On the cohomology mod 2 of E_8 II

By

Akira Kono and Osamu Nishimura*

Abstract

A quite simple method for determining the mod 2 cohomology of the compact, connected, simple, exceptional Lie group of rank 8 is given.

1. Introduction

In [7], the first named author gave a simple method for determining $H^*(E_8; \mathbb{F}_2)$ as an algebra over \mathcal{A}_2 , the mod 2 Steenrod algebra. In Lemma 2.2 of [7], he used a closed connected subgroup U of local type A_8 to prove $t_2^8 \neq 0$ where t_2 is the generator of $H^2(\Omega E_8; \mathbb{F}_2)$. Then, in Section 3 of [7], he used a closed connected subgroup V of local type D_8 and the result of Floyd [6] about the fixed point set of a compact $\mathbb{Z}/2$ -space to determine $H^*(E_8; \mathbb{F}_2)$.

The purpose of this paper is to give a method alternative to that in Section 3 of [7]. The method of this paper is simpler in the sense that we only use quite elementary facts and methods of homotopy theory. We use the natural map $Bi \colon B\mathbf{U} \to B\mathbf{E_8}$ and the Wu formula to eliminate the possibility that

$$H^*(\boldsymbol{E_8}; \mathbb{F}_2) = \frac{\mathbb{F}_2[x_3, x_5, x_9]}{(x_3^{16}, x_5^{8}, x_9^{4})} \otimes \wedge (x_{15}, x_{17}, x_{23}, x_{27}, x_{59}),$$

where $i: U \hookrightarrow E_8$ is the inclusion.

2. A new method for determining $H^*(E_8; \mathbb{F}_2)$

We follow the notation and terminology of [7]. The subscript of an element of an algebra designates the degree unless otherwise stated.

Let $i: U \to E_8$ and $k: \tilde{E}_8 \to E_8$ be as in [7]. Let $g \in H^4(BE_8; \mathbb{Z}) \cong [BE_8, K(\mathbb{Z}, 4)] \cong \mathbb{Z}$ be a generator. Let $B\tilde{E}_8$ and $B\tilde{U}$ be the homotopy fibres of g and $g \circ (Bi)$ respectively. Then, we have the following homotopy commutative diagram

$$egin{aligned} m{E_8/U} & \longrightarrow & B ilde{m{U}} & \stackrel{B ilde{\imath}}{\longrightarrow} & B ilde{m{E_8}} \ & & & \downarrow_{Bk} \ & & & \downarrow_{Bk} \ & & & B m{U} & \longrightarrow & B m{U} & \longrightarrow_{Bi} & B m{E_8} \end{aligned}$$

²⁰⁰⁰ Mathematics Subject Classification(s). 55R40, 57T10, 57T15 Received July 19, 2000

^{*}Partially supported by JSPS Research Fellowships for Young Scientists.

(see [7]), where Bk and Bk' are the projections, $B\tilde{i}$ is a lift of $(Bi) \circ (Bk')$, and horizontal sequences are homotopy fiberings. Recall that $H^*(\mathbf{E_8/U})$ is concentrated in even degrees.

By Lemma 2.2 of [7], we have $H^*(\Omega \tilde{\mathbf{E}}_{\mathbf{8}}) = \Delta(w_{14}, w_{22}, w_{26}, w_{28})$ for $* \leq 30$. If $w_{14}^2 = w_{28}$, we can determine $H^*(\mathbf{E}_{\mathbf{8}})$ as an algebra over \mathcal{A}_2 as desired by the argument of [7], p. 279. So, in the rest of this paper, we assume $w_{14}^2 = 0$ and deduce a contradiction.

We can see $H^*(\tilde{E}_8) = \wedge (y_{15}, y_{23}, y_{27})$ for $* \leq 31$ and $H^*(B\tilde{E}_8) = \mathbb{F}_2[\alpha_{16}, \alpha_{24}, \alpha_{28}]$ for $* \leq 32$. Recall that $H^*(BU) = \mathbb{F}_2[c_2, c_3, \dots, c_9]$ where c_j is the j-th Chern class. (Note that $\deg c_j = 2j$.) Then, we have $H^*(B\tilde{U}) = \mathbb{F}_2[u_6, u_{10}, u_{18}, \tilde{c}_4, \tilde{c}_6, \tilde{c}_7, \tilde{c}_8]$ for $* \leq 32$, where $\tilde{c}_j = (Bk')^*(c_j)$ and $\operatorname{Sq}^4 u_6 = u_{10}$. We may put

$$(B\tilde{i})^*(\alpha_{16}) = p\tilde{c}_8 + q\tilde{c}_4^2 + \delta u_6 u_{10},$$

where p, q, and $\delta \in \mathbb{F}_2$. Note that p, q, or $\delta \neq 0$ since otherwise, α_{16} gives rise to a nonzero element of $H^{15}(\mathbf{E_8/U}) = 0$. Applying Sq^4 to $(B\tilde{i})^*(\alpha_{16})$, we have $\delta = 0$. Then, applying $\mathrm{Sq}^4\mathrm{Sq}^8$, we have

(1)
$$(B\tilde{i})^* (\operatorname{Sq}^4 \operatorname{Sq}^8 \alpha_{16}) = \operatorname{Sq}^4 (p\tilde{c}_8 \tilde{c}_4 + q\tilde{c}_6^2)$$
$$= p\tilde{c}_8 \tilde{c}_6 + q\tilde{c}_7^2 \neq 0$$

and hence we have $\operatorname{Sq}^8\alpha_{16}=\alpha_{24}$ and $\operatorname{Sq}^4\alpha_{24}=\alpha_{28}$. Then, we have $\operatorname{Sq}^8y_{15}=y_{23}$ and $\operatorname{Sq}^4y_{23}=y_{27}$, and we can easily see that

$$H^*(\boldsymbol{E_8}) = \frac{\mathbb{F}_2[x_3, x_5, x_9]}{(x_3^{16}, x_5^{8}, x_9^{4})} \otimes \wedge (x_{15}, x_{17}, x_{23}, x_{27}, x_{59}),$$

where $\operatorname{Sq}^2 x_3 = x_5, \operatorname{Sq}^4 x_5 = x_9, \operatorname{Sq}^8 x_9 = x_{17}, \operatorname{Sq}^8 x_{15} = x_{23}$ and $\operatorname{Sq}^4 x_{23} = x_{27}$.

Note that we may assume x_{15} is primitive. Since if this is not the case, we can easily see that we may assume $\bar{\phi}(x_{15}) = x_3^2 \otimes x_9 + x_5^2 \otimes x_5 + x_3^4 \otimes x_3$, where $\bar{\phi}$ is the reduced coproduct of $H^*(E_8)$. It follows, however, that $\bar{\phi}(x_{15}^2) \neq 0$, which is a contradiction.

Moreover, x_{15} is universally transgressive. Since if this is not the case, we can easily see that $H^*(B\mathbf{E_8}) = \mathbb{F}_2[z_4, z_6, z_7, z_{10}, z_{11}, z_{13}, z_{18}]/(z_4z_6z_7)$ for $* \leq 18$. It follows, however, that $0 = \operatorname{Sq}^1(z_4z_6z_7) = z_4z_7^2$, which is a contradiction.

Thus, x_{23} and x_{27} are also universally transgressive and hence

$$H^*(BE_8) = \mathbb{F}_2[z_i, j = 4, 6, 7, 10, 11, 13, 16, 18, 19, 21, 24, 25, 28]$$

for *<60 where $(Bi)^*(z_{\text{odd}}) = 0$, $(Bi)^*(z_4) = c_2$, $(Bi)^*(z_6) = c_3 = \text{Sq}^2c_2$, $(Bi)^*(z_{10}) = c_5 = \text{Sq}^4c_3 + c_3c_2$, $(Bi)^*(z_{18}) = c_9 + c_7c_2 + c_6c_3 + c_5c_4 = \text{Sq}^8c_5$, and $(Bk)^*(z_j) = \alpha_j$ for j = 16, 24, 28. Moreover we may assume

$$(Bi)^*(z_{16}) = pc_8 + qc_4^2 + rc_6c_2 + sc_4c_2^2,$$

 $z_{24} = \operatorname{Sq}^8 z_{16} + z_{16} z_4^2$, and $z_{28} = \operatorname{Sq}^4 z_{24}$, where p and q are those stated before and $r, s \in \mathbb{F}_2$. Recall that p or $q \neq 0$.

Applying Sq^2 to (1), we have $(B\tilde{i})^*(\operatorname{Sq}^2\operatorname{Sq}^4\operatorname{Sq}^8\alpha_{16}) = p\tilde{c}_8\tilde{c}_7$, while clearly $\operatorname{Sq}^2\operatorname{Sq}^4\operatorname{Sq}^8\alpha_{16} = 0$ by the dimensional reason. Hence we have p = 0 and q = 1. We have $(Bi)^*(\operatorname{Sq}^2z_{16}) = r(c_7c_2 + c_6c_3) + sc_5c_2^2$. It follows that $\operatorname{Sq}^2z_{16}$ is decomposable and hence r = 0. Moreover, we have $(Bi)^*(\operatorname{Sq}^4z_{16}) = c_5^2 + s(c_6c_2^2 + c_4c_3^2 + c_4c_2^3)$. Since $\operatorname{Sq}^4z_{16}$ is decomposable, s = 0.

Is decomposable and hence i = 0. Moreover, we have $(Bi)'(\operatorname{Sq} z_{16}) = c_5 + s(c_6c_2^2 + c_4c_3^2 + c_4c_3^2)$. Since $\operatorname{Sq}^4 z_{16}$ is decomposable, s = 0. Thus, we have $(Bi)^*(z_{16}) = c_4^2$ and hence $(Bi)^*(z_{24}) = c_6^2$ and $(Bi)^*(z_{28}) = c_7^2$. We can see that $(Bi)^*(\operatorname{Sq}^{16} z_{24}) = c_8^2c_2^2 + c_6^2c_4^2$. Since $\operatorname{Sq}^{16} z_{24}$ is decomposable, this is a contradiction.

> DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY KYOTO 606-8502, JAPAN e-mail: kono@kusm.kyoto-u.ac.jp

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY KYOTO 606-8502, JAPAN e-mail: osamu@kusm.kyoto-u.ac.jp

References

- [1] S. Araki and Y. Shikata, Cohomology mod 2 of the compact exceptional group E_8 , Proc. Japan Acad., **37** (1961), 619–622.
- [2] A. Borel, Topology of Lie groups and characteristic classes, Bull. A.M.S., 61 (1955).
- [3] A. Borel and J. de Siebenthal, Les sous-groupes fermés de drang maximum des groupes de Lie clos, Comm. Math. Helv., **23** (1949–50), 200–221.
- [4] R. Bott, An application of Morse theory to the topology of Lie groups, Bull. Soc. Math. France, 84 (1956), 251–281.
- [5] R. Bott, The space of loops on a Lie group, Michigan Math. J., 5 (1958), 35–61.
- [6] E. E. Floyd, Periodic maps via Smith theory, Ann. of Math. Stud., 46 (1960), 35–47.
- [7] A. Kono, On the cohomology mod 2 of E_8 , J. Math. Kyoto Univ., **24**-2 (1984), 275–280.
- [8] J. P. Lin, The mod 2 cohomology of the exceptional groups, Topology Appl., 25-2 (1987), 137–142.