# On the cohomology mod 2 of $E_{8}$ II 

By<br>Akira Kono and Osamu Nishimura*


#### Abstract

A quite simple method for determining the mod 2 cohomology of the compact, connected, simple, exceptional Lie group of rank 8 is given.


## 1. Introduction

In [7], the first named author gave a simple method for determining $H^{*}\left(\boldsymbol{E}_{\boldsymbol{8}}\right.$; $\mathbb{F}_{2}$ ) as an algebra over $\mathcal{A}_{2}$, the mod 2 Steenrod algebra. In Lemma 2.2 of [7], he used a closed connected subgroup $\boldsymbol{U}$ of local type $\boldsymbol{A}_{\mathbf{8}}$ to prove $t_{2}^{8} \neq 0$ where $t_{2}$ is the generator of $H^{2}\left(\Omega \boldsymbol{E}_{\mathbf{8}} ; \mathbb{F}_{2}\right)$. Then, in Section 3 of [7], he used a closed connected subgroup $\boldsymbol{V}$ of local type $\boldsymbol{D}_{\mathbf{8}}$ and the result of Floyd [6] about the fixed point set of a compact $\boldsymbol{Z} / 2$-space to determine $H^{*}\left(\boldsymbol{E}_{\boldsymbol{8}} ; \mathbb{F}_{2}\right)$.

The purpose of this paper is to give a method alternative to that in Section 3 of [7]. The method of this paper is simpler in the sense that we only use quite elementary facts and methods of homotopy theory. We use the natural map $B i: B \boldsymbol{U} \rightarrow B \boldsymbol{E}_{\mathbf{8}}$ and the Wu formula to eliminate the possibility that

$$
H^{*}\left(\boldsymbol{E}_{\mathbf{8}} ; \mathbb{F}_{2}\right)=\frac{\mathbb{F}_{2}\left[x_{3}, x_{5}, x_{9}\right]}{\left(x_{3}^{16}, x_{5}^{8}, x_{9}^{4}\right)} \otimes \wedge\left(x_{15}, x_{17}, x_{23}, x_{27}, x_{59}\right)
$$

where $i: \boldsymbol{U} \hookrightarrow \boldsymbol{E}_{8}$ is the inclusion.

## 2. A new method for determining $H^{*}\left(\boldsymbol{E}_{8} ; \mathbb{F}_{2}\right)$

We follow the notation and terminology of [7]. The subscript of an element of an algebra designates the degree unless otherwise stated.

Let $i: \boldsymbol{U} \rightarrow \boldsymbol{E}_{\mathbf{8}}$ and $k: \tilde{\boldsymbol{E}}_{\mathbf{8}} \rightarrow \boldsymbol{E}_{\mathbf{8}}$ be as in $[7]$. Let $g \in H^{4}\left(B \boldsymbol{E}_{\mathbf{8}} ; \boldsymbol{Z}\right) \cong$ $\left[B \boldsymbol{E}_{\mathbf{8}}, K(\boldsymbol{Z}, 4)\right] \cong \boldsymbol{Z}$ be a generator. Let $B \tilde{\boldsymbol{E}}_{\mathbf{8}}$ and $B \tilde{\boldsymbol{U}}$ be the homotopy fibres of $g$ and $g \circ(B i)$ respectively. Then, we have the following homotopy commutative diagram


[^0](see [7]), where $B k$ and $B k^{\prime}$ are the projections, $B \tilde{i}$ is a lift of $(B i) \circ\left(B k^{\prime}\right)$, and horizontal sequences are homotopy fiberings. Recall that $H^{*}\left(\boldsymbol{E}_{\mathbf{8}} / \boldsymbol{U}\right)$ is concentrated in even degrees.

By Lemma 2.2 of $[7]$, we have $H^{*}\left(\Omega \tilde{\boldsymbol{E}}_{\mathbf{8}}\right)=\Delta\left(w_{14}, w_{22}, w_{26}, w_{28}\right)$ for $* \leq 30$. If $w_{14}^{2}=w_{28}$, we can determine $H^{*}\left(\boldsymbol{E}_{8}\right)$ as an algebra over $\mathcal{A}_{2}$ as desired by the argument of [7], p. 279. So, in the rest of this paper, we assume $w_{14}^{2}=0$ and deduce a contradiction.

We can see $H^{*}\left(\tilde{\boldsymbol{E}}_{\mathbf{8}}\right)=\wedge\left(y_{15}, y_{23}, y_{27}\right)$ for $* \leq 31$ and $H^{*}\left(B \tilde{\boldsymbol{E}}_{\mathbf{8}}\right)=\mathbb{F}_{2}\left[\alpha_{16}\right.$, $\left.\alpha_{24}, \alpha_{28}\right]$ for $* \leq 32$. Recall that $H^{*}(B \boldsymbol{U})=\mathbb{F}_{2}\left[c_{2}, c_{3}, \ldots, c_{9}\right]$ where $c_{j}$ is the $j$-th Chern class. (Note that $\operatorname{deg} c_{j}=2 j$.) Then, we have $H^{*}(B \tilde{\boldsymbol{U}})=$ $\mathbb{F}_{2}\left[u_{6}, u_{10}, u_{18}, \tilde{c}_{4}, \tilde{c}_{6}, \tilde{c}_{7}, \tilde{c}_{8}\right]$ for $* \leq 32$, where $\tilde{c}_{j}=\left(B k^{\prime}\right)^{*}\left(c_{j}\right)$ and $\mathrm{Sq}^{4} u_{6}=u_{10}$. We may put

$$
(B \tilde{i})^{*}\left(\alpha_{16}\right)=p \tilde{c}_{8}+q \tilde{c}_{4}^{2}+\delta u_{6} u_{10}
$$

where $p, q$, and $\delta \in \mathbb{F}_{2}$. Note that $p, q$, or $\delta \neq 0$ since otherwise, $\alpha_{16}$ gives rise to a nonzero element of $H^{15}\left(\boldsymbol{E}_{8} / \boldsymbol{U}\right)=0$. Applying $\mathrm{Sq}^{4}$ to $\left(\mathrm{Bi}^{2}\right)^{*}\left(\alpha_{16}\right)$, we have $\delta=0$. Then, applying $\mathrm{Sq}^{4} \mathrm{Sq}^{8}$, we have

$$
\begin{align*}
(B \tilde{i})^{*}\left(\mathrm{Sq}^{4} \mathrm{Sq}^{8} \alpha_{16}\right) & =\mathrm{Sq}^{4}\left(p \tilde{c}_{8} \tilde{c}_{4}+q \tilde{c}_{6}^{2}\right)  \tag{1}\\
& =p \tilde{c}_{8} \tilde{c}_{6}+q \tilde{c}_{7}^{2} \neq 0
\end{align*}
$$

and hence we have $\mathrm{Sq}^{8} \alpha_{16}=\alpha_{24}$ and $\mathrm{Sq}^{4} \alpha_{24}=\alpha_{28}$. Then, we have $\mathrm{Sq}^{8} y_{15}=$ $y_{23}$ and $\mathrm{Sq}^{4} y_{23}=y_{27}$, and we can easily see that

$$
H^{*}\left(\boldsymbol{E}_{\mathbf{8}}\right)=\frac{\mathbb{F}_{2}\left[x_{3}, x_{5}, x_{9}\right]}{\left(x_{3}^{16}, x_{5}^{8}, x_{9}^{4}\right)} \otimes \wedge\left(x_{15}, x_{17}, x_{23}, x_{27}, x_{59}\right)
$$

where $\mathrm{Sq}^{2} x_{3}=x_{5}, \mathrm{Sq}^{4} x_{5}=x_{9}, \mathrm{Sq}^{8} x_{9}=x_{17}, \mathrm{Sq}^{8} x_{15}=x_{23}$ and $\mathrm{Sq}^{4} x_{23}=x_{27}$.
Note that we may assume $x_{15}$ is primitive. Since if this is not the case, we can easily see that we may assume $\bar{\phi}\left(x_{15}\right)=x_{3}^{2} \otimes x_{9}+x_{5}^{2} \otimes x_{5}+x_{3}^{4} \otimes x_{3}$, where $\bar{\phi}$ is the reduced coproduct of $H^{*}\left(\boldsymbol{E}_{\mathbf{8}}\right)$. It follows, however, that $\bar{\phi}\left(x_{15}^{2}\right) \neq 0$, which is a contradiction.

Moreover, $x_{15}$ is universally transgressive. Since if this is not the case, we can easily see that $H^{*}\left(B \boldsymbol{E}_{8}\right)=\mathbb{F}_{2}\left[z_{4}, z_{6}, z_{7}, z_{10}, z_{11}, z_{13}, z_{18}\right] /\left(z_{4} z_{6} z_{7}\right)$ for $* \leq$ 18. It follows, however, that $0=\operatorname{Sq}^{1}\left(z_{4} z_{6} z_{7}\right)=z_{4} z_{7}^{2}$, which is a contradiction.

Thus, $x_{23}$ and $x_{27}$ are also universally transgressive and hence

$$
H^{*}\left(B \boldsymbol{E}_{\mathbf{8}}\right)=\mathbb{F}_{2}\left[z_{j}, j=4,6,7,10,11,13,16,18,19,21,24,25,28\right]
$$

for $*<60$ where $(B i)^{*}\left(z_{\text {odd }}\right)=0,(B i)^{*}\left(z_{4}\right)=c_{2},(B i)^{*}\left(z_{6}\right)=c_{3}=\mathrm{Sq}^{2} c_{2}$, $(B i)^{*}\left(z_{10}\right)=c_{5}=\mathrm{Sq}^{4} c_{3}+c_{3} c_{2},(B i)^{*}\left(z_{18}\right)=c_{9}+c_{7} c_{2}+c_{6} c_{3}+c_{5} c_{4}=\mathrm{Sq}^{8} c_{5}$, and $(B k)^{*}\left(z_{j}\right)=\alpha_{j}$ for $j=16,24,28$. Moreover we may assume

$$
(B i)^{*}\left(z_{16}\right)=p c_{8}+q c_{4}^{2}+r c_{6} c_{2}+s c_{4} c_{2}^{2}
$$

$z_{24}=\mathrm{Sq}^{8} z_{16}+z_{16} z_{4}^{2}$, and $z_{28}=\mathrm{Sq}^{4} z_{24}$, where $p$ and $q$ are those stated before and $r, s \in \mathbb{F}_{2}$. Recall that $p$ or $q \neq 0$.

Applying $\mathrm{Sq}^{2}$ to (1), we have $(B \tilde{i})^{*}\left(\mathrm{Sq}^{2} \mathrm{Sq}^{4} \mathrm{Sq}^{8} \alpha_{16}\right)=p \tilde{c}_{8} \tilde{c}_{7}$, while clearly $\mathrm{Sq}^{2} \mathrm{Sq}^{4} \mathrm{Sq}^{8} \alpha_{16}=0$ by the dimensional reason. Hence we have $p=0$ and $q=1$. We have $(B i)^{*}\left(\mathrm{Sq}^{2} z_{16}\right)=r\left(c_{7} c_{2}+c_{6} c_{3}\right)+s c_{5} c_{2}^{2}$. It follows that $\mathrm{Sq}^{2} z_{16}$ is decomposable and hence $r=0$. Moreover, we have $(B i)^{*}\left(\mathrm{Sq}^{4} z_{16}\right)=c_{5}^{2}+$ $s\left(c_{6} c_{2}^{2}+c_{4} c_{2}^{3}+c_{4} c_{3}^{2}\right)$. Since $\mathrm{Sq}^{4} z_{16}$ is decomposable, $s=0$.

Thus, we have $(B i)^{*}\left(z_{16}\right)=c_{4}^{2}$ and hence $(B i)^{*}\left(z_{24}\right)=c_{6}^{2}$ and $(B i)^{*}\left(z_{28}\right)=$ $c_{7}^{2}$. We can see that $(B i)^{*}\left(\mathrm{Sq}^{16} z_{24}\right)=c_{8}^{2} c_{2}^{2}+c_{6}^{2} c_{4}^{2}$. Since $\mathrm{Sq}^{16} z_{24}$ is decomposable, this is a contradiction.

Department of Mathematics<br>Kyoto University<br>Kyoto 606-8502, Japan<br>e-mail: kono@kusm.kyoto-u.ac.jp<br>Department of Mathematics<br>Kyoto University<br>Kyoto 606-8502, Japan<br>e-mail: osamu@kusm.kyoto-u.ac.jp

## References

[1] S. Araki and Y. Shikata, Cohomology mod 2 of the compact exceptional group $E_{8}$, Proc. Japan Acad., 37 (1961), 619-622.
[2] A. Borel, Topology of Lie groups and characteristic classes, Bull. A.M.S., 61 (1955).
[3] A. Borel and J. de Siebenthal, Les sous-groupes fermés de drang maximum des groupes de Lie clos, Comm. Math. Helv., 23 (1949-50), 200-221.
[4] R. Bott, An application of Morse theory to the topology of Lie groups, Bull. Soc. Math. France, 84 (1956), 251-281.
[5] R. Bott, The space of loops on a Lie group, Michigan Math. J., 5 (1958), 35-61.
[6] E. E. Floyd, Periodic maps via Smith theory, Ann. of Math. Stud., 46 (1960), 35-47.
[7] A. Kono, On the cohomology mod 2 of $E_{8}$, J. Math. Kyoto Univ., 24-2 (1984), 275-280.
[8] J. P. Lin, The mod 2 cohomology of the exceptional groups, Topology Appl., 25-2 (1987), 137-142.


[^0]:    2000 Mathematics Subject Classification(s). 55R40, 57T10, 57T15 Received July 19, 2000
    *Partially supported by JSPS Research Fellowships for Young Scientists.

