An example of non-uniqueness for a hyperbolic equation with non-Lipschitz-continuous coefficients

By
Ferruccio Colombini and Daniele Del Santo

1. Introduction and main result

Let Ω be an open neighborhood of the origin in \mathbf{R}^{n+1} and let P be a second order operator of the form

$$
\begin{equation*}
P=\partial_{t}^{2}-\sum_{j, k=1}^{n} a_{j k}(t, x) \partial_{x_{j}} \partial_{x_{k}}+\sum_{j=1}^{n} b_{j}(t, x) \partial_{x_{j}}+c(t, x) \partial_{t}+d(t, x), \tag{1.1}
\end{equation*}
$$

with bounded complex valued coefficients defined in Ω.
We say that the operator P has the uniqueness in the Cauchy problem with respect to $\{t=0\}$ at the origin if there exists Ω^{\prime} open neighborhood of the origin, $\Omega^{\prime} \subseteq \Omega$, such that if $u \in \mathcal{C}^{2}(\Omega), \operatorname{supp} u \subseteq\{(t, x) \in \Omega: t \geq 0\}$ and $P u=0$ in Ω then $u=0$ in Ω^{\prime}.

Suppose that the operator P is strictly hyperbolic (with respect to $\{t=c\}$ in Ω) i.e. the coefficients $a_{j k}$ are real valued, $a_{j k}=a_{k j}$ and there exists $\lambda_{0}>0$ such that

$$
\begin{equation*}
\sum_{j, k=1}^{n} a_{j k}(t, x) \xi_{j} \xi_{k} \geq \lambda_{0}|\xi|^{2} \tag{1.2}
\end{equation*}
$$

for all $(t, x) \in \Omega$ and for all $\xi \in \mathbf{R}^{n}$; the question we are interested in is the following: how the uniqueness in the Cauchy problem for the operator P is related with the regularity of the coefficients of the principal part of P ?

It is well known that if the coefficients $a_{j k}$ are Lipschitz-continuous then P has the uniqueness in the Cauchy problem. Conversely Colombini, Jannelli and Spagnolo proved that there exists a hyperbolic operator \tilde{P} of the form (1.1) such that for all $\alpha<1$ the coefficients of the principal part of \tilde{P} are Höldercontinuous of exponent α and \tilde{P} does not have the cited uniqueness property (see [2]).

In the present note we improve the result of [2] showing that there is a quite precise relation between the modulus of continuity of the coefficients of the principal part and the possibility of constructing a non-uniqueness example.

Let μ be a modulus of continuity, i.e. μ is a non-negative function defined on $[0, r]$ for some $r \in(0,1)$, continuous, strictly increasing, concave and such that $\mu(0)=0$. We say that the function f defined on Ω is μ-continuous (and we will write $f \in \mathcal{C}^{\mu}(\Omega)$) if for all K compact set in Ω there exists $\varepsilon>0$ such that

$$
\sup _{y, z \in K, 0<|y-z|<\varepsilon} \frac{|f(y)-f(z)|}{\mu(|y-z|)}<+\infty .
$$

Our result is the following.
Theorem 1. Suppose that

$$
\begin{equation*}
\int_{0}^{r} \frac{1}{\mu(s)} d s<+\infty \tag{1.3}
\end{equation*}
$$

and

$$
\begin{equation*}
\text { the function } \quad s \mapsto-\frac{\mu(s)}{s \log (s)} \quad \text { is decreasing in }(0, r] \text {. } \tag{1.4}
\end{equation*}
$$

Then there exist a real valued function $a(t)$ and two complex valued functions $d(t, x)$ and $u(t, x)$ such that

$$
\begin{aligned}
& a \in \mathcal{C}^{\mu}(\mathbf{R}) \quad \text { and } \quad 1 / 2 \leq a(t) \leq 3 / 2 \quad \text { for all } t \in \mathbf{R} ; \\
& d \in \mathcal{C}^{\infty}\left(\mathbf{R}^{2}\right) \quad \text { and } \quad \operatorname{supp} d \subseteq\left\{(t, x) \in \mathbf{R}^{2}: t \geq 0\right\} ; \\
& u \in \mathcal{C}^{\infty}\left(\mathbf{R}^{2}\right) \quad \text { and } \quad \operatorname{supp} u=\left\{(t, x) \in \mathbf{R}^{2}: t \geq 0\right\} ; \\
& u_{t t}(t, x)-a(t) u_{x x}(t, x)+d(t, x) u(t, x)=0 \quad \text { for all } \quad(t, x) \in \mathbf{R}^{2} .
\end{aligned}
$$

It is worthy to compare the result of Theorem 1 with the similar results known in the case of second order elliptic operators with real principal part. Consider the operator

$$
Q=\partial_{t}^{2}+\sum_{j, k=1}^{n} a_{j k}(t, x) \partial_{x_{j}} \partial_{x_{k}}+\sum_{j=1}^{n} b_{j}(t, x) \partial_{x_{j}}+c(t, x) \partial_{t}+d(t, x),
$$

under the condition (1.2). Let μ be a modulus of continuity such that

$$
\begin{equation*}
\lim _{s \rightarrow 0^{+}} \frac{\mu(s)}{s^{\alpha}}=0 \quad \text { for all } \quad \alpha \in[0,1) \tag{1.5}
\end{equation*}
$$

and

$$
\begin{equation*}
\int_{0}^{r} \frac{1}{\mu(s)} d s=+\infty \tag{1.6}
\end{equation*}
$$

If the coefficients of the principal part of Q are in $\mathcal{C}^{\mu}(\Omega)$ then Q has the uniqueness in the Cauchy problem with respect to $\{t=0\}$ at the origin (see [6]). On the other hand if the modulus of continuity satisfies the conditions (1.5) and (1.3) it is possible to construct a non-uniqueness example for an elliptic operator like Q with the coefficients of the principal part in $\mathcal{C}^{\mu}(\Omega)$ (see [5] and [4]).

It would be very interesting to prove a result similar to that one of [6] in the case of hyperbolic operators. We think that the condition (1.6) is related to the uniqueness in the Cauchy problem also for hyperbolic operators, but unfortunately we are not able to prove it.

Let us finally recall what is known for a similar subject, namely the relation between the well-posedness of the Cauchy problem for a second order hyperbolic operator and the regularity of the coefficients of its principal part. Also in this case the crucial condition is given in terms of the modulus of continuity of the coefficients of the principal part. Consider the operator

$$
P_{2}=\partial_{t}^{2}-\sum_{j, k=1}^{n} a_{j k}(t, x) \partial_{x_{j}} \partial_{x_{k}},
$$

under the condition (1.2). Suppose that the coefficients $a_{j k}$ are \mathcal{C}^{∞} in the x variables for all fixed t, the $a_{j k}$'s and its first and second derivatives in the x variables are bounded in \mathbf{R}^{n+1} and

$$
\sup _{0<|t-s|<1 / 2, x \in \mathbf{R}^{n}} \frac{\left|a_{j k}(t, x)-a_{j k}(s, x)\right|}{\mu(|t-s|)}<+\infty
$$

where $\mu(\tau)=\tau|\log \tau|$; then the Cauchy problem for P_{2} is \mathcal{C}^{∞}-well-posed. This result is sharp in the sense that if a modulus of continuity is of the type $\mu(\tau)=$ $\tau|\log \tau| \psi(|\log \tau|)$ with ψ increasing, concave and such that $\lim _{\sigma \rightarrow+\infty} \psi(\sigma)=$ $+\infty$, then there exists a function $a \in \mathcal{C}^{\mu}$ with $1 / 2 \leq a(t) \leq 3 / 2$ such that for the operator

$$
\partial_{t}^{2}-a(t) \partial_{x}^{2}
$$

the Cauchy problem is not \mathcal{C}^{∞}-well-posed (see [1] and [3]).

2. Proof of Theorem 1

The main step of the proof of Theorem 1 is the following refinement of the 'change of phase' Lemma (see [2, Lemma 2]). A detailed proof of this result can be found in the Appendix.

Lemma 1. There exists a positive constant $M>1$ such that for all positive integers h_{1}, h_{2}, for all positive constants $\varepsilon_{1}, \varepsilon_{2}, \rho, \eta_{1}, \eta_{2}$ and for all $t_{1} \in \mathbf{R}$, if

$$
\begin{equation*}
0<\varepsilon_{2} \leq \varepsilon_{1} \leq \frac{1}{2 M} \tag{2.1}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\varepsilon_{2} h_{2}}{\varepsilon_{1} h_{1}} \geq 2 M^{2} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
4 e^{-\varepsilon_{1} h_{1} \rho} \leq \frac{\eta_{2}}{\eta_{1}} \leq \frac{1}{4} e^{\varepsilon_{2} h_{2} \rho} \tag{2.3}
\end{equation*}
$$

then there exist $t_{2}>t_{1}$, a \mathcal{C}^{∞} real valued function a (t) defined on $I=\left[t_{1}, t_{2}\right]$ and two complex valued functions $d(t, x), u(t, x)$ defined on $I \times \mathbf{R}, \mathcal{C}^{\infty}$ in t and 2π-periodic and analytic in x, such that

$$
\begin{array}{lc}
(2.4) & t_{2}-t_{1} \leq 12 M \rho+\frac{4 \pi}{h_{1}}, \\
(2.5) & u_{t t}(t, x)-a(t) u_{x x}(t, x)+d(t, x) u(t, x)=0 \quad \text { for all } \quad(t, x) \in I \times \mathbf{R}, \\
(2.6) & \operatorname{supp}(u)=I \times \mathbf{R}, \\
(2.7) & a(t)=1 \quad \text { and } \quad d(t, x)=0 \quad \text { for } t \text { near } t_{j}, j=1,2, \\
(2.8) & u(t, x)=\eta_{j} \cos \left(h_{j}\left|t-t_{j}\right|\right) e^{i h_{j} x} \quad \text { for } t \text { near } t_{j}, j=1,2 . \tag{2.8}
\end{array}
$$

Moreover

$$
\begin{equation*}
\sup _{t \in I}|1-a(t)| \leq \frac{1}{2} \tag{2.9}
\end{equation*}
$$

$$
\begin{equation*}
|a|_{\mathcal{C}^{\mu}(I)}=\sup _{t, \tau \in I, t \neq \tau} \frac{|a(t)-a(\tau)|}{\mu(|t-\tau|)} \leq C_{0} \max \left\{\frac{\varepsilon_{1}}{\mu\left(1 / h_{1}\right)}, \frac{\varepsilon_{2}}{\mu\left(1 / h_{2}\right)}\right\} \tag{2.10}
\end{equation*}
$$

and finally

$$
\begin{equation*}
\sup _{(t, x) \in I \times \mathbf{R}}\left|\left(\frac{\partial}{\partial t}\right)^{p}\left(\frac{\partial}{\partial x}\right)^{q} u\right| \leq C_{p} h_{2}^{p+q} \max \left\{\eta_{1}, \eta_{2}\right\} \quad \text { for all } \quad p, q \in \mathbf{N} \tag{2.11}
\end{equation*}
$$

$$
\begin{align*}
\sup _{(t, x) \in I \times \mathbf{R}}\left|\left(\frac{\partial}{\partial t}\right)^{p}\left(\frac{\partial}{\partial x}\right)^{q} d\right| \\
\leq C_{p} h_{2}^{p+q+2} \sum_{n=1}^{+\infty} n^{p+q} e^{-n \varepsilon_{1} h_{1} \rho} \quad \text { for all } \quad p, q \in \mathbf{N}, \tag{2.12}
\end{align*}
$$

where C_{0}, C_{p} do not depend on $h_{1}, h_{2}, \varepsilon_{1}, \varepsilon_{2}, \rho, \eta_{1}, \eta_{2}$ and t_{1}.
In what follows we find $T>0$ and we construct $a(t), d(t, x), u(t, x)$ such that

$$
\begin{gathered}
a \in \mathcal{C}^{\mu}(\mathbf{R}) \quad \text { and } \quad 1 / 2 \leq a(t) \leq 3 / 2 \quad \text { for all } \quad t \in \mathbf{R}, \\
a(t)=1 \quad \text { for all } \quad t \leq 0 \quad \text { and } \quad t \geq T \\
d \in \mathcal{C}^{\infty}\left(\mathbf{R}^{2}\right) \quad \text { and } \quad \operatorname{supp}(d) \subseteq[0, T] \times \mathbf{R}
\end{gathered}
$$

$$
u \in \mathcal{C}^{\infty}\left(\mathbf{R}^{2}\right) \quad \text { and } \quad \operatorname{supp}(u) \subseteq(-\infty, T] \times \mathbf{R}
$$

and

$$
u_{t t}(t, x)-a(t) u_{x x}(t, x)+d(t, x) u(t, x)=0 \quad \text { for all } \quad(t, x) \in \mathbf{R}^{2} .
$$

The conclusion of the proof will be easily obtained by a reflection respect to $t=T / 2$.

Let us consider four sequences $\left\{h_{k}\right\},\left\{\varepsilon_{k}\right\},\left\{\rho_{k}\right\},\left\{\eta_{k}\right\}$ of real positive numbers such that

$$
\begin{equation*}
h_{k} \in \mathbf{N} \quad \text { for all } \quad k \in \mathbf{N} \quad \text { and } \quad \lim _{k \rightarrow+\infty} h_{k}=+\infty \tag{2.13}
\end{equation*}
$$

$$
\begin{gather*}
\left\{\varepsilon_{k}\right\} \text { is decreasing } \quad \text { and } \quad \lim _{k \rightarrow+\infty} \varepsilon_{k}=\lim _{k \rightarrow+\infty} \rho_{k}=\lim _{k \rightarrow+\infty} \eta_{k}=0, \tag{2.14}\\
\varepsilon_{k} \leq \frac{1}{2 M} \quad \text { for all } k \in \mathbf{N}, \tag{2.15}\\
\frac{\varepsilon_{k+1} h_{k+1}}{\varepsilon_{k} h_{k}} \geq 2 M^{2} \quad \text { for all } k \in \mathbf{N}, \tag{2.16}
\end{gather*}
$$

and

$$
\begin{equation*}
4 e^{-\varepsilon_{k} h_{k} \rho_{k}} \leq \frac{\eta_{k+1}}{\eta_{k}} \leq \frac{1}{4} e^{\varepsilon_{k+1} h_{k+1} \rho_{k}} \quad \text { for all } \quad k \in \mathbf{N} . \tag{2.17}
\end{equation*}
$$

Using Lemma 1 we construct an increasing sequence of positive real numbers $\left\{t_{k}\right\}$, with $t_{1}=0$, such that the functions $a(t), d(t, x), u(t, x)$ are defined on each strip $\left[t_{k}, t_{k+1}\right] \times \mathbf{R}$ and satisfy (2.5), $\ldots,(2.12)$ with $h_{1}, h_{2}, \varepsilon_{1}, \varepsilon_{2}, \rho$, η_{1}, η_{2} and t_{1} replaced by $h_{k}, h_{k+1}, \varepsilon_{k}, \varepsilon_{k+1}, \rho_{k}, \eta_{k}, \eta_{k+1}$ and t_{k} respectively.

Since $\left|t_{k+1}-t_{k}\right| \leq 12 M \rho_{k}+4 \pi / h_{k}$, if

$$
\begin{equation*}
\sum_{k=1}^{+\infty} \rho_{k}<+\infty \quad \text { and } \quad \sum_{k=1}^{+\infty} \frac{1}{h_{k}}<+\infty \tag{2.18}
\end{equation*}
$$

then the sequence $\left\{t_{k}\right\}$ is convergent. We define $\lim _{k \rightarrow+\infty} t_{k}=T$. We set

$$
\begin{aligned}
a(t) & =1 \quad \text { and } \quad d(t, x)=0 \quad \text { for } \quad t \leq 0 \quad \text { and } \quad t \geq T \\
u(t, x) & =\eta_{1} \cos \left(h_{1} t\right) e^{i h_{1} x} \quad \text { for } t \leq 0, \quad u(t, x)=0 \quad \text { for } t \geq T .
\end{aligned}
$$

In view of (2.6) through (2.8) we have that $a \in \mathcal{C}^{\infty}(\mathbf{R} \backslash\{T\}), d, u \in \mathcal{C}^{\infty}\left(\mathbf{R}^{2} \backslash\right.$ $\{(t, x): t=T\})$ and $\operatorname{supp}(u)=(-\infty, T] \times \mathbf{R}$. From (2.10) we easily deduce that if there exists $C>0$ such that

$$
\begin{equation*}
\frac{\varepsilon_{k}}{\mu\left(1 / h_{k}\right)} \leq C \quad \text { for all } \quad k \in \mathbf{N} \tag{2.19}
\end{equation*}
$$

then $a \in \mathcal{C}^{\mu}(\mathbf{R})$. Finally (2.11) and (2.12) will imply the \mathcal{C}^{∞}-regularity for u and d on \mathbf{R}^{2} provided the following conditions hold

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} h_{k+1}^{p} \max \left\{\eta_{k}, \eta_{k+1}\right\}=0 \quad \text { for all } \quad p \in \mathbf{N} \tag{2.20}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} h_{k+1}^{p+2} \sum_{n=1}^{+\infty} n^{p} e^{-n \rho_{k} \varepsilon_{k} h_{k}}=0 \quad \text { for all } \quad p \in \mathbf{N} \tag{2.21}
\end{equation*}
$$

To end the proof it will be sufficient to choose the sequences $\left\{h_{k}\right\},\left\{\varepsilon_{k}\right\},\left\{\rho_{k}\right\}$ and $\left\{\eta_{k}\right\}$ in such a way that (2.13), $\ldots,(2.21)$ are verified.

We remark that (1.3) and (1.4) imply that for any positive integer N the function

$$
s \mapsto \frac{2^{-2^{N s}} 2^{N s}}{\mu\left(2^{-2^{N s}}\right)}
$$

is decreasing in $[1,+\infty[$ and

$$
\int_{1}^{+\infty} \frac{2^{-2^{N s}} 2^{N s}}{\mu\left(2^{-2^{N s}}\right)} d s<+\infty
$$

Consequently

$$
\sum_{k=1}^{+\infty} \frac{2^{-2^{N k}} 2^{N k}}{\mu\left(2^{-2^{N k}}\right)}<+\infty
$$

Moreover it is possible to find a function $\tilde{\mu}:[0, r] \rightarrow[0,+\infty)$ such that

$$
\begin{equation*}
\sum_{k=1}^{+\infty} \frac{2^{-2^{N k}} 2^{N k}}{\tilde{\mu}\left(2^{-2^{N k}}\right)}<+\infty \tag{2.22}
\end{equation*}
$$

and

$$
\begin{equation*}
\lim _{s \rightarrow 0} \frac{\mu(s)}{\tilde{\mu}(s)}=+\infty \tag{2.23}
\end{equation*}
$$

Let $N \in \mathbf{N}, N \geq 1$. We define

$$
h_{k}=2^{2^{N k}}, \quad \varepsilon_{k}=\mu\left(2^{-2^{N k}}\right), \quad \rho_{k}=\frac{2^{-2^{N k}} 2^{N k}}{\tilde{\mu}\left(2^{-2^{N k}}\right)} \quad \text { for all } \quad k \in \mathbf{N}
$$

and

$$
\eta_{k}= \begin{cases}1 & \text { for } \quad k=1 \\ \exp \left(-\frac{1}{2} \sum_{j=1}^{k-1} \varepsilon_{j} h_{j} \rho_{j}\right) & \text { for } \quad k \geq 2\end{cases}
$$

With these choices the condition (2.13) holds; easily, using also (2.22) and remarking that (2.23) implies

$$
\begin{equation*}
\lim _{k \rightarrow+\infty} \varepsilon_{k} h_{k} \rho_{k}=\lim _{k \rightarrow+\infty} \frac{2^{N k} \mu\left(2^{-2^{N k}}\right)}{\tilde{\mu}\left(2^{-2^{N k}}\right)}=+\infty, \tag{2.24}
\end{equation*}
$$

we obtain (2.14). If N is sufficiently large (2.15) is verified. Since the function $s \mapsto 2^{-2^{N s}} 2^{N s} / \mu\left(2^{-2^{N s}}\right)$ is decreasing on $[1,+\infty)$ we have

$$
\frac{\mu\left(2^{-2^{N(k+1)}}\right)}{2^{-2^{N(k+1)}} 2^{N(k+1)}} \geq \frac{\mu\left(2^{-2^{N k}}\right)}{2^{-2^{N k}} 2^{N k}}
$$

so that $\varepsilon_{k+1} h_{k+1} 2^{-N(k+1)} \geq \varepsilon_{k} h_{k} 2^{-N k}$, consequently

$$
\frac{\varepsilon_{k+1} h_{k+1}}{\varepsilon_{k} h_{k}} \geq 2^{N}
$$

and (2.16) follows for N is sufficiently large. For $k \geq 1$ we have $\eta_{k+1} / \eta_{k}=$ $e^{-\varepsilon_{k} h_{k} \rho_{k} / 2}$ and then (2.17) is a consequence of (2.24). The first part of (2.18) is deduced by (2.22) while the second is trivial. Let us finally come to (2.20) and (2.21). We have

$$
\left|\sum_{n=1}^{+\infty} n^{p} e^{-n \varepsilon_{k} h_{k} \rho_{k}}\right| \leq C_{p} e^{-\varepsilon_{k} h_{k} \rho_{k}}
$$

then

$$
\left|h_{k+1}^{p+2} \sum_{n=1}^{+\infty} n^{p} e^{-n \varepsilon_{k} h_{k} \rho_{k}}\right| \leq C_{p} 2^{(p+2) 2^{N(k+1)}} \exp \left(-2^{N k} \frac{\mu\left(2^{-2^{N k}}\right)}{\tilde{\mu}\left(2^{-2^{N k}}\right)}\right) .
$$

Since, by (2.23),

$$
\lim _{k \rightarrow+\infty}(\log 2)(p+2) 2^{N(k+1)}-2^{N k} \frac{\mu\left(2^{-2^{N k}}\right)}{\tilde{\mu}\left(2^{-2^{N k}}\right)}=-\infty \quad \text { for all } \quad p \in \mathbf{N},
$$

we obtain (2.21). Similarly, since the sequence $\left\{\eta_{k}\right\}$ is decreasing and $\eta_{k} \leq$ $e^{-\varepsilon_{k-1} h_{k-1} \rho_{k-1} / 2}$, we have

$$
h_{k+1}^{p} \max \left\{\eta_{k}, \eta_{k+1}\right\} \leq 2^{p 2^{N(k+1)}} \exp \left(-2^{(N(k-1)-1)} \frac{\mu\left(2^{-2^{N(k-1)}}\right)}{\tilde{\mu}\left(2^{\left.-2^{N(k-1)}\right)}\right)}\right)
$$

and (2.20) follows. The proof is complete.

A. Appendix

In this Appendix we prove Lemma 1. We will follow closely the proof of [2, Lemma 2] and for the reader's convenience we will point out the different parts. We need first the following lemma. The proof of this result can be found in [2, p. 502].

Lemma 2 ([2, Lemma 1]). For all $\varepsilon \in(0,1]$ there exist two real valued functions $\alpha_{\varepsilon}(\tau), w_{\varepsilon}(\tau)$ satisfying the following properties

$$
\left\{\begin{array}{l}
w_{\varepsilon}^{\prime \prime}(\tau)+\alpha_{\varepsilon}(\tau) w_{\varepsilon}(\tau)=0 \quad \text { on } \quad \mathbf{R}, \tag{A.1}\\
w_{\varepsilon}(0)=1, w_{\varepsilon}^{\prime}(0)=0
\end{array}\right.
$$

(A.2)

$$
\alpha_{\varepsilon}(\tau) \quad \text { is } 2 \pi-\text { periodic },
$$

$$
\alpha_{\varepsilon}(\tau)=1 \quad \text { for all } \quad \tau \in\left[\frac{-\pi}{3}, \frac{\pi}{3}\right]
$$

$$
\begin{array}{rll}
w_{\varepsilon}(\tau)=e^{-\varepsilon \tau} \tilde{w}_{\varepsilon}(\tau) & \text { with } & \tilde{w}_{\varepsilon}(\tau) \\
\left|\alpha_{\varepsilon}(\tau)-1\right| \leq M_{0} \varepsilon & \text { for all } \quad \tau \in \mathbf{R} \\
\left|\alpha_{\varepsilon}^{\prime}(\tau)\right| \leq \frac{1}{2} M_{0} \varepsilon & \text { for all } \quad \tau \in \mathbf{R} \tag{A.6}
\end{array}
$$

where M_{0} does not depend on ε. Moreover

$$
\begin{equation*}
\left|w_{\varepsilon}(\tau)\right| \leq 1 \quad \text { for all } \quad \tau \geq 0 \tag{A.7}
\end{equation*}
$$

$$
\begin{equation*}
\text { (A.9) } \quad\left|w_{\varepsilon}^{(p)}(\tau)\right| \leq M_{p} e^{-\varepsilon \tau} \quad \text { for all } \quad \tau \in \mathbf{R} \quad \text { and for all } \quad p \in \mathbf{N} \tag{A.8}
\end{equation*}
$$ where M_{p} does not depend on ε for all $p \in \mathbf{N}$.

Let $M=M_{0}$, where M_{0} is the constant which appears in Lemma 2. Let then $h_{1}, h_{2}, \varepsilon_{1}, \varepsilon_{2}, \rho, \eta_{1}, \eta_{2}$ satisfying the conditions (2.1) through (2.3). We claim that there exist two positive numbers ρ_{1}, ρ_{2} such that

$$
\begin{equation*}
\frac{\rho_{j} h_{j}}{2 \pi} \text { is a positive integer for } j=1,2 \tag{A.10}
\end{equation*}
$$

$$
\begin{gather*}
\rho_{j} \geq 4 \rho \quad \text { for } \quad j=1,2, \tag{A.11}\\
M \leq \rho_{1} / \rho_{2} \leq 2 M,
\end{gather*}
$$

and

$$
\begin{equation*}
\rho_{1}+\rho_{2} \leq 12 M \rho+4 \pi / h_{1} \tag{A.13}
\end{equation*}
$$

In fact, from (2.1) and (2.2), we have that

$$
\begin{equation*}
h_{2} \geq 2 M^{2} h_{1} \varepsilon_{1} / \varepsilon_{2} \geq 2 M^{2} h_{1} \tag{A.14}
\end{equation*}
$$

We take $\rho_{1}=8 M \rho+\theta_{1}$ with $\theta_{1} \in\left[0,2 \pi / h_{1}\right]$ and θ_{1} such that

$$
\frac{\rho_{1} h_{1}}{2 \pi}=\frac{8 M \rho h_{1}+\theta_{1} h_{1}}{2 \pi} \quad \text { is a positive integer. }
$$

Consequently $\rho_{1} \geq 4 \rho$. Then we take $\rho_{2}=\rho_{1} /(2 M)+\theta_{2}$ with $\theta_{2} \in\left[0,2 \pi / h_{2}\right]$ and θ_{2} such that

$$
\frac{\rho_{2} h_{2}}{2 \pi}=\frac{\rho_{1} h_{2}}{4 M \pi}+\frac{\theta_{2} h_{2}}{2 \pi}=\frac{8 M \rho h_{2}+\theta_{1} h_{2}+2 \theta_{2} M h_{2}}{4 M \pi} \quad \text { is a positive integer. }
$$

As a consequence $\rho_{2} \geq 4 \rho$. Moreover $\rho_{2} / \rho_{1}=1 /(2 M)+\theta_{2} / \rho_{1}$ and from (A.10) and (A.14) we deduce that

$$
\frac{\theta_{2}}{\rho_{1}} \leq \frac{2 \pi}{\rho_{1} h_{2}} \leq \frac{2 \pi}{2 M^{2} \rho_{1} h_{1}} \leq \frac{1}{2 M^{2}} .
$$

Recalling that $M \geq 1$ we obtain (A.12). Finally, again using the fact that $M \geq 1$ and $h_{1} \leq h_{2} / 2$, we have

$$
\rho_{1}+\rho_{2}=8 M \rho+\theta_{1}+4 \rho+\theta_{1} /(2 M)+\theta_{2} \leq 12 M \rho+4 \pi / h_{1} .
$$

We set

$$
\begin{equation*}
\bar{t}=t_{1}+\rho_{1}, \quad t_{2}=\bar{t}+\rho_{2}=t_{1}+\rho_{1}+\rho_{2} . \tag{A.15}
\end{equation*}
$$

We denote by I_{1}, I_{2}, I the intervals $\left[t_{1}, \bar{t}\right],\left[\bar{t}, t_{2}\right],\left[t_{1}, t_{2}\right]$ respectively. We define

$$
a(t)= \begin{cases}\alpha_{\varepsilon_{1}}\left(h_{1}\left(t-t_{1}\right)\right) & \text { for } \quad t \in I_{1}, \tag{A.16}\\ \alpha_{\varepsilon_{2}}\left(h_{2}\left(t_{2}-t\right)\right) & \text { for } \quad t \in I_{2},\end{cases}
$$

where α_{ε} is the function constructed in Lemma 2. By (A.2), (A.3), (A.10) and (A.15) we deduce that $a(t)=1$ for t in a neighborhood of t_{1}, \bar{t}, t_{2}; consequently $a \in \mathcal{C}^{\infty}(I)$ and the first part of (2.7) holds. More precisely (A.3) implies that

$$
\begin{equation*}
a(t)=1 \quad \text { for } \quad t \in J_{1} \cup J_{2}, \tag{A.17}
\end{equation*}
$$

where

$$
\begin{equation*}
J_{1}=\left[t_{1}, t_{1}+\frac{\pi}{3 h_{1}}\right], \quad J_{2}=\left[t_{2}-\frac{\pi}{3 h_{2}}, t_{2}\right] \tag{A.18}
\end{equation*}
$$

and a consequence of (A.10) is that $J_{j} \subseteq I_{j}$ for $j=1,2$.
Let us verify (2.9) and (2.10). (2.9) is a trivial consequence of (A.5) and (2.1), while from (A.6) and the concavity of μ we have that

$$
\begin{aligned}
|a|_{\mathcal{C}^{\mu}\left(I_{j}\right)} & =\sup _{t, \tau \in I_{j}, t \neq \tau} \frac{|a(t)-a(\tau)|}{\mu(|t-\tau|)} \\
& =\sup _{t, \tau \in I_{j},} \sup _{0<|t-\tau|<2 \pi / h_{j}} \frac{|a(t)-a(\tau)|}{\mu(|t-\tau|)} \\
& =\sup _{t, \tau \in I_{j},} \frac{|a(t)-a(\tau)|}{|t-\tau|} \frac{|t-\tau|<2 \pi / h_{j}}{\mu(|t-\tau|)} \\
& \leq \frac{1}{2} M \varepsilon_{j} h_{j} \sup _{t, \tau \in I_{j}, 0<|t-\tau|<2 \pi / h_{j}} \frac{|t-\tau|}{\mu(|t-\tau|)} \\
& \leq M \pi \frac{\varepsilon_{j}}{\mu\left(1 / h_{j}\right)} \quad \text { for } \quad j=1,2
\end{aligned}
$$

and (2.10) follows. Moreover

$$
\begin{equation*}
\left|\frac{a^{\prime}(t)}{a(t)}\right| \leq M \varepsilon_{j} h_{j} \quad \text { for all } \quad t \in I_{j}, j=1,2 \tag{A.19}
\end{equation*}
$$

Consider now a \mathcal{C}^{∞} real valued function β defined on \mathbf{R} such that, for all $t \in \mathbf{R}, 0 \leq \beta(t) \leq 1$ and

$$
\beta(t)= \begin{cases}0 & \text { for } \quad t \leq \frac{1}{4} \\ 1 & \text { for } \quad t \geq \frac{3}{4}\end{cases}
$$

We set

$$
\begin{equation*}
\beta_{1}(t)=\beta\left(\frac{3}{\pi}\left(h_{2}\left(t_{2}-t\right)\right)\right), \quad \beta_{2}(t)=\beta\left(\frac{3}{\pi}\left(h_{1}\left(t-t_{1}\right)\right)\right) . \tag{A.20}
\end{equation*}
$$

Let ψ_{1}, ψ_{2} be the solutions of

$$
\left\{\begin{array}{l}
\psi_{j}^{\prime \prime}(t)+h_{j}^{2} a(t) \psi_{j}(t)=0 \quad \text { on } \quad I, \tag{A.21}\\
\psi_{j}\left(t_{j}\right)=\eta_{j}, \psi_{j}^{\prime}\left(t_{j}\right)=0,
\end{array}\right.
$$

for $j=1,2$. We define

$$
\begin{equation*}
u(x, t)=\beta_{1} \psi_{1} e^{i h_{1} x}+\beta_{2} \psi_{2} e^{i h_{2} x} \tag{A.22}
\end{equation*}
$$

It is immediate to verify that u is \mathcal{C}^{∞} in t and 2π-periodic and analytic in x. Moreover u does not vanish identically on any open set of $I \times \mathbf{R}$, i.e. (2.6) holds. Since $a(t)=1$ for all $t \in J_{1} \cup J_{2}$ then

$$
\begin{equation*}
\psi_{j}(t)=\eta_{j} \cos \left(h_{j}\left(t-t_{j}\right)\right) \quad \text { for } \quad t \in J_{j}, j=1,2 \tag{A.23}
\end{equation*}
$$

and (2.8) follows.
We claim now that

$$
\begin{equation*}
u(t, x) \neq 0 \quad \text { for } \quad(t, x) \in\left(J_{1} \cup J_{2}\right) \times \mathbf{R} \tag{A.24}
\end{equation*}
$$

(A.24) will be deduced by the following facts:

$$
\begin{equation*}
\psi_{j}(t) \geq \frac{\eta_{j}}{2} \quad \text { for } \quad t \in J_{j}, j=1,2 \tag{A.25}
\end{equation*}
$$

and
(A.26) $\quad\left|\psi_{1}(t)\right| \leq \frac{\eta_{2}}{4} \quad$ for $\quad t \in I_{2}, \quad\left|\psi_{2}(t)\right| \leq \frac{\sqrt{2}}{4} \eta_{1} \quad$ for $\quad t \in I_{1}$.

In fact (A.25) and (A.26) will give

$$
|u(t, x)| \geq \frac{\eta_{1}}{8} \quad \text { for } \quad(t, x) \in J_{1} \times \mathbf{R}
$$

and

$$
|u(t, x)| \geq \frac{\eta_{2}}{4} \quad \text { for } \quad(t, x) \in J_{2} \times \mathbf{R}
$$

The inequalities of (A.25) are a consequence of (A.23). Let's estimate ψ_{1} on I_{2} and ψ_{2} on I_{1}. From (A.4) we have that

$$
\begin{align*}
\psi_{j}(t) & =\eta_{j} w_{\varepsilon_{j}}\left(h_{j}\left|t-t_{j}\right|\right) \\
& =\eta_{j} e^{-\varepsilon_{j} h_{j}\left|t-t_{j}\right|} \tilde{w}_{\varepsilon_{j}}\left(h_{j}\left|t-t_{j}\right|\right) \quad \text { for } \quad t \in I_{j} \tag{A.27}
\end{align*}
$$

and, recalling (A.10), (A.15) and the properties of the function w_{ε} as stated in Lemma 2, we deduce that

$$
\psi_{j}(\bar{t})=\eta_{j} e^{-\varepsilon_{j} h_{j} \rho_{j}}, \quad \psi_{j}^{\prime}(\bar{t})=0, \quad j=1,2
$$

Let's introduce the quantities

$$
e_{j}(t)=h_{j}^{2} \psi_{j}^{2}(t)+\left(\psi_{j}^{\prime}(t)\right)^{2}, \quad E_{j}(t)=h_{j}^{2} a(t) \psi_{j}^{2}(t)+\left(\psi_{j}^{\prime}(t)\right)^{2}
$$

Since $a(\bar{t})=1$ we have

$$
\begin{equation*}
e_{j}(\bar{t})=E_{j}(\bar{t})=h_{j}^{2} \eta_{j}^{2} e^{-2 \varepsilon_{j} h_{j} \rho_{j}}, \quad j=1,2 \tag{A.28}
\end{equation*}
$$

Using the fact that ψ_{j} solves the Cauchy problem (A.21) it is easy to obtain via differentiation and Gronwall's lemma that

$$
\begin{equation*}
e_{1}(t) \leq e_{1}(\bar{t}) e^{h_{1} \int_{t}^{t}|1-a(s)| d s} \quad \text { for } \quad t \geq \bar{t} \tag{A.29}
\end{equation*}
$$

and

$$
\begin{equation*}
E_{2}(t) \leq E_{2}(\bar{t}) e^{h_{1} \int_{t}^{\bar{t}} \frac{\left|a^{\prime}(s)\right|}{a(s)} d s} \quad \text { for } \quad t \leq \bar{t} \tag{A.30}
\end{equation*}
$$

Let now $t \in I_{2}$. Then from (A.28) and (A.29) we deduce

$$
e_{1}(t) \leq h_{1}^{2} \eta_{1}^{2} e^{-2 \varepsilon_{1} h_{1} \rho_{1}} e^{M h_{1} \varepsilon_{2} \rho_{2}}=h_{1}^{2} \eta_{1}^{2} e^{-h_{1}\left(2 \varepsilon_{1} \rho_{1}-M \varepsilon_{2} \rho_{2}\right)} .
$$

By (2.1) and (A.12) we have $\varepsilon_{1} \rho_{1} \geq M \varepsilon_{2} \rho_{2}$ and then

$$
\begin{equation*}
e_{1}(t) \leq h_{1}^{2} \eta_{1}^{2} e^{-\varepsilon_{1} h_{1} \rho_{1}} \quad \text { for all } \quad t \in I_{2} \tag{A.31}
\end{equation*}
$$

On the other hand if $t \in I_{1}$ we obtain from (A.19), (A.28) and (A.30)

$$
E_{2}(t) \leq h_{2}^{2} \eta_{2}^{2} e^{-2 \varepsilon_{2} h_{2} \rho_{2}+M h_{1} \varepsilon_{1} \rho_{1}}
$$

From (2.2) and (A.12) we have $\varepsilon_{2} h_{2} \rho_{2} \geq M h_{1} \varepsilon_{1} \rho_{1}$ and hence

$$
\begin{equation*}
E_{2}(t) \leq h_{2}^{2} \eta_{2}^{2} e^{-\varepsilon_{2} h_{2} \rho_{2}} \quad \text { for all } \quad t \in I_{1} \tag{A.32}
\end{equation*}
$$

Recalling (A.11), the inequality (A.31) gives

$$
\left|\psi_{1}(t)\right| \leq \frac{\sqrt{e_{1}(t)}}{h_{1}} \leq \eta_{1} e^{-h_{1} \varepsilon_{1} \rho_{1} / 2} \leq \eta_{1} e^{-2 h_{1} \varepsilon_{1} \rho} \quad \text { for } \quad t \in I_{2}
$$

but (2.3) implies that $4 \eta_{1} \leq \eta_{2} e^{h_{1} \varepsilon_{1} \rho}$, and then the first part of (A.26) follows. Similarly by (A.32)

$$
\left|\psi_{2}(t)\right| \leq \frac{\sqrt{2 E_{2}(t)}}{h_{2}} \leq \sqrt{2} \eta_{2} e^{-h_{2} \varepsilon_{2} \rho_{2} / 2} \leq \sqrt{2} \eta_{2} e^{-2 h_{2} \varepsilon_{2} \rho} \quad \text { for } \quad t \in I_{1}
$$

again by (2.3) we have $4 \eta_{2} \leq \eta_{1} e^{h_{2} \varepsilon_{2} \rho}$ and from this we obtain the second part of (A.26).

We finally define

$$
d(t, x)= \begin{cases}-\frac{u_{t t}(t, x)-a(t) u_{x x}(t, x)}{u(t, x)} & \text { for } \quad(t, x) \in\left(J_{1} \cup J_{2}\right) \times \mathbf{R}, \\ 0 & \text { for } \quad(t, x) \in\left(I \backslash\left(J_{1} \cup J_{2}\right)\right) \times \mathbf{R}\end{cases}
$$

Since $u_{t t}(t, x)-a(t) u_{x x}(t, x)$ is identically 0 in a neighborhood of $\left(I \backslash\left(J_{1} \cup\right.\right.$ $\left.\left.J_{2}\right)\right) \times \mathbf{R}$ and $u(t, x)$ is never 0 in $\left(J_{1} \cup J_{2}\right) \times \mathbf{R}$ the function d is \mathcal{C}^{∞} in $I \times \mathbf{R}$.

To end the proof of the lemma it remains to show (2.11) and (2.12). For $p=0(2.11)$ is a consequence of (A.7), (A.26) and (A.27). To prove (2.11) for $p \geq 1$ we argue as in [2, p. 508]. In particular for $j=1,2$ we have

$$
\begin{gather*}
\left|\left(\frac{d}{d t}\right)^{p} \beta_{j}(t)\right| \leq K_{p} h_{2}^{p} \quad \text { for } \quad t \in I \tag{A.33}\\
\left|\left(\frac{d}{d t}\right)^{p} \psi_{j}(t)\right| \leq \tilde{K}_{p} \eta_{j} h_{2}^{p} \quad \text { for } \quad t \in I \tag{A.34}
\end{gather*}
$$

where K_{p}, \tilde{K}_{p} does not depend on $h_{1}, h_{2}, \varepsilon_{1}, \varepsilon_{2}, \rho, \eta_{1}, \eta_{2}$ and t_{1}. (A.33) is trivial in view of (A.20). (A.34) is obtained from the following inequalities via [2, Lemma 3]:

$$
\begin{align*}
& \left|\left(\frac{d}{d t}\right)^{p} \psi_{1}(t)\right| \leq \begin{cases}L_{p} \eta_{1} h_{1}^{p} & \text { for } \\
L_{p} \eta_{1} h_{1}^{p} e^{\varepsilon_{1} h_{1} \rho_{1} / 2} & \text { for } \\
t \in I_{2},\end{cases} \tag{A.35}\\
& \left|\left(\frac{d}{d t}\right)^{p} \psi_{2}(t)\right| \leq \begin{cases}\sqrt{2} L_{p} \eta_{2} h_{2}^{p} e^{\varepsilon_{2} h_{2} \rho_{2} / 2} & \text { for } t \in I_{1}, \\
L_{p} \eta_{2} h_{2}^{p} & \text { for } t \in I_{2},\end{cases}
\end{align*}
$$

where $L_{0}=1$ and L_{p} does not depend on $h_{1}, h_{2}, \varepsilon_{1}, \varepsilon_{2}, \rho, \eta_{1}, \eta_{2}, t_{1}$. (A.35) and (A.36) can be obtained by induction on p (see [2, p. 509]).

Let us finally show (2.12). Recalling that $d(t, x)=0$ for t in a neighborhood of $I \backslash\left(J_{1} \cup J_{2}\right)$, it will be sufficient to estimate the derivatives of d for $t \in J_{1} \cup J_{2}$. Suppose first that $t \in J_{2}$. Setting

$$
\begin{equation*}
f_{1}(t)=2 \beta_{1}^{\prime}(t) \psi_{1}^{\prime}(t)+\beta_{1}^{\prime \prime}(t) \psi_{1}(t) \tag{A.37}
\end{equation*}
$$

we have

$$
d(t, x)=\frac{f_{1}(t) e^{i h_{1} x}}{\beta_{1}(t) \psi_{1}(t) e^{i h_{1} x}+\psi_{2}(t) e^{i h_{2} x}} .
$$

Since $\left|\psi_{1}(t) / \psi_{2}(t)\right| \leq 1 / 2$ for $t \in J_{2}$, we deduce from (A.37) that

$$
\begin{equation*}
d(t, x)=\sum_{n=1}^{+\infty} f_{1}(t)\left(-\beta_{1}(t) \psi_{1}(t)\right)^{n-1}\left(\psi_{2}(t)\right)^{-n} e^{-i n \tilde{h} x} \tag{A.38}
\end{equation*}
$$

where $\tilde{h}=h_{2}-h_{1}$. By (A.33), (A.35) and (A.37) we have

$$
\left|\left(\frac{d}{d t}\right)^{p} f_{1}\right| \leq \tilde{L}_{p} C \eta_{1} h_{2}^{p+2} e^{-\varepsilon_{1} h_{1} \rho_{1} / 2}
$$

where $\tilde{L}_{0}=1$. Again by (A.33) and (A.35) using [2, Lemma 3], we deduce that

$$
\left|\left(\frac{d}{d t}\right)^{p} \beta_{1} \psi_{1}\right| \leq K_{p} \eta_{1} h_{2}^{p} e^{-\varepsilon_{1} h_{1} \rho_{1} / 2}
$$

with $K_{0}=1$. Arguing similarly we have

$$
\begin{aligned}
\left|\left(\frac{d}{d t}\right)^{p}\left(\beta_{1} \psi_{1}\right)^{n-1}\right| & \leq \tilde{K}_{p}(n-1)^{p} \eta_{1}^{n-1} h_{2}^{p} e^{-(n-1) \varepsilon_{1} h_{1} \rho_{1} / 2} \\
\left|\left(\frac{d}{d t}\right)^{p} \psi_{2}^{-n}\right| & \leq \tilde{K}_{p} n^{p}\left(\frac{2}{\eta_{2}}\right)^{n} h_{2}^{p} \\
\left|\left(\frac{d}{d t}\right)^{p}\left(f_{1}\left(\beta_{1} \psi_{1}\right)^{n-1}\right)\right| & \leq \tilde{K}_{p} C n^{p} \eta_{1}^{n} h_{2}^{p+2} e^{-n \varepsilon_{1} h_{1} \rho_{1} / 2}
\end{aligned}
$$

with $\tilde{K}_{0}=1$; finally

$$
\begin{equation*}
\left|\left(\frac{d}{d t}\right)^{p}\left(f_{1}\left(\beta_{1} \psi_{1}\right)^{n-1} \psi_{2}^{-n}\right)\right| \leq \tilde{C}_{p} n^{p}\left(\frac{2 \eta_{1}}{\eta_{2}}\right)^{n} h_{2}^{p+2} e^{-n \varepsilon_{1} h_{1} \rho_{1} / 2} . \tag{A.39}
\end{equation*}
$$

By using (2.3) and (A.11) we obtain from (A.39) that

$$
\left|\left(\frac{d}{d t}\right)^{p}\left(f_{1}\left(\beta_{1} \psi_{1}\right)^{n-1} \psi_{2}^{-n}\right)\right| \leq \tilde{C}_{p} n^{p} h_{2}^{p+2} e^{-n \varepsilon_{1} h_{1} \rho}
$$

and since $|\tilde{h}| \leq h_{2}$ the inequality (2.12) follows from (A.38). We let to the interested reader to verify the similar estimate for $t \in J_{1}$. The proof of Lemma 1 is concluded.

Dipartimento di Matematica
Università di Pisa
Via F. Buonarroti, 2
56127 Pisa, Italy
e-mail: colombini@dm.unipi.it
Dipartimento di Scienze Matematiche
Università di Trieste
Via A. Valerio, 12/1
34127 Trieste, Italy
e-mail: delsanto@univ.trieste.it
\section*{References}

[1] F. Colombini, E. De Giorgi and S. Spagnolo, Sur les équations hyperboliques avec des coefficients qui ne dépendent que du temp, Ann. Sc. Norm. Sup. Pisa, 6 (1979), 511-559.
[2] F. Colombini, E. Jannelli and S. Spagnolo, Non-uniqueness in hyperbolic Cauchy problems, Ann. of Math., 126 (1987), 495-524.
[3] F. Colombini and N. Lerner, Hyperbolic operators with non-Lipschitz coefficients, Duke Math. J., 77 (1995), 657-698.
[4] D. Del Santo, A remark on non-uniqueness in the Cauchy problem for elliptic operators having non-Lipschitz coefficients, to appear in "Differential Operators and Mathematical Physics", V. Ancona and J. Vaillant eds., Marcel Dekker.
[5] A. Pliś, On non-uniqueness in Cauchy problem for an elliptic second order differential equation, Bull. Acad. Pol. Sci., 11 (1963), 95-100.
[6] S. Tarama, Local uniqueness in the Cauchy problem for second order elliptic equations with non-Lipschitzian coefficients, Publ. Res. Inst. Math. Sci., 33 (1997), 167-188.

