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Global deformations of P?>-bundles over P!
By

Iku NAKAMURA

§0. Introduction

In the present article we study complex analytic global deformations of
P?>-bundles over P! In the two dimensional case there are two
homeomorphism classes of P'-bundles over P!, each class being stable (or
closed) and transitive under global deformation. In the three dimensional case
there are exactly three homeomorphism classes of P?-bundles over P!, that is,
first of all those with the first Chern class divisible by three, secondly those
homeomorphic to P! X P? and the rest. We note that no P?-bundle over P!
with the first Chern class divisible by three is homeomorphic to P' X P2 Any
P2-bundle over P! is something like a Fano threefold of index greater than 3
but less than 4, though its anti-canonical line bundle may not be ample. Using
this Fano-like character of P?-bundles over P!, we prove the following

Theorem 0.1. The set consisting of all P*~bundles over P* with the first
Chemn class divisible by three is closed and transitive under global deformation.

Theorem 0.2. The set consisting of all P*-bundles over P! whose first
Chern class is indivisible by three and which are not homeomorphic to P* X P? is
closed and transitive under global deformation.

Theorem 0.3. The set consisting of all P>-bundles over P' homeomorphic
to P! X P? and of all P'~bundles over P* homeomorphic to P* X P? is closed and
transitive under global deformation.

See Theorems 2.3 and 4.1. See also Kollar [Ko], Peternell [P1] [P2], Siu
[S1] [S2] and Nakamura[N1] [N2] [N3] [N5] [N6] [N7] for the related topics.

We note P! X P2 can be deformed both as a P!-bundle over P? and as a
P2-bundle over P!. This is the reason why PZ-bundles over P! appear in
Theorem 0.3.

The present article is organized as follows. In section one we recall the
structures of P?-bundles over P!. We prepare a few lemmas. In sections two
and three, we prove Theorems 0.1 and 0.2. In section 3, we show that there
are infinitely many non-isomorphic P*-bundles over P? homeomorphic to P! X
P?, which arise from topologically trivial unstable rank two bundles over P2
We prove that they are global deformations of P! X P2
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In section 4 we study global deformations of P! X P? and settle the
remaining case of the study in section 2 so as to prove Theorem 0.3. The
major part of the results of the present article was announced in [N2].

Acknowledgement. The author would like to express his hearty
gratitude to Professors T. Fujita, F. Hidaka, M. Maruyama, I. Nakai and K.
Sugawara for their advices during the preparation of the article.

Notation.
leLl the scheme-theoretic base locus of |L|
c(E) the total Chern class 2iczci(E) of a vector bundle E
ci(E) the i-th Chern class of a vector bundle E
ci(X) the i-th Chern class of X
disc (E) the discriminant of a vector bundle E on P?(3.2)

E(C L, ¢) (3.7)
F(a, b, c) Or (a) DOw (b) DOw (c)

Fs Proj (Op: (b) DOw:)

g*L| {o*p; D€L}

(X, F) dim H*(X, F)for a coherent sheaf F

Ne/x the normal bundle of C in X

Ox, Os, Oz the structure sheaf of X, S, Z respectively

Ox the formal completion of Ox

P(%(a,b,¢)) Proj(F(a,b,c))

sp* (E) the spectrum of a vector bundle E on P? (6.2)
x (X, F) 2ez(—1)%* (X, F)

( )s, ( )x the intersection numbers on S, X

= the linear equivalence

®.q) Theorem p. g, or Lemma p. q, or Proposition . ¢

Paragraph or Equation (. q)

§1. P2-bundles over P!

(1.1) The structure of P? bundles. First we review P*-bundles over
P2 Let k=0, 1 or 2. Choose integers a=b=0 such that a+b—Fk is divisible by
3. Let 3n=a+b—k=0. Let =% (a, b, 0) =O0p: (a) BOp (b) BOp, X=P (%)
and let m: X—P! be the natural projection. Let H be a tautological line bundle
of X with m«H=%. Then the canonical sheaf Kx of X is given by the formula,

Kx=—3H+n*(det F+Kp) =—3H+ (a+b—2)F

where F is a fiber of 7. Letting L: =L (¥) =H—nF, we have Kx=—3L— (2—
E)F, L3=deg m«L=F. Since TxL =FQO0p (—n), and R'mr«L=0(¢g=1), we have

H'(X, L) =H* (FQ0p (—n)) (¢=0).

We see that Rims (—pL) =0 (¢=0, p=1, 2), whence H*(X, —pL) =0 for the
same values of g and p. There are 3 cases.



Global deformations 31

Case 1. n=0,a=b=20.
Case 2. a=b=2n=>1.
Case 3. a=n>b=0.

Case 1-1. Assume that k=2 and a=b=1. Then #°(X, L) =5 and Bs|L|=®.
The morphism pr: X— P* associated with |L| has a hyperquadric W with
Hessian-rank 4 as its image. In fact, we can choose elements xo, x)(resp. xz,
x3) from H® (Op (a —n) BODO) (resp. H° (0D Op: (b —n) D0)) such that xors=
XXz Or is a small resolution of W whose exceptional set is P (Op) =P! with
normal bundle =Op (—1)@0p: (—1).
Case 1-2. Assume that k=2, a=2, b=0. Then h°(X, L) =5 and Bs |L|= .
The morphism po;; X— P* associated with IL | has a hyperquadric W with
Hessian-rank 3 as its image. In fact, we can choose elements xo, r; and x;
from H°(Op (2) DOEDO0) such that x? = xor,. o is a divisorial contraction
whose exceptional set is E: =P (Op, (b)) ©Op:) =P X PL. The restriction map
ous: E—P! is a P'*-bundle whose arbitrary fiber C has the normal bundle N¢/x
~0pDO0p (—2).
Case 1-3. Assume that k=a=1 and b=0. Then A°(X, L) =4 and Bs|L|= Q.
The morphism py: X—P?3 associated with |L| is a divisorial contraction whose
exceptional set is P (Op (b) @ Op)) = P! X P*. The morphism p; is a monoidal
transfomation of P?® with a line center. This is seen as follows. Let I be a line
of P3, and p: Y—P? the monoidal transform of P3 with [ center. Let L be the
pull back of the hyperplane bundle of P3 by p, E:=p~*(I). Then E=P (NVp:) =
P! X P! Since h°(Y, L—E) =2 and Bs |[L —E|= @, we have a surjective
morphism 7: Y—P?! with any fiber =~P2 Defining #:=mx (L), then we have Y
=P(¥F). Let F=F ', b',¢’) (@ =b'"2>c"). Then L}=a'+b'+¢'=1 and a’2b'2>
¢’ >0 because Bs |L|=@. Hence a’=1, b’=¢"=0. Hence X=Y.
Case 1-4. If k=a=b=0, then x=P*XP2 1°(X, L) =3 and Bs |L|= 2.
Case 2. In this case, h°(X, L) =n+k+2, B:=Bs |L|=P (Op:) =P, Since 7+l
=FQO0p (—n), any element of H°(X, L) is written as so(x)yo+ s (x)y; +
s2(x)y; for some (so, s1, s2) € H* (F ®Op (—n)) and suitable homogeneous
coordinates y; of fibers (=P?). In particular, °(X, L) =a+b—2n+2=n+k+
2. Since s, (x) =0, B:=Bs |L|={yo=y:=0} =P! and Ng,x=05 (—a) BOs(—b).

Let f: Y—X be the blowing-up of X with B center, E the total transform
of B, and N:=f*L—E. We see also that E=P (N¥/x) =F,_s(a—b2>0).

Let Ne:=N®Og, and eo (resp. e~ or fo) a section (resp. a section or a
fiber) of fig: E—B with (e8) r=a—b (resp. (e2)r=—a~+b). Then we see

(f*L)E:f* (L) = —nfo, NE=eot+ (b_")fo, Ep= —eo—bfo,
(N2)g=n-+k Bs [N|=@, H*(X, L) =H°(Y, N) =H°(E, Ng).

Let C, be a line in F(=P?), C, a proper transform of Cy by f. Since C,
intersects B transversally at one point, we have (ECy) =1 and (NC,) y=0.
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Hence the morphism g : Y—P"***! associated with |[N| has an image g (Y) =
g(E). Since (N3) g=n+Fk and h°(E, Ng) =n+k+ 225, the image g (E) is a
cone over a smooth variety of minimal degree. In fact, if b >n, then g (E) ~E=
F,_, and Y is a P*-bundle over ¢ (E). If b=mn, then ¢z contracts e. so that
g (E) is a cone over a smooth rational curve g (eo) of degree n+k with g (ew)
its vertex.

Case 3. In this case, W°(X, L) =a—n—+1(=n+k+2), B:=Bs |[L|=P (Op) (b)
@0p) =F, and |L|=|(a—n) F|+B. The image of the morphism p; is P!. The
natural morphism 7 is the same as that associated with |F|

(1.2) Topological types of P? bundles Topological types of
P?-bundles over P! are classified by m (PGL(3, C)) (= Z/3Z). Each
equivalence class (homeomorphism class) is represented by My =P (% (k, 0,
0)) (0<k<2). Let L;y(resp. Fi) be the tautological line bundle (resp. a fiber
over P'). Then we see

(1.2.k) H2 (M, Z) =ZLDZLF,, Li=Fk, LiF,=1, F2=0.

Any homeomorphism ¢ of M; keeps Fy invariant up to sign, 6*(Fy) = £ Fy.
Then it is easy to see that o* (Fy) =Fy, and ¢*(Ly) = * Ly +aF) for some

' integer a. Since the rational Pontrjagin class py (My) : = 3L} — 2kL,Fy is a
topological invariant, we have o*(Ly) =L, if #%#0, while 6*(L,) = £ L, if k=0.
Hence 0¢*(Ly)*=L3}=F mod 3. Thus L} mod 3 determines the homeomorphism
class of My uniquely.

Lemma 1.3. Let X be a Moishezon 3-fold with H*(X, Z) = H* (M, Z)
for some k(k=0, 1, 2). Then we have
(1.3.1) H*(X, Ox) =0 for ¢>0.
(1.3.2) There exist line bundles L and F on X such that L¥=k, L2 F=1, F?2=0
and H* (X, Z) ~ZL+ZF, H*(X, Z) =ZL*+ZLF. The line bundle L and F on X
with L3=k, LI? F=1, F*=0 are uniquely determined if k=1 or 2, while TL and
F are the only ones satisfying L*=0, L* F=1, F?=1 for k=0.

Proof. By [U], the Hodge spectral sequence of X degenerates at
Ei-terms, and Hodge duality h??=h%? is true. Since b; =b3=0, we have h*?=0
if p+¢=1 or 3. Moreover h**+2n2°=b,=2, so that k"' =2 and h*°=h*2=0.
This prover (1.3.1). (1.3.2) follows from (1.3.1)readily. See also(1.2)

Definition 1.4. Let k=0, 1, 2. A fake P?-bundle over P of type k is a
Moishezon threefold X which has a pair of line bundles L and F such that

(1.4.%) H*(X, Z) =ZL*PZLF, L*=Fk, L*F=1, F*=0,
c1(X)=3L+ (2—k)F, c,(X) =3L%+ (6—2kF)LF.

Roughly speaking a fake P2?-bundle over P! is a Moishezon threehold X
which has the same cohomology ring over Z and the same Chern classes as a
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P2-bundle over P'. We call the pair L and F canonical generators of Pic X. We
call a fake P2-bundle over P* of type 0 a fake P' X P? simply.

Lemma 1.5. Let X be a Moishezon 3-fold, L and F line bundles on X.
Assume H* (X, Z) =Z% and that L* F=1, F*=0. If HH' =0 for two nontrivial
line bundles H, H on X, then H=bF and H =b'F for some b and b’.

Proof. 1t is easy to see that H*(X, Z) ~ZL@DZF. Let H=aL+bF and H'=
a’L+b'F. Then by the assumption, we have 0 = HH =aa’ L+ (ab’+a'b) LF,
whence aa’=ab"+a’b=0. Hence a=a"=0.

§2. Global deformations of P (% (a, b, 0)) with a+b=1 or 2 mod 3

Lemma 2.1. Let X be a fake P?-bundle over P' of type k, L and F
canonical generators of Pic X. Assume h®(X, L—F) 21 and h° (X, F) 2 2. If the
linear system |F| has no fixed components, then X =P (F (a, b, 0)) for some a>
b=0(a+b=Fk mod 3).

Proof. Let X be a fake P2-bundle over P! of type k. Let F, F’ be two
distinct general members of |F| Since F? =0, Fr is a topologically trivial
effective divisor of F. Since F is an algebraic surface, this implies FNF' =@
so that h® (X, F) =2. It follows that any general member Z of |F|is smooth and
Kz=~—3Lz. We note that Lz is effective by h°(X, L) >1.

Let 7: X—P! be the morphism associated with |F|.

We assume ¢; (Lz) =0 to derive a contradiction. If ¢;(Lz) =0, then ¢, (Kz)
=0. Then by [Ka] deg 127« (wx/p') =0. Therefore we have

h° (X, —3L+kF) =h°(X, Kx+2F) =hr° (P!, s (wxm)) =1,

with contradicts h°(X, 3L —kF) 2h°(X, 3L—3F) 2h°(X, L —F) = 1. Hence ¢;
(Lz) #0, whence Z is P? or Z has a pencil of smooth rational curves f;, with
(2) 2=0. Clearly the second case is impossible. Hence Z=P2

We prove that any fiber Z’ of 7 is isomorphic to P2 Let Z'= 2%, m;Z; be
the decomposition of Z' into irreducible components. By the upper
semi-continuity, we have for any positive integer m,

W (Z', mLz) Zh° (P2, Op:(3m)),

whence there is an irreducible component Z, of Z’ such that & (Zo, Lz,) =2.

Let h: S¢y—Z, the minimal resolution of the normalization of Z,. Then the
canonical bundle of Sy is given by Ks,=h* (Kx+ Z,) — P, for some effective
divisor P, of Sy. Hence we have

makis,= = ((3r=1)moh*A+3moh* (F¥) +moPy) = ) mih* (Z,).
i#0
Therefore So is either P? or a ruled surface. If So has a pencil of smooth
rational curves f; with (ﬁ) so=0, then we have
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2= - (Ksoft)SoZB (h*(L)fl) So»

whence (n* (L) f:) s,=0. This contradicts & (So, h* (L)) =k (Z,, Lz,) =2. Hence
So=P2 Since So=P? we have P,=0, whence So=Z, by the same argument as
above. Hence Zo=~P? and Z, is a connected component of Z', whence Z' = Z,.
Therefore X is a P?2-bundle over P!, which is isomorphic to P (7« (L)).

Theorem 2.2. The set of all P*~bundles P (F (a, b, 0)) over P! with a+b
=1 mod 3 is stable and transitive under global deformation.

Proof. We prove the following

CLAIM. Let k=0, or 1. Let X be a fake P*-bundle over P* of type k, L and F
canonical generators of Pic X. Assume h°(X, L—F)>1 and h° (X, F) = 2. Then |F|
has no fived components.

Proof. Let Z;+ -+ + Z,+ G* be a general member of |[F|, Z; movable
components and G* the fixed components. Let Z: = Z;, v: Y— Z be the
normalization of Z, f: S— Y the minimal resolution of Y, § =v + f. Then we
have Ks=g¢* (Kx+2Z) —E —G where E and G are effective divisor of S such
that E is finite over f(E), while g% (G) =0. Since h°(L—F) 21, there exists an
effective divisor H on X such that L=F+H=vZ+H+G*. Hence we have

Ks=— (g*(3L+ (2—k)F) —Z+E+G)
=—((5r—kr—1)g*7Z' +3¢*H+ (5—k)g*G*+E+G),

where Z' is another movable component of |F[
If g*(G*) #0, then £(S) = — oo, Therefore S=P? or S has a pencil Fs=

P! with F2=0. However since 5*—kr—124r—12>3, and supp (E+G) Ng~!
(supp (Z'+G*) N Z), whence the coefficient of any component of E+G is at
least 4. Moreover the coefficient of g*(G*)is 5—k=4. Therefore if S has a
pencil of Fs=P! with F$=0, then —KsFs>3, a contradiction. Hence S =P2
However then ¢*(G*) =0 by 5—Fk>4. Then G*2=0in H*(X, Z). By (1.5), G*
€ [b*F| and Z € |bF|, whence G*=0 by h°(X, F) >2. This shows that |F| has
no fixed componets.

The remainder of the present section is devoted to proving

Theorem 2.3. The set of all P*-bundles P (¥ a, b, 0)) over P* with a+b
=2 mod 3 is stable and transitive under global deformation.

Our proof of (2.3) will be given in(2.5)-(2.9).

Corollary 2.4. Let k=1 or 2. Any jumping-deformation of P (¥ (a, b, 0))
with a=b>0 and a+b=23n+k is isomorphic to P(F (c, d, 0)) for some ¢, d with
¢=2d>20,c+d=3m+kand c—a=m—n=0.

We call X a jumping-deformation of Y if Xo=X, and if X,=Y for any t#0
for a smooth family X, (t €A)of complex manifolds over a disc 4.
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Proof of (2.4). In fact, this is a corollary to the proof of (2.5). In view
of (2.2) and (2.3) any global deformation of P (% (a, b, 0)) with a=b6>0, n>
0 and a+b=3n+2 is isomorphic to P(Z (¢, d, 0)) for some ¢, d with ¢=d >0
and c+d=3m+2. Therefore it is sufficient to prove the following

CLAIM. Let k=0,10r 2. P(F (a, b, 0))with a=b=>0, a+b=3n+kisa
small deformation of P (¥ (c, d, 0)) with ¢ 2d 20, c+d =3m~+k if and only if c—
azm—n20.

Proof of Claim. Let {X;}(cs be a complex analytic family over a disc 4
such that Xo=P(F (¢, d, 0)), X, =P (¥ (a, b, 0)) for t # 0 small. Since X,
satisfies the condition in (2.1), we have unique canonical generators L; and F;
of Pic X.. By the proof of (2.5), the linear system |F,| defines a morphism 7;:
X—P! with any fiber =P2 Then by (1.1) we have (o) % (Lo) =F (c—m, d —
m, —m)and (7))« (L) =F (@—n, b—n, —n) for t(#0)small. We also see that
Fi=n*0p (1). Let Ay =L,— (c—m~+1)F, and B, =L,+ (m —1) F,. Then we
have h®(X;, A;) <h°(X,, Ao) =0, whence ¢ —m=a —n. Similarly by h'(X,, B;)
<h'(Xo, Bo) =0, we have m =n.

Conversely if c —a=m —n20, it is easy to construct a flat family of
vector bundles %, (t€A) such that F=% (c—m,d—m, —m) and F, =% (a—
n, b—mn, —n) for t# 0. Then the family P(%,) (t € 4) is a smooth family of
3-folds. This completes the proof of the Claim, hence of (2.4).

A P?*-bundle P(% (a, b, 0)) with a=b>0 and a +b=2 mod 3 is a global
deformation (a smooth limit) of P(F (1, 1, 0)). Clearly P(% (a, b, 0)) is
homeomorphic to P (¥ (1, 1, 0)).

It is clear that any global deformation of P(% (a, b, 0)) (a+5=2 mod 3)
is a fake P2-bundle over P! of type 2 whose canonical generators L and F
satisfy the conditions A°(X, L —F) =1 and h° (X, F) = 2. Therefore for the
proof of (2.3)we need only to verify

Lemma 2.5. Let X be a fake P*-bundle over P' of type 2, L and F
canonical generators of Pic X. If h°(X, L—F) 21 and h°(X, F) 22, then X=P (%
(a, b, 0)) for some a=b=>0, a+b=2 mod 3.

The rest of the section is devoted to proving (2.5).

(2.6) Plan of the proof of (2.5). Let X be a fake P?-bundle over P! of type
2, L and F canonical generators of Pic X. By the Poincaré duality we have

(2.6.1) H* (X, Z) =ZL*PZLF,
Since Kx= —3L and h°(X, L) = 2 by the conditions in (2.5), we have
r3(X, Ox) =0. Also h' (X, Ox) =0. Since h?(X, Ox) =x (X, 0X) —1, we have

(2.6.2) %X 00 =550 (Mea(X) =1, h*(X, 0) =0(q21),
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We use (2.6.2) frequently without mentioning in the subsequent proofs. We
see also

(2.6.3) x (X, pL+qF) =%(p+1) (p+2) (2p+3g+3).

We note that h°(X, L) 22 by h°(X, L—F) 21 and h°(X, F) 22.

Let D be a general member of |L| Let D=2+ -+ Z, + F* be the
decomposition of D into irreducible components, Z; movable components (1 <i
<7), F* the fixed components. Since h!'(X, Ox) = 0, any Z; is linearly
equivalent, so we have D=vZ+F* where we set Z=Z2,. Let A:=0x(Z) €Pic
X. Let v: Y—Z be the normalization of Z, f: S—Y the minimal resolution of Y,

=y f. Then there exist by [N3, (2.A)] effective Cartier divisors E and G
on S with no components in common such that the canonical bundle Ks of S is
given by

Ks=g*(Kxt+A)—E—G

where f« (G) =0 and E is finite over f(E). Let 2*=EUg~! (Sing Z). Then &
contains supp (E+G) and gis\s is an isomorphism. We also note that the base
locus Bs g*|L| contains supp (E+G)if D is sufficiently general. Since h° (X,
7Z) =2, 9*%(A) is effective. Let g*(4) =M+N be a general member of g*|A4|, M
(resp. N) the movable part (resp. the fixed part) of g*|4|. Then

Ks=— ((3r—1)M+ (3r—1)N+39*(F*) +E+G)

whence S is either P? or a ruled surface.
Case 1. S=P?
Case 2. p: S—P!is a surjective morphism with general fiber F;=P",
We discuss Case 1 in (2.7), and Case 2 in (2.8)-(2.9). In any case we
prove X=P (% (a, b, 0)) with a+b=2 mod 3. The indices a and b are given as
follows.
S dim W (a, b)

Case 1. P2 1 a>n>b20,a+b=3m+2 (2.7)

Case 2-a ruled 2 azb>n=1,a+b=3m+2 (2.8.3)

Case 2-b ruled 3 (2,00 or (1,1) (2.8.4)
where W is the image of X by the rational map p;.

Lemma 2.7. (Case 1) X=P (% (a, b, 0)) for some a, b(@=n>b>0, a+b
=3n+2).

Proof. By the assumption S =P? under the notation as in (2.6). Then G
=0. We prove that M=N=E =0 and ¢*F*€|0s (1) |. Assume ¢* (F*) =0. If
moreover N =0, then E =0 by Ered SNrea. Hence — Ks= (3r — 1) M, a
contradiction. Therefore N#0, E#0 and M =0, whence N=E €105 (1) |. It
follows from the subadjunction formula [N3, (2.A)] that Z is singular
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generically along g (E) with
e (Qv.Ev) —e(Qv, Ev) =1

where V is a suitable Zariski open subset of Z, U the inverse image of V in S
and Ey:=E N U # ¢. Meanwhile (Lg« (E))x= (9* (L) E) s= (NE) s=1, which
shows deg (gz) =1. However if deg (9.z) =1, then ¢ (Qv, Ev) —¢ (QV, Ev) =2
by [N3, (2.A) and (2.6)], a contradiction. Hence we have M=N=E=0 and
g*(F*) =0€]|0s(1)|. It follows from E=0 that Sing Z is isolated, whence Z is
normal. Therefore S=~Y=Z=P? From now we identify S with Z, ¢ with the
identity of Z.

Since Az=0z, we have h°(X, A) =2 and Bs |A|=¢ by h' (X, Ox) =0. Let
m: X—P?! be the morphism associated with |A|. Then by the same argument as
in (2.1) we see that any fiber Z' of 7 is isomorphic to P2 Therefore X is a
P?-bundle over P!, which is isomorphic to P (7« (L)).

The direct image 7% (L) is a locally free sheaf of rank 3 over P?, so that
(L) =F (@', b, ¢’) for some a’2b’'=¢’ by a theorem of Grothendieck. Let a:=
a—c,b:=b'—c and n:= —¢’. Then a+b=3n+2 because a’+b" +¢ =deg
mx(L) =x (P!, 7 (L)) —3=x (X, L) —3=2 by (2.6.3). Since dim Bs |L|=2,
we have a’ =0, b’ <0, ¢’ <0, whence a 2n>b20.

(2.8) Case 2. Now we come back to (2.6). We have settled (2.6) Case
1in (2.7). Here we consider (2.6) Case 2. Let Fs be a general fiber of p.
Under the notation in (2.6) we have

2=—KsFs=((3r—1)M+ (3r—1)N+3¢9*(F*) +E+G)F;.

We recall supp (E+G) Csupp (N) by Bertini’s theorem. Hence if (E+G)
Fs= 1, then (3r — 1) NFs= 2, which leads to a contradiction — KsFs> 3.
Therefore EFs=0, GFs=0. Hence MFs=1 or NF;=1 and in either case we

have r=1, g*(L)Fs=1 and g* (F*) Fs=0.

Lemma 2.8.1. Let h: X—P™ be the rational map associated with |L|, W the
closure of the image of X\ Bs |L| and m=hn°(X, L) —1. Then
(2.8.1.1) r=1, EFs=GF;=¢*(F*)Fs=0and 9*(L)F;=1.
(2.8.1.2) dim W=2 if and only if m>2.
(2.8.1.3) If dim W =3, then any gemeral M is a smooth rational curve and
MF=1, NFs=0, M?*=2, MN=Mg* (F*) =ME=MG=0.

Proof. (2.8.1.1) was proved above. If dim W=1, then 7 is divisible by
d: =deg W, whence d=1, W=P! and m=1. This proves (2.8.1.2).

Next we assume dim W=3. Then M¥# @. If NFs=1, then MF;=0 so that
ME |aF| for some a=>1. Then since h * g (M) is a point by M?=0, whence dim
W=2, a contradiction. Therefore NFs=0 and MF;=1. Hence there is a unique
irreducible component I" of M such that I" Fs=1. Since M is general, we have
M=T. Then we have 0<I"?<2. In fact,

2—29=— (Ks+I)I'=T*+ 2N+3¢*(F*)+E+G)I'>T7,
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where ¢ is the virtual genus of I', whence I'*<2. We also see
I*=g*(L)I—NI'>g* (L) T'—deg Bs g*|L|r>deg(h + 9) i - deg(h - g) (I =1,

whence 1<I'*<2 and NI'=0. Hence EI'=GI'=0 by supp (E+G) Csupp (N).
Clearly g* (F*) I'=0 so that I'*=2, 9=0 and I'=P".

Lemma 2.8.2. dim W22 and h°(X, L—F) =>2.

Proof. By (2.8.1) it suffices to prove h’(X, L — F) 2= 2. Assume the
contrary. Hence h°(X, L — F) = 1 by the assumption in (2.2). With the
notation in (2.8.1) we have 9*(Z) Fs= (M+N)Fs=1, whence g« (Fs) #0. If
g*(F)Fs=0, then F¥*=¢4F for some ¢=1 in view of (1.5.2) because g*(F*) F
=0. This contradicts h° (X, F) =2, because F* is the fixed part of |L|. Since Fs
is movable, ¢* (F) Fs=>1. Similarly ¢*(L—F)Fs=0 by h°(X, L—F) =1, whence
g*(F)Fs=1,9*(L—F)Fs=0 by ¢*(L)Fs=1. Let H=L—F and F*=pL+4F for
some p, q. Then p+¢=0 by ¢* (F*) F;=0. Therefore p=0 and F*=pH, whence
F*=pH as effective divisors. If p=0, then the liniear system IL| has no fixed
components so that X =P (% (a, b, 0)) for some a=b2=0, a+b=2 mod 3 by
Appendix (A.1). However then h°(X, L — F) = 2, a contradiction. Therefore
p=1.

Since Z is irreducible reduced, we have h?(X, —Z) =0 for ¢=0, 1, while
h* (X, —Z) =h°(X, —2L—F*) =0. Therefore by (2.6.3)

WX, ~2)=x (X, =2) =x X, =) L—pF) = gpp+1) (1—p),

whence p=1, Z€ |F| In particular, any general member of |F| is irreducible
reduced and F has no fixed components.

Let F, F’ be two distinct general members of |F|. Since F2=0, Ff is a
topologically trivial effective divisor of F. Since F' is an algebraic surface, this
implies FNF' = @ so that h°(X, F) =2. It follows that any general member Z
of |F|is smooth and Kz = — 3Lz, whence Z = P2 This contradicts the
assumption of Case 2.

Lemma 2.8.3. (Case 2-a) If dim W=2, then X=P (% (a, b, 0)) for some
a>b=>2n>1(a+b=3n+2).

A proof of (2.8.3) is given in (2.9).

Lemma 2.8.4. (Case 2-b) If dim W=3, then X=P (% (1,1,0)) or P(F
(2,0,0)).

Proof. We keep the notation in (2.6) and (2.8.1). We apply the results
and the arguments in [N4] and [N5], some of which are reviewed in the
appendix. We note that most of the arguments in [N5, §1-§3] can be applied to
X. The image C:=¢ (M) of M is an irreducible component outside Bs |L| of ZN
7' for some Z' €|L| with LC=Lg+ (M) =g* (L) M=2. Moreover by [N5, Lemma
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2.1], C is a smooth rational curve, which is a connected component of ZNZ’.
Since 2=LC=deg Bs |L|c+deg(hic) deg W, we have deg W=1 or 2.

If deg W=1, then h°(X, L) =4 and we can prove by the arguments in
[N5, Lemma 4.3.2] that Bs |L| consists of a single point. Hence by (A. 1), X=
P(%(a, b,0)) for some a, b. See Appendix. However there are no cases in (A.
3) with dim Bs |L|=0. Hence h°(X, L) =4 is impossible. Therefore by the
argument in [N5, Lemma 3.2]4°(X, L) =5 and W is a hyperquadric in P*. We
can prove Bs |[L|= @ by applying the arguments in [N5, Lemmas 3.6-3.7]. If
W is smooth, then X = Q® by (A.2), which contradicts b2(Q%) =1. If W is
singular, then X=P (% (1,1,0)) or P(%(2,0,0)) by (A.2).

(2.9) Proof of (2.8.3). We keep the notation in (2.6) and (2.8.1). The
proof is divided into several steps.
Step 1. By (2.1) we may assume that the linear system |F| has a fixed
component. Further we assume h° (X, L—2F) >1. For any general F €|F| there
exists an effective divisor H such that L=2F+H. Therefore

Ks=— (4g*F+29*H+3¢9*F*+E+G).

Since KsFs=—2, we have ¢* (H)F,=1, ¢* (F*)Fs=0, g* (F) Fs=0 by (2.8.1).

Since L and F span H?(X, Z), we have F¥*=aL~+bF for some integers a, b.
Then as (FY*L)s=1, we have 0=Fg*F*=qFg*L+bFg*F=aqa, whence F¥*=
bF. Since F* is the fixed part of |L| we have b=0. Consequently IL| has no
fixed components and dim Bs |[L|<1. By (A.3), X=P (% (a, b, 0)) for some
a=>b=0. Since dim W=2, we have a=b=>n=>1, a+b=3n+2 for some n.

Step 2. We assume h®(X, L —2F) =0 and that the linear system |F| has a
fixed component. We prove that it is impossible.

We note that h°(X, L —F) =2 and h°(X, F) = 2 by the assumption in
(2.2) and (2.8.2). Let Zi++-+Z,+Ff (resp. Z{++++Z;+F%) be a general
member of |[L—F|(resp. |F|) where F¥ (resp. F¥) is the fixed part of |[L—F]| (resp.
IF|). Let Z:=2Z; and Z":=Z}. Let 9":S—Z' (resp. 9”:S"—Z") be the minimal
resolution of the normalization of Z'(resp. Z”). Let M (resp. M”") be the
movable part of ¢°*(Z’) (resp. 9"*(Z”)) and let N’ (resp. N”) be the fixed part
of 9'*(Z) (resp. 9"*(Z")). Then we have

Ks=—(3p—1) (M'+N') —g'*(3¢Z"+3F¥+3F%) — (E'+G"),
Ks»=—03g—1) M"+N") —g9"*(3pZ'+3F¥+3F%) — (E"+G")

for some effective divisors E', G, E” and G as in (2.6). There are three
cases.

Case 2-1. S'=P2

Case 2-2. S"=P2

Case 2-3. S" and S” have a morphism onto a curve with general fiber =~
P
Case 2-1. By the assumption, F5# 0 and Z"#0. If g¢*(Z”) =0, then Z'=b'F
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and Z”=b"F for some b'=1 and b"21 by (2.8.1). Hence (pp'—1) F+F}e
|L—2F]|, which contradicts k°(X, L—2F) =0. Therefore g=1, g'*(Z") #0, M'=
N =g*(Ff) =E'=G"=0. Hence Ff=1b"F, whence (pp' +b"") F=L—F, a
contradiction

Case 2-2. The same as in Case 2-1.

Case 2-3. Let p": S’—B’ (resp. 0": $"—B") be a morphism onto a curve with
general fiber F;=P! (resp. Fy=P?!). By the same argument as in (2.8) we see
that p=¢=1, (M'+N)Fs=1and (M"+N")Fs=1.

There exists an irreducible component I” of M'+ N with I''F;=1. We
prove that I'" is a component of N'. Assume the contrary. Then M'=1I"" and
(I'')*=0. Let K¢ = —2I""—D’ for an effective D'. Then (I'')?=— (Ks+1I"’)
I'—DT’'<2—D'I''<2, whence 0 (I'")2<2.

Case 2-3-1. Assume (I"')2=2. Then I''=P*, h'(S’, Os) =0, whence S’ is a
rational surface and pxOs (I'") is a locally free Op-module of rank two. Let
0%0s' (I'") =0p: (c) BOp: (d). Then c+d =2 by (I'’)2=2. Moreover since h°(S’,
I'')=4 and Bs |[I"’|= @, we have (¢, d) = (2,0) or (1.1). In either case we
have a birational morphism h": S—W":=P (0xOs (I'')) (=F; or F,). We note
I''=n' (I'") and Kw = hi (Ks) = — 2h% (I''). S’ is obtained from W’ by
repeating blowing-ups. Any rational curve C with C*= —1 at any intermediate
step of blowing downs is contained in the image of supp D’ because any
irreducible component of D’ has the coefficient= 2. Therefore if S" is not
isomorphic to W’, then at least a blowing up is performed at a point of h'(I""),
whence (I'") 2<hyx(I"")2=2. However (I'')2=h4 (I"")?2=2 by the assumption,
which shows that S’=W'. Hence ¢'*(Z") =0. Therefore by (2.8.1), we have Z'=
bF, Z'=b"Fand (pb'—1) F+F¥E€|L—2F|, which contradicts h°(X, L —2F) =0.
Case 2-3-2. If (I'')2=1, then Ks['+ (I'')2=—(I'")?*—D'T"'<—1. Hence I'’
~P! and K¢I''"=—3 and D'I""'=1. However any irreducible component of D’
has the coefficient=2 because supp (E'+G’) Csupp N'. Since I'"E D', we have
I''D’'>2, a contradiction.

Case 2-3-3. Assume (I"')2=0. There is I'* (#I'") €|I'’|. Hence I'T*=0,
Or (I'") =0, whence Bs |I'’'|= @. Therefore any general I'"€|I'’| is smooth.
If KsI'' =0 (resp. K I''=—2), then I'’ is a smooth elliptic curve (resp. a
smooth rational curve). We have a morphism p r: S—P! associated with the
linear system |I"’|. Since I''Fs=1, we have a birational morphism h":=p | X
0 S—=P!XT'(=: W). S is obtained from W’ by repeating blowing-ups.
Note that Kw = hi(Ks) = — 2h% (Fs) (resp. —2 (hi (I'") +hi (F9))) if T is
elliptic (resp. rational). Since (I'")2=0 and (Fs)2=0, the centers of blowing-
ups are chosen from the outside of i’ (Fs) (resp. h’ (I'') and h’(F%)). Hence it
follows from the form of canonical bundles of " and W’ that S"= W’. Hence we
derive a contradiction in the same manner as in Case 2-3-1.

Thus we see that I'" is an irreducible component of N'. Similarly the
unique irreducible component I"” of M"+N" with I'"F¢=1 is contained in N”.
Step 3. Next we show that ¢’ (I"’) is a curve on X. Since (E'+G')F:=0, ' is
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not contained in supp (E' + G'). Therefore if ¢'(I’") is a point po, the
normalization of (Z, po) is a Du Val singularity. Hence (I'")?=—2, KsI''=0,
I’ =P, On the other hand movable components Z' of |[L—F| (resp. Z” of |F])
sweep out an open subset of X so that 9'*(Z”) has a nontrivial movable
component. Since ¢'* (Z”) Fs=0, g'*(Z') =bFs for some b=1. As M'Fs=0, we
have M'=aFs for some a=1. Hence we have

—KsoI''=2(I"")?+2a+3b+3¢"* (FF+F5) 't (E'+G)I'>1,

a contradiction. Therefore ¢’ (I'*) is a curve on X. Similarly " (I"”) is a curve
on X.

Step 4. Let Z', W E€|Z'| and Z”, W €|Z’| be general members, and let D;=2’
+ W' +F¥+F¥ and D,=W'+Z"+F¥+F5. Then the intersection :=D;ND; is
one-dimensional outside Ff¥+F¥. The curves ¢’ (I'"), 9" (I'") and Z'N Z" are
curve-components of [ outside Ff+F%. Z'N Z" contains ¢’ (Fs) and ¢” (Fs) as
movable components. Note that ¢'(I'") CZ'N W and ¢"(I'") €Z" N W". By
[N5, Lemma 2.1] ¢'(I'") (and 9" (I"'”)) is the unique irreducible component of
| intersecting movable components of Z' N Z”. Therefore g’ (I"") = g¢"(I'"),
whence it is a subset of Z'NZ”". However ¢’ (I'") €Z” by ¢'*(Z") Fs=0. This is
a contradiction. Thus we complete the proof of (2.8.3).

§3. Unstable rank two vector bundles over P2

In the present section we show that there are many Moishezon 3-folds
homeomorphic to P* X P2 other than P (% (a, b, 0)) with a+b=0 mod 3. We
also prove that any of them is a global deformation of P! X P2 See (3.10).

Proposition 3.1. Let & be a rank two vector bundle over P?. Then the
following conditions are equivalent.
(3.1.1) P(8) is homeomorphic to P! X P2
(3.1.2) ¢1(8)%=4c,(8).
(3.1.3)  There exists a rank two vector bundle 4 with c; (9) =0(G=1, 2) over P?
such that §=9Q0p:(p) for some integer p.

Proof. The equivalence of (3.1.2) and (3.1.3) is clear. We prove the
equivalence of (3.1.1) and (3.1.2).
Let X:=P(8), S:=P2 a:=¢,(0s(1)), m: X—S the natural projection, and

H the tautological line bundle on X with 7« (H) =&, L:=n*0s(1). Let ¢;(§) =
pa and ¢, (8) =qa®. We have

¥ (8) —m*c1(8) ey (H) +¢, (H)2=0.
See Grothendieck [G]. From this we infer

H?*(X,Z) =ZH®DZL, H* (X, Z) =ZHLDZL?,
H*=pHL—qL? H*=p*—q, H’L=p, HL?*=1, L3=0.
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On the other hand, we let Y:=P!XP? and let A:= (a point) X P? and B:=
P! X (a line). Then we have

H*(Y,Z) =ZA®DZB, H*(Y, Z) =ZABDZB?,
A?=0, AB*=1, B*=0,.

Assume (3.1.1), that is, X is homeomorphic to Y. Let i: X— Y be a
homeomorphism. Let i*(4) =aH+bL for some integers a and b. We note that a
and b are mutually prime. Since A2=0, we have ga®="b% pa®+2ab=0. Hence p*
=4q and pa+2b=0.

Let 9:=$®Os<—12)—L>. Then X=P(9) and ¢; (4) =0 (=1, 2). Hence

(3.1.3) follows.

Conversely if ¢;(9) =0(G =1, 2), then ¥ is topologically trivial, whence X
is homeomorphic to P' X P2 Thus we see the equivalence of (3.1.1) and
(3.1.2). See also [OSS, p.144] [T].

Proposition-Definition 3.2. Let 9 be a rank two vector bundle over P?
with ¢; () =0(G=1, 2).
(3.2.1) If 9 is semi-stable, then 9=0%¥.
(3.2.2) If 9 is unstable, then there exists a positive integer p and an ideal sheaf
I of Op: defining a O-dimensional locally complete intersection subscheme X of P?
with Oz:=O0p/I such that h® (Oz) =p* and the following sequence is exact.

0— Op:(p) = 94— [0p:(—p) — 0.

We define sp* (9):=p and call it the (reduced) spectrum of 4. We set sp* (%)
=0if 9=0%. We also denote X-=disc(¥9) and call it the discriminant of 4.

Proof. Let S:=P2 If 4 is semi-stable, then § is represented by a complex
called a monad [OSS, p. 251]. Indeed, ¥ is the cohomology of the following
complex

H'(S, 9(—2))®0s(—1) — H'(S, 9Q24§) ®0s — H'(S, 9(—1)) ®0s(1).

If ¢;(9) =0, then H*(S, 9(—2)) =H'(S, 9(—1)) =0, whence 4=0%".

Next we prove (3.2.2). Since ¥ is unstable, ¢ has a rank one subsheaf E
with positive degree p=1. We may assume that E is saturated. Hence E is
reflexive, so that E is locally free. Therefore E=~Os(p) for some p=1. Let F:=
%/E. Since F is torsion free, there exist an integer ¢ and an ideal sheaf I of Os
such that F=~I0s(q) with dim supp Os/I=0. As 9 is locally free, I is spanned
by a system of two parameters. We define a subscheme = by Oz:=0s/I. Then
2 is locally a complete intersection. Since ¢;(4) =0, we have = —p. Moreover
we see that the following sequence is exact,

0— EQFY — EQY%Y — 05— 0s/I— 0,
where FV=0s(p). It follows that h°(0z) =x (0s(2p)) —2x (Os (p) ) +1=p%
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(3.3) The stucture of P (§). Let & be a topologically trivial rank two
vector bundle over P? and m(8) the natural projection of P () onto P% Let
L(8):=n(8)*0p:(1) and F(8) the tautological line bundle with 7 (&) « (F (8))
=~§. Then we see

Kpy=—2F(8) +m (&) * (Kp:+det ) =—2F(8) —3L(8).

We also have H*(P(8), L(8)) =H°(P? Op:(1)). Let p:=sp* (§) and 2=
disc (8), and I the ideal of Op: defining 2. Assume p=>1. Then the following
sequence is exact,

0— Op:(p) = & — [0p:(—p) — 0,

whence H°(P (&), F(8)) = H°(P? Op: (p)). Let G* be the fixed component of
the linear system |F(8) |. Then we have |[F(§) |=|pL () |+ G* and G* is
defined by the ideal generated by H® (P? Op:(p)), hence by the subsheaf Os(p)
of 8. Therefore G* =P (I0p:(—p)) =P (I), which is the blowing-up of P? with

2 center.
If sp* (&) =0, then §=0% and P (§) =P' X P2

(3.4) Some unstable bundle over P2 Let S:=P? p, a point of S, and let

0: W—S be the blowing-up of S with po center. Let C:=0"'(po) =P*. For any
integer p>0, we choose a nontrivial extension of locally free Oc-modules

(3.4.1) 0— Oc(—p) — 0 — O¢ (p) — 0.

Then [OSS, pp. 120-122] shows there exists a rank two vector bundle # over
W such that F=O%? near C, and

(3.4.2) & is a nontrivial extension given by the exact sequence,

0—0w (pC) ®c*0s (p) Sgl Ow (—pC) @a*0s(—p) — 0

whose restricition to C gives (3.4.1)

Then the sheaf o« (%) is a rank two vector bundle over S with ¢; (0% (%))
=0(=1, 2). See [OSS, chapter I, §6] for the detail. The extension (3.4.1) is
given by two homogeneous polynomials f;(xe, x1) and f,(xo, x1) of degree p
having no zeroes on P! in common. The sheaf 0%« (%) fits in the exact

sequence,
ox(§) ox(n)

(3.4.3) 0— 0s(p) — 0x(F) — m?Os(—p)—CEE-V/2q)

where m is the maximal ideal of Os defining po. Let x and y be a local
coordinate at po. Then there exists a germ of holomorphic function F;(x, y) at
po such that F;(x, y) =fi(x, y) mod m**! and 0« (€) is locally given by the
pair (Fy, F3) at po. Defining an ideal I of Os by I: =0sF, (x, y) +OsF; (x, y) at
po and I: = Os elsewhere, we have Im o0« () =I0s (—p). Thus we have the
exact sequence
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(3.4.4) 0—0s (p) =%—105 (—p) —0.

Lemma 3.5. Let 0: W—Y be a blowing-up of a surface Y with poEY
center, E the exceptional curve of 0, L a line bundle on Y and I an ideal sheaf of
Oy with dim supp (Oy/I) =0. Suppose that we are given a rank two vector bundle
F over Y such that

3
(3.5.1) 0—L—F— =0

is exact. Let a:=min{multy, f; €I} and N:=0y (aE) @c*(L). Then there exist
a rank two vector bundle G:=0*(F) on W and an ideal sheaf | of Ow with dim
supp (Ow/]) <0 such that

(3.5.2) h°(Ow/])=h°(Oy/I) —a?,

34 n’
(3.5.3) 0—= N—G—JN'—0is exact, and
(3.5.4) the direct image of (3.5.3) by 0% induces (3.5.1).

Proof. The homomorphism & is given by a pair (s;, sz) of germs of
functions locally at po by trivialising F and L, say, §(u) = (us2, —us1) and
N (v1, v2) =sw1+s2wz Let t=0 be a local equation of E at a point ¢EE, 0ig=
t=%c*s;. We define J: = Ow01,+ Ow0z,, and the homomorphisms &: N—G and
n: G—N! at g by

EW):= W 0one —u'ong), 0 1, v2) =011+ 025

It is easy to see that & and 1’ are globally well defined. Let C; be a local
curve defined by s;=0 at po, and Cj:=0*(C;) —aE. Then I is the ideal defining
the complete intersection C; N C; at po. Let J be the ideal defining C1 N C; along
E and J=0*(I) elsewhere. We prove (3.5.2). We have

h°(S, Os/I) —h° (W, Ow/]) =h°(U, Os/I) —h°(V, Ow/]) =CiC,—CiC2=a?,

where U (resp. V) are sufficiently small open neighborhoods of po(resp. E).
The condition (3.5.3)is clear from the definitions.
Finally we prove (3.5.4). By taking the direct image of (3.5.3) by 0%,
we obtain an exact sequence

ox(§") ox(n’)

0= 0x(N) — 0x(G) — 0«(N7!) (Cax(N7")) —0
where 0x (N) =L, 0% (G) =F and o« (§) = 0. Moreover since ox(JN7!) is
canonically a subsheaf of L™}, the homomorphism 0x(n’) can be viewed as a
homomorphism of F into L™}, which coincides with 1. This is what we claim in

(3.5.4).

Corollary 3.6. Let 9 be an unstable rank two vector bundle over P? with
¢; (%) =0(G =1, 2). Then there exists a modification 0. W—P?, a rank two vector
bundle G and a line bundle N on W such that
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(3.6.1) G is an extension with 0— N— G — N~ — 0 exact,
(3.6.2) 9 =04«(G) and the direct image of (3.6.1) induces the sequence in
(3.2.2).

The minimal modification @ and N are uniquely determined by the ideal I.=
Liisc ().

Proof. Clear from (3.5).

Next we show that (at least) some of the 3-folds P (%) can be deformed
into P! X P? by deforming the vector bundle 4. The following lemmas (3.7)
and (3.8) were suggested (in fact given for sp*(9) =1 by Maruyama.

Lemma 3.7. Let 9 be a rank two vector bundle over P2. Then the following
conditions are equivalent.
(3.7.1) 9 is an unstable bundle with ¢;(9) =0(G =1, 2) such that sp* (9) =p
and disc (9) is a complete intersection of two curves of degree p.
(3.7.2) There exist a (possibly reducible nonreduced) curve C of degree 4p and
a surjective homomorphism ¢ (2p): 0%* (2p)—0s (3p) ®Oc¢ (=:0¢ (3p)) such that
Y=Ker ¢(2p).

Proof of (3.7). Step 1. (Maruyama) Let S=P? and Os (1) a hyperplane
bundle S. Let C be any (possibly nonreduced) irreducible curve of degree 4p
in S, L a line bundle on C such that deg L =4p? and Bs |L|= @. Suppose that
we are given a surjective homomorphism ¢: 08" —LQO0¢ as ¢ (a:DPaz) =a;5,+
a5, with two global sections s; of L. By the syzyzy theorem (see [AK, Chapter
I (5.7), (5.8), (5.19)], Ker ¢ is locally Os-free of rank two. Let ¢ (k):=¢
®O0s (k) and E:=E(C, L, ) =Ker ¢(2p). Then ¢;(E) =0 for j =1, 2. Consider
the exact sequence

(3.7.3) 0— E(—p) = 0s (1) ® > LROC (p) — 0.

Assume that L = O¢ (p) . Then since H°(Os (2p)) = H°(O¢ (2p)) and ¢ is
surjective, ¢ is given by two homogeneous polynomials s; and sz of degree p
with no irreducible factors in common. We also have h°(E (—p)) =dim Ker H°
(¢ ®)) = 1. In fact, H°(Os(2p)) = H°(Oc(2p)) so that Ker H°((¢) (p))
H°(¢(p)) is generated by the pair (s; —s;). Similarly we have h°(E(—p—1))
=0. It follows that we have an injective homomorphism ¢: Os (p) —E, which
yields an exact sequence

(3.7.4) 0— 0s(p) — E— 105 (—p) — 0

where I =5,05+ 5205 is an ideal of Os. This shows that E is an unstable rank
two bundle with sp* (E) =p. Clearly disc (E) is a complete intersection defined
by the ideal L.

Step 2. We prove that (3.7.1) implies (3.7.2). Let p: =sp* (9). We start
with recalling the exact sequence
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4 n

where p:=sp* (¥4). Tensoring the dual of (3.7.5) with Os(2p), we obtain an
exact sequence

v (2p) £v(2p)
0—0s3P) — 9V (2p) — 10s(p) (COs(p)) — 0.
On the other hand, since disc (4) is a complete intersection, we have an exact
sequence

0— 05 (=2p) = 05 (—p) &= 10,

whence we have h°(IOs (p)) =2h°(Os) =2. Therefore we have two sections o; (i
=1, 2) of 9V (2p) such that s; =H°(&Y (2p)) (0:) generate H°(IOs (p)). Using
0;, we define a homomorphism ¥ 94—05(2p)®* by ¥(a):= (ag,, —aoy)). We
consider the following commutative diagram with exact rows and columns. The
nine lemma shows that Q:=Coker ¥=Coker ¢.

0 0 0
! ! !

0 — 0s(p) — & —— I0s(~p) — 0
L= v lo

(s2,—S1) ®0s(3p)

0 — 0s(p) — 0s(2p)® — 10s3p) — 0
! La 1

0— 0 — @ — Q — 0
! ! !
0 0 0

Moreover we see
CLAIM 3.7.6  Hom (I10s(—p), 105(3p) ) =Os (4p).

Proof of (3.7.6). Let X:=disc (9). Since X' is a complete intersection, we
have a locally free resolution of Oy as follows,

$2,—S1)

0— 0s(—2p) = 05(—p) % 05— 05— 0.
Hence Ext?(Os, Os) is the g-th cohomology of the complex of Os-modules
Hom (Os, Os) — Hom (0s(—p), Os) — Hom (Os(—2p), Os),
whence Ext?(05, Os) =0(¢=0, 1). Now we consider the exact sequence,

0_’1—’05_'0}:—’0,
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from which we infer Hom (I, Os) = Hom (Os, Os) = Os. We note that the
isomorphsim is induced from the natural inclusion of I into Os. Consequently
we see Hom (I, I) =Hom (I, Os) =0Os, whence (3.7.6).

Now we complete the proof of (3.7). By the proof of (3.7.6) we see that
the homomorphism ¢ is just the multiplication by a homogeneous polynomial h
of degree 4p. Let ¢)o be the homomorphism of Os(—p) into Os(3p) defined by
the multiplication by h. Let C be a curve defined by =0 and Oc¢: = 0s/hOs.
Then there is a natural homomorphism j of @ (= Coker ¢) into Oc (3p) (=
Coker ¢). Since depth Q=0, j is injective so that @ =IO¢ (3p). We show that
Q=0c(3p). Let m:=dim O¢/IOc. Then we have

c(9) =c(0s(2p)) % (Q) 7'=c (05 (2p) ) % (Oc (3p)) ~c (Oc/I0c) =1+mH?

where H is a hyperplane of S. Hence m =0, which shows Q=1I0¢ (3p) =0 (3p).
It follows that CNdisc (9) = @. This proves (3.7.2).

Lemma 3.8 (Maruyama). Let 9 be an unstable vector bundle over P? of
rank two with ¢;(9) =0 (G =1, 2). Assume sp* (9) =p and that disc (%) is a
complete intersection of curves of degree p. Then there exists a flat Op:xp-module F
such that %0=9 and sp* (%,) <p—1(t#0) where D is a connected curve and F:
=9®0P’x 1}

Proof. We keep the notation in (3.7). Let E:=E(C, L, ¢). Note that ¢;(E)
=0. Since H°(Os (p)) =H*(O¢ (p)), we have H°(E (—p)) =Ker H°(¢ (p) =Ker
H°(¢(p) ). On the other hand by the exact sequence

0= 0 (p) ®L™1 = 0c (9) & = 0 (p) BL — 0,

we have Ker ¢(p) c =H°(Oc (p) ®L™). Hence H°(E (—p)) =H° (O (p) ®L7Y).
Therefore h®(E (—p)) 21 if and only if L=0O¢(p) because deg L=deg O¢ (p) =
4p% 1f L is not O¢(p), then E=0% or E is unstable with sp* (E) =p—1 by

(3.2). Thus we have a desired that Op:xp-module # parametrized by a curve
D in Pic C.

Lemma 3.9. Any unstable rank two bundle G over P* with ¢; (%) =0(G =1,
2) can be deformed into the trivial vector bundle O (under flat deformation).

Proof. Any unstable rank two bundle E over S: = P? is given as an
extension of Os(p) by IOs(— p) for some positive integer p and a locally
complete intersection ideal I of Os. The extension class 6 (E) belongs to

Ext! (I0s(—p), Os (p)) =Ext! (I, Os(2p)) =05

where X' =disc (E). Now we consider a flat deformation of Oy with sp* (E)
constant. In other words, we choose a point ¢q of supp (X) and a local generator
f and g of the stalk I,. Then we choose a pertubation F (t) and G (t) with F(0)
=f and G (0) =g. We let 4 be the unit disc, $:=S X A4, $:= (F, G) the ideal of
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Os generated by F and G. Then we have

Ext' ($0s(—p), 05 (p)) =Ext' (¥, 0s(2p)) =04/ (F, G)

where Og (k) :=0s (k) X]0s. We choose an extension & whose extension class is
0(8) €04/ (F, G) with 6(8):1=0=0(E). Then we have an exact sequence

0— Os(p) = &— S04 (—p) — 0.

Therefore § is a coherent Os-Module, whence & is a locally free
Os-Module of rank two by shrinking 4 if necessary because E is locally free.
Let Ex=8®0sx:. Then it is clear h°(S, E;) =h°(S, Os(p)), whence sp* (E;) =p
and laiscn = FOsxt.

If we choose a sufficiently general F and G at any point of supp (X), we
have reduced disc(E,), that is, a union of distinct p? points. The set of p*
distinct points in suitable position is a complete intersection of two curves on
S of degree p. Then E,~E(C, L, ¢) for some triplet C, L and ¢ by (3.7). Then
by (3.8) E: can be deformed into an unstable E" with ¢; (E’) =0 (=1, 2) and
spt (E") <p—1. It follows from the induction on sp* that any unstable E with
¢;(E)=0(j=1, 2) can be deformed into the trivial bundle O%%

From (3.9), we infer

Proposition 3.10. Let 9 be an unstable rank two bundle over P? with
¢;(9)=0G=1, 2). Then P (9) is a global deformation of P* X P2

§4. Global deformations of P (% (a, b, 0)) with a+5=0 mod 3
The main purpose of this section is to prove

Theorem 4.1. The set of all P*-bundles P (¥ (a, b, 0)) over P! with a+b
=0 mod 3 and of all P'-bundles P (8) over P? with & topologically trivial rank
two vector bundles is stable and transitive under global deformation.

(4.2) Conditions. Let X be a fake P! XP? L and F canonical generators of
Pic X. We consider the following conditions

(4.2.1) n(X, L) =3, h°(X,L—F) =0, h°(X, F) >2.

It is easy to derive from (1.4.0)
(4.2.2) % (X, pL+aF) =5 (p+1) (p+2) (g+1).

Lemma 4.3. Let X be a fake P* X P? L and F canonical generators of
Pic X. If h°(X, L) =3, h°(X, F) =2, then X=P (% (a, b, 0)) or X=P (8) where
a>b>0,a+b=0 mod 3, while § is a rank two vector bundle over P with ¢;(8) =
0G=1,2).

(4.4) Proof of (4.3) —Start. First we consider the simplest case.
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Lemma 4.4.1. Let X be a fake P* X P2 L and F canonical generators of Pic
X. Assume (4.2.1) and that |F| has no fixed components. Then X =P X P2,

Proof. We can prove in the same manner as in (2.1) that Fr = Op,
h°(X, F) =2 and Bs |F|= @ . Let F be a general member of |F|. Then Bs |F|=
@, F is smooth and irreducible. Since Kr = —3Lr, we have F=P? and Lr €
|Op, (1) |. Let m:= pr: X—P* be the morphism associated with |F|. Then it is
easy to see that 7 is a P?-bundle over P!. We see X=P (7«L) and sl =Op
(@) DO0p: (') for some a’=b"=¢". Since h°(X, L—F) =0, we have a’<0, while
a’+b"+¢'=0. Hence a’=b"=¢'=0 and X=P' X P2

In view of (2.2) Claim and (4.2) we may assume h°(X, L—F) =0. We
also assume in what follows in (4.4) and (4.5) that X is not isomorphic to P*
X P2 By (4.4.1)|F| has fixed components.

Lemma 4.4.2.
(4.4.2.1) The linear system |L| has no fixed components.
(4.4.2.2)  Any general member Z of |L| is irreducible and reduced.

Proof. First we prove (4.4.2.1). Assume that |L| has fixed components.
Let Vi++-+V,+F*€|L| be a general member of IL|, V; movable components
and F* fixed components. Let V=7V, and 9:=S—V be the minimal resolution
of the normalization of V. Then the canonical line bundle of S is given by Ks
=—g*((3r—1) V+3F*+2F) — (E+G) as in the proof of (2.1). We note that
supp (E+G) Csupp (g*V’) for general V' linearly equivalent to V.

Since —Ks is effective, S=P? or S has a morphism m: S—C onto a curve
with general fiber Fs =P If S=P2? then Fy =0y or Fy=0y. In either case V
€ |aF| for some a=>1 by (1.5). Hence h°(X, L —F) =1, which contradicts
(4.2.1). Therefore S has a morphism 7: S—C onto a curve with general fiber
Fs=P!. Then we have

2=—KsFs=g*((3r—1) V+3F*+2F)Fs+ (E+G)Fs.

It follows that F*F=0 and that VFs=1 or FF,=1. If VF,=1, then r=1
and LFs=1, FF;=0. Let F*=pL +¢F. Then p =F*F;=0, whence ¢=1 and
h°(X, L—F) 21, a contradiction. If FF;=1, then VFs=LF;=0. Let F*=pL+
gF. Then ¢=F*F;=0, whence p=>1 and F*€|pL|, a contradiction.

Next we prove (4.4.2.2). Let D=Z;+--+Z, be a general member of |L|,

Z; movable by (4.4.1). Then we have #»Z?F=L?F=1, whence r=1.
Lemma 4.4.3. Let Z and Z' be general members of |L|, and 1:=2Z N Z'.

Then

(4.4.3.1) h°(0z) =1, h'(0z) =0(g=1).

(4.4.3.2) h%(0z(—L))=0(¢=0).

(4.4.3.3) h%(0z(—2L))=0(g#1), h*(0z(—2L)) =1.
(4.4.3.4) h°(0,(—pL)) =1, h* (0, (—pL)) =0(p=0, 1).
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Proof. We see h®(X, —3L) =1 and h*(X, —pL) =0(1<p<3 ;,0<g<3)
except for (p, g) = (3, 2). In fact, since Z is irreducible, we have h'(X, —pL)
=0 for p<1. We also see h®(X, —pL) =h3*(X, —pL) =0 for 1<p<3. Hence we
have h*(X, —3L) =x (X, —3L) =1, while h®(X, —pL) =x (X, —pL) =0 for p=
1,2.(4.4.3) follows from it readily.

Lemma 4.4.4. Let m:=h°(X, L) —1 and por: X — P™ the rational map
associated with |L|. Then dim Im p.=>2.

Proof. Let B:=BS |L| W the closure of o (X\B) and d:=deg W. Assume
dim W=1. Then d is equal to the number of irreducible components of a
general member of |L|, whence d =1 by (4.4.2). Hence m = 1, which
contradicts h°(X, L) >3.

Lemma 4.4.5. Let Z and Z' be general members of |L|, and :=2 N Z'.
Then | is a smooth rational curve with LI=0 and FI=1.

Proof. Step 1. In view of (4.4.4), | has movable irreducible
components. Let C;(1 <i <#) be movable components of /. Then LC;=0 and
FC;=0. Let C=C;, :=LC=0 and B:=FC=0. By (4.4.3.4) we have h'(Oc¢)

=0, whence C is a smooth rational curve. We also see h'(O¢c(—L)) =0 by
(4.4.3.4), whence 0LLC<LI.

We set Ic/I2=0¢ (a) ©Oc(b) for some integers a=b. It follows a +b=
KxC+2=— (3a+2B) +2. Then since [ is reduced generically along C, we
have an injective homomorphism

¢: (1/1}) @0c (= 0c (—a) BOc (=) =1c/1E (= 0c (@) BOc (b)),

whence a+28<2. It follows that (a, 8) = (1, 0), or =0, 0<BL1.

Step 2. First we assume LC=1. Then by Step 1, FC=0. Let Vi+ -+ V+G*
be a general member of IF|, v; (resp. G*) a movable component (resp. the
fixed components) and V:=V;=V;. Then since C is movable and FC=0, we
have VC=G*C=0. Let V:=pL+qF for some integers p and ¢q. Then p=VC=0
so that V€|qF|. Similarly G*E|q*F| for some ¢*, whence sg+¢*=1. It follows
from h°(X, F) >2 that s=¢=1, ¢*=0. Thus any general member of |F| is
irreducible and reduced. Hence |F| has no fixed components. Therefore X =~P!
X P? by (4.3). However in this case 0=L3=LI/=LC=1, a contradiction.

Step 3. By Step 2, LC=0. Since I is general, Sing I is contained Bs |L|. If C
intersects Sing [, then C is contained in Bs IL|, a contradiction. Therefore C is
a connected component of I. By (4.4.3.4), [ is connected so that {=C and r=
1. It follows that Bs |L|= @ and that FC=L*F=1.

Lemma 4.4.6. Bs|L|=®, L&0,=0, and h°(X, L) =3.

Proof. Bs |L|= @ and h°(X, L) =3 are clear from (4.4.3.4) and the
proof of (4.4.4). Hence there exists a third member Z’ of |L| such that Z’ does
not contain [. Since Z, Z’ and Z’ are pull-backs of hyperplanes of P? by o, the
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intersection ZNZ'NZ" is empty, whence L&O,=~Z"Q0,=0.
Lemma 4.4.7. Any member of |L| is irreducible reduced.

Proof. Let Zy+-+Z,€|L|, Z; irreducible components. Let Z;=p;L +qiF.
Let Z and Z be general members of |[L|, C:=2Z N Z'. Then C is a smooth
rational curve with LC=0 and FC=1 by (4.4.5). Since ¢;=Z;C =0, we have
gi=0 by g+ +¢,=0. Hence Z1=piL, py+ -+ p,=1 so that r=p; = 1.
Therefore any member of |L| is irreducible. and reduced

(4.5)  Proof of (4.3)-Completion.

Lemma 4.5.1. Let Z, Z' be general members of |L|, and C:=ZNZ'. Let V
+G* be a general member of |F|, V movable and G* fixed parts respectively. Then
(4.5.1.1)  VE|pL| for some p=1 and VC=0, G*C=1.

(4.5.1.2) G* and V are irreducible and reduced.

Proof. By (4.4.5) we have C=P' LC=0 and FC=1. With the notation
in (4.4.5) let Vi++++Vs+G* be a general member of |F|, and V:=V,=V,=
pL+qF. Then since C is movable and FC=1, there are two cases.

Case 1. VC=0,G*C=1,
Case 2. VC=1, G*C=0, s=p=1

Case 1. We have L*=0 and L:G*=G*C=1. Let V=pL +4F. Then ¢=0 by
(4.4.5) so that VE|[pLland p=1 by h°(X, F) >2. By (4.4.4) and (4.4.6),
any general member of |spL| is irreducible by Bertini's theorem. Hence s=1.
Let G& be the unique irreducible component of G* with GFC=1, GF other
irreducible components of G*. Since GFC=0, G¥ €|p;L|, whence p;=0 and G}
=0 by (4.4.6). Therefore G*=G5.
Case 2. Let V=pL+gF and G*=7rL +tF. Then G* € |rL| by t =G*C =0,
whence r =0 and G*=0. Hence p=0, s=¢g=1 and any general V € |[F| is
irreducible and reduced. Therefore |F| has no fixed components. Hence X =P*
XP% by (1.6), which contradicts the assumption in (4.4).

Lemma 4.5.2. Let Z and Z' be any pair of distinct members of |L|, and
NZ'. Then

=z
(4 5.2.1) (X, —7L—F)=0 (0<¢r<2;0<4¢<3)
(4.5.2.2) h'(0z(—rL—F) =0 (=o 1:0<¢<2)
(4.5.2.3) w'(0i(—=F))=0 (¢=0,1).

Proof. By (4.5.1) any general member of |F| is reduced and connected.
Hence we have h'(X, —#L—F) =0 for any *=0. Since Kx= —3L—2F, we have
W3 (X, —rL—F) =0 for r<3. By (4.3.2), we have h?(X, —7vL—F) =x (X, —7L
—F) =0 for 0<7<3, which proves (4.5.2.1). The rest follows readily.

Lemma 4.5.3. Let Z and Z' be any pair of distinct members of |L|, and 1:=
ZNZ'. Then | is a smooth rational curve with LI=0, FI=1.
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Proof. Step 1. Since FI=1, there is an irreducible component C of I with
FC=1. Then by (4.4.5) LC=0, while C=P* by (4.4.3). Let Ic/I2=0¢(a) D
Oc(b) (@=b) and s:=a+b=KxC+2=—2FC+2<0. Since h*(Oc(—F)) =0 by
(4.5.2) we have FC<1, whence FC=1 and s=0. Note that x ((Ox/I%) (—F))
=0 for any n=1.

Step 2. By Step 1, a+b =0. Assume a=1 and I, € I Then consider a
(possibly identically zero ) homomorphism

¢:(1,/1}) @0 (= 0F) —=1%/1t (= 0¢ (22) BOc (a+b) ) DO (20)).

Let :=0¢ (2a) @O0¢ (a +b) +1%. Since 26 < —2, Im ¢ S O0¢ (2a) PO (a+b)
whence I;CI. Hence h!((Ox/I) (—F)) =0 by (4.5.2.3) so that

0<yx ((0Ox/I) (—=F)) =x ((0x/1%) (—=F)) +x (U%/I) (—=F) =2b,

a contradiction. Hence I; ¢ I%. Therefore we have the nontrivial homomorphism
¢ (I/I}) @Oc—Ic/I%. 1f a=1, then [;CI:=0¢ (a) +1%. Hence

0<yx ((Ox/I) (=F)) =x ((0x/I¢) (=F) +x (/1) (=F)) =b,

a contradiction. Hence a =b=0.

Step 3. Let g: = o¢+:G*— P? be the restriction of o to G*. Then ¢ is a
birational morphism because any general fiber poz'(p) (p € P?) is a smooth
rational curve with G*or'(p) =1 by (4.4.5). Hence there exists a proper
analytic subset 2 of P? such that ¢ is an isomorphism of G*\¢™* () onto P?\Z.
Let p be a point outside 2. Then p;'(p) has an irreducible component C with
G*C=1 along which o:=pr!(p) is reduced generically. By Step 2, Ic/I2=0¥,
whence (I,/I2) @ O¢c = I¢/I%. This shows that o = C. Therefore pr'(p) is a
smooth rational curve if p&EX.

Step 4. Let C(=P*) be an irreducible component of | with LC=0 and FC=1.
Since LC=0, p.(C) =0 is a point of P2 By Step 3, we may assume p.(C) €.

We may also assume that oz’ (p) is a smooth rational curve for general p #
h(0) if p is close to 4 (0). Meanwhile by Step 2, Nc,x = O%? Hence there are a
proper smooth family 7. €— A(a versal family of displacements of C in X)
over a two dimensional disc 4 with 77! (0) =C and a morphism j: é—4 X X
such that C,;=j (z7!(¢t)) =P! is a displacement of C in X. Since LC,=0, o, (C;)
is one point of P% Therefore we have a morphism & of 4 into P? such that C,
=p7'(h(t)) for t#0. By the versality of the family €, h(4) is an open subset
of P? containing h (0).

This implies that or'(h (A\{0})) =;(€\ 77! (0)), whence oz’ (h (4)) =
j(8), which is the interior of the closure of j (€\77'(0)). Therefore lrea =C.
Since FI=FC=1, | is reduced generically along C. Since a =b=0, the natural
homomorphism ¢:(I,/12) ®0c—I¢/I% is an isomorphism. Hence | =C.
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Lemma 4.5.4 If |F | has a fixed component, then X = P(8) for a
topologically trivial rank two vector bundle 8 over P? with sp* (§) >1.

Proof. Let m:=pr, 8: = m«(F) and I:=7m"!(p) for a point p € P% Then
since Bs |F®O,|= @ and h°(FQO0,) =2 by (4.5.3), & is a locally free sheaf of
rank two over P2 Let a:=¢,(0s(1)), ¢, (8) =pa and ¢, (8) =qa® Then by the
proof of (3.1) we have F?*= pFL—qL? whence p=¢=0 by F?=0. Hence & is
topologically trivial. We have a natural surjective morphism h: X—P(8). Since
L= 71*0p: (1) = h*r (§) *Op: (1) and F = h*F (§), we have Kx = h*Kp@) by
(3.3). Hence & is an isomorphism. Note that sp* () =1 because |F| has fixed
components.

Thus we complete the proof of (4.3).
Appendix. Threefolds with ¢; (X) =3¢, (L)

We recall from [N1] and [N4] some results on threefolds with ¢; (X) =
361 (L) .

Theorem A.1. Let X be a Moishezon 3-fold and L a line bundle on X.
Assume that h* (X, Ox) =0, ¢;(X) =3 ¢,(L), h°(X, L) =2, and dim Bs |L|<1.
Then X=Q® or P(F(a, b,0)) @=b=2n>0,a+b=3n+2).

Our proof of (A.1) in [N4] consists of a series of lemmas as follows.

Lemma A.2 Assume B: =Bs |[L|= @ . Let h: X—P* be a morphism
associated with |L|, W:=h(X). Then Wis a hyperquadric and h is bivational.

(1) If Wis smooth, then X=W=Q5,

(2) If B=® and if dim Sing W=0, then X=P(% (1,1, 0)).

(3) If B=¢ and if dim Sing W=1, then X=P (¥ (2,0, 0)).

Lemma A.3. If B¥# @ and if dim B<1, then B=P' and X=P (¥ (a, b,
0) @=b=n=1, a+b=3n+2).
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