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Geometric Bogomolov’s conjecture
for curves of genus 3 over function fields

By

Kazuhiko Yamaki

Introduction

Throughout this paper, we always use a fixed algebraically closed field k.
Let X be a smooth projective surface over k, Y a smooth projective curve

over k, and let f : X → Y be a generically smooth semistable curve of genus
g ≥ 2 over Y . Let K be the function field of Y , K the algebraic closure of K,
and let C be the generic fiber of f . Let j : C(K)→ Pic0(C)(K) be a morphism
defined by j(x) = (2g − 2)x − ωC , where ωC is the dualizing sheaf of C, and
let ‖·‖NT be the semi-norm arising from the canonical Néron-Tate pairing on
Pic0(C)(K). We set

BC(P ; r) =
{

x ∈ C(K)
∣∣ ‖j(x)− P‖NT ≤ r

}
for P ∈ Pic0(C)(K) and r ≥ 0, and set

rC(P ) =

{
−∞ if #

(
BC(P ; 0)

)
=∞,

sup
{
r ≥ 0

∣∣ #
(
BC(P ; r)

)
<∞}

otherwise.

Then, we have the following conjectures due to Bogomolov.

Conjecture (Geometric Bogomolov’s conjecture). If f is non-isotrivial,
then rC(P ) > 0 for all P .

We have also an effective version of Bogomolov’s conjecture.

Conjecture (Effective version of geometric Bogomolov’s conjecture).
If f is non-isotrivial, then there exists an effectively calculated positive number
r0 such that

inf
P∈Pic0(C)(K)

rC(P ) ≥ r0.
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58 Kazuhiko Yamaki

The meaning of “effectively calculated” is to give a concrete algorithm or
formula to find r0.

An arithmetic version of Bogomolov’s conjecture has been completely
solved by Ullmo [8], Zhang [11] and Moriwaki [6]. As remarked in [6, Re-
mark 8.3], due to the poorness of geometric heights, geometric Bogomolov’s
conjecture is a rather subtle problem. In this paper, we give an answer to
the effective version of geometric Bogomolov’s conjecture for non-hyperelliptic
curves of genus 3.

In order to describe r0 above, we introduce the types of nodes of a semi-
stable curve. Let P be a node of a semistable curve Z of genus g over k. We
can assign a number i to the node P , called the type of P , in the following
way. Let ν : ZP → Z be the partial normalization at P . If ZP is connected,
then i = 0. Otherwise, i is the minimum of the arithmetic genera of the two
connected components of ZP . We denote by δi(Z) the number of nodes of type
i, and by δi(X/Y ) the number of nodes of type i in all the fibers of f : X → Y ,
i.e., δi(X/Y ) =

∑
y∈Y δi(Xy).

Our main theorem of this paper is the following.

Main Theorem. Let X be a smooth projective surface over k, Y a
smooth projective curve over k, and let f : X → Y be a generically smooth
semistable curve of genus 3 over Y . If f is not smooth and the generic fiber is
not hyperelliptic, then we have

inf
P∈Pic0(C)(K)

rC(P ) ≥
√

2
99

δ0(X/Y ) +
8
3
δ1(X/Y ).

Some partial answers to the effective version of geometric Bogomolov’s
conjecture have already been given by Moriwaki and the author. Moriwaki
gave an answer in [5] for the case where every singular fiber of f is a tree of
stable components under the assumption of char(k) = 0. He also gave answers
for the case that f has only irreducible fibers in [2] and for the case of g = 2
in [3] without assumptions on the characteristic. Recently, the author gave
an answer in [9] for the case where the generic fiber is hyperelliptic under the
assumption of char(k) = 0.

We will explain how to prove it. First of all, note the following essential
fact (cf. [10, Theorem 5.6], [2, Corollary 2.3] and [3, Theorem 2.1]).

Key Fact. If (ωa
X/Y · ωa

X/Y )a > 0, then we have

inf
P∈Pic0(C)(K)

rC(P ) ≥
√

(g − 1)(ωa
X/Y · ωa

X/Y )a,

where (·)a is the admissible pairing.

By virtue of this fact, our main purpose is to find an effectively calculated
positive number which bounds (ωa

X/Y · ωa
X/Y )a below. By the definition, we

have

(ωa
X/Y · ωa

X/Y )a = (ωX/Y · ωX/Y )−
∑
y∈Y

ε(Ḡy, ωy),



�

�

�

�

�

�

�

�

Geometric Bogomolov’s conjecture for curves of genus 3 over function fields 59

where ε(Ḡy, ωy) is a real number arising from the polarized metrized dual graph
(Ḡy, ωy) of Xy introduced by S. Zhang in [10]. If we find numbers r1 and r2

such that (ωX/Y · ωX/Y ) ≥ r1, ε(Gy, ωy) ≤ r2 and r1 − r2 > 0, and if r1 − r2

can be effectively calculated, then r1 − r2 gives us an answer. Every partial
answer mentioned above was obtained in this way, and we will also prove Main
Theorem by finding such r1 and r2.

1. Review and some remarks on the admissible constants

In this section, we recall several facts on Green’s functions on metrized
graphs and give some remarks on the admissible constants. See [10] for details
on metrized graphs and Green’s function, and see [9] for details on rigidified
graphs, contraction and irreducible decomposition.

Definition 1.1 (cf. [9]). A rigidification on a graph G is a finite subset
V of G such that G \ V is a disjoint union of open line segments. A rigidified
graph [G] is a pair of a graph G and a rigidification on G.

For a rigidified graph [G], the above V is denoted by Vert[G] and its
member is called a vertex. We can also define the notion of edges. We denote by
Ed[G] the set of edges. An R-divisor supported in Vert[G] is called a polarization
on [G].

Let [G] be a rigidified graph and let S be a subset of Ed[G]. We have defined
in [9] a contraction of S, that is, a graph obtained by contracting all the edges
in S, which is usually denoted by pS : [G] → [GS ]. When G has a Lebesgue
measure, that on GS is naturally induced. To simplify the notation, we write
pS : [G] → [GS ] for p(Ed[G]\S) : [G] → [G(Ed[G]\S)]. Note that we have the
canonical identification Ed[GS] ∼= S and the induced map Vert[G]→ Vert[GS ].
For a polarization D, we have also the polarization DS and DS on [GS ] and
[GS ] respectively. We say a polarized rigidified graph ([H], E) is dominated by
([G], D) if ([H], E) ∼= ([GS], DS) for some subset S of Ed[G].

A rigidified graph [G] is said to be reducible if there is a vertex P of [G]
such that G \ {P} is not connected. [G] is said to be irreducible if it is not
reducible. For any graph [G], we have the irreducible decomposition of [G].
(See [9] for details.) Each irreducible component of [G] can be metrized as
a subspace of G when G is metrized. Note that every irreducible component
[H] can be canonically regarded as [GEd[H]]. If D is a polarization and [H] is
an irreducible component of [G], then we also call

(
[H], DEd[H]

)
an irreducible

component of a polarized rigidified graph ([G], D).
Next, let us recall Green’s function. Let Ḡ be a metrized graph and D an

R-divisor on G. If deg(D) �= −2, then there are a unique measure µ(Ḡ,D) on G
and a unique function g(Ḡ,D) on G×G with the following properties (cf. [10]).

(a)
∫

G

µ(Ḡ,D) = 1.

(b) g(Ḡ,D)(x, y) is symmetric and continuous on G×G.
(c) For a fixed x ∈ G, ∆y(g(Ḡ,D)(x, y)) = δx − µ(Ḡ,D).
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(d) For a fixed x ∈ G,
∫

G

g(Ḡ,D)(x, y)µ(Ḡ,D)(y) = 0.

(e) g(Ḡ,D)(D, y) + g(Ḡ,D)(y, y) is a constant function on y ∈ G.
The constant g(Ḡ,D)(D, y) + g(Ḡ,D)(y, y) is denoted by c(Ḡ, D). Further,

we set

ε(Ḡ, D) = 2 deg(D)c(Ḡ, D)− g(Ḡ,D)(D, D),

which we call the admissible constant of (Ḡ, D).
For a polarized rigidified metrized graph ([Ḡ], D), Green’s function does

not depend on its rigidification Vert[G], neither does the admissible constant
of course. Moreover, if we give another Lebesgue measure to G with respect
to which the length of no edges change, then the admissible constant does not
change. Hence, as far as we talk on the admissible constants of pairs ([Ḡ], D)’s,
we may consider a Lebesgue measure on [G] as a family of positive real numbers
{le}e∈Ed[G], each of which should be called the length of the edge.

The next proposition implies the properness of the definition of irreducible
components of polarized rigidified graphs and gives us a fundamental tool for
calculating the admissible constants.

Proposition 1.2 ([9]). Let ([Ḡ], D) be a polarized metrized rigidified
graph with deg D �= −2 and let {([Ḡi], Di)}i=1,... ,r be the set of irreducible
components of ([Ḡ], D). Then, we have

ε(Ḡ, D) = ε(Ḡ1, D1) + · · ·+ ε(Ḡr, Dr).

We have another convenient formula.

Lemma 1.3. Let ([Ḡ], D) be a polarized rigidified metrized graph with
deg D �= −2. Let e1 be an edge of [G] of length l1. Then, we have

lim
l1→0

ε(Ḡ, D) = ε
(
Ḡ{e1}, D{e1}

)
.

The idea of proof Lemma 1.3 is simple, but concrete description needs
some pages. We will, hence, give proof in the last section.

Before proceeding the argument, we make sure the definition of polarized
metrized rigidified dual graph of a semistable curve C. It is the choice of rigidifi-
cations of the dual graph is that we would like to emphasize. The base metrized
space Ḡ and its canonical divisor are the ordinary ones which are dealt with in
[2] or [10]. We define V as the set of points of G corresponding to irreducible
components of C which are not (−2)-smooth rational curves. Then, we can
easily see that G \ V is a disjoint union of open segments, hence V is a rigid-
ification. Moreover, it is immediate that the canonical divisor is supported in
V . We call this (Ḡ, V ) with the canonical polarization the polarized metrized
rigidified dual graph of C in this paper.

Let ([G], D) be a polarized rigidified graph. We can assign numbers to
P ∈ Vert[G] in the following way. Let m(G, D)P be the coefficient of P in D
and let b(G)P be the number of branches at P , that is, that of directions going
away from P .
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Definition 1.4. Let ([G], D) and ([G̃], D̃) be polarized rigidified graphs.
(1) ([G̃], D̃) is said to be maximal if m(G̃, D̃)P = 1 and b(G̃)P = 3 for all

P ∈ Vert[G̃].
(2) ([G̃], D̃) is called a maximal model of ([G], D) if ([G̃], D̃) is maximal

and dominates ([G], D).

Definition 1.4 may seem artificial, but it is quite natural for the polarized
rigidified dual graphs of semistable curves.

Proposition 1.5. Let ([G], D) be a polarized rigidified graph such that
for any P ∈ Vert[G],

(a) b(G)P ≥ 2,
(b) m(G, D)P > 0,
(c) m(G, D)P − b(G)P = 2k, where k = −1, 0, 1, 2, . . . .
Then, there exists a maximal model of ([G], D). In particular, if ([G], D)

is an irreducible component of the polarized rigidified dual graph of a semistable
curve and G is not a closed segment, then ([G], D) has a maximal model.

Proof. First we set

n([G], D)P = #{Q ∈ Vert[G] | (m(G, D)Q, b(G)Q) = (m(G, D)P , b(G)P )}
for each P ∈ Vert[G]. We put the lexicographic order in N3, and we will prove
our assertion by induction on(
m(G, D), b(G), n([G], D)

)
:= max

P∈Vert[G]

{(
m(G, D)P , b(G)P , n([G], D)P

) ∈ N
3
}
.

If (m(G, D), b(G), n([G], D)) = (1, 3, ∗), then it is already maximal.
Let P0 be a vertex which gives (m(G, D), b(G), n([G], D)). We consider

the case of m(G, D)− b(G) ≥ 0 first. Then, m(G, D) ≥ 2 by the assumptions
(a) and (c), and hence we can take a polarized rigidified graph ([G′], D′) like
the following: there exist two edges e1 and e2 which are the closed intervals,
and exist two vertices P0,1 and P0,2 which are the terminal points of both e1

and e2, such that(
m(G, D)P0,1, b(G)P0,1

)
= (1, 3),(

m(G, D)P0,2, b(G)P0,2

)
=

(
m(G, D)− 1, b(G) + 1

)
,([

G′
{e1,e2}

]
, D′

{e1,e2}
)

= ([G], D)

(cf. Figure 1). We can easily see that ([G′], D′) satisfies the conditions (a), (b)
and (c), and that

(
m(G, D), b(G), n([G], D)

)
>

(
m(G′, D′), b(G′), n([G′], D′)

)
.

Next let us suppose that m(G, D) − b(G) = −2. If m(G, D) = 1, then
b(G) = 3 and it is already maximal. If m(G, D) ≥ 2, then we can take a
polarized rigidified graph ([G′], D′) like the following: there exists an edge e
homeomorphic to the closed interval such that(

m(G, D)P0,1, b(G)P0,1

)
= (1, 3),(

m(G, D)P0,2, b(G)P0,2

)
=

(
m(G, D)− 1, b(G)− 1

)
,([

G′
{e}

]
, D′

{e}
)

= ([G], D)
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�

P0

[G]

� � �

P0,1 P0,2

e1

e2

[G′]

Figure 1: b(G)P0 = 4.

where P0,1 and P0,2 are the terminal points of e (cf. Figure 2). Then we can
again easily see that ([G′], D′) satisfies the conditions (a), (b) and (c), and that(
m(G, D), b(G), n([G], D)

)
>

(
m(G′, D′), b(G′), n([G′], D′)

)
.

�

�
�

�
��

�
�

�P0

[G]

� � �

�
�

�
�

P0,1 P0,2
e

[G′]

Figure 2: (m(G, D)P0, b(G)P0) = (3, 5).

In each of the above cases, ([G′], D′) has a maximal model by the induction
hypothesis, and it is a maximal model of ([G], D).

The latter part is immediate since its irreducible component satisfies the
conditions (a), (b) and (c) unless it is a closed interval. Thus, we complete the
proof.

By virtue of Proposition 1.2, Lemma 1.3 and the above proposition, we
see it is essential to calculate the admissible constants of irreducible maximal
metrized graphs.

2. On a basis of the direct image of the relative dualizing sheaf

In this section, we find a certain local basis of f∗ωX/Y , which we will use
later to estimate (ωX/Y · ωX/Y ).

First, we introduce some notions and words. We mean a nodal curve by a
reduced projective curve over k which has at most nodes as singularities.

Definition 2.1. We say a connected nodal curve C is quasi-irreducible
if its every node is of type 0.

For a connected nodal curve C, let us consider the set of nodes of positive
type. If we normalize C at such nodes all at once, we have the quasi-irreducible
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decomposition of C. Each of the components is called a quasi-irreducible com-
ponent of C. We fix the following notations:

Comp(C) := the set of connected closed subspaces consist of irreducible
components of C,

QIrr(C) := {D ∈ Comp(C) | D is a quasi-irreducible component of C},
Irr(C) := {D ∈ Comp(C) | D is irreducible}.

We sometimes regard a member of Comp(C) as a reduced scheme.
Let D1 and D2 be elements of Comp(C). We say that D3 ∈ Comp(C)

connects D2 with D1 if D3 has common irreducible components with D1 and
D2.

Definition 2.2. The distance from D1 to D2, denoted by dD1(D2), is
a non-negative integer defined by

dD1(D2) := min{# Irr(D) | D ∈ Comp(C) connects D2 with D1} − 1.

We call D ∈ Comp(C) which attains the distance from D1 to D2 a path from
D1 to D2.

Note that dD1(D2) = dD2(D1) and that a path is not uniquely determined
in general.

Remark 2.3. The distance between two components is equal to that
of the two corresponding points in its metrized dual graph.

Let R be a discrete valuation ring with residue field k and put S := Spec R.
Let C be a regular S-scheme whose structure morphism f is a semistable curve
of genus g. Let s be the closed point of S. For any reduced connected divisor
C0, we have a natural injective map ωC/S(C0 − Cs)|C0 ↪→ ωC/S |Cs

. By the
adjunction formula, there is an isomorphism t : ωC0 → ωC/S(C0 − Cs)|C0 . We
call here the composite injective map ωC0 ↪→ ωC/S |Cs

the canonical injection.

Lemma 2.4. Let C0 be a reduced connected vertical divisor of C and let
η0 be any non-zero global section of ωC0 .

(1) There exists a global section η̃0 of ωC/S with the following properties.
(a) If η′

0 is the image of η0 by the canonical injection H0(ωC0) →
H0(ωCs

), then η′
0 = η̃0|Cs

.
(b) div(η̃0)−

∑
C∈Irr(Cs)

dC0(C)C is an effective divisor.

We call such η̃0 a stepwise extension of η0.
(2) Suppose that a basis {ηC,i}i=1,... ,g(C) of H0(C, ωC) is given for any

quasi-irreducible component C of Cs not isomorphic to P1. Let η̃C,i be a stepwise
extension of ηC,i. Then, the set

⋃
C{η̃C,i}i of the stepwise extensions is a basis

of f∗ωC/S .
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Proof. (1) We simply write d(C) for dC0(C). Put m := supC∈Irr(Cs){d(C)},
and put

Dj :=
∑

d(C)≤j

(j − d(C))C, D′
j :=

∑
d(C)≤j

C

for j = 1, 2, . . . , m. Furthermore, we put Fj = jCs and E′
j = Cs−D′

j to simplify
the notation. Note that D′

j and E′
j are reduced curves and that Dj+1 = Dj+D′

j .
Let Σ(j) be a reduced closed subscheme of dimension 0 defined as D′

j ∩ E′
j .

Note that Supp(Σ(j)) �= ∅ for j �= m and that Σ(j) can be regarded as a Cartier
divisor on Dj+1 and D′

j .
Let j be a positive integer less than m. Since we have an exact sequence

0→ OD′
j
→ ODj+1(Dj)→ ODj

(Dj)→ 0,

we obtain, by tensoring ωC/S(−Fj),

0→ ωC/S(−Fj)|D′
j
→ ωC/S(Dj − Fj)|Dj+1 → ωC/S(Dj − Fj)|Dj

→ 0.

By the adjunction formula, we have

ωC/S(−Fj)|D′
j

∼= ωD′
j
(Σ(j)),

hence we obtain h1(ωC/S(−Fj)|D′
j
) = 0 by Serre duality. Therefore, we have

the following exact sequence:

0→ H0(ωC/S(−Fj)|D′
j
)

→ H0(ωC/S(Dj − Fj)|Dj+1)

→ H0(ωC/S(Dj − Fj)|Dj
)

→ 0.

If a section ηj ∈ H0(ωC/S(Dj − Fj)|Dj
) is given, then by the above exact

sequence, we can take a section η′
j+1 ∈ H0(ωC/S(Dj − Fj)|Dj+1) lying over ηj .

On the other hand, taking account that

(D′
j − Fj+1) + E′

j = −Fj ,

(Dj+1 − Fj+1) + E′
j = Dj − Fj ,

(D′
j − Fj+1) + Dj = Dj+1 − Fj+1,

we have the following natural diagram in which both the horizontal lines are
exact.

0 −→ ωC/S(D′
j − Fj+1) −→ ωC/S(−Fj) −→ ωC/S(−Fj)|E′

j
−→ 0� � �∼=

0 −→ ωC/S(Dj+1 − Fj+1) −→ ωC/S(Dj − Fj) −→ ωC/S(Dj − Fj)|E′
j
−→ 0
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Since any non-zero local section of the ideal sheaf of E′
j does not vanish at any

associated point of ODj+1 or OD′
j
, we restrict the first horizontal line to D′

j

and the second one to Dj+1, to obtain the following diagram in which both
the horizontal lines are exact, where k(Σ(j)) is the skyscraper sheaf of k with
support Σ(j).

0 −→ ωC/S(D′
j − Fj+1)|D′

j
−→ ωC/S(−Fj)|D′

j
−→ k

(
Σ(j)

) −→ 0� � �∼=

0 −→ ωC/S(Dj+1 − Fj+1)|Dj+1 −→ ωC/S(Dj − Fj)|Dj+1 −→ k
(
Σ(j)

) −→ 0

Taking the cohomology of the diagram, we have the following diagram.

0 −−−−→ H0(ωC/S(D′
j − Fj+1)|D′

j
) −−−−→ H0(ωC/S(−Fj)|D′

j
)� �

0 −−−−→ H0(ωC/S(Dj+1 − Fj+1)|Dj+1) −−−−→ H0(ωC/S(Dj − Fj)|Dj+1)

−−−−→ k(Σ(j)) −−−−→ H1(ωC/S(D′
j − Fj+1)|D′

j
)�∼=

�α

−−−−→ k(Σ(j)) −−−−→ H1(ωC/S(Dj+1 − Fj+1)|Dj+1)

We claim that α is injective. If it is not injective, then the map

k(Σ(j))→ H1(ωC/S(Dj+1 − Fj+1)|Dj+1)

is the zero-map since h1(ωC/S(D′
j − Fj+1)|D′

j
) = 1 by Serre duality, hence we

see

H1(ωC/S(Dj+1 − Fj+1)|Dj+1) ∼= H1(ωC/S(Dj − Fj)|Dj+1)

by the long exact sequence of the cohomology of the second horizontal line.
Therefore, noting

ωC/S(Dj+1 − Fj+1)|Dj+1
∼= ωDj+1

and

ωC/S(Dj − Fj)|Dj+1
∼= ωC/S(Dj+1 − Fj+1)|Dj+1 ⊗ODj+1

ODj+1(Σ
(j))

∼= ωDj+1 ⊗ODj+1
ODj+1(Σ

(j))

and using Serre duality, we obtain

h0(ODj+1) = h0(ODj+1(−Σ(j))).

That is a contradiction, and we see that α is injective.
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Now chasing the diagram, we can easily see that there exist a global section
ηj+1 of ωC/S(Dj+1 − Fj+1)|Dj+1 and a global section η′′

j of ωC/S(−Fj)|D′
j

such
that η′′

j + ηj+1 = η′
j+1 in H0(ωC/S(Dj+1 − Fj+1)|Dj+1). In other words, we

have a section ηj+1 ∈ H0(ωC/S(Dj+1 − Fj+1)|Dj+1) such that its image by the
composite map

φj : ωC/S(Dj+1 − Fj+1)|Dj+1 ↪→ ωC/S(Dj − Fj)|Dj+1 � ωC/S(Dj − Fj)|Dj

is ηj . Let us put

Φ := (φ1 ◦ φ2 ◦ · · · ◦ φm−1) : ωC/S(Dm − Fm)|Dm
→ ωC/S(D1 − F1)|D1 .

Let ι : ωC/S(Dm − Fm)|Dm
↪→ ωC/S |Fm

be a homomorphism obtained by
tensoring ωC/S to the canonical injection ODm

(Dm − Fm) ↪→ OFm
and let

rm : ωC/S � ωC/S |Fm
be the restriction homomorphism. Then, we have a com-

mutative diagram as follows, where r : ωC/S � ωCs
is the restriction map and

t : ωC0 → ωC/S(D1 − F1)|D1 is an isomorphism.

ωC0 −−−−→ ωCs

r←−−−− ωC/S

t

�∼=
�rm

ωC/S(D1 − F1)|D1

Φ←−−−− ωC/S(Dm − Fm)|Dm

ι−−−−→ ωC/S |Fm

In the situation of our lemma, a section η0 of ωC0 is already given. By
the above discussion, there is a section ηm of ωC/S(Dm −Fm)|Dm

with t(η0) =
Φ(ηm). Let us put η̃0 to be a global section of ωC/S such that rm(η̃0) = ι(ηm).
Then, it is immediate that η̃0 has the property (a) and we can also see that
η̃0 has the property (b) because its image by rm comes from H0(ωC/S(Dm −
Fm)|Dm

). Thus, we complete the proof of (1).
(2) The set of such stepwise extensions is a basis at the closed point,

hence the members generate f∗ωC/S . Since the set of such stepwise extensions
consists of g members and f∗ωC/S is free module of rank g, it is a basis.

3. Proof of the main theorem

Let us start the proof of Main Theorem. The proof consists of two parts
as we announced in the introduction. One is the estimation of the admissible
constants of the metrized dual graph of singular fibers and the other is that of
the self-intersection of the relative dualizing sheaf.

3.1. Calculations of the admissible constants
Let f : X → Y be a generically smooth semistable curve of genus 3 as

in Main Theorem and let ([Gy], ωy) be the polarized rigidified dual graph of a
singular fiber Xy. Since deg(ωy) = 4, the maximal models of any irreducible
component of ([Gy], ωy) not isomorphic to the closed interval have exactly four
vertices. We can easily see that there exist only two maximal models as in
Figure 3.
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Figure 3: The maximal models.

Let σi = σi(X1, X2, X3, Y1, Y2, Y3) denote the i-th elementary symmetric
polynomial on {X1, X2, X3, Y1, Y2, Y3} and put

L(X1, X2, X3, Y1, Y2, Y3) := σ3 − (X1X2X3 + X1Y2Y3 + X2Y3Y1 + X3Y1Y2),
F (X1, X2, X3, Y1, Y2, Y3) := 5σ4 − (X1X2Y1Y2 + X2X3Y2Y3 + X3X1Y3Y1).

We have the following results on the admissible constants of the maximal mod-
els.

Proposition 3.1. Suppose that a Lebesgue measure is given to G1 and
G2.

(1) If the length of ei is li for i = 1, 2 and that of fj is mj for j = 1, 2, 3, 4,
then we have

ε(Ḡ1, D1) =
2
9
(l1 + l2 + m1 + m2 + m3 + m4) +

F (l1 + l2, m1, m2, 0, m3, m4)
9L(l1 + l2, m1, m2, 0, m3, m4)

+
4l1l2(m1 + m2)(m3 + m4)

3L(l1 + l2, m1, m2, 0, m3, m4)
.

(2) If, for i = 1, 2, 3, the length of ei is li and that of fi is mi, then we
have

ε(Ḡ2, D2) =
2
9
(l1 + l2 + l3 + m1 + m2 + m3) +

F (l1, l2, l3, m1, m2, m3)
9L(l1, l2, l3, m1, m2, m3)

.

Proof. (1) Let us put L1 := L(l1 + l2, m1, m2, 0, m3, m4). Let si : ei →
[0, li] and ti : fi → [0, mi] be the arc-length parameters such that

s1(P ) = s2(S) = t1(P ) = t2(P ) = t3(Q) = t4(Q) = 0,

s1(Q) = l1, s2(R) = l2,

t1(S) = m1, t2(S) = m2, t3(R) = m3, t4(R) = m4.
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Put

α1 = α2 = (m1 + m2)(m3 + m4)

and

A1 = (l1 + l2 + m2)(m3 + m4) + m3m4,

A2 = (l1 + l2 + m1)(m3 + m4) + m3m4,

A3 = (l1 + l2 + m4)(m1 + m2) + m1m2,

A4 = (l1 + l2 + m3)(m1 + m2) + m1m2.

By [10, Lemma 3.7], we have

µ(G1,D) =
α1

3L1
ds1 +

α2

3L1
ds2 +

A1

3L1
dt1 +

A2

3L1
dt2 +

A3

3L1
dt3 +

A4

3L1
dt4.

Further, we put

β1 =
(
(3l1 + l2)(m3 + m4) + 2m3m4

)
(m1 + m2)− 4L1,

β2 = −(
(5l1 + 3l2)(m3 + m4) + 4m3m4

)
(m1 + m2) + 2L1,

B1 = −(
(3l1 + l2)(m3 + m4) + 2m3m4

)
m2 − L1,

B2 = −(
(3l1 + l2)(m3 + m4) + 2m3m4

)
m1 − L1,

B3 = −(
(−3l1 + l2)(m1 + m2) + 2m1m2

)
m4 − L1,

B4 = −(
(−3l1 + l2)(m1 + m2) + 2m1m2

)
m3 − L1,

γ1 = (l1 + l2 + m1 + m2 + m3 + m4)L1

+ 7(l1 + l2)(m1m2m3 + m2m3m4 + m3m4m1 + m4m1m2)
+ 24l1l2(m1 + m2)(m3 + m4) + 20m1m2m3m4 + 36l1m1m2(m3 + m4),

C1 = C2 = γ1, C3 = C4 = 18α1l1
2 + 18β1l1 + γ1,

and

γ2 = 18A1m1
2 + 18B1m1 + C1.

Now, consider the following function on G1:

g(x) =




αi

6L1
si(x)2 +

βi

6L1
si(x) +

γi

108L1
on ei,

Ai

6L1
ti(x)2 +

Bi

6L1
ti(x) +

Ci

108L1
on fi.
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Then, we can check by direct calculations that g is continuous, ∆(g) = δP −
µ(G1,D), and

∫
G1

gµ(G1,D) = 0. Thus, we have g(G1,D)(P, x) = g(x), and by [4,
Lemma 4.1], we obtain the formula.

(2) Let us put L̄ := L(l1, l2, l3, m1, m2, m3). Let si : ei → [0, li] and
ti : fi → [0, mi] be the arc-length parameters such that

s1(P ) = s2(P ) = s2(P ) = t1(R) = t2(S) = t3(Q) = 0,

s1(Q) = l1, s2(R) = l2, s2(S) = l3,

t1(R) = m1, t2(Q) = m2, t3(R) = m3.

Put

E(X1, X2, X3, Y1, Y2, Y3) := Y1(X2 + X3 + Y2 + Y3) + (X2 + X3)(Y2 + Y3),

and put

E1 := E(l1, l2, l3, m1, m2, m3), E2 := E(l2, l3, l1, m2, m3, m1),
E3 := E(l3, l1, l2, m3, m1, m2),
F1 := E(m1, l2, m3, l1, m2, l3), F2 := E(m2, l3, m1, l2, m3, l1),
F3 := E(m3, l1, m2, l3, m1, l2).

By [10, Lemma 3.7], we have

µ(G2,D) =
E1

3L̄
ds1 +

E2

3L̄
ds2 +

E3

3L̄
ds3 +

F1

3L̄
dt1 +

F2

3L̄
dt2 +

F3

3L̄
dt3.

Further we put

β1 =− l1E1 − 4l2l3(m1 + m2 + m3)
− 2m2m3(m1 + l2 + l3)− 3m1(l2m2 + l3m3),

β2 =− l2E2 − 4l3l1(m1 + m2 + m3)
− 2m3m1(m2 + l3 + l1)− 3m2(l3m3 + l1m1),

β3 =− l3E3 − 4l1l2(m1 + m2 + m3)
− 2m1m2(m3 + l1 + l2)− 3m3(l1m1 + l2m2),

B1 =
1

m1
(E3l3

2 + β3l3 − E2l2
2 − β2l2 − F1m1

2),

B2 =
1

m2
(E1l1

2 + β1l1 − E3l3
3 − β3l3 − F2m2

2),

B3 =
1

m3
(E2l2

2 + β2l2 − E1l1
2 − β1l1 − F3m3

2),

γ = (l1 + l2 + l3 + m1 + m2 + m3)L̄ + 43l1l2l3(m1 + m2 + m3)
+ 7(l1 + l2 + l3)m1m2m3) + 7(l1l2 + l2l3 + l3l1)(m1m2 + m2m3 + m3m1)
+ 13(l1l2m1m2 + l2l3m2m3 + l3l1m3m1),
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and,

C1 = 18E2 + 18β2 + γ, C2 = 18E3 + 18β3 + γ, C3 = 18E1 + 18β1 + γ.

Now, consider the following function on G2:

g(x) =




Ei

6L̄
si(x)2 +

βi

6L̄
si(x) +

γ

108L̄
on ei,

Fi

6L̄
ti(x)2 +

Bi

6L̄
ti(x) +

Ci

108L̄
on fi.

Then, we can check by direct calculations that g is continuous, ∆(g) = δP −
µ(G2,D), and

∫
G2

gµ(G2,D) = 0. Thus, we have g(G2,D)(P, x) = g(x), and by [4,
Lemma 4.1], we obtain the formula.

Thus, we know their admissible constants. Here are elementary inequali-
ties, which we will use to estimate the admissible constants.

Lemma 3.2. For any non-negative real numbers l1, . . . , m3, we have

F (l1, l2, l3, m1, m2, m3) ≤ 10
11

L̄(l1 + l2 + l3 + m1 + m2 + m3),

l1l2(m1 + m2)(m3 + m4) ≤ L(l1 + l2, m1, m2, 0, m3, m4) min{l1, l2},
where L̄ = L(l1, l2, l3, m1, m2, m3).

Proof. First of all, we note

L̄ = (l1l2 + l2l3 + l3l1)(m1 + m2 + m3)
+ l1m1(m2 + m3) + l2m2(m3 + m1) + l3m3(m1 + m2) + m1m2m3,

which is immediate from the definition. Then, taking account of elementary
inequalities

(l1 + l2 + l3)(l1l2 + l2l3 + l3l1) ≥ 9l1l2l3,

(m1 + m2 + m3)2 ≥ 3(m1m2 + m2m3 + m3m1),

(mi + mj)2 ≥ 4mimj ,

we obtain

L̄(l1 + l2 + l3) ≥ 9l1l2l3(m1 + m2 + m3)
+ l1(l2 + l3)m1(m2 + m3) + l2(l3 + l1)m2(m3 + m1)
+ l3(l1 + l2)m3(m1 + m2) + (l1 + l2 + l3)m1m2m3

and

L̄(m1 + m2 + m3) ≥ 3(l1l2 + l2l3 + l3l1)(m1m2 + m2m3 + m3m1)
+ 4(l1 + l2 + l3)m1m2m3.
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Since L̄ is stable under the permutations

(l1, l2, l3, m1, m2, m3) �→




(l1, m2, m3, m1, l2, l3),
(l2, m3, m1, m2, l3, l1),
(l3, m1, m2, m3, l1, l2),

we have also the following inequalities:

L̄(l1 + m2 + m3) ≥ 9l1m2m3(m1 + l2 + l3)
+ l1(m2 + m3)m1(l2 + l3) + l2(m3 + l1)m2(l3 + m1)
+ l3(l1 + m2)m3(m1 + l2) + (l1 + m2 + m3)m1l2l3,

L̄(m1 + l2 + l3) ≥ 3(l1m2 + m2m3 + m3l1)(m1l2 + l2l3 + l3m1)
+ 4(l1 + m2 + m3)m1l2l3,

L̄(l2 + m3 + m1) ≥ 9l2m3m1(m2 + l3 + l1)
+ l2(m3 + m1)m2(l3 + l1) + l3(m1 + l2)m3(l1 + m2)
+ l1(l2 + m3)m1(m2 + l3) + (l2 + m3 + m1)m2l3l1,

L̄(m2 + l3 + l1) ≥ 3(l2m3 + m3m1 + m1l2)(m2l3 + l3l1 + l1m2)
+ 4(l2 + m3 + m1)m2l3l1,

L̄(l3 + m1 + m2) ≥ 9l3m1m2(m3 + l1 + l2)
+ l3(m1 + m2)m3(l1 + l2) + l1(m2 + l3)m1(l2 + m3)
+ l2(l3 + m1)m2(m3 + l1) + (l3 + m1 + m2)m3l1l2,

and

L̄(m3 + l1 + l2) ≥ 3(l3m1 + m1m2 + m2l3)(m3l1 + l1l2 + l2m3)
+ 4(l3 + m1 + m2)m3l1l2.

Therefore, we have straightforwardly

L̄(l1 + l2 + l3 + m1 + m2 + m3)

=
1
4
L̄

(
(l1 + l2 + l3) + (m1 + m2 + m3) + (l1 + m2 + m3) + (m1 + l2 + l3)

+ (l2 + m3 + m1) + (m2 + l3 + l1) + (l3 + m1 + m2) + (m3 + l1 + l2)
)

≥ 1
4
(
22l1l2l3(m1 + m2 + m3) + 22l1m2m3(m1 + l2 + l3)

+ 22l2m3m1(m2 + l3 + l1) + 22l3m1m2(m3 + l1 + l2)

+ 20l1l2m1m2 + 20l2l3m2m3 + 20l3l1m3m1

)
≥ 11

10
(
5σ4 − (l1l2m1m2 + l2l3m2m3 + l3l1m3m1)

)
.
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Thus, we obtain the first inequality.
For the second inequality, we may assume l1 ≤ l2. Then, we have

L(l1 + l2, m1, m2, 0, m3, m4)l1 ≥ (l1 + l2)(m1 + m2)(m3 + m4)l1
≥ l1l2(m1 + m2)(m3 + m4),

which is the desired inequality.

For edges of ([Gy], ωy), we introduce a notion of h-type now. They are the
edges which contribute to the above quantity min{l1, l2}.

Definition 3.3. We say a pair of two distinct edges {e1, e2} is of h-type
if Vert

[
G

{e1,e2}
y

]
= {P, Q}, where P and Q are two distinct points of

[
G

{e1,e2}
y

]
,

and ω
{e1,e2}
y = 2P + 2Q (cf. Figure 4).

� �

P Q

Figure 4:
[
G

{e1,e2}
y

]
when {e1, e2} is of h-type.

If {e1, e2} is of h-type, then e1 and e2 sit in the same irreducible component
of [Gy] since otherwise,

[
G

{e1,e2}
y

]
is a one-point sum of two circles. Taking

account that ([Gy], ωy) is the polarized rigidified dual graph of a semistable
curve of genus 3, we can easily see that the condition on the polarization is
automatically satisfied and that there exists at most one irreducible components
of ([Gy], ωy) containing a pair of h-type. If an irreducible component has a pair
of h-type, its maximal model must be [G1]. It is clear from its configuration
that [G1] has at most one pair of h-type, hence there is at most one pair of
h-type in ([Gy], ωy).

Let us put

h([Ḡy]) :=




min{le1 , le2 | {e1, e2} is a pair of h-type}
if [Gy] has a pair of h-type,

0 otherwise,

where le is the length of an edge e. Now an upper bound of the admissible
constant can be given:

Proposition 3.4. For the polarized metrized rigidified dual graph ([Ḡy],
ωy) of a semistable curve, we have

ε(Ḡy, ωy) ≤ 32
99

δ0(Xy) +
5
3
δ1(Xy) +

4
3
h([Ḡy]).
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Proof. Let {([Ḡi], Di)} be the set of irreducible components of ([Ḡy], ωy).
If ([Gi], Di) is a closed interval, then we have, as in [4],

ε(Ḡi, Di) =
5
3
le,

where le is the length of the edge e of [Gi]. If ([Gi], Di) is not a closed interval
and does not have a pair of h-type, then G2 is a maximal model of it, and
hence, by Lemma 3.2, Proposition 3.1 and Lemma 1.3, we have

ε(Ḡi, Di) ≤ 32
99

∑
e∈Ed[Gi]

le.

If ([Gi], Di) has a pair of h-type, then its maximal model is G1, and we have
similarly

ε(Ḡi, Di) ≤ 32
99

∑
e∈Ed[Gi]

le +
4
3
h([Ḡy]).

Summing all them up and applying Proposition 1.2, we obtain our assertion.

3.2. A lower bound of self-intersection of the relative dualizing sheaf
Let f : X → Y be a semistable curve of genus 3 as in Main Theorem.

Put R1 := f∗ωX/Y and R2 := f∗(ωX/Y
⊗2), and let S2(R1) denote the second

symmetric tensor product of R1. We assume that the generic fiber is not
hyperelliptic. Then, the natural map

S2(R1)→R2

is surjective at the generic point of Y , and since rk S2(R1) = rkR2 = 6, it is
injective globally and has finite cokernel. For any y ∈ Y , Horikawa index at y,
denoted by Ind(f, y), is defined as

lengthOY,y
(Coker(S2(R1)→ R2)y).

Note that it vanishes except at finitely many points. Here is a lemma which is
essentially proved in [7].

Lemma 3.5 (cf. [7]). In the situation above, we have

(ωX/Y · ωX/Y ) =
1
3
δ(X/Y ) +

4
3

∑
y∈Y

Ind(f, y),

where δ(X/Y ) := δ0(X/Y ) + δ1(X/Y ).

Proof. The paper [7] is not published, hence we give the proof for readers’
convenience.
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By Riemann-Roch theorem on Y , we have

χ(R1) = 3χ(OY ) + deg(R1).

On the other hand, by Riemann-Roch theorem on X, we have

χ(ωX/Y ) = χ(OX) +
1
2
(ωX/Y · ωX/Y ⊗ ωX

−1) = χ(OX) + 4χ(OY ).

Taking account of Lerray spectral sequence and Grothendieck duality R1f∗ωX/Y∼= OY , we obtain

deg(R1) = χ(OX) + 2χ(OY ).

Similarly, we obtain

χ(R2) = χ(OX) + (ωX/Y · ωX/Y ) + 8χ(OY ).

Therefore, we have∑
y∈Y

Ind(f, y) = χ(R2)− χ(S2(R1))

=
(
χ(OX) + (ωX/Y · ωX/Y ) + 8χ(OY )

)− (
6χ(OY ) + 4 deg(R1)

)
= (ωX/Y · ωX/Y )− 3 deg(R1).

Using Noether’s formula

deg(R1) =
(ωX/Y · ωX/Y ) + δ(X/Y )

12
,

we obtain the desired formula.

Remark 3.6.
(1) The proof needs locally freeness of R1 only, hence it holds without

semistability assumption on f if we work over C. The formula appears in [7]
in the form

(ωX/Y · ωX/Y ) = 3χ(OX)− 10χ(OY ) +
∑
y∈Y

Ind(f, y).

(2) In [1], Konno defined Horikawa index for fibrations of higher genus,
and generalized the formula in the lemma in the case of k = C.

Thanks to this lemma, we are reduced to calculate Ind(f, y), which is
completely a local problem. Let f : C → S be a semistable curve of genus 3,
where S = Spec R as before. We can define Horikawa index of f at the special
point s of S as well.

Proposition 3.7. If f : C → S is non-hyperelliptic, then Ind(f, s) ≥
2δ1(Cs) + h([Ḡs]).
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Before starting proof, we need some preparation. Let f̄ : C̄ → S be the
stable model of f and let π : C → C̄ be the contraction morphism. For a pair
{P1, P2} of distinct nodes of C̄s, we say it is of h-type if the corresponding pair
of edges in the dual graph [Gs] is of h-type. We can easily see that {P1, P2} is of
h-type if and only if P1 and P2 are nodes of type 0 and the partial normalization
at {P1, P2} has exactly two connected components of genus 1. For i = 1, 2, the
length of the corresponding edge to Pi is equal to

li := the number of nodes in Cs mapped to Pi by π,

and hence, we have h([Ḡs]) = min{l1, l2} by the definition.

Proof. We employ the notations just above. Let us consider the case
where the stable model C̄s of Cs has a pair {P1, P2} of nodes of h-type. Let C̄0

be the quasi-irreducible component of C̄s on which P1 and P2 lie. Let D̄1 and
D̄2 be the closures of the connected components of C̄s\{P1, P2}. Let C̄1 and C̄2

be the quasi-irreducible components of genus 1 of D̄1 and D̄2 respectively. Note
that there exists at most one node of type 1 of C̄s on each D̄i. Furthermore,
we can see the following.

(1) If D̄i does not have a node of type 1, then C̄i = D̄i ⊂ C̄0.
(2) If D̄i has a node Qi of type 1, then C̄i ∩ C̄0 = {Qi} and there exist a

smooth rational component on which P1, P2 and Qi lie.
Here we define an injective set-theoretic map π� : Comp(C̄s)→ Comp(Cs)

by

π�(D̄) := the closure of π−1(D̄ \ Σ),

where Σ := D ∩ (C̄s −D). We can easily check that π� induces the map from
QIrr(C̄s) to QIrr(Cs). We put Ci := π�(C̄i) and further we put di,j = dCi

(Cj)
to simplify the notations. Then, it is not difficult to see from the definitions
and the above (1) and (2) that d1,2 = d0,1 +d0,2 +h([Ḡs]). From the above (2),
we can moreover see that d0,i is the number of nodes that are mapped by π to
the only node Qi of type 1 on D̄i (if it exists), which implies that d0,1 + d0,2

is equal to the number of nodes of type 1 on Cs, namely, δ1(Cs). We have also
d1,2 = δ1(Cs) + h([Ḡs]).

Let ηi be a non-zero section of ωCi
for i = 1, 2, and let η0 be a section of

ωC0 that does not vanish at any node of C0. That is possible since ωC0 is free
from base points (cf. [4, Proposition 2.1.3]). Note that {η0, η1, η2} generates
H0(ωCs

) if we regard each ηi canonically as a member of H0(ωCs
). We take a

free basis {η̃0, η̃1, η̃2} of f∗ωC/S in Lemma 2.4 consisting of stepwise extensions
of them. Let M be the image of the canonical map

R1 ⊗R1 →R2,

where Rm = f∗
(
ωC/S

⊗m
)

for m = 1, 2, and let η̃iη̃j denote the image of
η̃i ⊗ η̃j by this map. Then, M is generated by η̃0

2, η̃1
2, η̃2

2, η̃0η̃1, η̃0η̃2 and
η̃1η̃2. By Lemma 2.4, if we regard η̃1η̃2 as a section of ωCs

⊗2, the divisor
div(η̃1η̃2)− d1,2Cs is effective, and hence t−d1,2 η̃1η̃2 is a section of R2, where t
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is a regular parameter of R. We can see that t−d0,1 η̃0η̃1 and t−d0,2 η̃0η̃2 sit in
R2 as well. Therefore, we have

Ind(f, s) ≥ length
(〈η̃0

2, η̃1
2, η̃2

2, t−d0,1 η̃0η̃1, t
−d0,2 η̃0η̃2, t

−d1,2 η̃1η̃2〉/M
)

= length
(〈t−d0,1 η̃0η̃1, t

−d0,2 η̃0η̃2, t
−d1,2 η̃1η̃2〉/〈η̃0η̃1, η̃0η̃2, η̃1η̃2〉

)
= d0,1 + d0,2 + d1,2

= 2δ1(Cs) + h([Ḡs]),

where 〈∗〉 stands for the submodule of R2 generated by ∗. Thus, we obtain our
inequality in this case.

If C̄s does not have a pair of h-type, we can prove our inequality in the
same way using a basis of R1 consisting of those which are stepwise extensions
of global sections of the dualizing sheaf of the quasi-irreducible components of
positive genus. That is rather simpler and we leave it to readers.

Let us move on to the global case. Let X be a smooth projective surface
over k, Y a smooth projective curve over k, and let f : X → Y be a generically
smooth non-hyperelliptic semistable curve of genus 3 over Y . For any y ∈ Y ,
let S := SpecOY,y → Y be the morphism corresponding to the localization at
y and let fS : XS → S denote the base change of f by this morphism. Then,
Horikawa index of f at y is equal to that of fS at the closed point of S by
its definition. Accordingly, the following is immediate from Lemma 3.5 and
Proposition 3.7.

Corollary 3.8. If f is non-hyperelliptic, then we have

(ωX/Y · ωX/Y ) ≥ 1
3
δ0(X/Y ) + 3δ1(X/Y ) +

4
3

∑
y∈Y

h([Ḡy]).

By virtue of Proposition 3.4, Corollary 3.8 and Key Fact in the introduc-
tion, we obtain Main Theorem.

4. Proof of Lemma 1.3

In this section, we will give proof of Lemma 1.3. First of all, we recall the
situation of Lemma 1.3 and fix the notation. Let [G] be a rigidified graph and
let D be a polarization on [G] with deg(D) �= −2. Numbering all the vertices
and all the edges, we write {P1, . . . , Pm} = Vert[G] and {e1, . . . , en} = Ed[G],
where m and n are the numbers of the vertices and that of the edges respectively.
We assume that P1 is a vertex on e1. Let dmG be a Lebesgue measure on G.
We denote by Ḡ the metrized graph (G, dmG). If a measure is given to a graph
and the length of each edge ei is li, then we can take a continuous map

ti : Ii := [0, li]→ e

such that ti|(0,li) is an isometry from (0, li) to e \ {the vertices on e}. Here we
assume that t1(0) = P1 for a notational reason. If we put dyi := t∗i dmG, which
is the canonical measure, then dmG can be regarded as a collection {dyi}ni=1.
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Let π : G → H denote the contraction of e1. Note that we have the
canonical maps π∗ : Vert[G] → Vert[H] and π∗ : Ed[G] \ {e1} → Ed[H]. For
Pi and ej , we denote the images π∗(Pi) and π∗(ej) by P̃i and ẽj respectively.
H has the naturally induced measure dmH by π. We also denote by t̃i the
push-forward π ◦ ti : Ii → ẽi.

Here we introduce a new notation. For a 3n-tuple (α1, . . . , αn, β1, . . . , βn,
γ1, . . . , γn) ∈ R

3n, we define a collection

G(α1, . . . , αn, β1, . . . , βn, γ1, . . . , γn) = {gi}ni=1

of quadratic functions on Ii by

gi(yi) := αiyi
2 + βiyi + γi.

The members of G(α1, . . . , αn, β1, . . . , βn, γ1, . . . , γn) can not be generally
glued up to be a piecewise smooth function on Ḡ, but if they are, we regard the
collection of them as a function on G and write G(α1, . . . , αn, β1, . . . , βn, γ1, . . . ,
γn) ∈ F (Ḡ). Similarly, for a 3(n− 1)-tuple (α̃2, . . . , α̃n, β̃2, . . . , β̃n, γ̃2, . . . , γ̃n)
∈ R3(n−1), we define a collection

H(α̃2, . . . , α̃n, β̃2, . . . , β̃n, γ̃2, . . . , γ̃n) := {hi}ni=2

by

hi(yi) := α̃iy
2
i + β̃iyi + γ̃i.

We also write H(α̃2, . . . , α̃n, β̃2, . . . , β̃n, γ̃2, . . . , γ̃n) ∈ F (H̄) if they can be
glued up to be a piecewise smooth function on H̄ .

The idea of the proof is simple. First we note that resistance is compatible
with contractions: for any 1 ≤ i, j ≤ m, we have

lim
l1→0

rḠ(Pi, Pj) = rH̄(P̃i, P̃j).

By [4, Lemma 4.1], therefore, it is enough to show

lim
l1→0

g(Ḡ,D)(P1, Q) = g(H̄,D̃)(P̃1, Q̃)

for any Q ∈ Vert[G]. For this purpose, we would like to show that the func-
tion g ◦ ti on Ii converges to h ◦ t̃i for each i > 1, where we put g(x) :=
g(Ḡ,D)(P1, x)−g(Ḡ,D)(P1, P1) and h(x) := g(H̄,D̃)(P̃1, x)−g(H̄,D̃)(P̃1, P̃1). Since
we know that g ◦ ti and h ◦ t̃i are quadratic functions on Ii, we can write

{g ◦ ti}ni=1 = G(α1, . . . , αn, β1, . . . , βn, γ1, . . . , γn)

{h ◦ t̃i}ni=2 = H(α̃2, . . . , α̃n, β̃2, . . . , β̃n, γ̃2, . . . , γ̃n).

In the proof below, expressing the condition that they are Green’s functions by
matrices, we shall see that the 3(n−1)-tuple (α2, . . . , αn, β2, . . . , βn, γ2, . . . , γn)
converges to (α̃2, . . . , α̃n, β̃2, . . . , β̃n, γ̃2, . . . , γ̃n) as l1 → 0.
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Let us start the proof. By virtue of Proposition 1.2, it is enough to prove
our lemma for irreducible rigidified graphs, hence we assume the irreducibility
of [G]. By the explicit formula [10, Lemma 3.7], we can see that if we write

µ(Ḡ,D) =
m∑

i=1

aiδPi
+

n∑
j=1

cj

(
dmG|ej

)
,

then we have

µ(H̄,D̃) =
m∑

i=1

aiδP̃i
+

n∑
j=2

lim
l1→0

cj

(
dmG|ej

)
.

We put

c(l1) := (c1, . . . , cn, a1 − 1, a2, . . . , am, 0, . . . , 0) ∈ R
3n.

For 1 ≤ i ≤ m and 1 ≤ j ≤ n, let σi,j and τi,j be signatures defined in the
following way.

σi,j =

{
1 if tj(0) = Pi,
0 otherwise,

τi,j =

{
1 if tj(lj) = Pi,
0 otherwise.

(Note that (σi,j , τi,j) �= (1, 1) under the assumption of the irreducibility of
[G]. The following matrices can be properly defined even if it is reducible, but
the description will be more complicated.) First, let M ′ be an (m, 2n)-matrix
defined as follows: for any i with 1 ≤ i ≤ m, when 1 ≤ j ≤ n, put

m′
i,j = −τi,j · 2lj ,

and when n + 1 ≤ j ≤ 2n, put

m′
i,j = σi,j−n − τi,j−n.

Second, for 1 ≤ k ≤ m, we define a (bk − 1, 3n)-matrix

M (k) =
(
m

(k)
i,j

)
2≤i≤bk, 1≤j≤3n

.

Let
{
eκk,1 , . . . , eκk,bk

}
be the edges starting from Pk, where κk,1 < · · · < κk,bk

.
When 1 ≤ j ≤ n, put

m
(k)
i,j =



−τk,κk,1 lκk,1

2 if j = κk,1,
τk,κk,i

lκk,i

2 if j = κk,i,
0 otherwise,

when n + 1 ≤ j ≤ 2n, put

m
(k)
i,j =



−τk,κk,1 lκk,1 if j − n = κk,1,
τk,κk,1 lκk,i

if j − n = κk,i and i > 1,
0 otherwise,
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and when 2n + 1 ≤ j ≤ 3n, put

m
(k)
i,j =



−1 if j − 2n = κk,1,
1 if j − 2n = κk,i and i > 1,
0 otherwise.

Using these matrices defined above, we put

M(l1) :=




2In 0

M ′ 0

M (1)

...
M (m)




,

where In is the unit matrix of size n. We indicates by “(l1)” that it is a matrix
with a parameter l1.

We can check straightforwardly that

G(α1, . . . , αn, β1, . . . , βn, γ1, . . . , γn) ∈ F (G),
∆(G(α1, . . . , αn, β1, . . . , βn, γ1, . . . , γn)) = δP1 − µ(Ḡ,D),

G(α1, . . . , αn, β1, . . . , βn, γ1, . . . , γn)(P1) = 0,

i.e., G(α1, . . . , αn, β1, . . . , βn, γ1, . . . , γn) = g(Ḡ,D)(P1, x) − g(Ḡ,D)(P1, P1) (via
the identification of such a collection of functions with a function on G), if and
only if {

M(l1) t(α1, . . . , αn, β1, . . . , βn, γ1, . . . , γn) = tc(l1),
γ1 = 0.

(1)

(In checking that, we find that the matrix (2In, 0) in M(l1) gives the condition
on the second-order differential equation, the matrix (M ′, 0) gives that on the
first-order one, and each M (i) gives the continuity at Pi.) The unique existence
of Green’s function implies that (1) has a unique solution. Now suppose


H(α̃2, . . . , α̃n, β̃2, . . . , β̃n, γ̃2, . . . , γ̃n) ∈ F (H),
∆(H(α̃2, . . . , α̃n, β̃2, . . . , β̃n, γ̃2, . . . , γ̃n)) = δP̃1

− µ(H̄,D̃),

H(α̃2, . . . , α̃n, β̃2, . . . , β̃n, γ̃2, . . . , γ̃n)(P̃1) = 0.

Then, if we put

α̃1 :=
1
2

lim
l1→0

c1,

β̃1 := −
∑
j>1

σ1,j β̃j −
∑
j>1

(−τ1,j(2α̃j lj + β̃j)
)

+ a1 − 1,

γ̃1 := 0,
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we can check{
M(0) t(α̃1, . . . , α̃n, β̃1, . . . , β̃n, γ̃1, . . . , γ̃n) = tc(0),
γ̃1 = 0.

Conversely, if{
M(0) t(α̃1, . . . , α̃n, β̃1, . . . , β̃n, γ̃1, . . . , γ̃n) = tc(0),
γ̃1 = 0,

(2)

then we have

H(α̃2, . . . , α̃n, β̃2, . . . , β̃n, γ̃2, . . . , γ̃n) ∈ F (H),
∆(H(α̃2, . . . , α̃n, β̃2, . . . , β̃n, γ̃2, . . . , γ̃n)) = δP̃1

− µ(H̄,D̃),

H(α̃2, . . . , α̃n, β̃2, . . . , β̃n, γ̃2, . . . , γ̃n)(P̃1) = 0.

From the unique existence of Green’s function on H̄, we can see that the sys-
tem of linear equations (2) has a unique solution. Therefore, the solution of
(1) converges to the solution of (2), which implies the convergence of Green’s
function on each edges. Thus, we obtain

lim
l1→0

g(Ḡ,D)(P1, Q) = g(H̄,D̃)(P̃1, Q̃)

for any Q ∈ Vert[G] and achieve the required conclusion.
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