- b  and Y  is  a  P 1 -bundle over g  (E) . If  b = n, then 9 1E  con trac ts  e . so that
g (E) is  a  cone over a  smooth rational curve g  (eo) of degree n+ k with g  (e.)
its vertex.
Case 3. In th is case, h° (X, L) 2) , B:=Bs ILI P (O F ) (b)
EB0p) =Fb and ILI= I (a — n)FI± B . The image of the morphism PE  i s  P 1. The
natural morphism i t  is  the same as that associated with IFI.

(1.2) Topological t y p e s  o f  13 2  bundles T o p o lo g ica l ty p e s  o f
132 -b u n d le s  o v e r  P 1 a r e  c la s s if ie d  b y  z i (PGL (3, C )) Z/3Z). Each
equivalence class (homeomorphism c la ss)  is represented by Mk:

=
P (k, 0,

0 ) )  (0  k  2). Let Lk (resp. Fk ) be the  tautological line bundle (resp. a  fiber
over P 1). Then we see

(1 . 2 .k) 1-12 (Mk, Z )  ZLkeZFk, L k, LiFk =1, F 2
k = O.

A ny homeomorphism a  of M k  keeps F k  invariant u p  to  sign, o-* (Fk) =  ±Fk.
T h e n  it  is  e a sy  to  se e  th a t a* (Fk) = F k ,  and  a* (L k )  = ±  L k +  aFk fo r some
integer a .  Since th e  ra tiona l Pontrjagin class p i (M k ) : = 3L2

k — 2kL kF k  i s  a
topological invariant, we have a* (L k ) =Lk if k*O, 'while a* (Lk) = -±Lk if k = O.
Hence a* (14) 3 = Pk = k mod 3. Thus L3k mod 3 determines the  homeomorphism
class of Mk uniquely.

Lemma 1 .3 .  L et X  be a  Moishezon 3- fold with H*  (X , Z) H*  (Mk, Z)
for some k (k=0, 1, 2). Then we have
(1 .3 .1 ) H q (X, Ox) =0 for q>0.
(1 .3 .2 ) There exist line bundles L and F on X such that L3 = k, L2 F=1, F 2 =0
and H2 (X, Z ) ZL  ±ZF , H 4 (X, Z) -=ZL 2 ±ZLF. T he line bundle L and F on X
with L3 = k, Ll2 F=1, F 2 =0 are uniquely determined if  k 1 o r 2, while ± L  and
F are the only ones satisfying L 3 =0, L 2 F=1, F2=1 for k=0.

Proof. B y  [U ],  t h e  H odge  sp e c tra l sequence  o f  X  degenerates at
E l -terms, and Hodge duality 111 4  = ha•P is true. Since b1 =b 3 =0, we have h i  = 0
if p--1—q = 1 o r 3. Moreover h i ' l

+ 2 1 , 1 2 , 1 3 _
 b2 = 2, so that h

1,1

= 2  a n d  h
2

'
° h ° '2

This p rover (1.3.1). (1.3.2) follows from (1.3.1)readily. See also (1.2)

Definition 1.4. Let k = 0, 1, 2. A  fake P 2 -bundle over P 1 of  ty pe k i s  a
Moishezon threefold X which has a pair of line bundles L and F such that

(1.4.k) H4 (X, Z) =ZL 2 EDZLF, L3 = k , L2F =1, F2 =0,
c (X) = 3L+ (2— k) F , c 2 (X ) = 3L2+  (6 2k) LF

Roughly speaking a  fake P 2 -bundle over P 1 i s  a  Moishezon threehold X
which has the same cohomology ring over Z and the same Chern classes as a
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P 2 - bundle over 13 ". W e call the pair L and F canonical generators of Pic X . We
call a fake P 2 - bundle over 13 ' of type 0 a fake P l X P 2  simply.

Lemma 1 .5 .  L et X  be a  Moishezon 3 - f old, L  and  F  line bundles an  X.
A ssume H2 (X, Z) Z EB2 an d  that L2 F =1 , F 2 = 0. If  H H ' 0 f or two nontrivial
line bundles H, H' on X , then H= bF and H' for some b and b'.

Proof. It is easy to see that H2 (X , Z)=ZLEDZF. Let H a L
-
1
-
bF and Ji m

b'F. T hen by  the  assumption, we have 0 = TH! = aa' L 2 ± (ab' a'b) LF,
whence aa' ab' - I- a' b 0. Hence a= a' =0.

§ 2 .  Global deformations of P (g  (a, b, 0)) with a±b—=1 or 2 mod 3

Lemma 2 . 1 .  L et X  be  a  f ak e  P 2 - bundle ov er P '  of  ty pe k , L  an d  F
canonical generators of  Pic X . A ssum e h° (X , L — 1 and h

°
 (X, 2. If  the

linear system  1F1 has no fixed components, then X = P (g  (a, b, 0 )) f or some
b. 0(ad- b -k  mod 3).

Proof. Let X  b e  a  fake P 2 - bundle over P 1 o f  ty p e  k. Let F , F ' be two
distinct general m em bers o f  IF I. Since F 2 =  0 , rF  i s  a  topologically trivial
effective divisor of F. Since F  is  an algebraic surface, this im plies F = 0
so that h

°
 (X, = 2. It follows that any general member Z of IFIis smooth and

Kz= 
—

3Lz. We note that Lz is  effective by h
°
(X, L)

Let 7r: X— P 1 b e  the morphism associated with IFI.
W e assume ci (Lz) = 0 to derive a contradiction. If ci (Le) = 0, then el (Ks)

=0. Then by [Ka] deg 12r* (Wx/p■) Therefore we have

h
°
 (X , — 3L±kF)=h ° (X , Kx±2F)=h ° (P 1, 7r* (0 »0 1 - )  ) 1,

with contradicts h
°
 (X , 3L —  kF) h

°
 (X , 3L — 3F) h

°
 (X , L — 1. Hence e l

(Lz) 0 , whence Z  is  P 2 o r  Z  has a  pencil of smooth rational curves f t w ith
A z = 0 . Clearly the second case is impossible. Hence Z=P 2 .

W e prove that any fiber Z ' of i t  is isomorphic to P 2 . Let Z'=E1= 0 mtZt be
t h e  decom position o f  Z '  in to  ir r e d u c ib le  c o m p o n e n ts . B y  t h e  upper
semi-continuity, we have for any positive integer m,

h
°
 (Z', mLz

,
) (P2, OP' (3

M )) ,

whence there is an irreducible component Zo of Z ' such that K (Zo, Lz 0 ) =2.
Let h: S 0—Z 0 the m inim al resolution of the normalization of Zo. Then the

canonical bundle of So is given by Kso = h *  (K + Z,) Po fo r  some effective
divisor P o of So . Hence we have

moK s o =  ( (3r — 1) moh* A ±3m oh*  (F* ) ±m oPo) Emih* (Zt).
ioo

Therefore  So is e ither P 2 o r  a  ru led  surface . If S o  h as  a  pencil o f  smooth
rational curves ft w ith  (fi)so=0, then we have



34 Iku Nakamura

2 = — (Ksoft) so 3 (h* (L)fi) so,

whence (h* (L) f t) so = 0. T his contradicts K (So, h* (L)) =- (Zo, Lz 0) = 2. Hence
S0=P2. Since S0=P2, we have P 0 0, whence S0=Z0 by the same argument as
above. Hence Zo =P2 a n d  Zo is  a  connected component of Z ', w hence Z' Z o .
Therefore X is a P2-bundle over P1, which is isomorphic to P (7r* (L )).

Theorem 2.2. The set of  all P 2 - bundles P (g (a, b, 0) ) over P 1 w ith a+ b
mod 3 is stable and transitive under global deformation.

Proof. We prove the following

CLAIM. Let k= 0, or 1. Let X be a fake P 2 - bundle over P l of type k, L and F
canonical generators of  Pic X . A ssume h° (X, L —  F).1 and h ° (X , F )  2. Then
has no fixed components.

Proof. L et Z1 + ••• + Zr + G* b e  a  general m em ber o f  IF 1, Z i movable
components a n d  G* t h e  fixed com ponents. Let Z :  =  Z i , Y  —  Z  b e  the
normalization o f Z, f: S—> Y  the m inim al resolution o f  Y, g = v • f. Then we
have K s= g* (Kx -F ) — E — G where E  and G  are effective divisor of S such
that E is finite over f (E) , while g,,, (G) = 0. Since h

°
 (L — F) 1, there exists an

effective divisor H on X such that L --= F + H r Z + H + G * . Hence we have

K s= — (g * (3L+ (2 —k)F) — Z + E + G )
= — ( (5r — kr —1)g*Z'+3g*H+ (5 —k)g * G* - f- E -FG),

where Z' is another movable component of IFI.
If g* (G* ) ± 0, then K (S) =  co . Therefore S=P 2 o r  S has a  pencil Fs=

PI with .F1= 0. However since 5r — kr - 1 4r 3, and supp (E + G ) n
(supp (Z' G * )  n Z ), whence the coefficient of any component of E + G is a t
least 4. Moreover the coefficient of g*  (G* ) is  5 — 4. Therefore if  S h a s  a
pencil of Fs = P 1 w ith  Fi= 0, then  — K sFs 3, a contradiction. Hence S = P 2 .
However then g* (G* ) =0 by 5— k Then G* Z= 0 in H4 (X , Z). B y (1.5), G*

Elb * FI and ZE IbFl, whence G* = 0 by h°  (X, F )  2. This show s that IF! has
no fixed componets.

The remainder of the present section is devoted to proving

Theorem 2.3. The set of  all P 2-bundles P (g a, b, 0) ) over 13 ' w ith  a + b
=- 2 mod 3 is stable and transitive under global deformation.

Our proof of (2.3) will be given in (2.5) -  (2.9).

Corollary 2 .4 .  L et k 1  or 2. Any jumping - deformation of  P (.7 (a, b, 0))
with a and a+ b=3n+ k is isomorphic to P (g (c, d, 0) ) for some c, d with
c_d 0 ,c -F d =3 m -Fle and c— a m—n.O.

We call X a jumping-deformation of Y if X0
-= X , and if Xt = Y for any t *  0

for a smooth family X r (t E  of complex manifolds over a disc d.
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Proof o f ( 2 .4 ) .  In fact, th is  is  a corollary to the proof o f  (2 .5). In view
of (2 .2) and (2 .3 ) any global deformation of P (.7 (a, b, 0)) with b
0 and a+b=3n+2 is isomorphic to P (.7 (c, d, 0 ))  for some c, d with 0
and c = 3m+2. Therefore it is sufficient to prove the following

CLAIM. Let k= 0, 1 or 2. P (a, b, 0)) with 0, - b = 3n - Pk is a
small deformation of P (g. (c, d, 0)) with c c +(I = 3m ±k if and only if c -

a m - 11 0.

Proof of C la im . L et {Xt} te,1 b e  a  complex analytic family over a  disc  d
such that X 0  P (  ( c ,  d, 0 )) , Xt = P (g  (a, b, 0)) fo r  t 0 0  small. Since X t

satisfies the condition in (2.1), we have unique canonical generators L t and Fr
of Pic X t . By the proof o f  (2 .5), the linear system  1Ftl defines a  morphism irr:
X i— P 1 w ith  any  fiber =P 2 . T hen by  (1 .1) we have (zo)*(Lo) d -
m,—m) a n d  (r t )* (L t ) = g - (a — n, b 

—
n, —n) for t (*0 ) small. We also see that

F t = 7L
-
70p1 (1) . Let il i : =L t — (c —m +1) F t and  Bt : = L t + (m 

—
1) F t . Then we

have h
°

(X t , Ar) (X0, Ao) =0, whence c a — n. Similarly by h 1 (X1, Bt)
(X0 , B0) =0, we have ni n.
Conversely if  c — a m 0, it  is  e a sy  to  c o n stru c t a  fla t fam ily of

vector bundles g t (t e  ) such that go = g . (c
—

m, d m, —m ) and ,7 t = g  (a -

n, b
—

n, 
—

n ) for t *  O. Then the family P (.7 1) (t E d ) is  a  smooth family of
3-folds. This completes the proof of the Claim, hence of (2.4).

A P 2 - bundle P (g  (a, b, 0)) with 0 and a +  b  2 mod 3 is  a global
deform ation ( a  sm ooth limit) of P (,7  (1 , 1 , 0 )) . C learly  P (,7 (a, b, 0 )) is
homeomorphic to P (. (1, 1, 0)).

It is c lear that any global deformation of P (g . (a, b, 0)) (a - P b 2 mod 3)
is  a  fake 13 2 -bundle  over P 1 o f  ty p e  2 whose canonical generators L  and F
satisfy the conditions h° (X , L — 1 and h

°
 (X, 2. Therefore for the

proof of (2.3)we need only to verify

L em m a  2.5. Let X  be a fake P 2 - bundle over P I  of type 2 , L  and F
canonical generators of Pic X. If h

°
 (X, L — F) 1 and h° (X, F )  2, then X P (

(a, b, 0))for some a a-kb=• 2 mod 3.

The rest of the section is devoted to proving (2.5).

(2.6) Plan of the proof o f ( 2 .5 ) .  Let X be a fake P2-bundle over PI of type
2, L and F canonical generators of Pic X. By the Poincaré duality we have

(2 . 6 .1) 114 (X, Z) =ZL 2 EDZLF,

Since K x =  — 3L and h° (X , L) 2  b y  the conditions in (2 .5 ), w e have
h2 (X, Ox ) =0. Also hl (X, Ox) =0. Since 112 (X, Ox) -= X (X, OX) 

—
1, we have

(2.6.2) X (X, Ox) (X)c2 (X) =1, hq (X, Ox) =0 (q 1) ,
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W e u s e  (2.6.2) frequently without mentioning in  the  subsequent proofs. We
see also

(2.6.3) x (X, pL+qF) =Fp+1) (p+2) (2p-F3q+3).

We note that h° (X, L )  2 by h
°
 (X, L—F) 1 and h° (X, 2.

L et D  b e  a  general m em ber of L i .  L e t  D = ••• + + F * b e  the
decomposition of D into irreducible components, Z, movable components (1

F * t h e  fixed com ponents. S ince h1 (X , Ox) 0, a n y  Z , is linearly
equivalent, so we have D =rZ +F * w here w e set Z=Zi. Let A: =Ox (Z) E Pic
X. Let 1): Y—>Z be the normalization of Z, f: S—p Y the minimal resolution o f Y,
g = v • f. T hen  there  ex ist by  [N3, (2.A)] effective Cartier divisors E and G
on S with no components in  common such that the canonical bundle K s of S is
given by

K5=9* (Kx+A) —E—G

where f* (G) = 0 and E is finite over f (E). Let E: =E U 9-1 (Sing Z). Then E
contains supp (E-f- G) and gis\z is  an isomorphism. W e also note tha t the base
locus Bs g* ILI contains suPP + G) if D is sufficiently general. Since h° (X,
Z) 2, g* (A ) is  effective. Let g* (A) =M+ N be a general member of g* IAI, M
(resp. N) the movable part (resp. the fixed part) of g*IA I. Then

K s = — ( (3r — 1)M+ (3r — 1) N+39 * (F*) +E+ G)

whence S is either I" or a  ruled surface.
Case 1. S
Case 2. p: S—T ' is  a surjective morphism with general fiber Fs =13 1 .

W e discuss Case 1 i n  (2.7), and Case 2 in  (2.8) - (2.9). In  any case we
prove X=P (g (a, b, 0 )) with a+b =- 2 mod 3. The indices a and b are given as
follows.

S dim W (a, b)

Case 1. F" 1 a_ n > 60 , a± b = 3n + 2 (2.7)
Case 2- a ruled 2 a ad- 6 =3n+2 (2.8.3)

Case 2-b ruled 3 (2, 0) or (1, 1) (2.8.4)
where W is the image of X by the rational map PL.

Lemma 2.7. (Case 1) P(fJ (a, b, 0)) for som e a , b b 0 ,  a+ b
=3n+2).

Proof. By the assumption S 13 2  under the notation a s  in  (2.6). Then G
= 0. W e prove that M= N =E= 0 and g*F* e lOs (1) 1. Assume g* (F*) = 0. I f
moreover N = 0, th e n  E = 0  b y  Ere d -Nred. H ence — K s =  (3r — 1) M, a
contradiction. Therefore N * 0, E * 0 and M = 0, whence N = E E lOs (1) I. It
fo llow s from  t h e  subadjunction fo rm u la  [N3, (2 .A )] t h a t  Z  is singular
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generically along g (E) with

e(Wv,Eu) —e (QV, Eu) =1

where V is a  suitable Zariski open subset of Z, U the inverse image of V in S
and Eu:= E n U ± .  Meanwhile (Lg* (E))x= (g *  (L)E)s= (NE)5=1, which
shows deg (g 1E ) =  1. However if deg (91E) = 1, then e (Q'v, Eu) — e E u ) .  2
b y  [N3, (2.A) and  (2 .6 )], a contradiction. Hence we have M =N =E= 0 and
g* (F* ) = OE lOs (1) I. It follows from E 0 that Sing Z is isolated, whence Z is
normal. Therefore S = Y = Z =  P 2. From now we identify S with Z, g  with the
identity of Z.

Since Ax -= OE, we have h° (X, A)=2 and Bs IA 1=0 by hl (X, Ox) = 0. Let
7r: X-431 be  the morphism associated with IA I. Then by the same argument as
in  (2 .1 ) we see that any fiber Z' of it is isomorphic to P 2. Therefore X is  a
P 2 - bundle over P i , which is isomorphic to P(7r*(L)).

The direct image 7r* (L) is  a  locally free sheaf of rank 3 over P I , so that
r*(L) =,7 (a', b', c') for some a' by a theorem of Grothendieck. Let a:=
a' — c', b:= b' — c' and n:= — c'. Then a ± b= 3n ± 2 because a' b' = deg
r*(L) = X (V, (L)) — 3 =X (X, L) —3 = 2  b y  (2 .6 .3 ). Since dim Bs 1L1 2 ,2,
we have b'<0, c'<0, whence a.n>b__0.

(2.8) Case 2. Now we come back to (2 .6). We have settled (2 .6) Case
1 in  (2 .7 ). Here we consider (2 .6 ) Case 2. Let Fs be  a  general fiber of p.
Under the notation in (2 .6) we have

2= —KsFs= ( (3r-1)M +  (3r-1) N+39* (F* ) E ± G ) Fs.

We recall supp (E±G) csupp (N) by Bertini's theorem. Hence if  (E±G)
F  then (3r — 1) 2 ,  w hich  leads to  a  contradiction — KsFs __ 3.
Therefore EFs  = 0, GF, = 0. Hence M Fs = 1 or NF, = 1 and in  either case we
have r=1, g * ( ) 1 and g * (F* ) F s = O.

Lemma 2.8.1. Let h: X— T m  be the rational map associated with ILI, W the
closure of the image of X\ Bs IL I and m=h ° (X, L) — 1. Then
(2 . 8 . 1 .1) r 1 ,  EFs =GFs =g * (F* )Fs =0 and g* (L)Fs =1.
( 2 .8 .1 .2 )  dim if  and only if 2.
( 2 .8 .1 .3 )  If  dim W =3, then any general M is a  smooth rational curve and
MFs =1, NF= 0, M2 = 2, MN= Mg* (F*) = ME = MG = O.

Proof. (2 .8 .1 .1 ) was proved above. If dim W =1, then r is  divisible by
d: =deg W, whence d 1, W=13 1 and m=1. This proves (2 .8 .1 .2).

Next we assume dim W=3. Then M * 0 .  If  NFs =1, then MFs = 0 so that
ME laFs1 for some T h e n  s i n c e  h • g (M) is a point by M2 =0, whence dim
W=2, a contradiction. Therefore NFs = 0 and MFs = 1. Hence there is a unique
irreducible component r of M such that F F s = 1. Since M is general, we have
M= F. Then we have 0  /-'2 2 .  In fact,

2 — 2g =- — (Ks+r)r=r2+ (2N+3g* (F*) +E+G)rr2,
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where q is the virtual genus of r, whence 1- .2 2. We also see

F 2=g * (L )r-N rg* (L )r- deg Bs g* IL Ir  deg (h • g) 1r - deg (h - g )  (r.)._ 1,
whence 1 .F 2 2 and N r=  O. Hence Er= Gr= 0 by supp (E +G) c supp (N).
Clearly g*(F * ) r= o  so that F 2 =2, 9=0 and r=p1.

Lemma 2 .8 .2 . dim  W 2  and h° (X, L — F) _ . 2.

Proof. B y  (2.8.1) it  su ff ice s  to  p ro v e  h° (X , L — F) 2. Assume the
contrary. H ence h° (X , L — F) = 1 b y  th e  assum ption i n  (2.2). W ith  the
notation in  (2.8.1) w e have g* (Z) F s = (M + N) Fs  =1, whence g* (Fs) *0 . If
g* (F) F s = 0, then F* .qF for some q 1 in  view o f  (1.5.2) because g* (F* ) Fs
=0. This contradicts h° (X, F )  2, because F * is  the fixed part of ILi. Since Fs
is movable, g* (F) F s 1 .  Similarly g* (L. —  F) Fs 0  by h° (X, L —F) 1, whence
g* (F) Fs  = 1, g* (I, —  F) F s  = 0 by g* (L)F s -= 1. Let H=L —F and F* -- pLd- qF for
some p, q. Then p -F q = 0 by g* (F* ) F s = O. Therefore p.._0 and F* =. pH, whence
F* =pH as effective divisors. If p= 0, then the  liniear system ILI has no fixed
components so that X -= P (g  (a, b, 0 )) fo r  some a b . 0, a+b -- 2 mod 3 by
A ppendix  (A l). H ow ever then  h° (X, L — F) 2, a contradiction. Therefore
p . i .

Since Z is irreducible reduced, we have hq (X , — z) = 0 for q = 0, 1, while
h° (X, — z) =h ° (X, —2L— F*) =0. Therefore by (2.6.3)

h2 (X, — z) = x (X, — z) = x (X, (p — 1) L — pF) =. --p (1)+1) (1— p) ,

whence p = 1, Z E  IPI. In  pa rticu la r, any general member of IFI is irreducible
reduced and F h a s  n o  fixed components.

Let F, F ' be  tw o  distinct general members o f  IF I. Since F2 = 0, PF i s  a
topologically trivial effective divisor of F. Since F is  an algebraic surface, this
implies F fl F' = 0 so  that h° (X, F) = 2. It follows that any general member Z
o f  IF  I is sm ooth  a n d  Kz "1"-- — 3Lz, w hence Z  =  P2 . T h is  contradicts the
assumption of Case 2.

Lemma 2.8.3. (Case 2-a) If dim W=2, then X= P (g  (a, b, 0)) fo r  some
a b n.. 1(a - Fb=3n - F2).

A proof o f  (2.8.3) is given in  (2.9).

Lemma 2.8.4. (Case 2-b) I f dim W=3, then X = P(  (1, 1, 0)) or P (g.

(2, 0, 0)).

Proof. We keep the notation in  (2.6) a n d  (2.8.1). W e apply the results
a n d  th e  a rg u m e n ts  in  [N4] a n d  [N5], some o f  w hich  a r e  review ed in  the
appendix. We note that most of the arguments in [N5, §1-§3] can be applied to
X. The image C:=9 (M) of M is  an irreducible component outside Bs IL I of z n
Z' fo r  some Z' E ILI with LC=Lg* (M) =- g* (L) M = 2. M oreover by [N5, Lemma



Global deformations 39

2.1], C is  a  smooth rational curve, which is a  connected component of Z fl Z'.
Since 2=LC=deg Bs ILIcd- deg(hIc)deg W, we have deg W=1 o r 2.

If  deg  W =1, then  h° (X , L) = 4 and w e can  p rove  by  the arguments in
[N5, Lemma 4.3.2] that Bs ILI consists of a single point. Hence by (A. 1), X=
P  (a, b, 0 )) for some a , b. See Appendix. However there are no cases in (A.
3 ) with dim Bs IL I= 0. Hence h° (X , L) = 4 i s  impossible. Therefore by the
argum ent in [N5, Lemma 3.2] h° (X, L) =5 and W is a  hyperquadric in V. We
can prove Bs IL I=  0  by applying the argum ents in [N5, Lemmas 3.6-3.7]. If
W is sm ooth, then X = Q3 b y  (A.2), w hich contradicts b2 (Q3 ) = 1. I f  W is
singular, then X=P (.7(1, 1 ,0 ) )  o r  P ( (2, 0 ,0 ) )  b y  (A.2).

(2.9) Proof of (2 .8 .3 ). We keep the notation in (2.6) a n d  (2.8.1). The
proof is divided into several steps.
Step 1. B y  (2 .1 ) w e  m a y  assum e th a t  th e  linear system  IF  I has a  fixed
component. Further we assume h° (X , L— 2F) For any general FE IFI there
exists an effective divisor H such that L -=.- 2F +H . Therefore

K s =  (49*F+29 *H+39 *F* ±E ±G ).

Since KsFs = — 2, we have g* (H)F=1, g * (F* ) Fs =0, (F)F s = 0 b y  (2.8.1).
Since L and F span H2 (X , Z) , we have F * =aL+ bF for some integers a , b.

Then a s  (Fsg*L)5=1, we have 0 =F sg*F * =aF sg*L -FbFsg*F=a, whence F*=
bF. Since F* is  the  fixed pa rt o f IL I, we have b= O. Consequently ILI has no
fixed components and  d im  B s  IL i 1 . B y  (A.3), X  P (a, b, 0 )) fo r some

Since dim W=2, we have a.._b_nl,a -Fb=3n-F2 for some n.
Step 2. W e assume h° (X , L — 2F) = 0 and th a t th e  linear system  IF I has a
fixed component. We prove that it is impossible.

W e  note th a t h° (X , L  —  F ) 2 and  h° (X, 2 b y  th e  assumption in
(2.2) a n d  (2.8.2). Let +••• + F t  (resp. Z + • • • +  +F1) be a  general
member of IL— FI (resp. IFI) w here  F t (resp. F t) is the fixed part of IL—FI (resp.
IF I). Let Z': = and Z": = Z'j'. Let g':S'—>Z' (resp. g":S"—>Z") b e  the minimal
resolution o f  th e  norm alization o f  Z' (resp. Z " ).  L e t M' (resp. M ") b e  the
movable part of g'* (Z') (resp. g"* (Z ")) and let N' (resp. N ") be the fixed part
of g'* (Z') (resp. g" * (z ")). Then w e have

Ks , = — (3p - 1) (M' + N') —g'* (3qZ" +3Ft +3Ft) —
Ks - = — (3q —  1) (M" +N") —g"* (3pZ'+3FP+3Ft)— (E" G")

fo r some effective divisors E', G", E" and  G"  a s  i n  (2.6). T here  a re  three
cases.

Case 2 -1 . S '1 12.
Case 2-2. S ''=P 2.
Case 2-3 . S' and S" have a  morphism onto a  curve w ith general fiber=

p l

Case 2 -1 . By the assumption, F ' 0 a n d  Z'' *  O. If g' * (Z'') = 0, then Z'= b'F
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and Z"= b''F for some b' 1 and b" b y  (2.8.1). Hence (pb' —1) F + Fr e
2F1, which contradicts h

° (X , L - 2F) = 0 . Therefore q=1, g'* (z") *0, M'=
N' = g'* (Fr) =  = G' = 0. Hence Fr = b'''F, w hence (Pb' + b" ) F = L - F, a
contradiction
Case 2-2. The same as in Case 2-1.
Case 2-3. Let p': (resp. p": S"-0.13") be a  morphism onto a  curve with
general fiber F's =P 1 (resp. F'.;= P 1). By the same argument as in (2.8) we see
that p=q=1, (Nr - I- N')F's =1 and (M "± N " )r1 .

T here  ex ists an  irreducible component r  of M' +N ' w ith  rrs=1. We
prove that F ' is  a  component of N'. Assume the contrary. Then M' = T ' and
(r )  2 O . Let Ks, = - 2 F ' -D '  for an effective D'. T h e n  (F ') 2 = — (Ks ,  + r)

whence 0
Case 2-3-1. Assume (T') 2 = 2. Then F ' (S' , Os, ) = 0, whence S' is  a
rational surface and p'*Os, (r )  is  a  locally free Or

-
module of rank tw o. Let

P O s '(r ) =OP' (C) @OP' (d ) . Then c +d =2 b y  4 1 2 =2. Moreover since e(S',
= 4 and B s Ir  I=  0 ,  w e  have (c, d) = (2, 0) o r  (1.1). In either case we

have a birational morphism h': S'- 4147 ': =P (pws, (r'))(= F2 or F 0). W e  note
= h' (F ') a n d  Kw s,) -  2 h *  .  S ' is  ob ta ined  from  W' by

repeating blowing-ups. Any rational curve C with C2 = - 1 at any intermediate
s te p  o f  blow ing dow ns is contained in  the  im age of supp D ' because any
irreducible component of D ' h a s  the  coefficient 2. Therefore  if  S' is  no t
isomorphic to W', then at least a blowing up is performed at a point of h' (F  ,
whence (r) 2 <h*(F') 2 = 2. However (r )  2 = h* (T1 2 = 2 by  the assumption,
which shows that S'= W. Hence g'* (z") =0. Therefore by (2.8.1), we have Z'=
b'F, Z"=b''Fand (pb'-1)F+Fi E IL 2F1, which contradicts h°  (X, L - 2F) = 0.
Case 2-3-2. I f  (r) 2 = 1, then KsT'± (F') 2 = (F ') 2H e n c e  F'
=13 1 , and K si -  = - 3 and D'F' =1. However any irreducible component of D'
has the coefficient_ 2 because supp (E'd- G') Csupp N'. S ince r'cD', we have
n y a contradiction.
Case 2-3-3. Assume (I - ) 2 = 0. T here  is T* (# Hence TT* = 0,

(r) = Or, whence Bs Irl = 0. Therefore any general PEIrl is smooth.
If Ks T' =  0 (resp. K s l '  =  -  2), then T ' i s  a  sm ooth elliptic curve (resp. a
smooth rational curve). W e have a morphism p i p  S'- , P 1 associated w ith the
linear system Irl. Since T'F's =1, we have a birational morphism h':= p lr i  X

p': S'—>P1 ( = :  w ) .  S' is obtained from  W' by repeating blowing - ups.
Note tha t K ( K s , )  -  2 h *  ( F 's )  (resp. -2 (h* (F + h* (F's) ) )  if is
elliptic (resp. rational). S ince (11 2 =0  and  (F's ) 2 = 0, the centers of blowing-
ups are chosen from the outside of h' (F's ) (resp. h' (F ')  and h' (F ) ) .  Hence it
follows from the form of canonical bundles of S' and W' tha t S' -W '. Hence we
derive a contradiction in the same manner as in Case 2-3-1.

T h u s  w e  se e  th a t T '  i s  a n  irreducible component of N '. S im ila rly  the
unique irreducible component T" of M"±N" with r-p--;=1 is contained in N".
Step 3. Next we show that g' (F ') is a curve on X. Since (E' - FG')F's = 0, F ' is
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not contained i n  supp (E' G I  Therefore i f  g' (r )  i s  a  p o in t  po, the
normalization o f  (Z', po)  is a Du Val singularity. Hence (F') 2 = — 2, Ks•F'=- 0,

=13 1 . On the other hand movable components Z ' of IL — FI (resp. Z" of IT'D
sweep o u t a n  o p e n  subset o f X  so  th a t g' *  (Z ") h a s  a  nontrivial movable
component. Since g' *  (Z") F = O , g'* (Z ') = bF's fo r  some J. As M P's = 0, we
have M '=aF's for some Hence we have

— Ks
, F' =2  (11 2 +2a - 1- 36+30  (Ft+F1 ') r+ 1,

a contradiction. Therefore g' (r )  is a curve on X . Similarly g" (F") is a  curve
on X.
Step 4. Let Z', E 14  and Z", W" EIZ"I be general members, and let 131 =Z'

and D2 = ± Z "  +Ft +Ft Then the intersection /:=D i n D2 is
one-dimensional outside Ft + F t  The curves g' (r ) ,  g" (F") and Z' fl Z " are
curve - components of 1 outside Ft Z ' n z" contains g' (F's )  and g" (n  as
movable components. Note that g' (F ') c z' n W' and g" (F") c Z" n W". By
[N5, Lemma 2.1] g' (F') (and g" (T ")) is the unique irreducible component of
1 intersecting movable components o f  Z ' n z". Therefore g' =  g "  ( F " ) ,
whence it is a  subset of Z' n z”. However g' (P )  Z "  by g' *  (Z")F's = O. This is
a contradiction. Thus we complete the proof o f  (2.8.3).

§3 . Unstable rank two vector bundles over P 2

In  th e  present section w e show that there  a re  many Moishezon 3-folds
homeomorphic to P I  X  P 2 other than P (g - (a, b, 0 )) with a - I-  t) 0 mod 3. We
also prove that any of them is a global deformation of P I  X  P2 . See (3.10).

Proposition 3.1. Let g  be a rank two vector bundle over P 2. Then the
following conditions are equivalent.
(3 .1.1) P (g) is  homeomorphic to x p2.
(3.1.2) ci (g) 2 = 4C2 (g) •
(3 .1 .3 ) There exists a rank two vector bundle w i t h  c;() =0 (j=1, 2) over P 2

such that g 001,-(p) for some integer p.

Proof. T he equivalence o f  (3.1.2) a n d  (3.1.3) is  clear. W e prove the
equivalence o f  (3.1.1) a n d  (3.1.2).

Let X :=P(g), S:=P 2 , a :=c1(0s (1)) , :  X - 6 ' the natural projection, and
H the tautological line bundle on X with rt-* (H) =g, L := r * Os (1) . Let cl(g) =
pa  and c2(g)=qa 2. We have

1I* c2(g) — r * ci(g)ci(H) +ci (H) 2 = 0.

See Grothendieck [G]. From this we infer

H2 (X, Z) -- :-'ZHEDZL, H4 (X, Z) =ZHDEDZL2 ,
H2 =pHL — qL2 , 113 -=p 2 — q, H2L =p, HL2 = 1, L3 =  0,
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On the other hand, we let Y:= p i  x p2, and let A:= (a point) x P2 and B:=
X (a line). Then we have

112 (Y, Z) =ZA EDZB, H4 ( Y, Z) =ZABIEDZB2,
A 2 =0, AB2 =1, B2 =0.

Assum e (3.1.1), th a t  is , X  i s  homeomorphic to  Y . Let i: X— ,  Y  b e  a
homeomorphism. Let i *  (A)=aH+bL for some integers a and b. We note that a
and b are mutually prime. Since A 2 = 0, we have qa2 =b 2 , pa2 +2ab= O. Hence p2

=4q and pa±2b =O.

Let =800s . Then X r= P  ( )  and c, (W) = 0 = 1, 2). Hence

(3.1.3) follows.
Conversely if c; ( ) =0 (j = 1, 2), then is topologically trivial, whence X

i s  homeomorphic to  P 1 x  P2 . T h u s w e  see  the  equivalence o f  (3.1.1) and
(3.1.2). See also [OSS, p.144] [T].

Proposition - Definition 3.2. L et W be a  rank two vector bundle over P 2

with ci(W) = 0 (j =1, 2).
(3 .2 .1 ) If  W is semi

-
stable, then 9=0K.

(3.2.2) If  W is unstable, then there exists a positive integer p and an ideal sheaf
I  of Or defining a 0- dimensional locally complete intersection subscheme I  of P 2

with O E : 01, 2 8 such that h
°
 (O s )  p2 and the following sequence is exact.

0 —, Or (p) /01.2( —p) 0.

We define sp+  (% ): p and call it the (reduced) spectrum of W. We set sp+  ( )
=0 if  '= Or. We also denote E:=disc(W) and call it the discriminant of 9.

Proof. Let S: =P 2 . If i s  semi - stable, then  §  is  represen ted  by  a  complex
called a  m onad [OSS, p . 251]. Indeed, is  the  cohomology of the following
complex

111 (S, ( - 2 ))00 s ( - 1) H'(S , WOS251) 00s —> Hi (S, ( — 1)) 00 s (1).

If c;  (g) =0, then Hl (S, ( - 2)) = H i  (S , H 1 ) )  =  0, whence W=0S92 .
Next we prove (3.2.2). Since is  u n s ta b le , has a  rank one subsheaf E

w ith  positive degree 1. W e m ay assume tha t E  is saturated. H ence E  is
reflexive, so that E is locally free. Therefore E =  s  (p) for some 1. Let F:=
W/E. Since F is torsion free, there exist an integer q and an ideal sheaf I  of Os

such that F=I0s(q ) with dim supP 0s8= O. A s W is locally free, I  is spanned
by a system of two parameters. We define a subscheme by OE: = Os/I. Then
E' is locally a complete intersection. Since c5 (W) =0, we have q = — p. Moreover
we see that the following sequence is exact,

0 E O F v  E(F_O v  —> Os —> Os / 0,

where F' = Os (p) . It follows that h
°
 (Os) =X  (Os (2p) ) —2x (o s (p)) +1=p2.
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(3.3) The stucture o f P ( 8 ) .  L e t g  b e  a  topologically trivial rank tw o
vector bundle over P 2 and  i t  t h e  natural projection of P (g ) onto P 2 .  Let
L (8) := (8) *Opz (1) and FG') th e  tautological line bundle with r (g)* (F (g ))

Then we see

K p  =  — 2F (g) (g) * (Kv±det g) — 2F (8) 3L

W e also have H° (P (8), L (8)) =H° (P 2 , Op' (1) ) . Let p:= sp +  (g ) and E:-=
d isc  (g), and I  th e  ideal of Op' defining E. Assume 1. Then the following
sequence is exact,

0 —0 Opz (p) — o 8 —'10p( —p) —> 0,

whence HI' (P (8) , F(s)) = H ° (P2, Opz (p )). Let G* be  th e  fixed component of
th e  linear system  IF(g) I. T h e n  w e  h a v e  IF(g) I= (g) I+  G* a n d  G * is
defined by the ideal generated by H°  (P 2 , Opz (p)), hence by the subsheaf Os (p)
of g. Therefore G*  P (10v (—p) ) ( / )  ,  which is the  blowing-up of P 2 with
E center.

If sP ±  (g) =0, then g=OK and P(s) =P 1 x P2 .

(3.4) Some unstable bundle over P2 . Let S :=P 2, po a point of S, and let
a :  W—>S be the blowing-up of S with po center. Let C:= cr l  (Po) f="--P '. F or any
integer p>0, we choose a  nontrivial extension of locally free Oc-modules

(3.4.1) 0 -- 0 0c ( — P) Oc (p) 0.

T hen  [OSS, pp. 120-122] shows there exists a  rank two vector bundle g  over
W such that g '= 3 2 nea r C, and
( 3 .4 .2 )  g  is  a  nontrivial extension given by the exact sequence,

0—>ow(pC)00- *os(p) g  ow (—pC)00- *Os ( — p) — 0

whose restricition to C gives (3.4.1)
Then the sheaf a* (g )  is  a  rank two vector bundle over S with c; (a*  (g ) )
(i = 1 ,2 ). See [OSS, chapter I, §6] for the detail. The extension (3 .4 .1 ) is

given by two homogeneous polynomials f i  (x0 , x i) and f2 (xo, x1) o f degree p
having  n o  zeroes o n  P l  i n  common. T h e  sh e a f  a * ( g )  f i t s  in  th e  ex ac t
sequence,

(7*() a*(n)
(3.4.3)0 — O(p)Os  (p) cr* (g ) mPos (—p) —.Cep 2„ .0 .

w here m  i s  the  m axim al idea l o f  O s defining Po. L et x  a n d  y  b e  a local
coordinate at Po. Then there exists a  germ of holomorphic function F i (x, y )  at
Po su c h  th a t F i (x , y )  f (X , y )  mod m1' ± 1  a n d  0**( )  is  loca lly  g iven  by  the
p a ir  (Fi, F2) at po. Defining an  ideal l o f  O s by /:=OsFi (x, y ) +05F2 (x, y )  at
Po and I: = Os  e lsew here , w e have Tm a * =  /Os ( — P ) . T hus w e have the
exact sequence
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(3.4.4) 0—■Os (p) - 4 — I0s (—p)

Lemma 3 .5 . L et cr. W-0 Y  be a  blowing-up of a surface Y  with po E  Y
center, E the exceptional curve of 0-, L a line bundle on Y  and I  an ideal sheaf of
Oy  w ith dim supp (0y//) =0. Suppose that we are given a rank two vector bundle
F over Y  such that

(3. 5 .1)
e n

is exact. Let a:= min{multpo f ;  f  II and N:=O w (aE) (L ). Then there exist
a rank two vector bundle G:= 0- *  (F) on W and an ideal sheaf J of Ow  with dim
supp (Ow/J) 0  su ch  th at
(3 .5 .2 ) h ° (0w/D=h ° (0y/I) — a2,

(3 .5 .3 ) 0 — > N— > G —> JN- 1 — > 0 is exact, and
(3 .5 .4 ) the direct image of (3.5.3) by a* induces (3.5.1).

Proof . T h e  homomorphism is  g iv e n  b y  a  p a i r  (Si, s2 ) o f  germ s of
functions locally at po by trivialising F  and L, say, (u) = (u5 2 ,  — usi) and

(v 1, v2) 52v2. Let t 0 be a local equation of E a t a point qEE,
C a e s i . We define J: =  0 0 ' 1 4 +  0 0 -

2,q , and the homomorphisms N-0G and

n ' :  G---N-1 at q by

(141:= (7/0"2,q, — u'ai,q), 77'  (771, y'2) = aidVi+0- 2,0/2.

It is  easy  to  see  tha t and I /  are globally well defined. Let Ci b e  a local
curve defined by si=0 at po , and C;:=a * (C,) —aE. Then I  is  the ideal defining
the complete intersection Ci n C2 at po. Let J be the ideal defining CI fl C'2 along
E and J= a * (I) elsewhere. W e prove (3.5.2). W e have

h° (S, Os//) —h° (W, Ow/J) =h ° (U , 00 ) — h° (V, Ow/J)=C1C2 —CiC'2=a2,

where U (resp. V) are sufficiently small open neighborhoods of po (resp. E).
The condition (3.5.3)is clear from the definitions.
F inally  w e prove (3.5.4). By taking the direct image of (3.5.3) b y  a * ,

we obtain an exact sequence

cr*(e') a*O7')
0 a* (N) —> o-* (G ) —> a* (1N-

1 ) ( c a* (N - 1 ) ) —> 0

w here a* (N) L ,  a* (G) -= F and a* ( V  =  0 . M oreover since a* (TN- 1) is
canonically a  subsheaf of L-1 , the homomorphism a* (7)' )  can be view ed as a
homomorphism of F into L-1 , which coincides with n. This is what we claim in
(3. 5 .4) .

Corollary 3 .6 . L et 9  be an unstable rank two vector bundle over P 2 w ith
c,(9) = 0 (j =1, 2). Then there exists a modification a  W — ■13 2 , a rank two vector
bundle G and a line bundle N on W such that
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(3 .6 .1 ) G is an extension with 0 — > N - 0 G - - + N- 1 — > 0 exact,
(3 .6 .2 ) 9 =  cf* (G) and the direct im age of  (3.6.1) induces the sequence in
(3 . 2 . 2) .

The minimal modification ci and N are uniquely determined by the ideal I: =
/disc (g) •

Proof. Clear from  (3.5).

Next we show that (a t least) som e of the 3-folds P  ( )  can be deformed
into P1 X P2 by deform ing the  vector bundle 9 . T he following lemmas (3.7)
and  (3.8) were suggested (in fact given for sp+ (9) =1 by Maruyama.

Lemma 3 .7 .  Let be a rank two vector bundle over P2 . Then the following
conditions are equivalent.
(3 .7 .1 ) 9  is an unstable bundle with c1 (W) = 0 (j =1, 2) such that sp+ (9) = p
and disc (9 ) is a complete intersection of two curves of degree p.
(3 .7 .2 ) There exist a  (possibly reducible nonreduced) curve C of degree 4p and
a surjective homomorphism q5 (2P): OF (2p) — os (3p) 00c (= :oc (3p)) such that
W =Ker 0 (2p) .

Proof of  (3 .7 ). Step 1. (Maruyama) Let S =  P2  a n d  O s (1) a  hyperplane
bundle S . Let C be any (possibly nonreduced) irreducible curve of degree 4p
in  S , L  a  line bundle on C such that deg L = 4p2 a n d  Bs ILI= 0 . Suppose that
we are given a surjective homomorphism 0: 0,T2— >L00 c  a s  0 (ctiEN2) 7=ai.Ti+
a2F2 w ith two global sections s i of L. By the syzyzy theorem  (see [AK, Chapter
III  (5.7), (5.8), (5.19)], Ker 0  is locally Os - free of rank tw o. Let 0(k) :=
0 0 5 (k )  and E :=E (C , L , 0 )  =K e r (2p) . Then c (E )  =0  for j=1, 2. Consider
the exact sequence

cp)
(3 .7 .3) 0 E H p )  --■ Os (p) EB2L O O  c  (p ) 0.

Assume th a t  L Oc (p) . T hen  since  HO (Os (2p)) = (oc (2P)) a n d  0  is
surjective, 0 is given by two homogeneous polynomials si and s2 of degree p
with no irreducible factors in common. We also have h

°
 (E ( p )) = dim Ker H°

(0  (P )) =  1 . In  f a c t ,  1-1° (Os  (2p)) -= (Oc (2p)) s o  t h a t  Ker H° ((0) (P))
H

°
 (0 (p)) is generated by the  pa ir  (52, — s1). Similarly we have h

°
(E ( —p —1) )

= o. It fo llow s that w e have an injective homomorphism c: Os (P) - - - 0 E , which
yields an exact sequence

(3.7 .4) 0 os (p) E I0s(
—

p) 0

where /=.3105±s20s is  an  ideal of Os. This show s that E  is  an  unstable rank
two bundle with sp+ (E) = p. Clearly disc (E) is  a  complete intersection defined
by the ideal I.
Step 2. W e p ro v e  th a t (3.7.1) im plies (3.7.2). Let p: = sp+ (9 ). W e start
with recalling the exact sequence
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e
(3.7.5) 0 —) Os  (p) —> /Os ( — p) —> 0

where p : = sp+T e n s o r i n g  the dual o f  (3.7.5) w ith Os (2P), we obtain an
exact sequence

nv (2p) V (2p)
0 Os ( 3 P )  —> WV(p) /Os (p) ( Os (p)) O.

On the other hand, since disc (W) is  a complete intersection, we have an exact
sequence

0 O  ( -2p)O s  (— p) (132— >  0 ,

whence we have h
°
 O s  (P)) =2h

°
 (0s) =2. Therefore we have two sections at (i

=1, 2) of Wv (2p) such that s ,: = H° (( 2 p )  )  (o. i )  generate H
°
 (/Os (p)). Using

at, we define a  homomorphism W
—

' 0s (2p) e 2  b y  (a) : = (ao
-
,  — curl )). W e

consider the following commutative diagram with exact rows and columns. The
nine lemma shows that Q: Coker W=Coker

o

0 Os (P)

0  — >  Os (p)
(s2,-so

0

w

Os (2p) 6 )2

I A
- 4

o

O

o O - 4 > 0

O 0 0

Moreover we see

CLAIM 3.7.6 Horn (10s Hp) , l o s  (3p)) = s (4p).

Proof of (3 .7 .6 ). Let E:= disc (p). Since X is a complete intersection, we
have a locally free resolution of OE as follows,

(s2,—si)
—* Os( - 2p) OS ( — PY9 2  O s  —) Oz —> O.

Hence Extl (OE , O s) is the q- th cohomology of the complex of Os
-
modules

Hom (Os, Os) Hom (Os (— p) , os) Ham (Os (
-

2P) , os),

whence Extq (OE, 0s) = 0 (q= 0, 1). Now we consider the exact sequence,

0 Os OE — 4  0,
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from  w hich  w e  in fe r Hom (I , O s) = Hom (O s, O s) f-'" Os. W e  no te  th a t  the
isomorphsim is induced from  the  natural inclusion of I  into Os. Consequently
we see Hom (I, I) Hom (I, Os) -= Os, whence (3.7.6).

Now we complete the proof o f  (3.7). By the proof o f  (3 .7 .6 ) we see that
the hom om orphism  is just the multiplication by a  homogeneous polynomial h
of degree 4p. Let 00 be the  homomorphism of o s P )  into Os (3p) defined by
the multiplication by  h. Let C be a  curve defined by h = 0  and Oc: = Os/h0s.
T hen  the re  is  a  na tu ra l homomorphism j  o f Q (-= C oker (P) in to  Oc (3P) (-=
Coker 00). Since depth Q=0, j is  injective so  that Q=I0c (3p) . We show that
Q 0 (3P) . Let m:=dim Oc//0c. Then we have

c (W) =c (Os (219) ) 2c (Q) -
1 =c (Os  (2p) ) 2C (Oc (3p) ) (0c//0c) = 1 ± m ir

where H is  a  hyperplane of S. Hence m = 0, which shows Q '2= 10 c (3P) c (3p) .
It follows that C rld isc  ()  =  0 .  T h is  proves (3.7.2).

L em m a 3.8 (M aruyam a). Let be an  unstable vector bundle over P 2 of
rank two with c;(W) = 0 (i =  1 , 2). A ssume sp+ (W) = p and that disc ( )  is  a
complete intersection of curves of degree p. Then there exists a f lat Opz. D

- module
such that g o =W and sp + (g t ) p - 1 (t* 0) where D is a connected curve and g t :

g eO r x  .

Proof . We keep the notation in (3.7). Let E:=E(C, L, 0). Note that c;(E)
= 0. Since H°  (Os (P)) =H ° (0c (P)), we have H°(E(— p)) =K er 11° (0 (p) Ker
H3(0 (p) On the other hand by the exact sequence

0 O c  (P )O L - 1 - 4  Oc  (p)®2°—(P)Ic Oc(p)OL —> 0,

w e have K er (P ) (0c (P) OL -1 ) .  Hence H° (E ( —p) ) II° (0 (p) 01, - 1) .
Therefore h ° ( E ( — p ) ) i f  a n d  only if L=Oa (p) because deg L= deg Oc (P)
4p2 . If L  is  no t Oc (p) , then E= or o r E  is unstable  w ith  sp + (E) — 1 by
(3.2). Thus w e have a  desired that 01, xp-module parametrized by a  curve

D in Pic C.

Lemma 3 .9 .  Any unstable rank two bundle o v e r  13 2  w ith c;  (W) = 0 (i =1,
2) can be deformed into the trivial vector bundle OP (under flat deformation).

Proof. A ny  unstab le  rank  tw o  bund le  E  o v e r  S: = P 2 i s  g iv e n  as an
extension of Os (p) b y  /Os (— p ) fo r  som e positive  integer p a n d  a  locally
complete intersection ideal /  of Os. The extension class 6 (E) belongs to

Ext 1 (i0s( — p), Os (p)) =Ext l (I, Os (2p) )

where E: = disc (E). Now we consider a  f la t  deformation o f Oz w ith sp + (E)
constant. In other words, we choose a point q of supp(E) and a local generator
f  and g  of the stalk / q . Then we choose a  pertubation F (t) and G (t) with F (0)

f  and G (0) = g . We let d  be the unit disc, sz3:=S x J:= (F, G) the ideal of
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Oj generated by F and G. Then we have

Ext 1 (i0,3 ( — p) , 0,3 (P) Ext l (,O, 0,3 (2P) ) =0/ (F, G)

where 0,3 (k):=Os (k) OA. We choose an extension g whose extension class is
5 ( e )  E0,3/ (F, G) with 5 (g) It-0= 5 (E) . Then we have an exact sequence

0 Os (p) g 10A (—  p) 0.

T herefo re  g  i s  a  coheren t Os -M odule, w hence g  i s  a  loca lly  free
Os -Module of rank tw o by shrinking A if necessary because E is locally free.
Let E1:=g00s.t. Then it is clear h° (S, Et) =h ° (S, os (p)) , whence sp +  (E r) = I,

and /discOEt) =10sxt.
If we choose a  sufficiently general F and G  a t any  point of supp (E), we

have reduced disc (E1), t h a t  is , a  un ion  o f d is tinc t p2 p o in ts . T h e  se t  o f  p2

distinct points in suitable position is  a  complete intersection of two curves on
S of degree p. Then Et tE(C, L, 0 )  for some triplet C, L and 0  b y  (3.7). Then
b y  (3 .8 ) Et can be deformed into an unstable E' with c; (E') = 0 (j =1, 2 ) and
sp +  (E') p  — 1. It follows from the induction on sp +  that any unstable E with
c(E ) =0 (j =1, 2) can be deformed into the trivial bundle OP.

From  (3 .9 ), we infer

Proposition 3 .1 0 . Let be an  unstable rank two bundle over P 2 with
c ;() = 0  (j =1, 2). Then P (W) is a global deformation of p1 x p2.

§ 4 .  Global deformations of P( (a, b, 0)) with a±b= . 0 mod 3

The main purpose of th is section is to prove

Theorem 4 .1 .  The set of  all P 2 - bundles P (g  (a, b, 0 ))  over P 1 with a+ b
0  mod 3 and of  all P ' - bundles P  (g ) over P 2  with g topologically triv ial rank

two vector bundles is stable and transitive under global deformation.

(4.2) Conditions. Let X be a  fake P 1 x P 2 , L and F canonical generators of
Pic X. We consider the following conditions

(4 . 2 .1) h° (X , L )  3, h
°
 (X, L—F) =0, h ° (X , F )  2.

It is easy to derive from  (1.4.0)

(4.2.2) x (X , pL-i-gF) (p +1) (p + 2) (q+1).

Lemma 4 .3 .  L et X  be a fake P 1 X  13 2 , L  and  F  canonical generators of
Pic X. If  h

°
 (X, L )  3, h

°
 (X, 2, then X= P (g  (a, b, 0)) or X = P (g) where

a b O, a+b 0 mod 3, while g is a rank two vector bundle over P 2 with c;(g) =
0(j=1, 2) .

(4.4) Proof o f (4.3) —Start. First we consider the simplest case.
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Lemma 4.4.1. Let X be a fake P' X  13 2 , L and F canonical generators of Pic
X. Assume (4 .2 .1 ) and that IFi has no fixed components. Then X P 'x p 2.

Proof. W e can  prove in  th e  same manner a s  i n  (2 .1 )  tha t FF '= OF,
h
°
 (X , F) = 2 and Bs IF I=  . Let F be a general member of IFi. Then Bs IFI=

0 ,  F  is smooth and irreducible. Since KF 3 L F ,  we have F =P 2 and  LF E
IOP, (1) I. Let it: = pF: X — > P ' be the morphism associated with IFi. Then it is
easy to see that iris a  P 2-bundle over P'. We see X = P (7 r*L ) and it —  Op'
(a') @Op. (c ') for some b' Since h

°
 (X, L — = 0 ,  we have a' 0, while

a' 4- 6' = O. Hence a'= b' =c' = 0 and X=P i x P2.

In view o f  (2 .2 ) Claim and  (4 .2 ) we may assume h° (X, L —  = 0. We
also assume in what follows in  (4 .4) and (4 .5) that X is not isomorphic to P 1

x p2. By  (4.4.1) IFI has fixed components.

Lemma 4.4.2.
( 4 .4 .2 .1 )  The linear system ILi has no fixed components.
( 4 .4 .2 .2 )  Any genera l m em ber Z of ILi is irreducible and reduced.

Proof. First w e prove (4 .4 .2 .1 ). Assume that ILi has fixed components.
Let 1/1 -1- ••- + Vr+ F*  IL I  b e  a general member of ILI, 171 movable components
and F *  fixed components. Let V= VI and g:=S-4 V be the minimal resolution
of the normalization of V. Then the canonical line bundle of S is given by Ks
= —g*  ( (3 r-1 ) V+ 3F* -E2F) — (E+G) as in the proof o f (2.1). We note that
supp (E±G)csupp (g * V ') for general V ' linearly equivalent to V.

Since — Ks is effective, S= P 2 o r  S has a  morphism S C onto a curve
with general fiber F S P'. I f  S --z: P 2, then Fil; =Ov or Fv=0v. In either case V
E  laF I fo r some a 1 b y  (1 .5 ). Hence h° (X , L — F) 1, which contradicts
(4 .2 .1 ). Therefore S has a morphism 7r: S C onto a  curve with general fiber
f's =P l . Then we have

2= —KsFs=g * ( (3r - 1) V+3F*+2F) F s + (E+G)Fs.

It follows that F *F s = 0 and that VF s =1  or FF s = 1. If V F  1 ,  then r=1
and LF, = 1, FFs = O. Let F *  pL± qF. Then p = F* Fs = 0, whence q• 1 and
h° (X, L — F )  1, a contradiction. If FF s = 1, then V.Fs =LF s = O. Let F* —=pL±
qF. Then q=F *Fs=0, whence and F* E lg.!, a contradiction.

Next we prove (4 .4 .2 .2 ). Let D = Zi+•••+Zr be a general member of ILI,
Zi movable by (4 .4 .1 ). Then we have r2Z2F = V F = 1 , whence r=1.

Lemma 4 .4 .3 . Let Z  and Z ' be general members of IL I, and 1: = Z fl Z'.
Then
( 4 .4 .3 .1 )  h° (0z) =1, diq (0 z) =0 (q 1 ) .
( 4 .4 .3 .2 )  hq (0 z (— L)) —0 0) .
( 4 .4 .3 .3 )  hq (0 z  (— 2L)) = 0(q* 1) , h l (0 z  ( - 2L)) =1.
( 4 .4 .3 .4 )  h° (0 / ( — pL) ) =1, hi (0 1 ( — pL)) = 0 (p= 0, 1).
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Proof. W e see h2 (X , — 3L) = 1 and hq (X , — pL) = 0 (1 3 ;0
except fo r  (p, q) = (3, 2). In fact, since Z is irreducible, we have h.' (X, — pL)
= 0 for p W e also see h° (X, —pL) =113 (X , —pi,) =0 for 1 3. Hence we
have h2 (X, =x (X , — 3L) =1, while h2 (x, — pL ) x (x, = 0  for p=
1, 2. (4.4.3) follows from it readily.

Lemma 4 .4 .4 . L et m:= h ° (X, L) — 1 and PL: X --■ Pm the rational map
associated with ILI. Then dim Im

Proof. Let B:=BS ILi, W the closure of pc(XV3) and d:= deg W. Assume
d im  W = 1. Then d  is  e q u a l to  th e  num ber o f  irreducible components of a
general m em ber of IL  I, w hence d  =  1  b y  (4 .4 .2 ) . Hence m  =  1 , which
contradicts h° (X, L) 3.

Lemma 4 .4 .5 . L et Z and  Z ' be general members of  IL I, and  1: = Z (1 Z'.
Then 1 is a smooth rational curve with L1=0 and F1=1.

Proof. S tep  1. I n  v ie w  of ( 4 .4 .4 ) ,  1 h a s  m o v a b le  ir re d u c ib le
components. L et C, (1 . 1') be movable components o f 1. Then LCi .  0  and
FC, O. Let C C,, 0  and 13:=FC_O. B y  (4 .4 .3 .4) we have hI (Oc)
= 0 , whence C is  a  sm ooth rational curve. W e also see h' (o  ( — L)) =  0 by
(4.4.3.4), whence 0 . LC‘ - _1.

W e set /c/f2c=0c (a) e'Oc (b) for so m e  in te g e rs  a  b. It follows a + b =
K C  ± 2 = — (3a+ 213) + 2 . Then since 1 is reduced generically along C, we
have an injective homomorphism

0:(II/IDOoc(=oc(— a) ,EDoc (  — a)—qc/I(= Oc (a) EDoc (b )) ,

whence a + 2 1 3 2 . It follow s that (a, /3) = (1, 0), or a=0, 0
Step 2. First w e assume LC=1. Then by step 1, FC O. Let Vi+••-+ Vs +G *

b e  a  general member o f  IF I, V1 (resp. G* ) a  movable component (resp. the
fixed components) and  V:= V, V . T h e n  s in c e  C is movable and FC= 0, we
have VC= G* C= O. Let v: 191,--[-qF for some integers p and q. Then p= vc = 0
so  that VE lqFl. Similarly G* E lq* FI for some q*, whence sq q *  -= 1. It follows
from (X, F )  2 th a t s q = 1, q * =- 0. Thus any general m em ber o f  IF I is
irreducible and reduced. Hence IFI has no fixed components. Therefore X P '
x p2 by (4.3). However in this case 0 =L 2=L1=LC=1, a contradiction.
Step 3. By Step 2, LC = O. Since 1 is general, Sing 1 is contained Bs IL I. If  C
intersects Sing 1, then C is contained in Bs ILI, a contradiction. Therefore C is
a connected component of 1. B y  (4.4.3.4), l is connected so that / =C and r=
1. It follows that Bs ILI= 0  and that FC=L 2F=1.

Lemma 4 .4 .6 .  Bs ILI= 0, L001-- - '01 and h° (X , L) =3.

Proof. Bs IL  I= 0  and  h° (X, = 3  a re  c lea r from  (4 .4 .3 .4 ) and the
proof o f  (4.4.4). Hence there exists a third member Z' of ILi such that Z' does
not contain 1. Since Z, Z' and Z' are pull-backs of hyperplanes of P 2 by  P L , the
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intersection Z n  n  z” is empty, whence LOO1'
-
=Z''00/=01.

Lemma 4 .4 .7 . A ny member of ILi is irreducible reduced.

Pro o f . Let Zi± •••± Zre ILI, Z, irreducible components. Let
Let Z  and  Z ' be general m em bers of IL I, C: = Z f l Z '. T hen  C i s  a  smooth
rational curve with L C= 0 and FC =1 b y  (4 .4 .5 ). Since qi= Z iC. 0, we have
q, = 0  by qi  • • •  ± q r  = 0. Hence Z 1  piL, pi+ ••• + r  = 1  so  th a t r = p i =  1.
Therefore any member of ILI is irreducible. and reduced

(4.5) Proof o f  (4.3) -Completion.

Lemma 4 .5 .1 . Let Z , Z ' be general members of  ILI, and C:= Z n Z'. L et V
+G *  be a general member of IFI, V  movable and G*  fixed parts respectively. Then
( 4 .5 .1 .1 )  V e  lg.' for some and VC=0, G * C=1.
( 4 .5 .1 .2 )  G*  and  V are irreducible and reduced.

Proo f . B y  (4 .4 .5 )  we have C = P 1 , L C =0 and FC =1. W ith the notation
in  (4 .4 .5 )  le t 1/1- 1- ••• ± Vs±G *  b e  a  general member of IFI, and V:=

qF. Then since C is movable and FC =1, there are two cases.

Case 1. V C =0, G * C=1,
Case 2. VC=1, G* C =0, s=p=i

Case 1. W e have 1,2 = 0  and L2G*  = G * C = 1. L et V qF. Then q 0 by
(4 .4 .5 )  so  th a t V E  IpL land by  h

°
(X, F )  2. B y  (4 .4 .4 )  a n d  (4 .4 .6 ),

any general member of IspLI is irreducible by Bertini's theorem. Hence s=1.
Let G'(1,̀ be the unique irreducible component of G* w ith Gg'C=1, G;i' other

irreducible components of G* . Since G7C= 0, G7 E 'Pia  w h e n c e  Pi= 0 and G7
=- 0 b y  (4 .4 .6 ). Therefore G* G. =
Case 2. L et V  p L  + qF and  G* = rL  + tF. Then G* e IrL I b y  t = G * C = 0,
whence r = 0 and G* = O. Hence p  0 ,  s  =  q  =1  and  any  genera l V E IF I is
irreducible and reduced. Therefore IF I has no fixed components. Hence X = P '
x p2 by (1.6), which contradicts the assumption in  (4.4).

Lemma 4 .5 .2 . L et Z  and  Z ' be any  pair of  distinct members of IL I, and
1: =Z n Z'. Then
( 4 .5 .2 .1 )  hq (X , — rL —  = 0  ( 0 r 2 ;
( 4 .5 .2 .2 )  hq (Oz(

—rL
—F )  =0  ( r= 0, 1;0 q 2)

( 4 .5 .2 .3 )  hq (0i(
—

 F))  =0  (q = 0, 1).

Proof. B y  (4 .5 .1 )  any general member o f IFI is  reduced  and connected.
Hence we have h i  (X , — rL — F) = 0 for any S i n c e  Kx= — 3L - 2F, we have
h3 (X , 

—
rL

—
F) =0 for r 3 . B y (4 .3 .2 ), we have h2 (X , 

—
rL

—
F) =x (X , —rL—

F) =0 for 0 . r 3, which proves (4 .5 .2 .1 ). The rest follows readily.

Lemma 4 .5 .3 . Let Z and Z ' be any Pair of  distinct members of  ILI, and l:=
Z n Z'. Then l is a smooth rational curve with Ll=0, F1=1.
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Proof. Step 1. Since F1=1, there is an irreducible component C of 1 with
F C 1 . T hen  by  (4 .4 .5 ) LC= 0, while C = P l  b y  (4 .4 .3). Let /c//C=Oc (a) @
Oc (b) ( a  •b) and s:=a+b= Kx C - I-  2= — 2 F C + 2 0 .  Since hi  (0c( — F)) =0 by
(4 .5 .2 ) we have F C 1 , whence FC=1 and s = 0. Note that x((0,x/r) ( — F))
=0 for any
Step 2. B y  step 1, a  +  b = 0 . Assume a 1  and I  C  IC. T hen  consider a
(possibly identically zero ) homomorphism

0: (WE) 0 0 c  (=- 0 r ) — */C//C ( =Oc (2a) @Oc (a + b)) @Oc (2b)).

Let /: = Oc (2a) @Oc (a + b) + .a . Since 2b — 2, Im c Oc (2a) @Oc (a + b)
whence 11 C1. Hence hi  ((O x/ ( — F)) = 0  b y  (4 .5 .2 .3 )  so that

O x ((O x /  ( — F )) =x  ((Ox/1) ( — F ) )  x  ((IC / ( — F) =2b,

a contradiction. Hence hcr/C. Therefore we have the nontrivial homomorphism
0: (II/ In 0 0 c — q c/ IC. If a then / i c  /:= 0c  (a) Hence

x ( (Ox/ ( — F ) )  X  ( ( o / ')  ( — F )  x  (  ( I d  ( — F)) =b,

a contradiction. Hence a= b = 0.
Step 3. Let g : = 132 b e  the restriction of  P L  t o  G* .  Then g  i s  a
birational morphism because any general fiber pi, 1 (p ) (p  E 13 2 ) i s  a  smooth
ra tional curve  w ith  G* pï. 1 (P) =  1  b y  (4 .4 .5 ) . H ence there  exists a  proper
analytic subset X of P 2 such that g is an isomorphism of G N - 1 (2) onto P 2 \E .
Let p  be a point outside Z. Then pr 1 (p ) has an  irreducible component C with
G* C= 1 along which cr pr, 1 ( p )  is reduced generically. By Step 2, /c//2c = O F ,
w hence ( / a / / )  0 0 c  =  /c//2c. T his show s th a t  a = C . Therefore p i , l ( p )  i s  a
smooth rational curve if p  Z.
Step 4. Let C( P 1)  be an irreducible component of I with LC=0 and FC= 1.
Since LC - 0, pL (C) =- 0 is  a point of P 2 . By Step 3, we may assume pL(G) E X.
W e m ay also assume th a t pE l  ( p )  is  a  sm ooth rational curve fo r general p *
h (0) if p  is  close to h (0). Meanwhile by step 2, Nc7x=0? 2 . Hence there are a
proper sm ooth fam ily y : ( a  v e r s a i  fam ily  o f  displacements o f C in  X)
over a  two dimensional disc d  w ith T  1 (0) C an d  a  morphism j: W—>d x X
such that Ct := j (T- 1 (t)) = P 1 i s  a  displacement of C in X. Since LCt= 0, pL(Ct)
is  one point of P 2 . Therefore we have a morphism h of d into P 2 such  tha t Ct
=pT, l (h (t ) )  for By the versality of the family W, h (J ) is  an open subset
of P 2 containing h (0).

T his  im plies that pr i  (h (d\ (O} )) =  j( \ r - 1  (0)) , whence pEl  (h (J)) =
j (V ), w hich is the  interior of the  closure of j(W \r - ' (0)). Therefore /red = C.
Since FI=FC=1, 1 is reduced generically along C. Since a = b =0, the natural
homomorphism 0:(////i) 0 0 c - - qc/Pc is an isomorphism. Hence 1=C.
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Lemma 4.5.4 I f  IF I has a  fixed component, then X  =  P (8) f o r a
topologically triv ial rank two vector bundle g over P 2 with sp+ (g)

Proof. Let ir: = PL, 8:= jr* (F ) and 1: = lt 1 (p) for a point p C  13 2 . Then
since Bs IF0011= 0 and h

°
(F00 1 )  =2 b y  (4.5.3), g is a locally free sheaf of

rank two over P 2 . Let a: = .1(0 s (1)) , ci(8) = pa and c2 (8) = qa 2 . Then by the
proof of (3.1) we have F 2 =  pFL —qL2 , whence p=q= 0 by F2 =0. Hence 8 is
topologically trivial. W e have a natural surjective morphism h: X—>P(8). Since
L  2c*Op2 (1) = h* rt

-
 (g) * OF (1) and F =  h* F (8 ), we have Kx = h * Kp(s) by

(3.3). Hence h  is  an isomorphism. Note tha t sp+ (8) 1 because IFI has fixed
components.

Thus we complete the proof of (4.3).

Appendix. Threefolds with cl  (X) = 3c1 (L)

W e recall from  [N i] a n d  [N4] som e results on threefolds with c1 (X ) =
3c (L) .

Theorem A.1. L et X  be a  Moishezon 3- fold and  L  a  line bundle on X.
A ssum e that h i (X, Ox) = 0, ci (X) = 3 ci (L ), h

°
 (X, L) 2, and dim Bs ILI 1.

Then X = Cr or P (,7 (a, b, 0) ) a+b=3n+2).

Our proof of (A.1) in  [N4] consists of a series of lemmas as follows.

Lemma A .2  A ssum e B: = B s  IL I= 0  . L e t h : X— > 13 4  b e  a  rnorphism
associated with ILI, W: =h (X) . Then W is a hyperquadric and h is birational.

(1) If  W is smooth, then X.= W =Q 2 .
(2) If B = 0  and if dim Sing W=0, then X =P (g (1, 1, 0)) .
(3) If B =0 and if  dim Sing W=1, then X=P (g - (2, 0, 0)).

Lemma £3. I f  B  0  and if  dim then B= P i and X P  (g  (a, b,
0) ) a±b=3n+2).
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