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Abstract

Let Ω = G/K be a bounded symmetric domain in a complex vector
space V with the Lebesgue measure dm(z) and the Bergman reproducing
kernel h(z, w)−p. Let dµα(z) = h(z, z̄)αdm(z), α > −1, be the weighted
measure on Ω. The group G acts unitarily on the space L2(Ω, µα) via
change of variables together with a multiplier. We consider the discrete
parts, also called the relative discrete series, in the irreducible decomposi-
tion of the L2-space. Let D̄ = B(z, z̄)∂ be the invariant Cauchy-Riemann
operator. We realize the relative discrete series as the kernels of the
power D̄m+1 of the invariant Cauchy-Riemann operator D̄ and thus as
nearly holomorphic functions in the sense of Shimura. We prove that,
roughly speaking, the operators D̄m are intertwining operators from the
relative discrete series into the standard modules of holomorphic discrete
series (as Bergman spaces of vector-valued holomorphic functions on Ω).

1. Introduction

Let Ω be a bounded symmetric domain in a complex vector space V with
the Lebesgue measure dm(z). The Bergman reproducing kernel is up to a
constant h(z, w̄)−p, where h(z, w̄) is an irreducible polynomial holomorphic in
z and antiholomorphic in w. We consider the weighted measure dµα(z) =
h(z, z̄)αdm(z) for α > −1 and the corresponding L2-space L2(Ω, µα) on Ω.
The group G of biholomorphic mappings of Ω acts unitarily on the L2-space
via change of variables together with a multiplier, and the weighted Bergman
space is then an irreducible invariant subspace. The irreducible decomposition
of the L2-space under the G-action has been given by Shimeno [11]. It is
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proved there abstractly (via identifying the infinitesimal characters) that all the
discrete parts (called relative discrete series) appearing in the decomposition are
holomorphic discrete series. In this paper we consider their explicit realization.

To illustrate our main results we consider the case of the unit disk. The
Bergman reproducing kernel is (1−zw̄)−2, and the weighted measure in question
is dµα(z) = (1 − |z|2)αdm(z). The group G = SU(1, 1) acts unitarily on
L2(D,µα) via a projective representation

πν(g)f(z) = f(g−1z)(cz + d)−ν , g−1 =
(
a b
c d

)
,

where ν = α+2. To study the relative discrete series we introduce the invariant
Cauchy-Riemann operator D̄ = (1 − |z|2)2∂̄. The operator D̄ intertwines the
action πν with the action πν−2, which can be proved by direct calculation. The
kernel ker D̄ of D̄ on the weighted L2-space is the weighted Bergman space
L2

a(Ω, µα) of holomorphic functions, which gives one of the relative discrete
series. It is naturally to expect that the kernel ker D̄m+1 of the iterate of
D̄ will give us the other relative discrete series. The functions that are in
the kernel ker D̄m+1 can be written as polynomial of q(z) = z̄/(1 − |z|2) of
degree ≤ m with coefficients being holomorphic functions. Those functions,
following Shimura, are called nearly holomorphic functions. The function q(z)
actually is the holomorphic differential of the Kähler potential log(1 − |z|2)−2.
Indeed q(z) = (1/2)∂z log(1 − |z|2)−2. Moreover it has a Jordan theoretic
meaning as the quasi-inverse of z̄ ∈ C̄ with respect to z with the Jordan
triple product {ūzv̄} = 2ūzv̄. The key result is that each power q(z)m =
z̄m/(1 − |z|2)m, for 0 ≤ m < (α + 1)/2 generates a relative discrete series.
Denote the corresponding relative discrete series by A2,α

m . Then the operator
D̄m is an intertwining operator from A2,α

m into the weighted Bergman space in
L2(Ω, µα−2m), namely L2

a(Ω, µα−2m). Moreover all relative discrete series are
obtained in this way.

When Ω = G/K is a general bounded symmetric domain the corresponding
function q(z), defined as the differential of the Kähler potential, can indeed be
expressed in term of quasi-inverse in the Jordan triple V . See Proposition
3.1. Let D̄ be the invariant Cauchy Riemann operator. Then it is proved in
[9] that the iterate D̄m maps a function on Ω to a function with value in the
symmetric subtensor space Sm(V ) of ⊗mV . Decompose Sm(V ) into irreducible
subspaces under K. Let m be the signature of an irreducible subspace and ∆̄m

the highest weight vector in that space, considered as a polynomial function
on V ′. Now the function q(z) is a V ′-valued function on Ω, thus ∆̄m(q(z))
is a scalar-valued function on Ω. We prove that ∆̄m(q(z)) is in the space
L2(Ω, µα) when m satisfies certain condition; see Proposition 4.1. We further
prove that it generates an irreducible subspace, namely a relative discrete series,
and is the highest weight vector, and that the operators D̄m are intertwining
operators from the relative discrete series onto the weighted Bergman space
of holomorphic functions with values in the irreducible subspace Sm(V ) of the
symmetric tensor Sm(V ), the later being a standard module of holomorphic
discrete series. We thus realize the relative discrete series in the kernel of the
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power D̄m+1 and as nearly holomorphic functions in the sense of Shimura ([12]
and [13]).

Finally in the last section we consider as an example the unit ball in Cn.
We calculate directly, via the adjoint operator D̄∗, the highest weight vector
in the relative discrete series. The realization of the relative discrete series has
also been studied in [9].

Our results explain geometrically why the relative discrete series are equiv-
alent to the weighted Bergman spaces with values in symmetric tensor space
of the tangent space. Moreover, since the highest weight vectors are quite
explicitly given we understand better the analytic nature of the functions in
the discrete series. We hope that our result will be helpful in understanding
the Lp-spectral properties of the irreducible decomposition, for example, the
Lp-boundedness of the orthogonal projection into the relative discrete series.

Acknowledgements. I would like to thank Jaak Peetre and Harald Up-
meier for some illuminating discussions. I would also like to thank the Erwin
Schrödinger Institute for mathematical physics, Vienna, for providing a stimu-
lating environment.

2. Invariant Cauchy-Riemann operator D̄ and nearly holomorphic
functions on Kähler manifolds

We recall in this section briefly some preliminary results on invariant
Cauchy-Riemann operators and nearly holomorphic functions on Kähler man-
ifolds; see [12], [2], [14] and [15].

Let Ω be a Kähler manifold with the Kähler metric locally given by the
matrix (hij̄), with hij̄ = ∂2Ψ/(∂zi∂z̄j) and a potential Ψ. Let T (1,0) be its
holomorphic tangent bundle. Let W be a Hermitian vector bundle over Ω, and
C∞(Ω,W ) its smooth sections. The invariant Cauchy-Riemann operator D̄ is
locally defined as follows. If f =

∑
α fαeα is any section of W , then

D̄f =
∑
α,i,j

h̄i ∂fα

∂z̄j
∂i ⊗ eα.

It maps f ∈ C∞(Ω,W ) to D̄f ∈ C∞(Ω, T (1,0) ⊗W ). Denote Sm(T (1,0)) the
symmetric tensor subbundle of ⊗mT (1,0). We recall some known properties of
the operator D̄. See [9].

Lemma 2.1. The following assertions hold.
(1) The operator D̄ is an intertwining operator : If g is a biholomorphic

mapping of Ω, then

D̄(gW f) = ((dg)−1 ⊗ gW )Df,(2.1)

where gW is the induced action of g on sections of W and dg(z): T (1,0)
z �→ T

(1,0)
gz

is the differential of g.
(2) The iterate D̄m of D̄ maps C∞(Ω,W ) to C∞(Ω,W ⊗ Sm(T (1,0))).
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For our later purpose we can assume that Ω is some domain in a vector
space V with coordinates {zj}, and that all the bundles are trivial. The space
T

(1,0)
z will be identified with V . So let W be a vector space and we will consider

the C∞(Ω,W ) of W -valued C∞-functions on Ω.
Let

q(z) = ∂Ψ =
∑

j

∂Ψ
∂zj

dzj .

Here Ψ is the Kähler potential, and {dzj} is the dual basis for the holomorphic
cotangent space V ′. Thus q(z) is a function with values in V ′. Following
Shimura [12] we call a W -valued function f ∈ C∞(Ω,W ) nearly holomorphic
if f is a polynomial of q(z) with holomorphic coefficients. We denote Nm

the space of scalar-valued nearly holomorphic functions that are polynomial of
degree ≤ m, namely those functions f(z) =

∑
|β|≤m cβ(z)q(z)β where cβ(z) are

holomorphic functions.
We denote Id the identity tensor in the tensor product V ⊗ V ′. By the

direct calculation we have

D̄q(z) = Id;(2.2)

see [14]. We generalize this formula as follows; the proof of it is quite straight-
forward and we omit it.

Lemma 2.2. We have the following differentiation formula

D̄m(⊗mq(z)) = m!Id,(2.3)

where Id in the right hand denotes the identity tensor in the tensor product
(SmV ) ⊗ Sm(V ′) = (SmV ) ⊗ (SmV )′.

Remark 2.3. The formula (2.2) was observed earlier by Shimura [12]
and Peetre [8]; in the later paper explicit formulas were given for the Laplace
operators on weighted L2-spaces on bounded symmetric domains, where the
function q(z) also appears.

Example 2.4. We consider the case of the unit disk. The operator
D̄ = (1−|z|2)2∂̄ The function q(z) is z̄/(1−|z|2) (or exactly it is z̄/(1−|z|2)dz).
The above formula amounts to

D̄m

(
z̄

1 − |z|2
)m

= m!,

which can be proved by direct calculations. It can also be proved by using the
formula

D̄m = (1 − |z|2)m+1

(
∂

∂z̄

)m

(1 − |z|2)m−1,
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see [14]. Indeed,

D̄m

(
z̄

1 − |z|2
)m

= (1 − |z|2)m+1

(
∂

∂̄z

)m

(1 − |z|2)m−1

(
z̄

1 − |z|2
)m

= (1 − |z|2)m+1

(
∂

∂̄z

)m
z̄m

1 − |z|2

= (1 − |z|2)m+1
m∑

l=0

(
m

l

)
m(m− 1) · · · (m− l + 1)z̄m−l (m− l)!zm−l

(1 − |z|2)m−l+1

= m!
m∑

l=0

(
m

l

)
(zz̄)m−l(1 − |z|2)l

= m!.

The calculations are somewhat combinatorially intriguing.

Using the above result we get immediately the following characterization
of nearly holomorphic functions. This is proved in [12], Proposition 2.4, for
classical domains. It can be proved for all Kähler manifolds via the same
methods.

Lemma 2.5. Consider the operator D̄m+1 on the space C∞(D) of C∞-
functions on D. Then

Ker D̄m+1 = Nm.

We recall the identification of polynomial functions with symmetric ten-
sors. This will clarify conceptually some calculations in the next section. There
is a pairing

(φ, ψ) ∈ Sm(V ) × Sm(V ′) �→ [φ, ψ] ∈ C,

between the symmetric tensor spaces Sm(V ) and Sm(V ′), via the natural pair-
ing between ⊗mV and ⊗mV ′. Now for each element φ in the symmetric tensor
space Sm(V ) there corresponds a homogeneous polynomial function of degree
m on the space V ′, also denoted by φ, such that

[φ, v′ ⊗ v′ ⊗ · · · v′] = φ(v′)(2.4)

for any v′ ∈ V ′.
Using this convention we see that a function f ∈ C∞(Ω) is in Nm if and

only if there exist holomorphic functions gk with values in the tensor product
Sk(V ), k = 0, 1, . . . ,m, such that

f(z) =
m∑

k=0

gk(q(z)).(2.5)
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3. Nearly holomorphic functions on bounded symmetric domains

In this section we assume that Ω = G/K is an irreducible bounded sym-
metric domain of rank r in a complex vector space V . Here G is the identity
component of the group of biholomorphic mappings of Ω and K is the isotropy
group at 0 ∈ V . Let g = k+p be the Cartan decomposition of the Lie algebra g
of G. The space V has a Jordan triple structure so that the space p is explicitly
described; see [6], whose notation and results will be incorporated here. So let
Q(z) : V̄ → V be the quadratic operator. The space p has the following form,
when viewed as a subspace of holomorphic vector fields on Ω,

p = {ξv = v −Q(z)v̄}.
Let D(z, v̄)w = {zv̄w} = (Q(z + w) − Q(z) − Q(w))v̄ be the Jordan triple
product. We normalize the K-invariant Hermitian inner product 〈z, w〉 on V
so that a minimal tripotent has norm 1. This can also be calculated by

〈z, w〉 =
1
p

TrD(z, w̄),(3.1)

where p is an integer called the genus of Ω. We identify then the vector space
V ′ with V̄ via this scalar product.

Let dm(z) be the corresponding Lebesgue measure on V . The Bergman
reproducing kernel on D is the ch(z, w)−p for some positive constant c. Let

B(z, w̄) = I −D(z, w̄) +Q(z)Q(w̄)

the Bergman operator. B(z, w̄) is holomorphic in the first argument and anti-
holomorphic in the second. (We write B(z, w̄) instead of B(z, w) as in [6] in
order to differ it from B(z̄, w) which is acting on the space V̄ .) The Bergman
metric at z ∈ Ω defined by the metric ∂j ∂̄k log h(z, z̄)−p on Ω is then

p〈B(z, z̄)−1z, w〉;
and

detB(z, z̄) = h(z, z̄)p.

See [6]. For some computational convenience we will choose and fix the metric
on Ω to be

〈B(z, z̄)−1z, w〉 .(3.2)

The invariant Cauchy-Riemann operator is

D̄ = B(z, z̄)∂̄,

and the N -function defined in the previous section is now (with a normalizing
constant)

q(z) =
1
p
∂ log detB(z, z̄)−1 .(3.3)
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We shall find an explicit formula for the function q(z) on Ω. Recall first
the notion of quasi-inverse in the Jordan triple V ; see [6]. Let z ∈ V and
w̄ ∈ V̄ . The element z is called quasi-invertible with respect to w if B(z, w̄) is
invertible and its quasi-inverse is given by

zw̄ = B(z, w̄)−1(z −Q(z)w̄).

Similarly we define the quasi-inverse of an element z̄ ∈ V̄ with respect to w ∈ V .

Proposition 3.1. The function q(z) on Ω is given by

q(z) = z̄z = B(z̄, z)−1(z̄ −Q(z̄)z).

Proof. For some computational convenience we consider, instead of the
holomorphic differential in (3.3), the anti-holomorphic differential

1
p
∂̄ log detB(z, z̄)−1 = −1

p
∂̄ log detB(z, z̄).

Let v̄ ∈ V̄ . By the definition of B-operator we have

B(z, z̄ + tv̄)
= 1 −D(z, z̄ + tv̄) +Q(z)Q(z̄ + tv̄)

= 1 −D(z, z̄) +Q(z)Q(z̄) + t(−D(z, v̄) +Q(z)Q(z̄, v̄) + t2Q(z)Q(v̄)

= B(z, z̄)
(
I + tB(z, z̄)−1(−D(z, v̄) +Q(z̄, v̄)) + t2B(z, z̄)−1Q(z)Q(v̄)

)
.

(3.4)

Thus the first order term in t in log detB(z, z̄ + tv̄) is

Tr(B(z, z̄)−1(−D(z, v̄) +Q(z)Q(z̄, v̄)).(3.5)

We recall a formula in [6] (see (JP30))

B(z, z̄)D(zz̄, v̄) = D(z, v̄) −Q(z)Q(z̄, v̄).

Therefore (3.5) is
−TrD(zz̄, v̄) = −p〈zz̄, v〉

by the formula (3.1). Summarizing we find

1
p
∂̄v log detB(z, z̄)−1 = 〈zz̄, v〉,

which is the desired formula.

Now the group K acts on Ω and keeps the function h(z, z̄)-invariant. Thus
we get, in view of the formula (3.3),

q(kz) = (k−1)′q(z),(3.6)

where (k−1)′ on q(z) ∈ V ′ is the dual of k−1 on V .
In particular, since the function q(z) is a V ′-valued function on Ω, we have,

for any homogeneous polynomial function f on V ′, a scalar-valued function
f(q(z)). The following lemma then follows from (3.6) and the K-invariance of
the pairing between Sm(V ′) and Sm(V ).
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Lemma 3.2. The map

v ∈ Sm(V ) �→ v(q(z)) = [v,⊗mq(z)]

is an invertible K-intertwining operator between the K-action on Sm(V ) and
its regular action on functions on Ω.

We recall now the decomposition of Sm(V ) under K. To state the result
we fix some notation. The complexification gC of the Lie algebra g has a
decomposition gC = p++kC+p−, with kC the complexification of the Lie algebra
k of K and p+ = V . Let {e1, . . . , er} be a frame of tripotents in V . Fix an
Cartan subalgebra of kC, and let γ1 > · · · > γr be the Harish-Chandra strongly
roots so that e1, . . . , er are the corresponding root vectors. The ordering of the
roots of gC is so that p+ is the sum of positive non-compact root vectors. We
shall then speak of highest weight modules of gC with respect to this ordering.

Lemma 3.3 ([4], [10] and [3]). The space Sm(V ) (resp. Sm(V ′)) under
K is decomposed into irreducible subspaces with multiplicity one as

Sm(V ) =
∑
m

Sm(V )


resp.Sm(V ′) =

∑
m

Sm(V ′)


 ,

where each Sm(V )(resp. Sm(V ′)) is of highest weight m = m1γ1 + · · · +mrγr

(resp. lowest weight −(m1γ1 + · · · + mrγr)) with m1 ≥ m2 ≥ · · · ≥ mr ≥ 0,
and the summation is over all m with |m| = m1 +m2 + · · · +mr = m.

The highest weight vectors of Sm(V ) (respectively lowest weight vectors
of Sm(V ′)) have been constructed explicitly; see [3] and reference therein. Let
∆j be the lowest weight vector of the fundamental representation m = 1j =
γ1 + · · ·+γj , j = 1, . . . , r. The polynomial ∆ = ∆r is the determinant function
of the Jordan triple V . Then the lowest weight vector of Sm(V ′) is

∆m(v) = ∆1(v)m1−m2 · · ·∆r−1(v)mr−1−mr∆r(v)mr ,(3.7)

viewed as polynomial of v ∈ V . Via the natural pairing between Sm(V ′) and
Sm(V ) we find that the highest weight vector of Sm(V ) is ∆̄m and

∆̄m(w̄) = ∆̄1(w̄)m1−m2 · · · ∆̄r−1(w̄)mr−1−mr∆̄r(w̄)mr ,(3.8)

viewed as polynomial of w̄ ∈ V ′ = V̄ .

4. The relative discrete series of L2(Ω, µα)

In this section we find a family of relative discrete series by construct-
ing some vectors that are in L2-space and are highest weight vectors, namely
annihilated by the positive vectors in gC via the induced action of (4.1) (see
below).
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Let α > −1 and consider the weighted measure

dµα = h(z, z)αdm(z).

The group G acts unitarily on the space L2(Ω, dµα) via

πν(g)f(z) = f(g−1z)Jg−1(z)
ν
p , g ∈ G,(4.1)

where ν = α+p and Jg is the Jacobian determinant of g. We denote L2
a(Ω, µα)

the weighted Bergman space of holomorphic functions in L2(Ω, µα).
We introduce now the weighted Bergman spaces of vector-valued holo-

morphic functions that will be used to realize the relative discrete series in
L2(Ω, dµα). Fix a signature m with m = m1 + · · · + mr. We denote L2

a(Ω,
Sm(V ), µα) the weighted Bergman space of Sm(V )-valued holomorphic func-
tions such that the following norm is finite

‖f‖2 =
∫

Ω

〈(⊗mB(z, z̄)−1)f(z), f(z)〉 dµα(z).

The group G acts unitarily on L2
a(Ω, Sm(V ), µα) via

g ∈ G : f(z) �→ (Jg−1(z))
ν
p ⊗m (dg−1(z))−1f(g−1z).(4.2)

This space is non trivial and forms an irreducible representation of G when m
satisfies the following condition:

α+ 1
2

> m1 ≥ m2 ≥ · · · ≥ mr ≥ 0.(4.3)

This follows directly from Theorem 6.6 in [5]; see also [11]. (We note here that
non-triviality of the space can also be proved directly by expressing the inverse
B(z, z̄)−1 of the Bergman operator via the quasi-inverse developed in [6], quite
similar to the proof of Proposition 4.1 below. However we will not go into the
details here.)

Our first result is a construction of certain vectors in L2(Ω, µα).

Proposition 4.1. Suppose m satisfies the condition (4.3). Then the
functions ∆̄m(q(z)) is in L2(Ω, µα) and in Ker D̄m+1.

We begin with fundamental representations Sm(V ) with signatures m =
1j = γ1 + · · · + γj and highest weight vectors ∆̄j , j = 1, . . . , r.

Lemma 4.2. The function ∆̄j(q(z)) is of the form

∆̄j(q(z)) =
P (z, z̄)
h(z, z̄)

,(4.4)

where P (z, z̄) is a polynomial in (z, z̄) of total degree not exceeding 2r. In
particular if j = r,

∆̄(q(z)) =
∆̄(z)
h(z, z̄)

.(4.5)
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Proof. It follows from the Faraut-Koranyi expansion that

h(v, w̄) =
r∑

s=0

(−1)scsK1s(v, w̄),(4.6)

where Km is the reproducing kernel of the subspace Pm(V ) of P(V ) with
signature m with the Fock-norm 〈·, ·〉F and cs are positive constants; see [3].
Performing the inner product in the Fock space of the element h(v, w̄) with the
function ∆1j (v) and using (4.6) we find that

〈h(·, w̄),∆j〉F = (−1)jcj‖∆j‖2
F∆̄j(w̄);

namely,

∆̄j(w̄) =
1

(−1)jcj
‖∆j‖2

F 〈h(·, w̄),∆j〉F .(4.7)

We take now w̄ = z̄z. Recall [6, Lemma 7.5], that

h(v, z̄z) =
h(v + z, z̄)
h(z, z̄)

.(4.8)

Substituting this into the previous formula we get

∆̄j(z̄z) =
1

(−1)jcjh(z, z̄)
‖∆j‖2

F 〈h(· + z, z̄),∆j〉F .(4.9)

Since h(v+ z, z̄) is a polynomial in z and z̄ of degree 2r, we see that ∆j(z̄z) is
of the declared form.

If j = r, we can then calculate 〈h(·, z̄),∆r〉F further. Expand h(v + z, z̄)
again using (4.6). We have

〈h(· + z, z̄),∆r〉F =
r∑

s=0

(−1)scs〈K1s(· + z, z̄),∆r〉F

= (−1)rcr〈K1r(· + z, z̄),∆r〉F ,
(4.10)

because ∆r is of degree r and it is orthogonal to those terms of lower degree.
But

K1r(z + v, z̄) = K1r(v, z̄) + . . . ,

where the rest term is of lower order. Therefore by the same reason and by the
reproducing property,

〈h(z + ·, z̄),∆r〉F = (−1)rcr〈K1r(·, z̄),∆r〉F = (−1)rcr‖∆r‖2
F∆r(z).

Substituting this into (4.9) we then get (4.5).

Remark 4.3. The norm ‖∆m‖F is calculated in [3], though we will not
need it in the present paper.
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Recall formula (3.8) for the highest weight vector ∆̄m. As a corollary we
find immediately that

Corollary 4.4. Then the function ∆̄m(q(z)) is of the form

∆̄m(q(z)) =
P (z, z̄)
h(z, z̄)m1

,

where P (z, z̄) is a polynomial in (z, z̄).

We prove now Proposition 4.1.

Proof. We estimate the norm of ∆̄m(q(z)) in L2(Ω, µα) by using the above
Corollary. The polynomial P (z, z) on Ω is bounded, say |P (z, z)| ≤ C. We have

∫
Ω

∣∣∣∣ P (z, z)
h(z, z̄)m1

∣∣∣∣
2

dµα ≤ C

∫
Ω

h(z, z̄)α−2m1dm(z).

By the condition (4.3) we see that α − 2m1 > −1, thus the above integral is
finite (see [3]), namely the function is in the L2-space. That ∆̄m(N(z)) is in
KerD̄m+1 follows directly from Lemma 2.5.

The action πν of G on L2(Ω, µα) induces an action of gC on the space of
C∞-functions. We prove next that the function ∆̄m(q(z)) is annihilated by
the positive root vectors in gC. The element in p, when viewed as holomorphic
vector fields, are of the form ξv = v−Q(z)v̄; thus when acting on C∞-functions
on Ω induced from the regular action of G, they are

(∂v − ∂Q(z)v̄)f + (∂v̄ − ∂Q(z̄)v)f.

From this it follow that the element v ∈ p+ = V acts on C∞-functions induced
from πν of G is

πν(v)f = ∂vf − ∂Q(z̄)vf,(4.11)

since the infinitesimal action of v ∈ p+ is a translation and it will not contribute
to the determinant factor in (4.1).

To study the action of p+ on ∆̄m(q(z)), we calculate first the differentiation
of q(z).

Lemma 4.5. The following differentiation formulas hold

∂vq(z) = Q(q(z))v, ∂w̄q(z) = B(z̄, z)−1w̄.(4.12)

In particular if w̄ = Q(z̄)v,

∂Q(z̄)vq(z) = B(z̄, z)−1Q(z̄)v = Q(q(z))v,(4.13)

and

(∂v − ∂Q(z̄)v)q(z) = 0.(4.14)



�

�

�

�

�

�

�

�

218 Genkai Zhang

Proof. We use the addition formulas in [6, Appendix], for the quasi-
inverses. As special cases we have

z̄z+tv = (z̄z)tv = B(z̄z, tv)−1(z̄z − tQ(z̄z)v),(4.15)

and

(z̄ + tw̄)z = z̄z +B(z̄, z)−1B(tw̄, zz̄)−1(tw̄ −Q(tw̄)zz̄).(4.16)

The first order term in t in (4.15) is easily seen to be

D(z̄z, v)z̄z −Q(z̄z)v = Q(z̄z)v,

which proves the first formula in (4.12). Similarly we can calculate the first
order term in (4.16) and prove the second formula; using this formula and

B(z̄, z)−1Q(z̄) = Q(z̄z) = Q(q(z)),

we get then (4.13).

We can thus calculate πν(v) on ∆̄m(q(z)) by using (4.11). In view of (4.14)
we have

πν(v)∆̄m(q(z)) = 0.

This, together with Lemma 3.2, implies that

Proposition 4.6. The vector ∆̄m(q(z)) under the action of πν of gC is
annihilated by the positive root vectors.

We let A2,α
m (Ω) be the subspace of L2(Ω, µα) generated by the function

∆̄m(q(z)), for m given by (4.1). Thus it is a highest weight representation of
G. Now it follows from Lemma 2.2 that

D̄m(∆̄m(q(z))) = m!∆̄m.

The vector ∆̄m is the highest weight vector of the weighted Bergman space
L2

a(Ω, Sm(V ), µα), and D̄m intertwines the G-action πν on A2,α
m (Ω) with that on

L2
a(Ω, Sm(V ), µα) (see (4.2)), by Lemma 2.1. Thus it is a non-zero intertwining

operator of the two spaces. We summarize our results in the following

Theorem 4.7. The relative discrete series A2,α
m (Ω) is G-equivalent to

the weighted Bergman space L2
a(Ω, Sm(V ), µα) and the corresponding intertwin-

ing operator is given by D̄|m|. The highest weight vector of A2,α
m (Ω) is given

by ∆̄m(q(z)). In particular, the space A2,α
m (Ω) consists of nearly holomorphic

functions.

Remark 4.8. By the results of Shimeno [11] we see that all the relative
discrete series are obtained in this way.
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Remark 4.9. When Ω is of tube type and when m = m1r = (m,m, . . . ,
m), the above is also proved in [1] by considering the tensor products of
Bergman spaces holomorphic functions with polynomial space of anti-
holomorphic functions, and in [7] by Capelli identity.

5. An example: The case of the unit ball in Cn

In this section we consider the example of the unit ball in V = Cn. The
rank r = 1, h(z) = 1 − |z|2, and symmetric tensor Sm(V ) is itself irreducible
under K. We study the adjoint operator D̄∗ of D̄ instead of D̄. The opera-
tor (D̄∗)m is thus an intertwining operator from the weighted Bergman space
L2

a(Ω, Sm(V ), µα) of vector-valued holomorphic functions into the relative dis-
crete series A2,α

m (Ω). Now L2
a(Ω, Sm(V ), µα) has highest weight vector ⊗me1.

Thus (D̄∗)m(⊗me1) is the highest weight vector in A2,α
m . We calculate directly

here this vector.
Let D = D̄∗. It has the following expression on a function f with values

in ⊗mV :

Df = h(z)−α ⊗m−1 B(z, z̄) Tr ∂
[
h(z)α(I ⊗⊗m−1B(z, z̄)−1)f

]
.

To explain the formula we note that, the operator ∂ acting on a ⊗mV -valued
function gives a functions with values in V ′ ⊗ (⊗mV ) = (V ′ ⊗ V ) ⊗ (⊗m−1V );
the operator Tr is the bilinear pairing between the first factor V ′ ⊗ V . Recall
that the Bergman operator on the unit ball is

B(z, z̄) = (1 − |z|2)(1 − z ⊗ z∗),

where z ⊗ z∗ is the rank one operator on V , z ⊗ z∗(v) = 〈v, z〉z; see [9]. Take
f = ⊗me1. The above formula then reads

D ⊗m e1

= h(z)−α−(m−1)

⊗m−1 (1 − z ⊗ z∗) Tr ∂
[
h(z)α−2(m−1)(e1 ⊗⊗m−1((1 − |z|2)e1 + z̄1z))

]
.

Using the Leibniz rule we first differentiate the term h(z)α−2(m−1), and get

(2(m− 1) − α)h(z)α−2(m−1)−1


∑

j

z̄jdzj




⊗ (e1 ⊗⊗m−1((1 − |z|2)e1 + z̄1z).

(5.1)

Taking the trace Tr, it is

(2(m− 1) − α)(1 − |z|2)−1z̄1 ⊗m−1 e1.

Next we differentiate each factor (1 − |z|2)e1 + z̄1z in the tensor, and get
−

∑
j

z̄jdzj


 ⊗ e1 + z̄1

∑
j

dzj ⊗ ej .(5.2)
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We perform the operation Tr and observe that each term is vanishing:

Tr e1 ⊗




−

∑
j

z̄jdzj


 ⊗ e1 + z̄1

∑
j

dzj ⊗ ej


 = 0.(5.3)

Thus only the first differentiation contributes to the final result, that is

D(⊗me1) = (2(m− 1) − α)(1 − |z|2)−1z̄1 ⊗m−1 e1.

By induction we get
Dmem

1 = C(1 − |z|2)−mz̄m
1 ,

where

C =
m−1∏
l=0

(2(m− 1 − j) − α+ j).

The function (1 − |z|2)−mz̄m
1 is in L2(Ω, µα) if and only if 0 ≤ m < (α+

1)/2. In that case Dm(⊗me1) is a non-zero multiple of (1 − |z|2)−mz̄m
1 . The

quasi-inverse is q(z) = (1 − |z|2)−1z̄, and the vector constructed in Theorem
4.7 is [em

1 ,⊗q(z)] = (1 − |z|2)−mz̄m
1 , and thus the two methods give the same

result.
One might also in the beginning work with the operator D = −(D̄)∗

instead of D̄. However we note that for a general bounded symmetric domain
the formula for the operator D is much more involved.
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