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1. Introduction

We consider the initial value problem

{  1V1 — u(liVw(t)11 2 )Aw
] 

+ b(x, t)w, = 0, ( x ,  t) E R N  x (0, oc)

w(x, 0) = f(x), w,(x, 0) = 1(x ), x E R N ,

Ey a 2/axj2where w, = aii'/ t, (32W/(7t2, Vw = (aitlaxi , aw/avN ), A  =
and • 11 is the norm  of L 2 (R N ). Here a(s), s > 0 , is  a  uniformly positive C I -
function and  b(x, t) is  a nonnegative C I -function.

Equation (1.1) was introduced by Kirchhoff [7] in case of N  = 1 to describe a
nonlinear vibrations of elastic string. After the pioneering work [2] of Bernstein,
many authors ([11, [3], [4], [5], [6], [9], [10], [13], [14], [15], [161) have investigated
this equation. A m ong them  the global existence results with non-analytic data
w ere  o b ta in ed  b y  G reenberg-H u [6], Yamada [15], Nishihara-Yamada [14],
D'Ancona-Spagnolo [3] (see also [41), Yamazaki [16] and Mizumachi [10] under
some smallness assumptions on  the  in itia l da ta  ff i (x),f 2' (x)}. [3], [6] and [16]
studied the conservative case b(x, t) 0, and [10], [14] and [15] studied the dis-
sipative case b(x, t) 1,0 > 0. N o t e  here that in [3], [10] and [14] is treated a more
general degenerate problem with  a ( s )  0.

In  this paper, we shall restrict ourselves to the nondegenerate problem (1.1)
and  extend results of [15] to  the case where b(x , t) is  effective only near infin-
ity. N ote tha t the  presence o f  th e  dissipative term b ow, with 6 0  >  0, w hich is
equally effective in the whole R N , is  crucial in [15] to  show not only the global
existence but also the energy decay of solutions. We shall loosen the role of the
dissipative term by employing additional estimates which control the local energy
of solutions.
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In  the  following we require
(A l) T here  ex ists  ao > 0  such that

a(s) ao > 0 for s > O.

(A2) There exists Ro > 0 and 0 <b0  <  b l such that

J
 b(x, t) bo  i n  A (Ro ) x [0, co),

1 b(x, t) b1 i n  R N  x [0, co),

where A(Ro) = {x c R N ; > Ro}.
(A3) There exists b2 >  0  a n d  nonnegative function fi(t) ((0. co)) such

that

113 r (x , + b(x, t)1 b 2  in  R N  x (0, co),

bt (x, t) < fi(t) in  R N  x (0, cc).

W e use the following n o ta tio n : I l k  (k = 0, 1, 2) is  the usual Sobolev space
with norm

1/2

11f11H, =
Ictl ic R N

1V OE f (x)1 2 dx

(a being multi-indices); H
°
 = L 2 a n d  we write 11fIlE, = 1f; E  is the space of all

pairs f  = f21 o f functions such that
111 

11f112E 11{fi,f2}112E= ,{11.f2112 +0-1(11vf1112 )} < co,

where a1 (s) = fo
s a(t)d-c; F o r solution w(t) o f (1.1), we simply write

111v(t)11 2E ilfw(t) , wt(t)}11 2E

and ca ll it the  energy o f  w(t) at tim e t.
Now our results a re  summarized in  the  following two theorems.

Theorem 1. A ssume (A1) — (A3) and le t I f ; ,  f2 1 E H2 x  H '.
(i) There exists do > 0 such that if  LI, IIH2 < (50  and  IIi}f2I1Hi < do, then problem

(1.1) has a unique global solution

w(• ,t) c Q C° ([0, co); H2) n c' ([o, co); H 1 ) n c2 ([o, 09); L 2 ).

(ii) For this solution we have

Ilw( 1)(12 = 0(1) as  t —+ oc,

11w( 1)112E = 0(1-1) as  t oc,

11}4' 11112 11VW1(01121 1 V 2 W(r) 1 2 =  0 (I) as  1 —* co.
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Theorem 2. Assume further the following
(A 4 ) There exist C> 0  and ,tt > 0  such that

,(x, 1)1 C(1 + t) -  b(x , t) in  (x, t) e R N  x  (0, cu).

Then we have

(1.5) Ilw„I12+11vw,H2 = 0(t-l-min{1,20) as  t cu,

(1.6) 11V2141 2 = as t  — > 00 .

Remark. If  b(x , t) is independent o f  t, then  (A4) is always satisfied with
j i  > 1/2. In  this case, the decay order 0 (t - 2 )  o f (1.5) is the  sam e with that of
Yamada [15]. However, th e  decay order 0(t - 3 /2 )  o f  (1.6) is w eaker than his.

Our argument is based on  weighted energy inequalities (other than [15], cf.,
Matsumura [8] a n d  Mochizuki [11]). T o  show  the integrability o f  11w(t)11E2 i n
t E (0, co), w e use  two inequalities obtained from equations (1.1) multiplied by
Nwt + w and by  (1/(r)(wr + I 2r)w ), where goo > 0, > 0 and  I11(r) is  a  bounded,
nondecreasing, positive function o f r = x  >  O. ( W e  a ls o  use inequalities which
are similarly obtained after differentiating equation (1.1).) If b(x , t) is uniformly
positive  in  the  w hole space R N ,  t h e  first inequality  is enough to  obtain  the
integrability o f  11w( 011E2 (cf., 115]). The second inequality is used to estimate the
local energy which is not controled by  the dissipative term.

N ote tha t for the  classical wave equation

w,, — tlw  + b(x, t)w , = 0  in R N X  (0, cu),

our m ethod can be applied to a  m ore  general b(x , t) which may also decay as
1x1 oo (Mochizuki-Nakazawa [12]). See also Zuazua [17] where is treated the
energy decay for the  Klein-Gordon equation with locally distributed dissipation.

T h e  re s t  o f  th e  paper is  o rgan ized  a s  fo llow s: I n  §2 w e  g iv e  apriori
inequalities fo r u p  to  the second derivatives of solutions to  (1.1). In  §3, after
discussing th e  local solvability o f  (1.1), w e app ly  th e  results o f  §2 to prove
Theorem 1 . Finally in  §4 we prove Theorem 2.

2. Weighted energy estimates

I n  th is  section w e shall g ive  apriori estimates for solutions w(t) t o  (1.1)
requiring w(t) c Q = ocuo, 09); H2 - 9.

F or the  sake o f simplicity, we put a(t) = a(11Vw(t)112) in  (1.1).
We multiply (1.1) b y  w, and  integrate by parts over R N . Then

d(2 .1 ) 1- 1w(t)11E2 + b(x, t)w ,2 dx = 0,
dt

which implies the energy identity

iw (011 2E + f b(x, t)R, dxdr = 11 14)(0 )112E
O . R N

(2.2)
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Next we multiply (1.1) by 2( 014,,, + w), where q)0 >  O. Integrating by parts
then gives

d
(2.3)

d t  
{ 2 Tollw(t)11 2E + (2w ,w + bw 2 )dx}

R N

{2( 0b — 1)1q 2a1Vw1 2 -  b t w2 } dxdr = 0.
RN

We shall use this to establish the boundedness of 110 ) 1 1 2  and the integrability in
t e (0, co) of Ilw(t) . For these purposes we have to make up for the defect of
b(x, t) in  1.xl < Ro.

Let tir' = (r), r > 0 , be defined by

20 0

3R0
(2.4) =  (r) = 200 200

3
(r Ro) +

 3 R 0 '
0 , r > 2Ro .

where 0 0 >  0 .  Then its indefinite integral 4, = t/i(r) is given by

20 0

3R0
 r '

( r  R0) 2 + 211j° r ,
3R0

As is easily seen, t P(r) is  a  piecewise C 2 -function and

(2.6) Ill (r) > 0, (r) < 0, r- I ( r )  - (r) 0  in  r > 0.

We multiply (1.1) by 20(w, + (7/2r)w), where a =  0  if N  = 1,2 and a = N  -  1 if
N  > 3 , and integrate by parts over R N . Then since

a
w (w r + —

2 r  
w ) =, 2111 (w r +c -± w)}  - V  • (- 04 ,2 )

2r

0 < r < R 0 ,

R o  r <  2R 0 ,

(2.5) (r) = (p)d p =

0 < r < Ro,

R0 < r < 2R0.

r > 2Ro.

(N  -  1  -  a

— 4 w20 ( 1̀1,.W r + y w ) - -V  •( 2/Vww r -  -x
r  01Vvv1 2 )  +  2 0 '  ,

N  - 1
+ 2r - 1 11J (1VW12 — 1,q ) ( r  0  +  0 ')  IV1412

a cc
- V • { 7  V/Vww + -

X  
(

—
IX 

0  -  —

2 r  
0)4 '21

r  2r 2

a
+ - OIV"2

2

 + (r - 1  0 - 0 ' ) 13

( N  -  3 )  2

1 V  
2r 22 r '

a
bw/20 ((14r  + y

r  
w

)  = 20b4',w r + (0b—œ w 2 )  -Ob i —OE w 2 ,
2r I 2r
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it follows that

d a
(2.7) 0(231'04), + — + b —

a  
w2 )dx  + 20bwiwr — 01) w2

dt JR N 2r RN 2r

(N—  1 — + +  N  +  ,,
11(111.2+ aiVWI 2 —
2r

+ 2(r' —  111)a{ 2
u 'r

2  

± 4r2 
3 )  w 2

}  d x  = 0.

Now, we put together (2.3) and (2.7). Then noting the inequalities of (2.6),
we obtain

d
(2.8) — X (t) + Z (t) — 

Rv 
(1 + °) b,w2d x  0

dt 2r

where

X (t) = 2 N111v(011E2 + { (1 + -4 1 (2wt w + 1)11'2) + 2 m twr Idx,
RN 2r

Z (t) = {2(yoob — + 2a
RN

w12 + 20bwt wr

N + 1
+

—  1  
—

0 + 10 11' + 0 i)a1V1112 }dx.

Lemma 2.1. For each ço0 ,0 0 > 0 there ex ist constants
(j 1, 2, 3) such  that f ir any  t > 0,

X (t) Ci 1111 (t) H2 — C211/011 2E,

X (t) C3{11W(0112E ± 0'011 2 1.

P ro o f  N ote tha t 0 < o0/2r < ai410 /3R0 and

(2.9) {H 2 ± (1 0 VIVI1 2 } 10V(t)112E•

Then by the Schwarz inequality we have for any c > 0,

(2.10) X (t) > 2 ( 0 0   )111v(1)112E + bw2 dxVao RN

— ( 1 + 3
*

R
°
0 ) { 4 11'112 + Ilw/11 2 }.

= c*P0. 00) > 0

Let ,z z (r),r = x i ,  
b e  a  m onotone (* func tion  such  tha t x (r) = 1 fo r r < Ro

and = 0 for r > R > R o . Then since
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[x(ow(r.)] 2
 
=  [

fR 
{ /(P)W69 . ) + Z (P )W r (P )I d d  

2

< 2  x i2p - d p w ( p . ) 2p N-1 d p

• Ro

rR
+ 2 x 2  p -N+I dp f  w r (p . )2 p N -Id p ,

0

integrating both sides over B (R ) = { x ;lx  < R } gives

L2R2 2 R
2

I
RN 

(ZW) 2 dx <   n , i v  d x  ,
(R)N  f Ro<ixi<R w  d x  + 1 7 1B

where L  =  max x V )1 .  So,
R0 <r<R

el w 2 E f W2 dX — E f W2 dX
A(Ro) B(R0)

{

L 2 R2 

+ 2  
1

W2dX ± li
2  

f  W
r
2dX

N  J Ro<X<R
} .

N  B(R) 

Substituting this in  (2.10), w e have

X (t) > 2 (Do °() )11w(t)11 2E

{ bo+  7 0 0 )  ( 1 R 2L 2)

3R 0N A(Ro)w2 dx

+  (1  +  C; 1
1:z
1j°

0 ){ E  if B ( R o W2 dX N
2 R 2  

v r112 
12 }

 •

In this inequality, let e  be chosen to satisfy

bo = e(1 + )  ( 2  + R 2 L 2 )
3R 0N

and put

c '0
=  8 (1  +

3R0

C 2 >  _ 2 + 2  + 2 (1 + °"/113)
Nao

max {
1 2eR 2

}

VCW) 3R E 

Then the first inequality of the lemma follows.
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O n the  other hand, since we have

X(t) 2Voilw(t)112E \A—atij°
0 filw/112 + IlVw1121

+ ( 1 +
 3 R

kP o
0 ){111q1 2 + (1 +  bi)11w112} ,

the second inequality also holds fo r suitablly chosen C3(490, 00) > O.

Lemma 2.2. Let v o ,tp o be chosen to satisfy

o > 3R0, 4a0(V0 bO-1 ) > ghl
(2.11)

—
3

R0 < < 4R0, — — )ao(oo ho ) > Igh]2 Ro

Then there exists C 4 =  QV °, 00) > 0 such that

Z(t) + 4 2 }

i f  N  2

i f  N = 2.

P ro o f: L et N  2. Then

Z(t) f { (2 v o b — 2 + (//))4 + (2 + 1//)alVw1 2 + 20bwi wr Idx.
RN

N ote  th a t  0' (r) (20 0 13 Ro)zR o ( r ) ,  where z R o i s  th e  characteristic function on
r e (0, Ro). Then by (2.11) it follows that

2vob — 2 +1// > 2(vo — 1)(T I )b + 2 (3
1I/
R

°
0 1 )  x R o (r) > 0,

(2(00 b — 2 + 0')(2 + I1J)a — tp2b2

> [4 ao(V0 bO -1 ) — ight]h + 4a0( 3
2

R
° 0

0 2 )  R o (r)

> min{ [4 ao(40o b o  ) i ibo, 4ao ° ( )3R0
O.

Thus, we have the assertion of the lemma.
Next le t N = 2. Then

Z(t) { (2q)0h — 2 + + 0 /)1q
R 2

+ (2 — r Ii + t//')alVit,12 + 2t/thwovr ldx.

By (2.11) it follows that

2002voh —2 + +  >  2 (v o — h ' )h + 2 1 2 0
 R 0

1)x R o (r) > 0,
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(2 - r - 1 0  0')a ( 2  
2R0

)ao > 0,

b 2(2g90 b - 2 +r - 1 0 + t/J')(2 - r- 1 0  +  ')a -

o> m in { [  A ao (40 o h o  I ) tgbi] bo,Ro

Thus, the assertion also holds in  this case.

(4  -  t ) )czo (

21P°1 )  >  O.
R0)  \ 3R0

Proposition 2.3. Let w (t) be the solution to ( 1.1 ). Then there exist C5 > 0
such that fo r  any t > 0,

1114) (1)112 + f o
l fliwt112 +ailVw112 1dT C5fillv(0 )112E+

P r o o f  Integrate (2.8) over (0, t) , where goo , 00 a r e  chosen to satisfy (2.11).
Then applying Lemmas 2.1 and  2.2, we obtain

f r
CIllw(t)112 + C4]

o
{ b y te  + 4 1714 112 }dr

< (C2 + C3){11w(0)112E 11./1112 1 + ( 1 + ; R
tP o

o )  f o
l fi(r)111v(T)112dT.

Since 13(0 EL I , w e  c a n  a p p ly  th e  Gronwall inequality  to  obta in  th e  desired
inequality.

Next, we shall give apriori estimates for second order derivatives of solutions.
For this aim we differentiate both sides of (1.1) by xj  (j = 1, . . . , N ). Let u stand
for each component o f Vw. Then u  satisfies the equation

(2.12) u,, - a(t)du + b(x , t)u, + c(x , t)w , = 0, (x, t) E R N  x  (O. co).

where c  is  the corresponding component o f V b.
I n  th e  following, fo r  th e  sake  o f  simplicity, u  is  re q u ire d  to  b e  i n  Q.

However, this requirement is not necessary for our final results. In fact, if we put

- p e * u = f  p e (x  - y )u(y , t)dy ,
R N

where pe*  is  the  Friedrichs mollifier, then u, E Q  and  satisfies

(2.12), u,,, - a(t)4uE + * (bu, cw,) = 0, (x, t) E  R N  X  [O. 0 0 ).

Starting from  this equation, by th e  lim it procedure, w e can obtain  th e  same
conclusion without assuming u c Q.

We multiply (2.12) by 2(00u, + u) and  integrate by parts over R N . Then

d( 2 . 1 3 ) [Soolliutli2+aliVu1121+ 
. 
f 

RN 
(2u,u + bu 2 )dx ] + I {2( 0 b - 1)11—

dt . R N

+ (2a - ço oa')IV u1 2 - b ,u 2 + 2cw,(çpo u, + u)}  dx = O.
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Next we multiply (2.12) by 2tgar + (a/2r)u) and integrate over RN
. Then as in

the case of w (cf., identity (2.7)), it follows that

d a
(2.14)

at 
I

R N  
(2u t ur + 2r—

r
ut u  +b— uldx

+ {20 2rbtur – 0b, u 2 +  ( A T  –  1  ±  +
RN r

(a  –  N  +1 a
tli + 0 ') + 20cw, (u r + 

2r
} d x d r  O.

W e put together (2.13) and (2.14). Then

(2.15) y i
d Xi (t) +Z 1 (t) – çao a'

JRN
– [ ( 1+ ) b , u 2  – 2cw,{Nut +O ur+ + cf /j

r )u } ld x  < O.

where

(t) = (°0{1114/112 fRN{ + )(2u,u+ bu 2 ) +211111 ,ur ldx .

( t )  = [2(0b — 1)/4 2a1V1412 2 0bUtUr
R N

+

–  1 + a ti-j  + 1 7 j,,) 14,2 ±  ( a –  N  +1  — ,+ dx.

Lemma 2.4. L et yo0 ,0 0 be chosen to satisfy

(2.16) Soo > •vao

Then there exist constants Ci  = Ci (q)0 ,0 0 ) > 0  (j = 6, 7, 8) such that f o r any  t 0,

X1 (t)C6{1114t112 a lIV U 112 } C 7 *(011 2
E^

X (t) CO {Hi 4 If ± 11W (0112E'}

P ro o f  By the Schwarz inequality we have for any e > 0,

cIth 2X1 (t) >  ( 0 0 if) ) 0 141112 + alIVU11 2 } ( I ± 
3 R  

)  { d u d
2

 +  
I

}•
N/ao

This and (2.16) show the first inequality . The second inequality is similarly
proved.
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The same argument as in Lemma 2.2 can be applied to show the following

Lemma 2.5. Let vo , th  he chosen to satisfy  (2.11). Then there ex ists C9 =

C9(V0,11/0) >0 such that

Z1 (t) C 9 {0 , 112 +4V4 2 }.

Proposition 2.6. L e t w  b e  the solution to  (1.1), an d  le t u  stand for each
com ponent of  V w. T hen there ex ist 0 < Ca) < 1 and  CH > 0 such that f o r any
t > 0,

Ilut112 +aollva f'2 + { 1114,112 + (cloa (poa'Avuil 2 Icit
.0

< c11{0,(0)11 2 +colva(0)11 2 + Mw(0 )M }.

P ro o f  Since we have 1 + ca///2r < 1 + ath/3R0 and 1bt(x, + 01 <  b2,
by the Schwarz inequality, it follows that

(2.17) [ ( 11/11t 0 1 r
a

1 + — 2 r)b  u 2 2 c w  { v  u  + +  ( 1  +  l u l ]d x2 r

<E{Mute +advall2 } + ccemiw,112 +ada112 }

for any c > 0.
Now integrate (2.15) over (0, t), where çoo ,th are chosen to satisfy (2.11) and

(2.16), and apply Lemmas 2.4, 2.5 and (2.17) with e < C9 to the left side. Then
the desired inequality follows since we have

{111vt112 +64)110112 1dt _< 0{11 112(0 4 2E +11f1112 }
0

by Proposition 2.3.

3. Proof of Theorem 1

First we shall discuss the local existence of solutions to  (1.1). Let 0  be a
positive number satisfying 0 b2/2. We choose the triplet T ,M  and 5 of positive
numbers as follows:

(3.1)

(3.2)

(3.3)

where m = suPs<mla i (s)

111 {1 + 0 .02)}62e 2c<T,

mM <
ao

2mMa0 Te2 " T ia " < 1.
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Theorem 3 .1 .  L e t  M ,  T  a n d  be as  above, and let

(3.4) LI1 11H2 6  a n d 6.

T hen (1.1) has a unique solution w (t) c Q(T ) ni
2.=oC j  ([°,7];112-j) which also

satisfies

(3.5) sup  11 w,(t)11H , M  and su p  IlVw(t)11H-2M .2
0 < t< T 0 < t< T

Sketch of  Proof (cf., [15; §3]). Let K  be the set of all functions y e Q(T ) such
that

y(0) = f1 a n d  y,(0) = f2 ,
2sup  IlYt(t)1111 < M  a n d su p  HVy(t)11 1 , M.

0 < !< T 0 < t< T

F or each y c K , we consider the initial value problem

(3.6)
{

w,, — o-(1Vv(t)11 2 )4w  + b(x ,t)w , = 0, (x, t) e R N  x (0, co)

w(x, 0) = f; (x), w i (x ,0 ) = f2 (x), x  c R N  .

Since 0-(11Vy(t)112 ) e C I GO, T ]) and is uniformly positive, this linear problem has a
unique solution in Q ( T ) .  A s in  §2 (cf., (2.1) and  (2.13)), we have

1 d 2

2 d t  
Illw,11H, +0-(11vv112 )11vw11;n1-a'(11vv112 )(vv,vv011vwd,

+ {(14 + w,1 2 ) + w,Vb • Vw,}dx = O.
RN

Here

111;1"  • VW/IdX <
R N

b2 2
11W111H,8I1Wt112H.•

Moreover, since y e K,

u'(lvv112 )1(vv,vvol mmu(I vv112).

Thus, noting (3.2), we have

1 d , 2 
±a(MVU112 )11VW1INI} °{11Will2H1 ±a(11VV112 )11VWd1 },

from which it follows that

+aollVw111/21 < { 1  + 
5 ( ô

2) }6 26,2ot.

Hence, w ( t )  K  by (3.1).
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We define the map S  by w = S v . As is proved, S  maps K  into itself. Let w°
be any element in  K , and define { e }  OE K  successively by

wn+ n 0,1 , ....

P ut u" = w n w n- I. Then un satisfies the equation

6(11Vwn-1112)Aun + bu; = {(7 (11Vw" - 1 112 ) Gr(llVwn - 2 11)}4 1 0 - 1

from which it follows that

1 • I
{1114'. (0112a o lIV  un 112 } taM {11Van I12 + 211Va"- 1 1111411}dr

• o
for 0 < t < T .  Thus, applying the Gronwall inequality, we obtain

(3.7) 11"711 2a011V < 2MMaoe 2 m M t  la° IIVUn-1112dT•
0

fo r  0 < t < T .  T h is  a n d  (3.3) im ply  tha t {w "} is  a  C auchy  sequence i n  C°
([0, 7]; H 1 ) (1 C I ([O, T]; L 2 ).

L et w b e  the  limit function. Then we see W  E  C([0, 7];11 2 )  since {w "} is
weakly com pact in  H 2 un ifo rm ly  in  t E  [0, T ] .  T his a n d  equation (3.6) show
w e C2 ([0, t]; L 2 ), and  finally we conclude that w solves (1.1).

To see the uniqueness of solutions, let u = w  -  o  for two solutions w, o e Q(T).
Then u  satisfies a n  estimate similar to (3.7) showing u 0.

Since the  unique ex istence  of local so lu tion  14; E Q(T) is guaranteed by
Theorem 3.1, w e can now  enter into the proof o f Theorem 1.

Proof  of  T heorem  1. (i) It suffices to obtain apriori bounds for (016 and
Ilw(t)Ila2•

Let ff
1
,f2 1 satisfy (3.4) for some ô > O. T h e n  b y  (2.2), (2.9) and Proposition

2.3 we obtain

(3.8) 111Vtli 2 + C12{62 + al (6 2 )}  —= M1(6 2 )-
Next we shall use Proposition 2.6. N ote that

Cioa - 00 a' Cioao - (oor/(11Vw11 2 )11VvvillIVIvill.
Let

mo (s) = sup a-(r) and m(s) = sup Oi  (T ) .
r

Then by means o f  (3.8) w e have

Cioa - 006/' Cioao - (oom(MI 0 2 »  MI (ô2 ) V i'

Assume

Cloao 02» \/11/1 0 2
-  0 0 111( M )1IV Iva 0
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in  some 0 < t < t1. Then Proposition 2.6 shows that

(3 .9 ) 11V)1',112 4 - 1144'11
2  <  c i 3 { 6 2  +  ; 1 7 0 ( 6 2 ) 6 2  ±  ; 7 1 ( (52 ) 1 m 2 ( 6 2 )

in  the  same interval.
N o te  th a t  M1(62 ) ( j  = 1 ,2 )  is  monotone increasing in  (52 a n d  M1 (0) = 0.

Then there exists a unique (50 > 0 satisfying

c10a0 = (noni(mi (602 )) ((51 )M 2 (5 ) .

So, if (5 in  (3.4) is chosen less than (50, (3.9) holds as long as the solution exists.
(3.8) a n d  (3.9) a re  thus th e  desired apriori estimates which guarantee the

global existence of solutions to  (1.1).

Proof  o f  T heorem  I. (ii) (1.2) is proved in Proposition 2.3 and  is already
used in  the  above proof.

T o  show (1.3) we multiply (2.1) b y  t  and  integrate over (0, t). Then

2
tl1W(t)HE f 

R N  
TbO'dXdr = 111V(T)11E2dr.

. 0 0

Since

Ilw(t)112E 2 ± M O( M1(6 2 »11VW112 },

it follows from Proposition 2.3 that

(3.10) tilw(t)112E + bhIclxch- C14(ô2 ){11w(0 )112E U1112 1 < co.
0 R N

which proves (1.3).
Since we have (3.9), assertion (1.4) is concluded if is show n to  be

bounded. B y equation (1.1)

Iwu m (* (
(5

2 ))114 (1'11 + bl

Then the boundedness is obvious from (3.8) and  (3.9).

4. Proof of Theorem 2

W e begin with a  lemma.

Lemma 4.1. W e have

Jo {lIv2 w112 +11vw,112 + Ilw„I12 }dr= as  t oo.

P ro o f  B y use of (1.3) and  (1.4) we have

(4.1) la/ WI 0j (11Vw112 )11V)vil = 0 (t I/2 )
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Then it follows from Proposition 2.6 that

f

Jo
filVwd2+11V2421dt = 0(1).

Moreover, by use of this estimate and (2.2), w e have from equation (1.1)

o
<  2  {a 2 10w112 +b 1f b iqd x}d t = 0(1)

0 RN

Thus, the lemma is proved.

To proceed into the proof of Theorem 2, we need extra energy" estimates
based on the equation

(4.2) wm — adw, + bwli= —

We obtain this differentiating (1.1) by t. As in the case of (2.12) we require here
irt e Q .  However, this requirement is not necessary for our final results.

Lemma 4.2. W e hav e for any  t >

d
(4 .3 )

2
+allVwt1121 + I  biq,dx

R N

(  IIIIA wIl 2 + Ilwn11 211V w,11 2 1 + C 2b1(1 0-211 
R N

 bw dx,

(4.4)
d

X2(t) + C12111wft11 2( V } C13(1 + biqdx
R N

C141a1 1111AWII2liWt111 211V 1V11121 1 112t112 } ,

w here X2 ( t )  i s  the f unction X i(t)  i n  (2.15) w ith  u  replaced  by  w , an d  ci
( j = 12, 13, 14) are some positive constants.

P ro o f  W e multiply (4.2) by 214/t,  and integrate by parts over R N . Then

d
dtaw n11 2 + w,I2} ± 2 f  blq,dx

R N

{2a' Aww,, a'117wt 12 —
R N

and the Schwarz inequality and (A4) show (4.3).
Next, we multiply (4.2) by 2 (Nwtt + wt) + 2 0(w,, + (al 2 r)wt)

parts over R N . Then similarly to (2.15) w e have

d
T x X2(t)+ Z2(t) — ço0a /IIVwf112

—
R N  

[ ( I  + ° )b,w2 — 2(a' 4w — bovr){4)owtr + qlwrr + (1 + °1 w , } ] d x  0.
2r 2r

and integrate by



f
t

Jo
(4.5)
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By the Schwarz inequality we have for any e > 0,

d
c i t X2 (t) + Z2(t)

RO E
ef IIW1/11211VM112} + (3 + ca P ° +  1 ) 

RN
 Ib t l Iq d x

+ {Uthi , 112 + Hiv„112 + vwtII 2 + ov,112 }.
where C14 = max{ço0  + 00 ,1 + c0 0 /3R0 }. Thus, (4.4) follows if  w e use Lemma
2.5 with u = vv, and (A4).

Proof of Theorem 2. For the sake of simplicity, in the following, we assume
0 < p  <  1/2.

First, we multiply (4.4) by id /2 and  integrate over (0, t). Then since a '( t )=
0 (t - 1 1 2 )  by  (4.1),

2t1 / 2 X2(t) - - T- 1 / 2 X2(T)dT C12 T1 / 2 {1114'4 2
1 1 V 1 V t  } d T2

1r
Jo

< C13 f T I /2 - P  b 1 1 d X d T
0 RN

+ C15 j{1 11 + 1111'i/112 +11Vwril 2 + = 0 ( 1 ) ,

o

where in the last estimate we have used (3.10) and Lemma 4.1. Moreover, by
Lemma 2.4 with u  replaced by wt ,

tI/2X (t)2 , -1 1 / 2 X2(T)dT > - C7I1/21111'(0112
2 0

-  -2
1 C8 to wit112 + Ilvw,11 2 + Hw(r)112

E }dr = 0(1),

where in the last estimate we have used (1.3), Proposition 2.6 and Lemma 4.1.
Summarizing these inequalities, we obtain

/ 2  111Witil 2 ± IIVWdi 2 IdT  = 0(1).

This and (3.10) also show

(4.6) t112114w112dr = 0(1).

N ext w e m ultiply (4.3) b y  t  and integrate over (0, t). Then since ta'(t)
=  0 (t 7 2 ) ,  it follows that

w t1112a l l V 1v/112 1 - 10
( {11w, 112 +

< c i6  f T 1 / 2 0A 1V1122  +  I I V W 1 2 }CiT ± C17 { T1-2// hiqdydr.
. 0 . 0. / R N
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B y m eans of Lem m a 4.1, (4.5), (4.6) and (3.10), this yields

(4.7) tfliwt/112 +11VM112 1 = 0(1).

(4.7) implies

(4.8) (t) = 0(t -
1).

Taking account of th is, w e  nex t m ultip ly  (4.4) b y  t. T h en  w e  can  fo llo w  the
argument of the 1-st step  of th is proof to  obtain

(4.9) fol r{ wi,ll 2 + 11VW/112 + MAW11 2 }C/T = 0(1).

F in a lly , w e  m u ltip ly  (4.3) b y  ti +2P. T h e n  a p p ly in g  (4.8) and  (4.9), we
obtain

(4.10) + f T1+2p b w d x d tt 1+ 2 p

{11W, 112

• 0 RN

c18f T2P{114 w112 +111'1,11112 + Ilvwdr}dr0

Ci9 fi t f  biqdxdz - = 0(1),
0 R N

w hich proves (1.5).
Note th a t  (3.10) and (4.10) imply

7-1 + " b wt wtddxdt = 0(1).
o RN

Then since

d 2[t 1+ / ' blVi2dX1 { (1 + + bw ,dx  +2t 1+1` b w w , 1 dx
at RN RN RN

b y  (A4), integration gives us

(4.11) bw,2dx =
R N

(4.10) and (4.11) show (1.6) if w e use equation (1.1).
The proof of Theorem  2 is thus complete.
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