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Cyclic morphisms in the category of
pairs and generalized G-sequences

By

Kee Young LEE* and M oo Ha Woo**

1. Introduction

In [1,2,3], D.H. Gottlieb introduced and studied the evaluation subgroups (or
Gottlieb groups)  G ( X )  of n „( X ) .  He used the concept of cyclic homotopies in the
definition of Gottlieb groups. Varadarajian [12] transfered the epithet "cyclic" to
the maps rather than homotopies and used the concept of cyclic maps to define a
subset G(A, X )  o f  Fl(A, X )  the set o f hom otopy c la ss  o f  m a p s  f ro m  A  to
X .  Furthermore, he used the subset G(A, X ) to study the role of cyclic map and
cocyclic map in the set-up of Eckmann-Hilton duality.

Since then, many authors have studied and generalized G„(X ), for instance, G.E.
Lang [6 ], K .L . L im  [8 ], N . O d a  [9 ] , J .  Siegel [11], J .  Kim and the authors
[5 , 7 , 1 0 , 1 3 ]. In [5], the second author and J. Kim have generalized G ( X )  to
G„(X, A) for a CW-pair (X, A). In [7], the authors introduced the subgroups G„R el(X, A)
of the relative homotopy groups n„(X, A ) and showed that for a CW-pair (X ,A),
G(A ), G„(X , A ) and G„R el(X, A ) make a sequence

J.
•• • G „( A )  G „( X ,  A) —> G (X, A) —› • • • G r ( X ,  A) —> Go (A) —+ Go (X, A),

where i ,
 j ,  and 0  are restrictions of the usual homomorphisms of the homotopy

sequence

a
•• • g(A ) — ' 1 (X ) n„(X, A) —■ • • • —› no(A) n o (X ).

W e call this sequence the G-sequence of a pair (X, A). W e show ed that if the
inclusion i: A - 4  X is homotopic to a constant map or has a left homotopy inverse
then the G-sequence of the CW-pair (X, A) is exact. Recently, Oda [9] introduced
the set of the homotopy classes of the axes of pairings as a generalization of the
Varadarajin set G(A  ,X ) and the generalized evaluation subgroup G(X , A ) (in [5]).

In this paper, we introduce the concept of "cyclic morphism" as a generalization
o f  c y c lic  m a p  and w e  use th is  concept to  d e f in e  a  s e t in  th e  category
of pairs. We show that this set is a generalization of all subgroups
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mentioned above, that is, Gottlieb groups G(X ), Varadarajian's set G(A, X), Oda's
set O A, X ), generalized evaluation groups G„(X, A) and relative evaluation groups
G rlie l( x ,  A s.) Furthermore, we study the conditions for the sets to be hom otopy
invariant or groups. W e a lso  use the sets to study the role of cyclic morphisms
in the category of pairs. We generalize the concept of G-sequence of a CW-pair
to  tha t of the category of pairs and study the conditions for this new sequence to
be exact. By exactness, we obtain a nice form of computations for the generalized
Gottlieb subsets.

Throughout this paper, all spaces will be connected and of the homotopy type
of CW-complexes. Hence the exponential law of function spaces holds and all base
points denoted by * are nondegenerate.

2. Definitions and Notation

For n let "A  b e  th e  n - th  suspension of A , C A  the cone o f A  and
i(A): CA  the natural inclusion given by i(A )(x )=(x ,0). Then w e are able to
identify CE" A  with I" CA and i(" A ) w ith  E"(i(A)) by bringing the last coordinate
forw ard. So E"A  and C A  have the co-Hopf s truc tu re . Let i(E"A) be denoted
by i„ 4 ., . W e  d e n o te  b y  n(A,x) the set of homotopy classes of maps from A  to
X  preserving base point. It is well-known that n n(A,X)=II(EnA,X) is a group if

1 and is abelian for n  2.
The category of pairs is the category in which the "objects" are maps (A, ") - + (B, *)

and a "map" from a to ,6 is a pair of maps ( f 1, f 2)  such that the diagram

A, - >  A 2

11. 1f  2

B, B2

commutes [4].
We shall call the maps in this category just "morphisms" to distinguish from maps

between spaces. Two morphisms f 2 ), (g ,,g 2 ) : - >  13  are called homotopic if there
is a morphism (H 1 ,H 2) :a x l c -+ fi such that H , is a homotopy between f ,  and g,
and H 2  is  a homotopy between f2 and g 2 , w here 1, is the indentity m ap of the
unit interval I  into iteself.

The set Fl(a, [3) is the set of homotopy classes of morphisms from a to  13 in the
category of pairs. In particular, 11„(a, fi) = fl(E"a, fi) is a group if n 1  and is abelian
for 2. If a =  : E " - 1 A  Œ " 'A  is the natural inclusion, 11(a, 13) is denoted by
n„(A, ) and is called the n-th homotopy group of  f i' rel. A .  I f  fi is  an inclusion
and A  =S

°
,  then we get the ordinary relative homotopy groups. Furtherm ore, if

fi: *B ,  then Fin(A, 13) = 11„(A, B ) and if B *, then fl n(A, fi) == 11, _ , (A , B).
Let Yx  be the function space of maps from X to  Y with compact open topology,
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(Y x  ; f )  the path component of f  in  y x  and co: Yx  -> Y be the evaluation map given
by w (f )=1(*). Then co is always continuous map for CW-complexes.

Here we recall several generalizations of Gottlieb groups and cyclic homotopies.

Definition 2.1 ( [1 2 ] ) .  A map f : A - > X is said to be cyclic if there eixist a  map
H: A x X  such that the diagram

H

A x X - 4 -  X

AV X --6-X V  X
v 1

is homotopy commutative, where j  is the inclusion map and V  is the folding map.

Definition 2.2 ( [1 2 ] ) .  G(A , X )= l[f] e 11(A, X)I f  is a  cyclic map}, equivalently,
G(A, X)= o 411(A , X x ), where co: - >  X  i s  th e  evaluation m ap. In  particu lar,
G(E"A, X ) is  d e n o te d  b y  „(A, X ) .  Equivalently, co* H„(A, X X) =W „( A , X).

The su b g ro u p  (A, X ) is  a  generalization of G(A, X ) and the Gottlieb group
G ( X ) . In fact, Wo (A, X )=G(A , X ) and , ( S

°
, X)= G „(X).

Definition 2.3 ( [7 ]) .  A pair map f :(B", S" -  1 ) -> (X, A) is relative cyclic if there
exists a  map H : (B" x X, S '  x  A) -> (X, A) such that = f  and H I* „ x= I (x,A)

In fact, for the CW- Pair (X , A ), H :(B" x X, S " '  x A) -> (X, A) such that HIB ”.„=f
and H I* „ x  =  (x ,A ) if and only if ]H ' : (B" x A, Sn -  x  A) -* (X, A) such that H'
and 11.' A  i A •

Definition 2.4 ([7 ]). G j: e i (X, A)= E n„(X, A)II f  is  relative cyclic.}

Definition 2.5. L et h: B -> X  be  a  m a p . A  map f : A X  is called a  cyclic
map with respect to h  if there exists a  map H:A  xB - * X  such that the diagram

H

A x B -- -1 -  X

t t v
AV B —1- XV X

f  v  h

is homotopy commutative.

In  [9], O da introduced the following set to generalize some of the results on
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the Varadarajin [12].

Definition 2.6 [9]. W (A , X )={ [f ]e x)i f  is a cyclic map with respect to
h}, equivalently, W(A, X)= a ),,T1(A, X B  ;h), where (X B  ;h ) means the component of
h  in the function space from B  t o  X .  In fact, O da denoted this set h (A ,X).

If h is the identity map of X, then the Oda's set (.0(A, X) is just the Varadarajin
set G(A, X ) .  In particular, we denote S h (E"A, X ) by 1",(A, X ) and is equivalent to
the image of co, ; 11„(A, XH ; h) nn(A, x). The subgroup (A , X )  is a generalization
of the several subgroups mentioned above. In fact, w e have (g,x(A , X )=G(A , X),
Wn(5

0

, X )=Gnh (X ,B) (in [5]) and Wt(A, X)=cg"(A, X).

3. Cyclic morphisms and their homotopy classes in the category of pairs

In this section, we introduce the notion of cyclic morphisms and study the set
of their homotopy classes in the category of pairs.

Definition 3.1. Let h: X -+ B , be a map. A map (f i , f 2 ): fl is called a cyclic
morphism w ith respect to  h  if there exists a  m ap (111 ,112 ): x  1 ,  - )  fl such that

- 1 x(H1 I )  I .= ( f 1 , f 2 ) and tH  H  ) 1  — (h, Ph), that is, the following diagram commutes

f i  v h
A ,V  X  --I- B 1 1 V B,

A , x X B,

a x l

A2 X  X B2
H2

it
tV

A 2 V  X  — 0- B2 VB2
f 2 v f l h

(H, , H 2 ) is called an affiliated morphism of ( f i , f 2 ) with respect to  h. If h: B B
is the identity, then ( f i , f 2 )  is called just a cyclic motphism.

R em ark . If fi: B, -+ * is the trivial map, then it is easy to show that (f , , *) 13
is a cyclic morphism with respect to  h if and only if f ,:A , -4  B , is a cyclic map
with respect to  h.

L e t i„: S "  B "  and i A : A X  b e  the inclusions. T h e n  a  p a ir  map
f :(B", S ')  -> (X , A ) is  relative cyclic if and only if ( f  ) :  i n - ' i 4  i s  a cyclic
morphism. So the concept of cyclic morphism is a generalization of relative cyclic
map.
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Definition 3.2. We define the subset W"(a, #) of 1-1(a,#) as the set of homotopy
classes of cyclic morphisms with respect to  h. That is,

W"(a, /I) = f21 e 11(a, fi) I ( f ,, f 2 ) is a  cyclic morphism with respect to hl.

We denote 5'1E%, /3) by W"(a, fl), where Ena : E"A 2 -> E"A 2 is the map between two
suspensions induced by a  w hich is called a  suspension  m ap. In  particu lar, if
in :En - 1 A  CE" -  A  is t h e  n a tu ra l inclusion, th e n  w e  d e n o te  W (i„,f l) by
4(A, fi). Moreover, we denote (A,/3) b y „(11, 13) if  h: B, B 1 i s  th e  identity
map. fi) is  a  generalization o f  G„R ei(B 2 , B 1 )  because W„(S ° , i) = G„R ei(B 2 , B,),
where i: B, —) B , are the inclusion.

Define 13":(Bic , h) ,13h) by /7(g)= /?g, where 13: B 1B 2  is  a  m ap and let
: B —) B ,  and w 2 : B —) B 2  be  eva lua tion  m aps. T hen  (a)„ w2 ) : 7 -.13 i s  a

morphism and it induces a  map (a), ,w2):: Fl(a, /7) —) fi).

Theorem 3.3. Let fl: B 1B 2  be a map and 17:(B-1'. ,h)—, (B1 , flh) be a m ap . Then
(0)1 2)*

11(ct, Wh(fx, 16 ).

P ro o f  L e t  [ f 1 , f 2 ]ES"(a 0 6). T h e n  th e re  e x is ts  a n  affiliated morphism
(H 1 ,H 2 ):a x —) fl o f  (f l , f 2 ) w .r.t. h. Let I

 b e  th e  a d jo in t o f  H i g iven  by
j i (ai )(x)= ,  x ) ,  where a i A i a n d  x E X, for i = 1, 2. Since g =f2 a, , 1 2 ) is  a
morphism f r o m  a  t o  #. S o  [f , , /2 ] E 11(a, fl). S in c e  [f, , f] = [a) , f ,  ,w 42]
=(w 1 , w2 ) 1,[7 1 , 1 2 ] ,  we have [ f 1 f2] e (col , 0 )2)*n(œ, a). Therefore we obtain Wh(/,

(0 )1 , (0 2)*F1(a,
Similarly, we have (a) 1 (02) 4 11(a, /T) W(Œ,

By Theorem 3.3, if a is a suspension map, then W"(a, fi) is a group. In particular,
[3) is a group, for n It is easy to prove the following theorem by using lemma.

Lemma 3.4. Let (g 1 ,g 2 ):y  —) a  be a m orph ism . If  ( f 1 , f 2 ):a—, 13 is  a  cyclic
morphism with respect to  h , then the com position (f ,, f 2 ) .( g , ,g 2 ):y f i  is  a  cyclic
morphism with respect to h.

Theorem 3.5. I f  (g , ,g 2 ) : y , r x  is a m o rp h ism , th e n  t h e  induced m ap
(g 1 , g 2 ) 4 : FI(a, /3) —) 1- 1(y, 13) carries W(ot,11) into (y, fi).

Lemma 3.6. If  (g 1 ,g 2 ): fi y  i s  a m orphism  and (f ,, f 2 ):oc—, 13 is  a  cyclic
morphism with respect to h, then the composition (g, ,g 2 ) . ( f 1 , f 2 ) is a cyclic morphism
with respect to g,h.

P ro o f  L et (H 1 , 112 ): x —) /3 b e  a n  affiliated morphism o f ( f1 , f 2 ). Then
(g 1 H 1 ,g 2 H 2 ):a x 1, y is an affiliated morphism of (g ,,g 2 ) . ( f , , f 2 ). It is explained
by the following diagram and the fact that g,f l=y g ,;
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f l y  h g i  v g i

A ,V  X B iV  B i

v

H1 gi
A 1 x  X B,

Œ x i x

H2 82
A 2  X X B 2 C2

if v t
t v

A 2 V  X  — 0- B 2 V B2C 2 V  C2
2 v  Ph g 2 v g 2

Theorem  3.7. I f  (g,, g 2 ): 13 -4 y is a  m orphistn, th e n  th e  induced m ap
(g 1 ,g 2 ).: fl(a, fl) II(a, y) carries g h (a,13) into Sg'"(a,y).

If a x l x :A i x X —> A 2 x X  is  a  cofibration, then Wh (a, 13) is determined by the
homotopy class of h.

Lemma 3 .8 .  Let a x l x :A l x  X  A 2 x X  be a cofibration and h,h':X --+ B , be
m ap s . If h  is homotopic to h', then W h (a,,8)=W h '(a,[3).

P ro o f  It is  su ffic ien t to  show  th a t o n e  o f  them  contains th e  o th e r .  Let
( f ,, f 2 ):a 13 be a  cyclic morphism with respect to  h. Then there is an  affiliated
morphism (H 1 , H 2 ):a x l x  1 3  w ith respect to  h such that the  following diagram
are commutative

y h
A I VX B ,V B ,

H1
A , x X B,

ax 1 fl

A 2 X  X B 2
H2

i f t  V

A 2 V X

 

B  V B2 _  2

 

f2vph

Moreover, since h is homotopic to h', there exists a homotopy F from h to h'. Define

1-11 :(A 1 V X )x l A 1x X x 0— ).B 1

by



Cyclic morphisms 277

1
/
.

1 IA, x x 1 =F  and f i l  lAi x X — H1 •

Then since the inclusion A, VX c A , x X  is  a cofibration, the re  is  an extention
A 1 x

 X x I - ■ B ,  o f  /I, . C o n s id e r  the m a p  /3g , :A , X X X / — P B 2  and the
following diagram

A 1 x X xO A , x  X x l

ax  l x x l oB 2 a x l x x 1,

A2 X XXOc  A 2 X X X /

Since a x l x  i s  a  cofibration, there exists a  m ap 1712 : A2 x X x / -> B 2 su c h  th a t
0 -7 ,= g 2 (ax  l x l i ) and H 2= I/7 2 ,A 2 X X X O •  L e t  H', r i= - - 1  M i x  X . 1  and H;=1-7 2

1,42 x • Then Hi I A , Hi I. h ' and IIIA 2 x.= 112 I.A 2 .*
,
‹ 1 172

=f2. F u r th e rm o re , H;(*, x) =  2 (*, x,1)= 112 (a(*),x,1)=0-7 1 (*,x,1)=flh'(x). Thus
[A, f2] = Cf1, 1 1 1A2E  s / ,1 6 ') ,

In  Lemma 3.8, (Hi , H D  m ay no t be  an affiliated morphism of (f ,, f 2 )  with
respect to  h ' because we can prove only H2' IA 2 ,  is hom otopic to f2 rather than
e q u a l. But if a=i:A 1 -> A 2  is the inclusion, then we can obtain an affilated morphism
of (f ,, f2 )  w ith  respect t o  h'. S o  w e  can  ge t a  stronger theorem than Lemma
3.8. In the proof of Lemma 3.8, define

A  Ix X x I A2 X *X /—P 132

by 1712 = /3f1 t f2 • Then it is w ell-defined since /3fi 1 (a, *, t)-= f  1 (a) = f2 (a). If we
substitute fi 2 for f if i, and apply the property of cofibration, then we obtain a map
H;:A 2 x  X  B 2  such that H;I

A 2
„* -=f2 . So (Ili , H;) is an affiliated morphism of

(f i , f 2 ) with respect to  h'. Thus we have the following theorem.

Theorem 3 .9 .  L e t  a=i: A , A 2  h e  th e  in c lu s io n  and let h , h ': X  B ,
homo topic. T h en  (A , f 2 ): iq is a  cyclic mmphism with respect to  h  if  and only
if  it is a  cyclic mmphism with respect to h'.

Corollary 3 .1 0 .  If  h,/i' : X -* 131 are  homotopic, then ,,11(A,13)=(§,":(A,fi).

Let (f ,, f 2 ):a -■ 13 be a m orphism . A morphism (g 1 ,g 2 ):13 a  is called a left
homotopy inverse of ( f , , f 2 )  if (g,,g 2 ) , ( f 1 , f 2 )  is hom otopic to 1„ , that is, there
exists a morphism (H 1 , H 2 ): ax 1, a  s u c h  t h a t  (H  2 )1 . o  = (g 1, g 2) f 2 )  and
(11 1 , H2) la I  — 1 a • Similarly, (g 1 ,g 2): fi -+ a  is ca lled  a right homotopy inverse of

, f2): if (f ,, / 2 ) 0 (g 1 , g2 ) is homotopic to I t, . In particular, ( f 1 , f 2 ): a 13 is
called a homotopy equivalence if it has a right and left homotopy inverse.
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Corollary 3 .1 1 . If  the morphism (g 1 ,g 2 ):y  > a is a homotopy equivalence, then
the induced map (g,,g2)* f3) is an  isomorphism of sets.

P ro o f  It follows from Corollary 3.5 and Corollary 3.10.

Lemma 3 .1 2 . L et a x 1,:A,x  X -+ A 2 x  X  be a cof ibration. If  the m orphism
(g 1 ,g 2 ):13 —>y is  a hom otopy  equivalence, then th e  induced m ap (g 1 ,g 2 ) * : (a,fl)
— >Igl"(a,y) is an isomorphism of  sets. I f  a is a suspension snap, then it is a group
isomorphism.

P ro o f  L e t (r1 ,r 2 ):y  —> 13 i s  a  homotopy inverse o f  (g 1 ,g 2 ). Then (r, ,r 2)*

carries (gg th(a, y ) in to  W"g lot, 13) by  T heo rem  3.7. B y  L em m a 3.8, w e  have
w ri g ,h(oc, p")=1"(a,/3) and hence this completes the proof.

Theorem 3.13. T he subgroup cg„(A, ig) o f  11„(A, f3) is hom otopy  invariant with
respect to tw o variables.

P ro o f  For the first variable, the theorem is true by Corollary 3.11. We show
that it is true for second variable.

Let (g 1 , g 2 ): 13 —> y is homotopy equivalent with homotopy inverse (r, , r 2 ) where
13: B 1 —> B2 a n d  y:C, —> C2 . By Lem m a 3.12, (g 1 ,g 2 ) * :6, (A, fi) —> M;1(A ,y ) i s  an
isom orphism . So it is sufficient to show lf,'(A,Y)=Wn(A1 ,y). Let Efi, f21 E Wf; I (A, 7).
T hen  there  is  a n  affiliated morphism (H 1 ,112 ): in X l g, -+ y  such  tha t (H I , 2)is„
=(f1' f2) and (H I H2)11Bi =--(gl , Tgl). Let H ;=II,(1 E„--IA X (.

1) and 1 1 =H2( 1 cE--',4
x r 1 ). T h e n  (H; , HZ)ii„= ID a n d  (H; , HZ)li c  =(g ir ,Y g lr 1 )- so Eft , f2] e
Wr,"1(A , Y). Since /f," =-'(A,Y) W,.(11 ,T) by Lem m a 3.8, w e have I N A ,  c
Similarly, Wf,' (A , 

4. A  generalization of G-sequence to the category of pairs

Let [7: (B, B1 ,1 0—*(B 2
B1 ,/3) be a  map given by 17(g)=,6g and let w i : B, B ' B,

and (02:B2 B 1  - *  B 2  b e  evaluation m aps given by a),(g)--g(*) a n d  w 2 ( g ) =0 * )
respectively, where * is a base point of B , .  Then (w, , w2): 13 is a  map and it
induces a  homomorphism (w 1 ,022)* :1-1„(A,#)—>11„(A,13). By Theorem 3.3, we have
(w, ,w 2)* 1-1(A, /7) „(A, fl). Therefore, if /1: * —> B2, then  W„(A,13)=11„(A, B2) and if
/3: B , —> *, (g„(A,13)=0), * 11„-,(A, Bi B1 )= 1 „-,(A,B1).

Let 13: 13, —* B2 be a  m a p . Then there exists an exact sequence

a
• • • 1-1„(A, B1) —> fin(A, B 2 ) - 4  Fl„(A, fl) —> n,,_ , (A , B 1) -4 • •

where 13*  i s  the induced map, J  is explained by the diagram
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f
En -  'A * B,

f 2 1 B2Œ n -
'A

B 2

and a by

f

E" -  'A B,

13

12

CEn 'A B 2

If 13: B B 2  is a map and [7 : M I B213' is the map defined by 1-3-(g)= 13g, then
we have an exact commutative ladder by the naturality

P*

••• —) ; 18 1 ) fl) ruA ,g) n n _ 1 (A, B, 131 ;1 13i ) • ••

1( , 0 1 . . 2 ) . i'"'*

FI(A, BI) n„(A, B2 ) -+ n„(A,f3) Fl„_ ,(A, B ,) —> • • •

By Definition 2.2 and Definition 2.7, we can make a  subsequence

/3*a
• • • In(A , 8 1) - 4 5 0A ,B 2) — ' 1 ,,(11 ,13) - - — >

from the above commutative ladder. W e call this sequence G- sequence of 13 rel. A
in the category of pairs.

Theorem 4.1. If  13:B, B 2  i s  null homotopic, then the G-sequence of 13 rel. A
is exact.

Before we prove the Theorem 4.1, we shall show the following lemma.

Lemma 4.2. If 13:B, —,  B 2  i s  null homotopic, then (gf,;(A, B2)= rin(A, B2).

P ro o f  Since /3 is homotopic to a constant map c: B, B 2  such that c(b)= *,
th e re  is  a  path B 2 1 3 ' from  13 t o  c. S o  w e  h av e  a  natural isomorphism
l * :11„(A, B2 8

' ; ,q)—* 11„(A, B2 8
' ; (:). Moreover, a i,/ * - - -w * in  th e  diagram

B 2

B,

*
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B 2
B 1 ; fi) 111„(A,B2

B I;c)

(0* I 1. (0*

11 .(A , B2; *) W A, B2; *)

where co: B2
B1 -4 B 2 is the evaluation given by w (g)=g(* ). Let f  :(E"A ,*)-,(B 2 ,*)

be a m a p .  If we define f :  (E"A, *) ( B 2
131, c) by .f ia)(b)=fia), then [I] E Fl„(A, B2

B ' ; c)
and co* E f  = [f ] e nn(A, B 2 ; •  So we have 411„(A,B 2 1 i ; C)) = 11„(A, B 2 ; .  Thus
we have WI,;(A ,B 2 )= 11„(A, B 2 ; *).

Corollary 4 .3 . If  fl : B 2  is null homotopic, then J([I„(A, B2)) c W JA,I3 ).

Proof  o f  Theorem 4.1. Consider the following commutative diagram

/J. j
1-1„(A, B I

B ' ;lad 1- 1„(A, B 2
8 1 ;13) fl(A, a) --> Fil_ 1 (A , B i si ; I 0  ,  . . .

(01 ( 0 ) , ( 0 2 ) .  (01*

fl(A ,B 1 ) -■ W(A,B2) W „(A ,#) -÷ W.-1(A, BO

/ / r 0 r
fi. r

IWO, BO -> 1 -1„(A, B2) - * fi n(A,13) -> Y in ,(A, BO

where 81 B Ir * '= ,  * ,g„(A,B,) , J'-Jivf!(A .B2), 0' = and /'s are inclusions.
Since fl is null homotopic,' : B 1 - +  B2 B I  is  nu ll homotopic. Thus 13*  a n d  fi *

are 0-homomorphisms and J, J are monomorphisms. From this fact, the G-sequence
of 16  rel. A  is  exact a t  W(A, B2). Furthermore, the  sequence is exact a t  1„(A,13)
by Corollary 4.3. We must show that the sequence is exact a t  cg„_,(A ,B ,) but it
is sufficient to show  th a t  a0„(A ,13))=1„_ 1(A ,B 1). Since i s  a n  epimorphism,
0'( (A, 13)) = a'(w, ,  2 )*(n „(A , #)) = co1 p 1„(A,17))=w,.(11„_ , (A, B 1

13 9) = ,(A ,B 1 ).

Theorem 4.4. If 13:B 1 -> B 2  has a  left homotopy inverse, then the G-sequence
of 13 rel. A  in the category  of  pairs is exact.

Before we prove Theorem 4.4, we need to show the following lemma

Lemma 4 .5 . If 13:B 1 -■ B 2  has a  left homotopy inverse, then we have

13 * (W „(A , B 1)) = 11 * (11,(A , , ) )  n 1 1,1,(A, B 2 ).

P ro o f  Since 13 * (6. „(A, B 1 ) ) / 3
* (11 ,,(A, BI ))nS 11,(A, B2 ) ,  i t  is sufficient to show

th a t 11* (1 B 1)) fi * (11 ,,(A, B  I)) n IAA , B 2 ). L et y  B 2B 1 b e  a  left homotoPY
in v e rse  o f  13 a n d  [f ] E li * (F1„(A, B 1))n1;1(A, B 2 ). T h e n  t h e r e  i s  a n  element
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[g] ell„(A ,B ,) and a map H: E"A x B, B 2 such that f l,,,[g ]=[f ] and the following
diagram commutes homotopically

H
EnA x  B , - ) B2

E"A V  B ,  -  B 2 VB 2
f v fi

Define H ' =y 11. T h en  y H I, A X , y f  a n d  y ll 8 1 h (-11 , 32T h u s  H ' i s  an
affileated m a p  o f  y f  S o Y *[f ] =ET B 1 ). F u r th e rm o re , [g] = y * fl * [g]
=y ,,[f ] E  /„(A, B O . So # 4,[g] = [f ] E 13 * 1„(A,

Corollary 4.6. If 13: B B 2  has a left homomtopy inverse y, then y 4(5T,(A, B2))
c „(A , B  1).

Proof of Theorem 4.4. Let y : B 2  B , be a  left homotopy inverse of fl. Then
we have commutative ladder

#* j 'a•
▪ n n (A, B I

B ' ; 1 8 ( )  . -  FIJA, B 2
/31 ;13) --+ 1- 1„(A , 17) -> rt, - 1(A, B 1B I  ;  1 B,) --'

%

f t''" m2* I (iii,(02),, ''''''
ir*r T a'

- , 1 „(A , B I ) — 0-  ' ( A ,  B 2 ) -4 (.6' „(A, [3) -›
W n - i ( A , B 1 )

- )

1 1 r 1

fi,
->

r
1- 1„(A,B1 ) - ) II,,(A, B2) - , n„(A, f3) -+

o
n„ --1(A, BO

where fi
, 6 „(A ,B 1 ), — .

1
1v A ,B 2 )

,
—  a 199„( A,,,, l 's  are inclusions, #: B, B '  - )  B 2

is given by Af)= 13' f and )7: B2 13 ' B I B ' is given by 17(g)=yg.
Since the lower sequence is exact and y * /3* = 1, fi *  is a monomorphism and so 0 is a

0-homomorphism. Therefore, the G-sequence is exact a t S,,(A,fl). By Lemma 4.5,
we have

ii M(A, B1))= fi*(nn(A, /31))n g',7(A, B2) = K e r  n S (A ,  8 2)= Ker J'.

So the G-sequence is exact a t  (.<(A, B2 ).
F in a lly , w e  s h o w  th e  G -sequence is exact at „(A, fl). Since yi3 1B i

1741 1 8 ,Bi • L et F: B , x I -+B 1 i s  a hom otopy from y/3 to  ' B1 .  Then F:13 1
8 '  x  I

B, B I given by F(f,t)(b)= F(f(b), t) is a homotopy from jifi to 1„, i . T h u s  f i *  is
a  m onom orphism  and :1  i s  an  epim orphism . Therefore, we have J'(1 11,(A, B2))
=1„(A, f3)= Ker a nS„(A ,13)= K e r  .
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Corollary 4.7. If  13:B,-) B 2  has a lef t homotopy inverse, then we have

(A, B „(A , B 1 )C)W „(A , 13).

Given a differential triple Bo -> B1 - ) B 2 with fly = *, there exists a homomorphism
E: Fl„(A, y) -> ri„(A, B2 ) given by E[f 1,f 2]=(*,/3)* [ /1, f 2 ]  in the following commutative
diagram

E"-1A B, *

i„ 1*

CE" -  1 A  - - )  B ,  - )  B2
12

In  pa rticu la r, if  B0 - ) B, - ) B 2  i s  a  fibration, th en  E: 11„(A , y) Fl„(A, B2 )  i s  an

isomorphism.

Lemma 4.8. If  the following diagram of two differential triples

13
B,

oto i

-4
B 1

I I  I

-± B2

1 . 2

B', -) B', -4 B',

is commutative, then we have the following commutative diagram

FI(A, v) 11„(A, B2 )

l2 co.2112 2 2 ,

Fl„(A , -> 11„(A, B'2 )

P ro o f  We can prove the lemma by the following two diagrams

f
En —  IA - ) Bo B,

i,, 1 s' 1 .1 '" 1
13"

OE" -  'A  -- B , B', - )  B ' 2

12 21

and
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f i

E" - 1 A  - +  Bo
 - 4 - )

i„

CE" - 1  A B  - +  B 2  — )  13'2
12

Since a2 * E[.f1 f2] = [ *, azfl.f2], ifIazo , 1) * [.f i  f2 ]  =  *, f i 'a lf2 ] a n d  cx2fi= r oti the
lemma was proved.

/3

Theorem 4.9. I f  Bo  -4 B, -> B 2  is a fibration, then we have 1„(A,v)=-1- 1„(A, B2).

P ro o f  It is sufficient to show that e 15 i s  an  ep im o rph ism . If we define

:(B0
13°, 1B o bo ) . -  (B, B °,v) and [3-  : (13 1

B o ,y ) (B 2
8 °

fi
b y  ( f )= v f  a n d  IT(g)=13g, then  the trip le  (B0

13° , I B0 . 0) ---+ (B i
n ° ,v)-> (B, B ° ,c ) i s  a

f ib ra tio n , w here  c  is th e  c o n s ta n t  m a p . S o  th e re  e x is ts  a n  isomorphism
: „ ( A  f) „(.4 B2

B 0 ). Since the diagram

(Be° ,1, 0 %) (B, B °,v) -> (B 2
B 0  , c)

coo 1

(B0 ,*) ->  (B  t
fi

(02

( B 2 * )

is commutative, we have the following commutative diagram

11„(A, ->  n„(A,(B 2 B°,c))

( 0 0 . (t , l ) *
(02*

11„(A,r) 11„(A, B2).

By the fact w 2 *  i s  an  epimorphism, we can prove 1„(A,v)= 11„(A, B 2 ).

By Theorem 4.9, we have the following corollaries.

fl
Corollary 4.10. If B o  -4 B, -4 B2 is a fibration, then we have the following sequence

l n (A, B 0 ) W;;(A, B 1 ) 11„(A, B„) - 4  Wu- 1(A, Bo) • •
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This sequence is called the G- sequence of  the f ibration rel. A  in  the  category
/3

o f p a irs . If  B0 —, B i — ) B2 is a fibration, we can easily check that the G-sequence
of y is exact if and only if the G-sequence of the fibration in the category of pairs
is  e x a c t . Thus if  y  is null hom otopic o r  has a  left homotopy inverse, then the
G-sequence of the fibration in the category of pairs is e x a c t . Especially, if v has a
left homotopy inverse, then we have the following corollary.

fl
Corollary 4 . 1 1 .  If  B ,  B ,  B2 is a f ibration and y has a left homotopy inverse,

then we have

B1)- q„(A ,B0)011„(A ,B2).

Consider the  following commutative ladder which consists o f  G-sequence of the
fibration and the homotopy sequence of the fibration

v*f l .

/„(A, Bo) g(A, B1) Inn(A, B2)

n

R.
Fln (A, Bo ) —> FI(A, BI ) n„(A, B2)

V .P .
W„_,(A,B0 )  — > W ,(A ,B ,) ,(A ,B  )

1 12_,

„ ,(A  , B 0 )  - 4  Fin _ (A , B 1) —> (A , B 2 ) —>

where the /'s are inclusions and 1 is the identity. If the upper sequence (G-sequence
of the fibration rd . A) is exact, then by the theorem of Barratt and Whitehead, we
have the following theorem.

Theorem 4 .1 2 .  L et B,--4 B 1 —> B2 is a f ib ratio n . If  y  is null homotopic or has
a  lef t hom otopy  inverse, then we have following long exact sequence

(12 yo 313,, (1 2 -  ,V * )

(A  , Bo) 4 F IJA , Bo/10 I j A n„(A, B1) -¶1, 1(A , B0)
1

,11  -

n„_ ,(A, Bo)C47,- " • •
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