# On strong convergence of hyperbolic 3 -cone-manifolds whose singular sets have uniformly thick tubular neighborhoods 

By<br>Michihiko FuJiI


#### Abstract

Let $C$ be a compact orientable hyperbolic 3-cone-manifold with cone-type singularity along simple closed geodesics $\Sigma$. Let $\left\{C_{i}\right\}_{i=1}^{\infty}$ be a sequence consisting of deformations of $C$ and $\Sigma_{i}$ be the singular set of $C_{i}$ so that the cone angles along $\Sigma_{i}$ all are less than $2 \pi$. In this paper, we will show that, if tubular neighborhoods of the singular sets $\Sigma_{i}$ can be taken to be uniformly thick, then there is a subsequence $\left\{C_{i_{k}}\right\}_{k=1}^{\infty}$ which converges strongly to a hyperbolic 3 -cone-manifold $C_{*}$ homeomorphic to $C$.


## Introduction

By a hyperbolic 3-cone-manifold, we will mean an orientable Riemannian 3 -manifold $C$ of constant sectional curvature -1 with cone-type singularity along simple closed geodesics $\Sigma$. To each component of the singularity $\Sigma$, is associated a cone angle. It is shown in [5] that for any values of cone angles, a non-singular part $C-\Sigma$ carries a complete hyperbolic structure $C_{\text {comp }}$ of finite volume, and moreover that if the cone angles of $C$ all are at most $\pi$, then there is an angle decreasing continuous family $\left\{C_{t}\right\}_{t \in[0,1)}$ of deformations of $C\left(=C_{0}\right)$ to the complete hyperbolic 3-manifold $C_{\text {comp }}\left(=\lim _{t \rightarrow 1} C_{t}\right)$. The hyperbolic 3-manifold $C_{\text {comp }}$ is regarded as a hyperbolic 3-cone-manifold with cone angles equal to zero at the cusps.

The latter claim is proved by using two machineries, the local rigidity by Hodgson-Kerckhoff [3] and the pointed Hausdorff-Gromov topology [2]. These machineries are fundamental when cone angles are $\leq 2 \pi$. In particular, the local rigidity implies the practicability of deformations of a hyperbolic 3 -conemanifold with arbitrary small changes in the cone angles, in the case where the initial cone angles all are at most $2 \pi$. Then, if the cone angles of $C$ all are at most $\pi$, one obtains deformations of $C$ with decreasing cone angles with an

[^0]arbitrary small amount. In [5], for extending such a small deformation globally, Kojima analyzed phenomena which occur in the two cases, that is, in the case where tubular neighborhoods of the singular loci $\Sigma_{t}$ in the deformations $C_{t}$ $(t \in[0,1))$ are uniformly thick, and in the case where a sequence of radii of the tubular neighborhoods goes to zero. For this analysis, he established three relative constants for hyperbolic 3 -cone-manifolds which control the local geometry of cone-manifolds away from the singularities. Lemma 3.1.1 of [5] gives one of them, and is a key lemma to derive the other constants and also to analyze the phenomena above.

In this paper, we will show that the assumption " $\leq \pi$ " in Lemma 3.1.1 [5] about the cone angles can be improved to " $<2 \pi$ " (see Lemma 2), by using fundamental properties on Dirichlet domains of 3 -cone-manifolds (see Lemma 1). Then, it can be seen that, for each sequence $\left\{C_{i}\right\}_{i=1}^{\infty}$ consisting of deformations of $C$ so that tubular neighborhoods of $\Sigma_{i}(i \in \mathbf{N})$ are uniformly thick, if the cone angles of $C_{i}(i \in \mathbf{N})$ are less than $2 \pi$, then there is a subsequence $\left\{C_{i_{m}}\right\}_{m=1}^{\infty}$ which converges strongly to a hyperbolic 3-cone-manifold $C_{*}$ homeomorphic to $C$ (see Theorem). This is a refinement of Cor 5.1.4 [5] and is proved by performing the same argument in the sections 3 and 5 of [5]. By Theorem, even though the initial cone angles of a hyperbolic cone-manifold $C$ are greater than $\pi$ (but less than $2 \pi$ ), there is an angle decreasing continuous family $\left\{C_{t}\right\}_{t \in[0,1)}$ of deformations of $C$ to $C_{c o m p}$, if we can rule out the case where the singular locus $\Sigma_{t}$ intersects itself. Kerckhoff announced that Hodgson and Kerckhoff obtained a similar result with ours (see Theorem 2 in [4]).

## 1. Dirichlet polyhedra and a relative constant for 3-cone-manifolds of constant non-positive curvature

First we will give the definition of cone-manifolds (see [1]). Consider an $n$-dimensional manifold $C$ which can be triangulated so that the link of each simplex is piecewise linear homeomorphic to the standard sphere and give a complete path metric on $C$ such that the restriction of the metric to each simplex is isomorphic to a geodesic simplex of constant sectional curvature $K$. The manifold together with the metric above is called an $n$-cone-manifold of sectional curvature $K$ and denote it again by $C$. The cone-manifold is hyperbolic, Euclidean or spherical if $K$ is $-1,0$ or +1 . If $C$ is an $n$-conemanifold and $c$ is a point in $C$, the pair $(C, c)$ is called a pointed $n$-conemanifold.

The singular locus $\Sigma$ of a cone-manifold $C$ consists of the points with no neighborhood isometric to a ball in a Riemannian manifold. It is a union of totally geodesic closed simplices of dimension $n-2$. At each point of $\Sigma$ in an open $(n-2)$-simplex, there is a cone angle which is the sum of dihedral angles of $n$-simplices containing the point. The subset $C-\Sigma$ has a smooth Riemannian metric of constant curvature $K$, but this metric is incomplete near $\Sigma$.

In this paper we consider hyperbolic 3-cone-manifolds of the following type.
Let $M$ be a closed orientable 3-manifold and

$$
\Sigma^{1} \cup \cdots \cup \Sigma^{n} \cup \Sigma^{n+1} \cup \cdots \cup \Sigma^{n+k}
$$

be a link in $M$ of $n+k$ components. Let us denote the $n$ components of the link by $\Sigma$;

$$
\Sigma=\Sigma^{1} \cup \cdots \cup \Sigma^{n}
$$

and the remaining $k$ components by $\Lambda$;

$$
\Lambda=\Sigma^{n+1} \cup \cdots \cup \Sigma^{n+k}
$$

We assume that $M-\Lambda$ is the underlying space of a hyperbolic 3-cone-manifold $C$ with singular locus $\Sigma$ and torus cusps at $\Lambda$. The subset $N:=C-\Sigma$ has a smooth Riemannian metric which is complete near the torus cusps and is incomplete near each component of $\Sigma$. The metric completion of the hyperbolic structure on $N$ gives rise to $C$. The hyperbolic 3-cone-manifold $C$ is compact if $\Lambda$ is empty. The components of $\Sigma$ is a totally geodesic submanifold, and in cylindrical coordinates around a component $\Sigma^{j}$ of the singular locus, the metric has the form

$$
d r^{2}+\sinh ^{2} r d \theta^{2}+\cosh ^{2} r d z^{2}
$$

where $r$ is the distance from the singular locus, $z$ is the distance along the singular locus, $\theta$ is the angular measure around the singular locus defined modulo $\alpha^{j}$ for some $\alpha^{j} \in(0, \infty)$. The number $\alpha^{j}$ is a cone angle at $\Sigma^{j}$. To each component of $\Lambda$, associated is a cone angle zero. We have a developing map of $N$ from its universal covering space $\tilde{N}$,

$$
\mathcal{D}_{C}: \tilde{N} \rightarrow \mathbf{H}^{3},
$$

and a holonomy representation

$$
\rho_{C}: \pi_{1}(N) \rightarrow \mathrm{PSL}_{2}(\mathbf{C}) .
$$

They are called a developing map and a holonomy representation of the conemanifold $C$.

Two hyperbolic 3 -cone-manifolds $C_{1}, C_{2}$ with underlying spaces $M_{1}-\Lambda_{1}$, $M_{2}-\Lambda_{2}$ respectively are said to be homeomorphic if there is a homeomorphism between $\left(M_{1}, \Sigma_{1} \cup \Lambda_{1}\right)$ and $\left(M_{2}, \Sigma_{2} \cup \Lambda_{2}\right)$.

A deformation of a hyperbolic 3-cone-manifold $C$ is a hyperbolic 3-conemanifold $C^{\prime}$ together with a reference homeomorphism $\xi^{\prime}:(M, \Sigma \cup \Lambda) \rightarrow$ $\left(M^{\prime}, \Sigma^{\prime} \cup \Lambda^{\prime}\right)$.

Let $L$ be a number with $L \leq-1$. Let $\mathcal{C}_{[L, 0]}^{<\theta}$ be the set of pointed compact orientable 3 -cone-manifolds of constant sectional curvature $K \in[L, 0]$ so that the singular loci form links and the cone angles all are less than $\theta$. Let $\mathcal{C}_{K}^{<\theta}$ be a subset of $\mathcal{C}[L, 0]$ consisting of cone-manifolds with a particular curvature constant $K$.

Now take a cone-manifold $C \in \mathcal{C}_{K}^{<2 \pi}$. Given a point $p$ on the singular locus $\Sigma$, let $S_{r}(p)$ denote the set of points at distance $r$ from $p$. Then for $r$ sufficiently small, $S_{r}(p)$ with the induced path metric is a 2 -cone-manifold of constant positive curvature with two cone points, since $\Sigma$ is a submanifold of codimension 2 and does not have vertices. The cone angle of $S_{r}(p)$ at each cone point is equal to that of the component of $\Sigma$ on which the point $p$ lies.

Take a point $x \in C-\Sigma$. Then define the following subset of $C$,

$$
P_{x}:=\{y \in C \mid y \text { admits the unique shortest path to } x\},
$$

and call it a Dirichlet fundamental domain of $C$ about $x$.
Lemma 1. The Dirichlet fundamental domain $P_{x}$ of $C \in \mathcal{C}_{K}^{<2 \pi}$ about $x$ $\in C-\Sigma$ has the following properties.
(1) $P_{x}$ is isometrically realized as an interior of a star-shaped geodesic polyhedron in the simply connected 3-dimensional space $\mathbf{H}_{K}$ of constant curvature $K$. The closure is a star-shaped geodesic polyhedron. We call this embedded compactified polyhedron a Dirichlet polyhedron of $C$ about $x$, and denote it again by $P_{x}$.
(2) Let $y$ be a point on $\Sigma$ and $\gamma_{1}, \ldots, \gamma_{n}$ be shortest geodesics from $x$ to $y$ in $C$. For sufficiently small $r$, let $v_{1}, \ldots, v_{n}$ be the intersections of $\gamma_{1}, \ldots, \gamma_{n}$ with $S_{r}(y)$. Let $s_{1}, s_{2}$ be the two cone points of $S_{r}(y)$. Let $V\left(v_{i}\right)$ be the Voronoi region at $v_{i}$ on $S_{r}(y)$, which is defined as follows:

$$
V\left(v_{i}\right):=\left\{\begin{array}{ll}
d\left(q, v_{i}\right) \leq d\left(q, v_{j}\right) \text { for all } j \neq i, \\
q \in S_{r}(y) \quad ; & \text { and there is a unique shortest geodesic } \\
\text { from } q \text { to }\left\{v_{1}, \ldots, v_{n}\right\}
\end{array}\right\} .
$$

Then a small neighborhood of $y$ splits into the cones on the Voronoi regions $V\left(v_{i}\right)$ 's in the Dirichlet polyhedron $P_{x}$. Moreover, the cones which include the point $s_{j}(j=1$ or 2$)$ satisfy the following properties.
(2-1) If there is only one shortest geodesic from $s_{j}$ to $\left\{v_{1}, \ldots, v_{n}\right\}$ on $S_{r}(y)$, say $\overline{s_{j} v_{1}}$, then the cone on the Voronoi region $V\left(v_{1}\right)$ is bounded by two faces of $P_{x}$ sharing a part of $\Sigma$ as edges, whose dihedral angle equals to the cone angle at $y$. Moreover, $v_{1}$ and $x$ are contained in the bisecting (totally geodesic) surface of these two faces.
(2-2) If there are at least two shortest geodesics from $s_{j}$ to $\left\{v_{1}, \ldots, v_{n}\right\}$ on $S_{r}(y)$, say $\overline{s_{j} v_{1}}, \ldots, \overline{s_{j} v_{k}}$, then for each $i \in\{1, \ldots, k\}$, the cone on $V\left(v_{i}\right)$ is bounded by two faces of $P_{x}$ sharing a part of $\Sigma$ as edges whose dihedral angle is at most a half of the cone angle at $y$, which is smaller than $\pi$.

Proof. See Proposition 3.1.4 (and also its proof) in Cooper-HodgsonKerckhoff [1].

If $x \in C-\Sigma$, the injectivity radius of $C$ at $x$ is to be the injectivity radius of $C-\Sigma$ at $x$. Denote it by $\operatorname{inj}_{x} C$. The key lemma in this paper is the following one which is proved in the same manner as Kojima [5], except for a part where the property (2) of Lemma 1 is used. Kojima showed the following lemma with cone angle condition " $\leq \pi$ ". In this case, a Dirichlet polyhedron is convex, and then the property (2) of the Lemma 1 is not necessary.

Lemma 2. Given positive numbers $D, I, R>0$, and a curvature bound $L \leq-1$, there is a constant $U:=U(D, I, R, L)>0$ so that if $C \in \mathcal{C}_{[L, 0]}^{<2 \pi}, x \in C$
with $d(x, \Sigma) \geq D$ and $\operatorname{inj}_{x} C \geq I$, then

$$
\operatorname{inj}_{y} C \geq U
$$

for any $y \in C$ with $d(y, \Sigma) \geq D$ and $d(y, x) \leq R$.
Proof. Suppose that there is not such a uniform bound $U$. Then, for some numbers $D, I, R>0$ and $L \leq-1$, there exists a sequence of cone-manifolds $\left\{C_{i}\right\}_{i=1}^{\infty} \subset \mathcal{C}_{[L, 0]}^{<2 \pi}$ and points $x_{i}, y_{i} \in C_{i}$ such that
(i) $d\left(x_{i}, \Sigma_{i}\right) \geq D, d\left(y_{i}, \Sigma_{i}\right) \geq D$,
(ii) $\operatorname{inj}_{x_{i}} C_{i} \geq I$,
(iii) $d\left(y_{i}, x_{i}\right) \leq R$ and
(iv) $\operatorname{inj}_{y_{i}} C_{i} \leq 1 / i$.

Take a Dirichlet polyhedron $P_{y_{i}}$ of $C_{i}$ about $y_{i}$ in $\mathbf{H}_{K_{i}}$, where $K_{i}$ is a curvature of $C_{i}$. There are points $a_{i}, b_{i}$ on $\partial P_{y_{i}}$, which are identified in $C_{i}$ and attain the shortest distance to $y_{i}$ from $\partial P_{y_{i}}$. The union of these shortest paths $\overline{a_{i} y_{i}}, \overline{b_{i} y_{i}}$ forms a homotopically nontrivial shortest loop $l_{i}$ in $C_{i}$ based at $y_{i}$.

If $i$ is large enough, then by (i) and (iv), $a_{i}$ and $b_{i}$ are not on the singular locus $\Sigma_{i}$. Also they are not points on edges of $\partial P_{y_{i}}$ and in particular nonsingular. Then they are on the interior of faces of $P_{y_{i}}$ respectively. Let us denote the faces by $A_{i}$ and $B_{i}$ and their extensions in $\mathbf{H}_{K_{i}}$ by $\tilde{A}_{i}$ and $\tilde{B}_{i}$. By Lemma 1, if there are singular points on the boundaries of $A_{i}$ or $B_{i}$, the dihedral angles of $P_{y_{i}}$ at these points are smaller than $\pi$.

If all dihedral angles of $P_{y_{i}}$ are smaller than or equal to $\pi, P_{y_{i}}$ is convex and then $P_{y_{i}}$ is bounded by $\tilde{A}_{i}$ and $\tilde{B}_{i}$.

Consider the case where dihedral angles along some edges of $\partial P_{y_{i}}$ are greater than $\pi$. It follows from Lemma 1 (2) that for each of such edges, there is a totally geodesic surface including it which bisects its neighborhood of $P_{y_{i}}$. By Lemma 1 (1), $P_{y_{i}}$ is star-shaped with respect to $y_{i}$. Then we can divide $P_{y_{i}}$ into convex subregions by cutting along the extensions in $\mathbf{H}_{K_{i}}$ of such bisecting surfaces.

Let $\phi_{i}(\leq \pi)$ be the angle between the segments $\overline{a_{i} y_{i}}$ and $\overline{b_{i} y_{i}}$ at $y_{i}$. Now assume that $\phi_{i} \rightarrow \pi$ as $i \rightarrow \infty$. Then $\tilde{A}_{i}$ and $\tilde{B}_{i}$ tend to be parallel and converge to a totally geodesic surface $H$ by (iv). Moreover, by (i) $d\left(y_{i}, \Sigma_{i}\right) \geq D>0$, the bisecting totally geodesic surfaces in $\mathbf{H}_{K_{i}}$, along which $P_{y_{i}}$ are divided into the convex subregions, are crushed into $H$ as geodesic segments or subsurfaces. Then the convex subregions are also crushed into $H$ as $i \rightarrow \infty$. Therefore $\operatorname{vol}\left(B_{R+I}\left(C_{i}, y_{i}\right)\right) \rightarrow 0$ as $i \rightarrow \infty$, since $P_{y_{i}}\left(\supset B_{R+I}\left(C_{i}, y_{i}\right)\right)$ is crushed into the surface $H$. This is a contradiction since $B_{I}\left(C_{i}, x_{i}\right) \subset B_{R+I}\left(C_{i}, y_{i}\right)$ by (iii) and $\operatorname{vol}\left(B_{I}\left(C_{i}, x_{i}\right)\right)$ is uniformly bounded by a positive constant from below by (ii). Thus there is a number $\phi$ so that $\phi_{i} \leq \phi<\pi$. Therefore the loop $l_{i}$ bends at $y_{i}$ with angle uniformly away from $\pi$.

Let us lift $l_{i}$ to a geodesic segment $s_{i}$ in $\mathbf{H}_{K_{i}}$, based at $y_{i}$ so that $a_{i}$ is its middle point. Let $\rho_{i}$ be a holonomy representation of $C_{i} ; \rho_{i}: \pi_{1}\left(C_{i}-\Sigma_{i}\right) \rightarrow$ Isom $\mathbf{H}_{K_{i}}$. Then the action of $\rho_{i}\left(l_{i}\right)$ on $\mathbf{H}_{K_{i}}$ is either parabolic, loxodromic or elliptic. In any cases, the orbit of $s_{i}$ by the action of a group generated by
$\rho_{i}\left(l_{i}\right)$ forms a piecewise geodesic which bends with angle uniformly away from $\pi$, and the length of $s_{i}$ goes to 0 when $i \rightarrow \infty$.

Assume that there is a subsequence $\{k\} \subset\{i\}$ so that $\rho_{k}\left(l_{k}\right)$ all are parabolic. Then the bending angle of the orbit of $s_{k}$ at the orbit of $y_{k}$ should approaches $\pi$ as $k \rightarrow \infty$, since the length of $s_{k}$ goes to 0 as $k \rightarrow \infty$. This gives a contradiction.

Assume that there is a subsequence $\{k\} \subset\{i\}$ so that $\rho_{k}\left(l_{k}\right)$ all are loxodromic. Then the orbit of $s_{k}$ squeezes onto the axis of $\rho_{k}\left(l_{k}\right)$, since the length of $s_{k}$ approaches 0 when $k \rightarrow \infty$ and since the orbit of $s_{k}$ bends at the orbit of $y_{k}$ with corner angle uniformly away from $\pi$ with respect to $k$. In particular, the axis of $\rho_{k}\left(l_{k}\right)$ becomes close to $y_{k}$ when $k \rightarrow \infty$. Thus, if $k$ is large enough, there is a very short simple closed geodesic in $C_{k}$ near $y_{k}$. Then choose a new reference point $z_{k}$ on this simple closed geodesic, take the Dirichlet polyhedron $P_{z_{k}}$ about $z_{k}$, consider two faces of $P_{z_{k}}$ and perform the same argument as before. This gives a contradiction.

Therefore $\rho_{i}\left(l_{i}\right)$ all but finitely many exceptions are elliptic. Take a subsequence $\{j\} \subset\{i\}$ so that $\rho_{j}\left(l_{j}\right)$ all are elliptic. The orbit of $s_{j}$ rounds around a geodesic which is an extension of a lift of a component of $\Sigma_{j}$. Then $y_{j}$ approaches the geodesic, since the length of $s_{j}$ goes 0 when $j \rightarrow \infty$ and since the orbit of $s_{j}$ bends at the orbit of $y_{j}$ with corner angle uniformly away from $\pi$ with respect to $j$. This contradicts (i).

## 2. Strong convergence of hyperbolic 3-cone-manifolds

Let $C$ be a compact orientable hyperbolic 3 -cone-manifold with singularity
$\Sigma$. We assume that the singular set $\Sigma$ forms a link

$$
\Sigma=\Sigma^{1} \cup \cdots \cup \Sigma^{n}
$$

as in Section 1, and that the cusp $\Lambda$ of $C$ is empty. Let $\mathcal{T}$ be the maximal tube about $\Sigma$, that is, a union of open tubular neighborhoods $\mathcal{T}^{j}$ 's which has the following properties,
(a) each component $\mathcal{T}^{j}$ is an equidistant tubular neighborhood to the $j$-th component $\Sigma^{j}$ of $\Sigma$,
(b) among ones having the property (a), the set of radii arranged in order of magnitude from the smallest one is maximal in lexicographical order.

Let us denote by $\partial \mathcal{T}^{j}$ an abstract boundary of $\mathcal{T}^{j}$. The actual boundary $\partial \mathcal{T}$ of $\mathcal{T}$ in $C$ is a union of isometrically embedded tori with a finite number of contact points. The first contact point on $\partial \mathcal{T}$ is defined to be the point which admits two shortest paths to $\Sigma$ from $\partial \mathcal{T}$. The finest point on $\partial \mathcal{T}$ is defined to be the point on $\partial \mathcal{T}$ which attains the minimum among $\left\{\operatorname{inj}_{x}(C) \mid x \in \partial \mathcal{T}\right\}$.

Now take a sequence $\left\{C_{i}\right\}_{i=1}^{\infty}$ of compact orientable hyperbolic 3-conemanifolds with the following four properties,
(1) each $C_{i}$ is a deformation of $C$ with a reference homeomorphism $\xi_{i}$ : $(C, \Sigma) \rightarrow\left(C_{i}, \Sigma_{i}\right)$,
(2) $c_{i}, f_{i}$ are the first contact point and the finest point on $\partial \mathcal{T}_{i}$ respectively,
(3) $\alpha_{i}^{j}<2 \pi$ for all $1 \leq j \leq n$ and any $i \in \mathbf{N}$, where $\alpha_{i}^{j}$ is a cone angle along the component $\Sigma_{i}^{j}$,
(4) $\left\{\alpha_{i}^{j}\right\}_{i=1}^{\infty}$ converges to a number $\beta^{j} \in[0,2 \pi]$ for all $1 \leq j \leq n$.

We briefly review the definitions of three kinds of convergence; geometric convergence, algebraic convergence and strong convergence.

If $X$ is a metric space and $x$ is a point in $X$, the pair $(X, x)$ is called a pointed metric space. The sequence $\left\{\left(C_{i}, c_{i}\right)\right\}_{i=1}^{\infty}$ is said to converge geometrically to a pointed metric space $(X, x)$ if it converges to $(X, x)$ on the pointed Hausdorff-Gromov topology. See Gromov [2] or Kojima [5] for the definition of the pointed Hausdorff-Gromov topology.

The sequence $\left\{C_{i}\right\}_{i=1}^{\infty}$ is said to converge algebraically to a hyperbolic 3-cone-manifold $Y$ if $Y$ is homeomorphic to $C$ and a sequence $\left\{\rho_{i}\right\}_{i=1}^{\infty}$ of holonomy representations of $C_{i}$ converges to a holonomy representation $\rho_{Y}$ of $Y$ in the space of representations $\operatorname{Hom}\left(\pi_{1}(C-\Sigma), \mathrm{PSL}_{2}(\mathbf{C})\right)$ with respect to the identification by $\xi_{i}$.

The sequence $\left\{\left(C_{i}, c_{i}\right)\right\}_{i=1}^{\infty}$ is said to converge strongly if the sequence $\left\{\left(C_{i}, c_{i}\right)\right\}_{i=1}^{\infty}$ converges geometrically to a pointed hyperbolic 3 -cone-manifold ( $Y, y$ ) and the sequence $\left\{C_{i}\right\}_{i=1}^{\infty}$ converges algebraically to $Y$.

Theorem. Let $C$ be a compact hyperbolic 3-cone-manifold and $\left\{\left(C_{i}\right.\right.$, $\left.\left.c_{i}\right)\right\}_{i=1}^{\infty}$ be a sequence of pointed compact orientable hyperbolic 3-cone-manifolds as above. Suppose that there is a constant $D_{1}>0$ such that $D_{1} \leq$ radius $\mathcal{T}_{i}^{j}$ for any $1 \leq j \leq n$ and any $i \in \mathbf{N}$. Then there is a subsequence $\left\{\left(C_{i_{m}}, c_{i_{m}}\right)\right\}_{m=1}^{\infty}$ which converges strongly to a pointed hyperbolic 3-cone-manifold $\left(C_{*}, c_{*}\right)$. The limit $C_{*}$ is homeomorphic to $C$. If $\beta^{j}>0$ for all $1 \leq j \leq n$, then $C_{*}$ is compact.

Remark. The property (3) induces the following one,
(5) there is a constant $V_{\text {max }}$ such that $\operatorname{vol}\left(C_{i}\right) \leq V_{\text {max }}$.

Remark. By the argument on geometric convergence due to Gromov [2], it can be shown that the following property is satisfied,
(6) the sequence $\left\{\left(C_{i}, c_{i}\right)\right\}_{i=1}^{\infty}$ has a subsequence $\left\{\left(C_{i_{k}}, c_{i_{k}}\right)\right\}_{k=1}^{\infty}$ which converges geometrically to a complete metric space.

Proof. Take a subsequence $\left\{i_{k}\right\} \subset\{i\}$ which satisfies the properties (1), $\ldots,(6)$. By choosing a further subsequence, we may assume that the sequence $\left\{C_{i_{k}}\right\}_{k=1}^{\infty}$ satisfies the following properties also,
(7) $c_{i_{k}}$ lies on a component $\partial \mathcal{T}_{i_{k}}^{c}$ with a constant reference number $c$, and
(8) $f_{i_{k}}$ lies on a component $\partial \mathcal{T}_{i_{k}}^{f}$ with a constant reference number $f$.

Then the sequence $\left\{C_{i_{k}}\right\}_{k=1}^{\infty}$ has the same property as in Kojima [5, Section 4], except for the condition on the range of the cone angles.

By following the arguments described in Sections 3 and 5 of [5], we can verify that Corollary 5.1.4 of [5] holds with replacing the cone angle condition " $\alpha_{i}^{j} \leq \pi$ " with " $\alpha_{i}^{j}<2 \pi$ ", if Lemma 3.1.1 of [5] holds with the cone angle condition " $<2 \pi$ ". Lemma 2 is exactly such a version of Lemma 3.1.1 of [5]. Then Corollary 5.1.4 of [5] with the cone angle condition " $\alpha_{i}^{j}<2 \pi$ " holds. This is what we need.

Division of Mathematics
Faculty of Integrated Human Studies
Kyoto University
Kyoto 606-8501 Japan
e-mail: mfujii@math.h.kyoto-u.ac.jp

## References

[1] D. Cooper, C. D. Hodgson and S. P. Kerckhoff, Three-dimensional Orbifolds and Cone-Manifolds, MSJ Memories vol. 5, Mathematical Society of Japan, 2000.
[2] M. Gromov, Structures métriques pour les variétés riemanniennes, Ceduc/Fernand Nathan, Paris, 1981.
[3] C. D. Hodgson and S. P. Kerckhoff, Rigidity of hyperbolic cone-manifolds and hyperbolic Dehn surgery, J. Diff. Geom., 48 (1998), 1-59.
[4] S. P. Kerckhoff, Deformations of hyperbolic cone-manifolds, Topology and Teichmüller Spaces, S. Kojima et al., ed., World Scientific Publ., Singapore, 1996, 101-114.
[5] S. Kojima, Deformations of hyperbolic 3-cone-manifolds, J. Diff. Geom., 49 (1998), 469-516.


[^0]:    1991 Mathematics Subject Classification(s). Primary 57M50, Secondary 30F40.
    Communicated by Prof. A. Kono, October 16, 2000
    Revised April 18, 2001

