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On strong convergence of hyperbolic
3-cone-manifolds whose singular sets have
uniformly thick tubular neighborhoods

By

Michihiko Fujii

Abstract

Let C be a compact orientable hyperbolic 3-cone-manifold with
cone-type singularity along simple closed geodesics Σ. Let {Ci}∞i=1 be a
sequence consisting of deformations of C and Σi be the singular set of Ci

so that the cone angles along Σi all are less than 2π. In this paper, we
will show that, if tubular neighborhoods of the singular sets Σi can be
taken to be uniformly thick, then there is a subsequence {Cik}∞k=1 which
converges strongly to a hyperbolic 3-cone-manifold C∗ homeomorphic to
C.

Introduction

By a hyperbolic 3-cone-manifold, we will mean an orientable Riemannian
3-manifold C of constant sectional curvature −1 with cone-type singularity
along simple closed geodesics Σ. To each component of the singularity Σ, is
associated a cone angle. It is shown in [5] that for any values of cone angles,
a non-singular part C − Σ carries a complete hyperbolic structure Ccomp of
finite volume, and moreover that if the cone angles of C all are at most π,
then there is an angle decreasing continuous family {Ct}t∈[0,1) of deformations
of C(= C0) to the complete hyperbolic 3-manifold Ccomp(= limt→1 Ct). The
hyperbolic 3-manifold Ccomp is regarded as a hyperbolic 3-cone-manifold with
cone angles equal to zero at the cusps.

The latter claim is proved by using two machineries, the local rigidity by
Hodgson-Kerckhoff [3] and the pointed Hausdorff-Gromov topology [2]. These
machineries are fundamental when cone angles are ≤ 2π. In particular, the
local rigidity implies the practicability of deformations of a hyperbolic 3-cone-
manifold with arbitrary small changes in the cone angles, in the case where the
initial cone angles all are at most 2π. Then, if the cone angles of C all are
at most π, one obtains deformations of C with decreasing cone angles with an
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arbitrary small amount. In [5], for extending such a small deformation globally,
Kojima analyzed phenomena which occur in the two cases, that is, in the case
where tubular neighborhoods of the singular loci Σt in the deformations Ct

(t ∈ [0, 1)) are uniformly thick, and in the case where a sequence of radii
of the tubular neighborhoods goes to zero. For this analysis, he established
three relative constants for hyperbolic 3-cone-manifolds which control the local
geometry of cone-manifolds away from the singularities. Lemma 3.1.1 of [5]
gives one of them, and is a key lemma to derive the other constants and also
to analyze the phenomena above.

In this paper, we will show that the assumption “≤ π” in Lemma 3.1.1
[5] about the cone angles can be improved to “< 2π” (see Lemma 2), by using
fundamental properties on Dirichlet domains of 3-cone-manifolds (see Lemma
1). Then, it can be seen that, for each sequence {Ci}∞i=1 consisting of defor-
mations of C so that tubular neighborhoods of Σi (i ∈ N) are uniformly thick,
if the cone angles of Ci (i ∈ N) are less than 2π, then there is a subsequence
{Cim

}∞m=1 which converges strongly to a hyperbolic 3-cone-manifold C∗ home-
omorphic to C (see Theorem). This is a refinement of Cor 5.1.4 [5] and is
proved by performing the same argument in the sections 3 and 5 of [5]. By
Theorem, even though the initial cone angles of a hyperbolic cone-manifold C
are greater than π (but less than 2π), there is an angle decreasing continuous
family {Ct}t∈[0,1) of deformations of C to Ccomp, if we can rule out the case
where the singular locus Σt intersects itself. Kerckhoff announced that Hodgson
and Kerckhoff obtained a similar result with ours (see Theorem 2 in [4]).

1. Dirichlet polyhedra and a relative constant for 3-cone-manifolds
of constant non-positive curvature

First we will give the definition of cone-manifolds (see [1]). Consider an
n-dimensional manifold C which can be triangulated so that the link of each
simplex is piecewise linear homeomorphic to the standard sphere and give a
complete path metric on C such that the restriction of the metric to each
simplex is isomorphic to a geodesic simplex of constant sectional curvature
K. The manifold together with the metric above is called an n-cone-manifold
of sectional curvature K and denote it again by C. The cone-manifold is
hyperbolic, Euclidean or spherical if K is −1, 0 or +1. If C is an n-cone-
manifold and c is a point in C, the pair (C, c) is called a pointed n-cone-
manifold.

The singular locus Σ of a cone-manifold C consists of the points with no
neighborhood isometric to a ball in a Riemannian manifold. It is a union of
totally geodesic closed simplices of dimension n − 2. At each point of Σ in an
open (n−2)-simplex, there is a cone angle which is the sum of dihedral angles of
n-simplices containing the point. The subset C −Σ has a smooth Riemannian
metric of constant curvature K, but this metric is incomplete near Σ.

In this paper we consider hyperbolic 3-cone-manifolds of the following type.
Let M be a closed orientable 3-manifold and

Σ1 ∪ · · · ∪ Σn ∪ Σn+1 ∪ · · · ∪ Σn+k
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be a link in M of n + k components. Let us denote the n components of the
link by Σ;

Σ = Σ1 ∪ · · · ∪ Σn,

and the remaining k components by Λ;

Λ = Σn+1 ∪ · · · ∪ Σn+k.

We assume that M −Λ is the underlying space of a hyperbolic 3-cone-manifold
C with singular locus Σ and torus cusps at Λ. The subset N := C − Σ has
a smooth Riemannian metric which is complete near the torus cusps and is
incomplete near each component of Σ. The metric completion of the hyperbolic
structure on N gives rise to C. The hyperbolic 3-cone-manifold C is compact
if Λ is empty. The components of Σ is a totally geodesic submanifold, and in
cylindrical coordinates around a component Σj of the singular locus, the metric
has the form

dr2 + sinh2rdθ2 + cosh2rdz2,

where r is the distance from the singular locus, z is the distance along the
singular locus, θ is the angular measure around the singular locus defined mod-
ulo αj for some αj ∈ (0,∞). The number αj is a cone angle at Σj . To each
component of Λ, associated is a cone angle zero. We have a developing map of
N from its universal covering space Ñ ,

DC : Ñ → H3,

and a holonomy representation

ρC : π1(N) → PSL2(C).

They are called a developing map and a holonomy representation of the cone-
manifold C.

Two hyperbolic 3-cone-manifolds C1, C2 with underlying spaces M1 − Λ1,
M2−Λ2 respectively are said to be homeomorphic if there is a homeomorphism
between (M1, Σ1 ∪ Λ1) and (M2, Σ2 ∪ Λ2).

A deformation of a hyperbolic 3-cone-manifold C is a hyperbolic 3-cone-
manifold C ′ together with a reference homeomorphism ξ′ : (M, Σ ∪ Λ) →
(M ′, Σ′ ∪ Λ′).

Let L be a number with L ≤ −1. Let C<θ
[L,0] be the set of pointed compact

orientable 3-cone-manifolds of constant sectional curvature K ∈ [L, 0] so that
the singular loci form links and the cone angles all are less than θ. Let C<θ

K

be a subset of C<θ
[L,0] consisting of cone-manifolds with a particular curvature

constant K.
Now take a cone-manifold C ∈ C<2π

K . Given a point p on the singular
locus Σ, let Sr(p) denote the set of points at distance r from p. Then for r
sufficiently small, Sr(p) with the induced path metric is a 2-cone-manifold of
constant positive curvature with two cone points, since Σ is a submanifold of
codimension 2 and does not have vertices. The cone angle of Sr(p) at each cone
point is equal to that of the component of Σ on which the point p lies.
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Take a point x ∈ C − Σ. Then define the following subset of C,

Px := {y ∈ C | y admits the unique shortest path to x},
and call it a Dirichlet fundamental domain of C about x.

Lemma 1. The Dirichlet fundamental domain Px of C ∈ C<2π
K about x

∈ C − Σ has the following properties.
(1) Px is isometrically realized as an interior of a star-shaped geodesic

polyhedron in the simply connected 3-dimensional space HK of constant curva-
ture K. The closure is a star-shaped geodesic polyhedron. We call this embedded
compactified polyhedron a Dirichlet polyhedron of C about x, and denote it again
by Px.

(2) Let y be a point on Σ and γ1, . . . , γn be shortest geodesics from x to
y in C. For sufficiently small r, let v1, . . . , vn be the intersections of γ1, . . . , γn

with Sr(y). Let s1, s2 be the two cone points of Sr(y). Let V (vi) be the Voronoi
region at vi on Sr(y), which is defined as follows:

V (vi) :=


q ∈ Sr(y) ;

d(q, vi) ≤ d(q, vj) for all j �= i,
and there is a unique shortest geodesic
from q to {v1, . . . , vn}


 .

Then a small neighborhood of y splits into the cones on the Voronoi regions
V (vi)’s in the Dirichlet polyhedron Px. Moreover, the cones which include the
point sj (j = 1 or 2) satisfy the following properties.

(2-1) If there is only one shortest geodesic from sj to {v1, . . . , vn} on
Sr(y), say sjv1, then the cone on the Voronoi region V (v1) is bounded by two
faces of Px sharing a part of Σ as edges, whose dihedral angle equals to the cone
angle at y. Moreover, v1 and x are contained in the bisecting (totally geodesic)
surface of these two faces.

(2-2) If there are at least two shortest geodesics from sj to {v1, . . . , vn}
on Sr(y), say sjv1, . . . , sjvk, then for each i ∈ {1, . . . , k}, the cone on V (vi) is
bounded by two faces of Px sharing a part of Σ as edges whose dihedral angle
is at most a half of the cone angle at y, which is smaller than π.

Proof. See Proposition 3.1.4 (and also its proof) in Cooper-Hodgson-
Kerckhoff [1].

If x ∈ C −Σ, the injectivity radius of C at x is to be the injectivity radius
of C−Σ at x. Denote it by injxC. The key lemma in this paper is the following
one which is proved in the same manner as Kojima [5], except for a part where
the property (2) of Lemma 1 is used. Kojima showed the following lemma with
cone angle condition “≤ π”. In this case, a Dirichlet polyhedron is convex, and
then the property (2) of the Lemma 1 is not necessary.

Lemma 2. Given positive numbers D, I, R > 0, and a curvature bound
L ≤ −1, there is a constant U := U(D, I, R, L) > 0 so that if C ∈ C<2π

[L,0], x ∈ C
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with d(x, Σ) ≥ D and injxC ≥ I, then

injyC ≥ U

for any y ∈ C with d(y, Σ) ≥ D and d(y, x) ≤ R.

Proof. Suppose that there is not such a uniform bound U . Then, for some
numbers D, I, R > 0 and L ≤ −1, there exists a sequence of cone-manifolds
{Ci}∞i=1 ⊂ C<2π

[L,0] and points xi, yi ∈ Ci such that
(i) d(xi, Σi) ≥ D, d(yi, Σi) ≥ D,
(ii) injxi

Ci ≥ I,
(iii) d(yi, xi) ≤ R and
(iv) injyi

Ci ≤ 1/i.
Take a Dirichlet polyhedron Pyi

of Ci about yi in HKi
, where Ki is a

curvature of Ci. There are points ai, bi on ∂Pyi
, which are identified in Ci and

attain the shortest distance to yi from ∂Pyi
. The union of these shortest paths

aiyi, biyi forms a homotopically nontrivial shortest loop li in Ci based at yi.
If i is large enough, then by (i) and (iv), ai and bi are not on the singular

locus Σi. Also they are not points on edges of ∂Pyi
and in particular nonsin-

gular. Then they are on the interior of faces of Pyi
respectively. Let us denote

the faces by Ai and Bi and their extensions in HKi
by Ãi and B̃i. By Lemma

1, if there are singular points on the boundaries of Ai or Bi, the dihedral angles
of Pyi

at these points are smaller than π.
If all dihedral angles of Pyi

are smaller than or equal to π, Pyi
is convex

and then Pyi
is bounded by Ãi and B̃i.

Consider the case where dihedral angles along some edges of ∂Pyi
are

greater than π. It follows from Lemma 1 (2) that for each of such edges, there
is a totally geodesic surface including it which bisects its neighborhood of Pyi

.
By Lemma 1 (1), Pyi

is star-shaped with respect to yi. Then we can divide Pyi

into convex subregions by cutting along the extensions in HKi
of such bisecting

surfaces.
Let φi(≤ π) be the angle between the segments aiyi and biyi at yi. Now

assume that φi → π as i → ∞. Then Ãi and B̃i tend to be parallel and converge
to a totally geodesic surface H by (iv). Moreover, by (i) d(yi, Σi) ≥ D > 0 ,
the bisecting totally geodesic surfaces in HKi

, along which Pyi
are divided into

the convex subregions, are crushed into H as geodesic segments or subsurfaces.
Then the convex subregions are also crushed into H as i → ∞. Therefore
vol(BR+I(Ci, yi)) → 0 as i → ∞, since Pyi

(⊃ BR+I(Ci, yi)) is crushed into
the surface H. This is a contradiction since BI(Ci, xi) ⊂ BR+I(Ci, yi) by (iii)
and vol(BI(Ci, xi)) is uniformly bounded by a positive constant from below by
(ii). Thus there is a number φ so that φi ≤ φ < π. Therefore the loop li bends
at yi with angle uniformly away from π.

Let us lift li to a geodesic segment si in HKi
, based at yi so that ai is its

middle point. Let ρi be a holonomy representation of Ci; ρi : π1(Ci − Σi) →
Isom HKi

. Then the action of ρi(li) on HKi
is either parabolic, loxodromic

or elliptic. In any cases, the orbit of si by the action of a group generated by
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ρi(li) forms a piecewise geodesic which bends with angle uniformly away from
π, and the length of si goes to 0 when i → ∞.

Assume that there is a subsequence {k} ⊂ {i} so that ρk(lk) all are
parabolic. Then the bending angle of the orbit of sk at the orbit of yk should
approaches π as k → ∞, since the length of sk goes to 0 as k → ∞. This gives
a contradiction.

Assume that there is a subsequence {k} ⊂ {i} so that ρk(lk) all are loxo-
dromic. Then the orbit of sk squeezes onto the axis of ρk(lk), since the length
of sk approaches 0 when k → ∞ and since the orbit of sk bends at the orbit of
yk with corner angle uniformly away from π with respect to k. In particular,
the axis of ρk(lk) becomes close to yk when k → ∞. Thus, if k is large enough,
there is a very short simple closed geodesic in Ck near yk. Then choose a new
reference point zk on this simple closed geodesic, take the Dirichlet polyhedron
Pzk

about zk, consider two faces of Pzk
and perform the same argument as

before. This gives a contradiction.
Therefore ρi(li) all but finitely many exceptions are elliptic. Take a subse-

quence {j} ⊂ {i} so that ρj(lj) all are elliptic. The orbit of sj rounds around
a geodesic which is an extension of a lift of a component of Σj . Then yj ap-
proaches the geodesic, since the length of sj goes 0 when j → ∞ and since the
orbit of sj bends at the orbit of yj with corner angle uniformly away from π
with respect to j. This contradicts (i).

2. Strong convergence of hyperbolic 3-cone-manifolds

Let C be a compact orientable hyperbolic 3-cone-manifold with singularity
Σ. We assume that the singular set Σ forms a link

Σ = Σ1 ∪ · · · ∪ Σn

as in Section 1, and that the cusp Λ of C is empty. Let T be the maximal tube
about Σ, that is, a union of open tubular neighborhoods T j ’s which has the
following properties,

(a) each component T j is an equidistant tubular neighborhood to the
j-th component Σj of Σ,

(b) among ones having the property (a), the set of radii arranged in order
of magnitude from the smallest one is maximal in lexicographical order.

Let us denote by ∂T j an abstract boundary of T j . The actual boundary
∂T of T in C is a union of isometrically embedded tori with a finite number of
contact points. The first contact point on ∂T is defined to be the point which
admits two shortest paths to Σ from ∂T . The finest point on ∂T is defined to
be the point on ∂T which attains the minimum among {injx(C)|x ∈ ∂T }.

Now take a sequence {Ci}∞i=1 of compact orientable hyperbolic 3-cone-
manifolds with the following four properties,

(1) each Ci is a deformation of C with a reference homeomorphism ξi :
(C, Σ) → (Ci, Σi),

(2) ci, fi are the first contact point and the finest point on ∂Ti respec-
tively,
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(3) αj
i < 2π for all 1 ≤ j ≤ n and any i ∈ N, where αj

i is a cone angle
along the component Σj

i ,
(4) {αj

i}
∞
i=1 converges to a number βj ∈ [0, 2π] for all 1 ≤ j ≤ n.

We briefly review the definitions of three kinds of convergence; geometric
convergence, algebraic convergence and strong convergence.

If X is a metric space and x is a point in X, the pair (X, x) is called a
pointed metric space. The sequence {(Ci, ci)}∞i=1 is said to converge geometri-
cally to a pointed metric space (X, x) if it converges to (X, x) on the pointed
Hausdorff-Gromov topology. See Gromov [2] or Kojima [5] for the definition of
the pointed Hausdorff-Gromov topology.

The sequence {Ci}∞i=1 is said to converge algebraically to a hyperbolic
3-cone-manifold Y if Y is homeomorphic to C and a sequence {ρi}∞i=1 of holon-
omy representations of Ci converges to a holonomy representation ρY of Y
in the space of representations Hom(π1(C − Σ), PSL2(C)) with respect to the
identification by ξi.

The sequence {(Ci, ci)}∞i=1 is said to converge strongly if the sequence
{(Ci, ci)}∞i=1 converges geometrically to a pointed hyperbolic 3-cone-manifold
(Y, y) and the sequence {Ci}∞i=1 converges algebraically to Y .

Theorem. Let C be a compact hyperbolic 3-cone-manifold and {(Ci,
ci)}∞i=1 be a sequence of pointed compact orientable hyperbolic 3-cone-manifolds
as above. Suppose that there is a constant D1 > 0 such that D1 ≤ radius T j

i for
any 1 ≤ j ≤ n and any i ∈ N. Then there is a subsequence {(Cim

, cim
)}∞m=1

which converges strongly to a pointed hyperbolic 3-cone-manifold (C∗, c∗). The
limit C∗ is homeomorphic to C. If βj > 0 for all 1 ≤ j ≤ n, then C∗ is compact.

Remark. The property (3) induces the following one,
(5) there is a constant Vmax such that vol(Ci) ≤ Vmax.

Remark. By the argument on geometric convergence due to Gromov
[2], it can be shown that the following property is satisfied,

(6) the sequence {(Ci, ci)}∞i=1 has a subsequence {(Cik
, cik

)}∞k=1 which
converges geometrically to a complete metric space.

Proof. Take a subsequence {ik} ⊂ {i} which satisfies the properties
(1), . . . ,(6). By choosing a further subsequence, we may assume that the se-
quence {Cik

}∞k=1 satisfies the following properties also,
(7) cik

lies on a component ∂T c
ik

with a constant reference number c, and
(8) fik

lies on a component ∂T f
ik

with a constant reference number f .
Then the sequence {Cik

}∞k=1 has the same property as in Kojima [5, Section
4], except for the condition on the range of the cone angles.

By following the arguments described in Sections 3 and 5 of [5], we can
verify that Corollary 5.1.4 of [5] holds with replacing the cone angle condition
“αj

i ≤ π” with “αj
i < 2π”, if Lemma 3.1.1 of [5] holds with the cone angle

condition “< 2π”. Lemma 2 is exactly such a version of Lemma 3.1.1 of [5].
Then Corollary 5.1.4 of [5] with the cone angle condition “αj

i < 2π” holds. This
is what we need.
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