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Global existence and energy decay of small solutions
to the Kirchhoff equation with linear dissipation
localized near infinity

In memory of Nobuhisa Iwasaki, a dearest friend and research colleague
By
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1. Introduction

We consider the initial value problem

(1 { wo — a(|Vw()]|2)dw + b(x.)w, =0, (x,1) e RN x (0. 0)
' w(x,0) = fi(x),wi(x.0) = f(x).  xeRY,

where w, = dw/dt, w, = 62w/(712, Vw = (0w/dx;...., ow/oxy), 4= ZJL 02/6.\‘j~2
and ||-| is the norm of L?(R"). Here a(s). s >0, is a uniformly positive C'-
function and b(x,f) is a nonnegative C'-function.

Equation (1.1) was introduced by Kirchhoff [7] in case of N =1 to describe a
nonlinear vibrations of elastic string. After the pioneering work [2] of Bernstein,
many authors ([1], [3], [4], [5], [6]. [9], [10], [13], [14], [15], [16]) have investigated
this equation. Among them the global existence results with non-analytic data
were obtained by Greenberg-Hu [6], Yamada [15], Nishihara-Yamada [14],
D’Ancona-Spagnolo [3] (see also [4]), Yamazaki [16] and Mizumachi [10] under
some smallness assumptions on the initial data {f(x),f>(x)}. [3]. [6] and [16]
studied the conservative case b(x.t) =0, and [10], [14] and [15] studied the dis-
sipative case b(x,t) = by > 0. Note here that in [3], [10] and [14] is treated a more
general degenerate problem with o(s) > 0.

In this paper, we shall restrict ourselves to the nondegenerate problem (1.1)
and extend results of [15] to the case where b(x,t) is effective only near infin-
ity. Note that the presence of the dissipative term bow, with by > 0, which is
equally effective in the whole R”, is crucial in [15] to show not only the global
existence but also the energy decay of solutions. We shall loosen the role of the
dissipative term by employing additional estimates which control the local energy
of solutions.
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In the following we require
(A1) There exists ay > 0 such that

o(s) =ay>0 for s > 0.
(A2) There exists Ry >0 and 0 < by < b, such that
b(x,1) = by in A(Rg) x [0, 00),

{b(x, ) <b; in RY x[0,00).

where A(Ry) = {x e R";|x| > Ry}.
(A3) There exists b, >0 and nonnegative function B(7) € L'((0,00)) such
that

|bi(x, 1) + |Vh(x,1)] < by in RY x (0, 00),
b(x,1) < p(1) in RV x (0, 0).

We use the following notation: H* (k =0,1,2) is the usual Sobolev space
with norm

o<k

1/2
1N e = {Z JR~ IV“f(.x)lzdx}

(a being multi-indices); H® = L? and we write | f]|,. = ||f||: E is the space of all
pairs f = {f}, f>} of functions such that

AIE = 1A, A3IE = SULAIR + ar(IV AN} < oo,
where a(s) = [, o(t)dt; For solution w(t) of (1.1), we simply write

Iw(n)l[7 = 1w (D), wi(0) iz

and call it the energy of w(z) at time t.
Now our results are summarized in the following two theorems.

Theorem 1. Assume (Al)~(A3) and let {f,,f,} € H> x H'.
(i) There exists 6o > 0 such that if' || f1|| 2 < do and || f|| g1 < 0. then problem
(1.1) has a unique global solution

w(-.1)e Q= C°([0,00): H)NC'([0,00); H') N C*([0, 00): L?).
(i1)  For this solution we have
(12) lw(n|I> =0(1)  as 1t — o,
(13) Iw(d)llz =0(")  as 1— o,

(1.4) wall2 + V(D)) + V20> = O(1)  as t — 0.
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Theorem 2. Assume further the following
(A4) There exist C >0 and u >0 such that

|b(x, 1) < C(1 + 1) b(x.1) in (x,1) e RY x (0,0).
Then we have
(1.5) wall? + [Vw,||> = O(~ ' —minth 2y s 1 — oo,
(1.6) [V2w))? = O(~ ' ~mintl/2hy  as 1 — o0,

Remark. If b(x,r) is independent of f, then (A4) is always satisfied with
u>1/2. 1In this case, the decay order O(¢72) of (1.5) is the same with that of
Yamada [15]. However, the decay order O(r~3/?) of (1.6) is weaker than his.

Our argument is based on weighted energy inequalities (other than [15], cf.,
Matsumura [8] and Mochizuki [I11]). To show the integrability of ||w(t)||125 in
te (0,00), we use two inequalities obtained from equations (1.1) multiplied by
pow; +w and by Y(r)(w, + (a/2r)w), where ¢, > 0,2 =0 and y(r) is a bounded,
nondecreasing, positive function of r =|x| > 0. (We also use inequalities which
are similarly obtained after differentiating equation (1.1).) If b(x,7) is uniformly
positive in the whole space RY. the first inequality is enough to obtain the
integrability of ||w(t)||§ (cf., [15]). The second inequality is used to estimate the
local energy which is not controled by the dissipative term.

Note that for the classical wave equation

wy — Aw+b(x,)w, =0 in RV x (0, 00),

our method can be applied to a more general b(x,7) which may also decay as
[x| — oo (Mochizuki-Nakazawa [12]). See also Zuazua [17] where is treated the
energy decay for the Klein-Gordon equation with locally distributed dissipation.

The rest of the paper is organized as follows: In §2 we give apriori
inequalities for up to the second derivatives of solutions to (1.1). In §3, after
discussing the local solvability of (1.1), we apply the results of §2 to prove
Theorem 1. Finally in §4 we prove Theorem 2.

2. Weighted energy estimates

In this section we shall give apriori estimates for solutions w(r) to (1.1)
requiring w(f) e Q = ﬂjz:OCf([O, ©); H*7).

For the sake of simplicity, we put a(z) = a(||Vw(t)||2) in (1.1).

We multiply (1.1) by w, and integrate by parts over RY. Then

d

(2.1) b WD)z + J b(x, )wldx = 0,
t RV

which implies the energy identity

(22) (DI + j j b(x.wldxdt = [w(0) |13

!
0JR
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Next we multiply (1.1) by 2(g,w, + w), where ¢, > 0. Integrating by parts
then gives

(2.3) d {2(p0||w(t)||,25 + J 2w, + bwz)dx}
dt RN
+ J {2(pph — D)w? + 2a|Vw|* — bw?}dxdr = 0.
RN

We shall use this to establish the boundedness of ||w(z)||* and the integrability in
r€(0.00) of |w(r)]|2. For these purposes we have to make up for the defect of
b(x,t) in |x| < Ry.

Let ' = /'(r),r > 0, be defined by

2
m~ 0 <r< R().
(2.4) V=) =1 _ 2% 2
———=(r—R)+-—=, R < 2R
3R§(r 0)+3R0’ o <r< 0,
0, r> 2Ry.
where , > 0. Then its indefinite integral y = (r) is given by
2,
0 R
) 3R0 < r < Ky,
—_— / —
@) )= | v - apmp M g,
l//()*, r= 2R()

As is easily seen, y(r) is a piecewise C>-function and

(2.6) W'(r) =0, W' (r) <0, () ='(r)=0 inr>0.
We multiply (1.1) by 2y(w, + (a/2r)w), where a =0 if N=1,2 and a =N — 1 if
N >3, and integrate by parts over RY. Then since

w,,2l//<wr + % w) = {11',2|// (w, + % w) }’ -V. (;l/m,z)
+ <N_4rl_—gl// + l///> w2,
—Aw2l//(wr + %w) =-V. (2¢wa, — i:(//|Vw|2> + 21//'14'3

2}’_'1/1(|Vw|2 — wf) — (#lﬁ + l///> |Vw|2

o ar XG5
+ gl,DIVw|2 + (Y =y )sz - l//”ng,
r 2r

bw 2y (w,. + % w) = 2ybw,w, + (l//bZ. wz)[—l//b, > w2
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it follows that

d o i o 2 } v 1 '2
(2.7) ELN l//(Zn,w,. + ;n,u + ble )d,\ + JRN [lebu,u, b, 5 w

+ <N l// + )w ( — Nt v+ >a|Vu'|2 - w"%awz

N-3
+2(r 'y — t//')a{|Vw|2 — w4t %wz}] dx =0.

Now, we put together (2.3) and (2.7). Then noting the inequalities of (2.6),
we obtain

(2.8) %X(r) +Z(1) - JR( '/’O)b,uzd\ <0,

where

X (1) = 2p v ()] + J { (l + %) (2w + bw?) + 21//1fv,w,}dx,
RN

Z(t) = J {2(¢0b — w? + 2a|Vw|? + 2ybwow,
RN

+ (¥¢+l//>w,z+ ( N+]l//+l//)a|Vw|2}dx.

Lemma 2.1. For each ¢y.yy >0 there exist constants C; = Ci(py.¥g) >0
(j =1,2,3) such that for any t >0,

X(1) = Cilw()? = Clw(0)|3
X(1) < G{lw(@)llF + w(n)]*}-

Proof. Note that 0 < ay/2r < oyy/3Ro and
(2.9) LUwell? + aollvwll*} < ()3

Then by the Schwarz inequality we have for any ¢ > 0,

(2.10) X(1) > 2<¢0 —~ \%—) ()l + L~ bw2dx

(1 ) el + L

Let y = x(r).r = |x|, be a monotone C'-function such that y(r) =1 for r < Ry
and =0 for r > R> Ry. Then since
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2

R
o)) = [ i) + 2o )|

R R
s2j x’zp"”'dpj w(p-)?pNdp
r Ro

R R
+ 2J xzp’N“dpJ wi(p-)2pN"dp,
r 0
integrating both sides over B(R) = {x;|x| < R} gives

L?R? R?

2 2 2
aw)dx < j wodx + J wrdx,
JRN( ) N Ro<|x|<R N B(R) '

where L= max |x'(r)|. So,

Ry<r<R

ol <

wldx — eJ w2dx
A(Ro)

B(Ry)

L*R? R?
+2¢ J wldx + —J wldx ¢.
N JRry<|x|<R - N Jpr)

Substituting this in (2.10), we have

X() > 2(¢0 jg_o)uw)né

Lo\ (|, RL )
+ by — e( ) (l + wdx
{ ‘ 3Ry N A(Ro)

Wo) J 2 2R?
+ w dx — — |[W, — —||W
< 3R0 B( 0) ” “ “ I“

In this inequality, let ¢ be chosen to satisfy

- a, R?2L?
by —8(1 +3R0) (2-1— N

ao
C = (l +ﬁ;)

2y g 128R2
C, > 2(p0+\/_ 1+3R0 max e Nag [

Then the first inequality of the lemma follows.

and put

)
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On the other hand, since we have

v
X(1) < 200w(O|7 + = {|hedl” + V]| *}

V@
(1+—){||u,|| (14 b)),

the second inequality also holds for suitablly chosen Ci(g,.¥) > 0.

Lemma 2.2. Let ¢y, be chosen to satisfy

Yo > 3R, 4dao(py — by') > Wib if N#2
(2.11) 3 o O 5 B
ERO < Yy < 4Ry. 4 —R— ao(py — bO ) > l//obl if N=2.
0

Then there exists Cs = Ca(py.Wy) > 0 such that

Z(t) = Ca{llwill? + al| V]| *}.
Proof. Let N #2. Then

Z(1 = [ {(2pgb =2+ ¢y w2+ 2+’ )a|lVw|? + 2ybww, }dx.

Note that y'(r) > (2y9/3R0)xg,(r). Where xp is the characteristic function on
re(0,Ry). Then by (2.11) it follows that

2p0b =2+ 9" 2 2(p — by )b+ 2<ﬂ - )xR(.(r) >0
(200b =2+ 4") (2 + ¥)a — b
2Y
> [4ao(py — l//()b]]b + 4ay (3— — 2) (1)

S min{[4ao((/’0 — by - wgb,]b0,4ao<§l%— l>} > 0.

Thus, we have the assertion of the lemma.
Next let N =2. Then

Z(t) = JRZ{(2¢0b -2+ r—ll// + lp/)w;‘)

+Q2-r'y+ Y )alVw|® + 2ybw,w, }dx.
By (2.11) it follows that

2%

2000 =2+ "W+ Y > 2(p, - )b+2< )XRo(r) > 0.
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| ’ l/’O
Q-ry+yla= ap >0,

(2000 =2+ r" Y +y")2 = r 'Y + ¢ )a -y

Zmin{[(4—%§)ao(%—bg')—wgbl]bo, ( '”O)a <§ﬁz 1)} > 0.

Thus, the assertion also holds in this case.

Proposition 2.3. Ler w(t) be the solution to (1.1). Then there exist Cs > 0
such that for any t >0,

!
Iw(o)l” + JO{IIWrII2 +allvwl|*yde < Cs{lw(O)lIz + 1/ 11°}-

Proof. Integrate (2.8) over (0,r), where ¢,,y, are chosen to satisfy (2.11).
Then applying Lemmas 2.1 and 2.2, we obtain

Cul O + € | (il +allp i}
< (€ IO+ IAIF) + (14592 [ oI

Since f(t) e L', we can apply the Gronwall inequality to obtain the desired
inequality.

Next, we shall give apriori estimates for second order derivatives of solutions.
For this aim we differentiate both sides of (1.1) by x; (j=1,...,N). Let u stand
for each component of Vw. Then u satisfies the equation

(2.12) Uy — a(t)du + b(x, Hu, + ¢(x, )w, = 0, (x,1) e RN x (0. 0),

where ¢ is the corresponding component of Vb.
In the following, for the sake of simplicity, u is required to be in Q.
However, this requirement is not necessary for our final results. In fact, if we put

wo=poru=| = ulr0d,
where p,x is the Friedrichs mollifier, then u, € Q and satisfies
(2.12), Ugy — a()Aug + p, * (bu; + cw,) =0, (x,1) e RV x [0, 0).

Starting from this equation, by the limit procedure, we can obtain the same
conclusion without assuming u € Q.
We multiply (2.12) by 2(¢yu; + u) and integrate by parts over RY. Then

(2.13) % (p0{||u,||2+a||Vu||2}+[ (2u,u+bu2)dx] + [ A2(00b = )]
JRY JR

+ (2a — pod")|Vul* = bu® + 2ew (o, + 1) }dx = 0
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Next we multiply (2.12) by 2y(u, + (a/2r)u) and integrate over RY. Then as in
the case of w (cf., identity (2.7)), it follows that

d o o o
ELN l//(2u,u, + ;u,u + bju )dx

—1
. {M,u,_w,zuz ()
RY 2r ¥

(2.14)

+ ( -Vl vty )aIVu|2+2¢cw,(u,+%u)}dxdr <0.
We put together (2.13) and (2.14). Then

d
(2.15) = Xi(1) + Zi (1) — goa'[Vul)?

dt
o o
_ JRN (l +2—lf)b,u2 _ 2(-w,{(p0u, + Yu, + (l + 2—‘5)14}] dx <0,

X0 = pufllal + v} + | { (1 +%)(2u,u )+ wu,ur}dx,

where

Z\(1)= J . [2(goob — l)u,2 + 2a|Vu|2 + 2ybu,u,
R

-1 S -N+1- -
w (i (P w)mm]
Lemma 2.4. Let ¢y, be chosen to satisfy

4
(2.16) ">

Then there exist constants C; = Ci(py, o) >0 (j = 6,7,8) such that for any t > 0,
X(1) = Cofllull” + al|Vull*} — Crllw ()] 7.

Xi(1) < Coflludll® + allVull® + [w(®)ll3}.

Proof. By the Schwarz inequality we have for any & > 0,

0000 > (0= ) ralval®) ~ (14500 (ol + 1

This and (2.16) show the first inequality. The second inequality is similarly
proved.
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The same argument as in Lemma 2.2 can be applied to show the following

Lemma 2.5. Let ¢y, ¢, be chosen to satisfy (2.11). Then there exists Cy =
Co(pg, o) > 0 such that

Z,(1) = Cof llull? + al|Vull*}.

Proposition 2.6. Let w be the solution to (1.1), and let u stand for each
component of Vw. Then there exist 0 < Cig <1 and Cyy >0 such that for any
t >0,

!
) + aol| V]2 + [ (Qlall? + (Croa — oIVl 2}z
JO

< Cu{lu(O)[1 + a(O)IVu(0)||* + [Iw(0) |}

Proof. Since we have 1+ ayy/2r < 1+ ayy/3Ro and |b;(x,1)| + |c(x,1)] < by,
by the Schwarz inequality, it follows that

(2.17) LN [(l + %)b,uz _ 2cw,{(p0u, + Yu, + (1 + %)u}]dx

< e{|lurll® + aolVull} + C&){llwi|* + aollull*}

for any ¢ > 0.

Now integrate (2.15) over (0, ), where ¢,y are chosen to satisfy (2.11) and
(2.16), and apply Lemmas 2.4, 2.5 and (2.17) with ¢ < Cy to the left side. Then
the desired inequality follows since we have

t
L{HW:II2 + aolul|*yr < Cs{[w(O)II + LA 11}

by Proposition 2.3.

3. Proof of Theorem 1

First we shall discuss the local existence of solutions to (1.1). Let 8 be a
positive number satisfying 6 > b,/2.  We choose the triplet 7, M and 6 of positive
numbers as follows:

(3.1) M = {1 4+ a(6?)}0%*T7,
(3.2) mM_y

ao
(3.3) 2mMayTe*™MT/® < 1.

where m = sup, . |0’ (s)|.
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Theorem 3.1. Let M, T and 6 be as above, and let
(3.4) Ifillg: <6 and || folly <96

Then (1.1) has a unique solution w(t) e Q(T) = ﬂjz:OCf([O, T); H*7) which also
satisfies

(3.5) sup ||w,(t)||i,. <M and sup |[Vw(t)|} <M.
T 0<i<T

0<r<

Sketch of Proof (cf., [15; §3]). Let K be the set of all functions v € Q(T) such
that

v(0) = f; and v,(0) = 1>,

sup [lo(0)]|Z <M and  sup |[Vo()||% < M.
T

0<1<T 0<i<

For each ve K, we consider the initial value problem

(36) { wi — a(|[Vo(t)|)dw + b(x, )w, = 0, (x,7) € RV x (0, o0)
. w(x,0) = fi(x), wi(x,0) = fo(x), xeRV.

Since o([|Vo(1)||?) € C'([0, T]) and is uniformly positive, this linear problem has a
unique solution in Q(T). As in §2 (cf., (2.1) and (2.13)), we have

3 5 bl + (VP ) — o' (1770, Vo) [l
+ JRN{b(w,2 +[Vw,|?) + w,Vb - Vw }dx = 0.

Here

[, vt wlax < 2wl < 0wl
Moreover, since v € K,

7 (IWelP)(7o. Vo) < mM < ool
Thus, noting (3.2), we have

B+ oIVl ) < 0wl + (7o) Vi)

from which it follows that

”Wt”f-ll +a()||VW||31. <A{l +0'(62)}52€20’.

Hence, w(f) € K by (3.1).
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We define the map S by w = Sv.  As is proved, S maps K into itself. Let w°
be any element in K, and define {w”} = K successively by

whtl — Sw”, n=20,1,....
Put " = w" —w""!. Then u" satisfies the equation
= oIV I12)au 4 bu = oV |2) = a2 b

from which it follows that

1 ¥
3 (O + V) < md | {19+ 209 ]
for 0 <t < T. Thus, applying the Gronwall inequality, we obtain

T
3.7 W12 + ao|Vu||* < 2mMage? ™!/ Vu' "2 dx.
! 0

for 0<r<T. This and (3.3) imply that {w"} is a Cauchy sequence in C°
([0, T); H"Yn C'([0, T); L?).

Let w be the limit function. Then we see we C([0,T]; H?) since {w"} is
weakly compact in H? uniformly in e [0, T]. This and equation (3.6) show
we C? ([0,1: L?), and finally we conclude that w solves (I.1).

To see the uniqueness of solutions, let ¥ = w — v for two solutions w,v e Q(T).
Then u satisfies an estimate similar to (3.7) showing v = 0.

Since the unique existence of local solution we Q(T) is guaranteed by
Theorem 3.1, we can now enter into the proof of Theorem 1.

Proof of Theorem 1. (i) It suffices to obtain apriori bounds for |w,(¢)||,; and

w72
Let {f,.f,} satisfy (3.4) for some 6 > 0. Then by (2.2), (2.9) and Proposition
2.3 we obtain

(3.8) [well? + [hellz < Cia{o* + 01(0%)} = M, (82).
Next we shall use Proposition 2.6. Note that
Cioa — Goa’ > Croay — poa’ (IVw]| ) IVw]] [Vl
Let

my(s) = supa(t) and  m(s) = supa’(7).
<y T<s

Then by means of (3.8) we have

Cioa — Goa’ = Croan — gem(M,(3%))\/ M1 (63)||[Vw,]].
Assume

Croao — gom(M,(6%))\/ My (8%) V| = 0
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in some 0 <t <1t. Then Proposition 2.6 shows that
(3.9) IV |12 + |Aw]? < C13{6% + mo(6%)8° + 01 (6%)} = M, (6?)
in the same interval.
Note that Mj(éz) (j=1,2) is monotone increasing in 0> and M;(0) =0.
Then there exists a unique Jdy > 0 satisfying

Cioao = Gom(M1(37))\/ M1 (65) Ma(55).-

So, if ¢ in (3.4) is chosen less than Jy, (3.9) holds as long as the solution exists.
(3.8) and (3.9) are thus the desired apriori estimates which guarantee the
global existence of solutions to (1.1).

Proof of Theorem 1. (ii) (1.2) is proved in Proposition 2.3 and is already
used in the above proof.
To show (1.3) we multiply (2.1) by ¢ and integrate over (0,7). Then

f !
ool + | [ | ebdasar = [ Iwtepiar
Jo JRY 0
Since

()l < 3 {lwll® + mo(Mi(82)|IV ]},

it follows from Proposition 2.3 that
-

(3.10) (Dl +J TJ bwidxdr < Cia(@®){|Iw(O)lI + Il /1lI*} < 0.
o JrY

which proves (1.3).

Since we have (3.9), assertion (1.4) is concluded if |}w,|| is shown to be
bounded. By equation (1.1)

hwall < m(My@*) | 4]l + by .

Then the boundedness is obvious from (3.8) and (3.9).

4. Proof of Theorem 2
We begin with a lemma.

Lemma 4.1. We have
!
J{nvzwu2 Vw2 + heelPYde = 0(1) s 1 — oo
0

Proof. By use of (1.3) and (1.4) we have

(4.1 ' ()] < o' (V]I IVl = O(/2).
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Then it follows from Proposition 2.6 that
1
L{HVW,HZ 72w}z = 0(1).

Moreover, by use of this estimate and (2.2), we have from equation (1.1)

t !
j [weel|?dT < 2J {a2||Aw||2 -|-b1J bw,zdx}dr = 0(1)
0 0 RV

Thus, the lemma is proved.

To proceed into the proof of Theorem 2, we need extra ‘“‘energy’ estimates
based on the equation

(4.2) Wit — aA"V( + bW” = a/AM} - b,W,‘.

We obtain this differentiating (1.1) by 7. As in the case of (2.12) we require here
w,; € Q. However, this requirement is not necessary for our final results.

Lemma 4.2. We have for any t >0
d
@3 Gl +alvwy+ | bwdax
d[ RN

<@ OIAwI? + ol + 19w} + Coa (1407 [ bwda

R
d -
@8 D0+ CollwlP 7w < Cati+ 0 | bulds

2 2 2 2
+ Cuala[{|Aw||” + lIwull” + [IVwll” + [[wel "}

where X»(t) is the function X,(t) in (2.15) with u replaced by w, and C;
(j = 12,13, 14) are some positive constants.

Proof. We multiply (4.2) by 2w, and integrate by parts over RY. Then

d
& ol + 7w} + 2L~ bwdx

= J N{Za'Aww,, + a’|Vw,|2 — 2bwwy, }dx,
R

and the Schwarz inequality and (A4) show (4.3).
Next, we multiply (4.2) by 2(gowi + wi) + 2y (wy + (2/2r)w;) and integrate by
parts over RY. Then similarly to (2.15) we have
d

X0+ Za() - pod’ [V

— J [(1 +E%>b,w,2 —2(a’Aw — b,w,){(pow,, + Ywy + (l + E‘f) w,}] dx <0.
RV 2r 2r
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By the Schwarz inequality we have for any ¢ > 0,
d o 1
= Xo(1) + Za(1) < e{lwull® + V] *} + (3 W 1 J |b/w2dx
dt R() &€ RV

+ Crala[{[[ AWl + lhweell® 4+ [Vwell + [l ]}

where Ciq = max{g, + ¥, | + afy/3Re}. Thus, (4.4) follows if we use Lemma
2.5 with u = w, and (A4).

Proof of Theorem 2. For the sake of simplicity, in the following, we assume
0<u<l/2

First, we multiply (4.4) by ¢'/? and integrate over (0.7). Then since a'(f) =
o(r~'?) by (4.1),

1 ! !
M2x5(1) ‘EJ 12Xy (1)de + C|2J 2wl + [[Vwe]| 2}z
0 0

!
< C|3J T!/2n [ bw;"dxdr
0 JRY

1
s [ {14 + hwall® + IV ll® + ol *ydz = O(1).
JO

where in the last estimate we have used (3.10) and Lemma 4.1. Moreover, by
Lemma 2.4 with u replaced by w;,,

l !
"2 X5(1) — 5] 12Xy (t)de = — Cot'Pw(n) |12
0

l t
= 3G [ bl + o + I e = O(1),
0

where in the last estimate we have used (1.3), Proposition 2.6 and Lemma 4.1.
Summarizing these inequalities, we obtain

t
(4.5) J7”wmﬁﬂmw%M=mu
0
This and (3.10) also show
!
(4.6) [ 12 4w *dz = O(1).
JO

Next we multiply (4.3) by ¢ and integrate over (0,r). Then since ta’(t)
= 0(1'?), it follows that

t
Hlhwall® + allvw|1*} - [ {hwall® + Vw1 Yz
Jo

1 !
< Cl(,J 2L aw]]? + [wall® + Vw1 YT + Cia [ T'_Z”J R bw?dxdr.
0 Jo R
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By means of Lemma 4.1, (4.5), (4.6) and (3.10), this yields
(4.7) H{llwall* + IVw I} = O(1).
(4.7) implies
(4.8) a(t)y=o0(").
Taking account of this, we next multiply (4.4) by . Then we can follow the
argument of the 1-st step of this proof to obtain

I
(4.9) j c{lhwall? + Vwlf? + 4wl ?}dz = 0(1).

Finally, we multiply (4.3) by ¢'*?#. Then applying (4.8) and (4.9), we
obtain

14
(4.10) 2L w2 + allVw ||*) + [ t'+2"J bwldxdt
Jo RY

t
< Clsj [ Awl|® + [lwall® + [Vwil|*} e
0

1

+C|9J

rJ bwkdxdt = O(1),
0o JrRY

which proves (1.5).
Note that (3.10) and (4.10) imply

t
J ‘L'lﬂlJ blw,wy|dxdT = O(1).
0 R

Then since

d

“ tH"‘J bw?dx g{(l+u)t"+Ct}J bw,zdx+2t‘+“J
dt RV RY

blww,|dx
RN

by (A4), integration gives us
(4.11) J bwldx = O(t™'7#).
RN

(4.10) and (4.11) show (1.6) if we use equation (1.1).
The proof of Theorem 2 is thus complete.
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