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A direct proof of Moriwaki’s inequality
for semistably fibered surfaces

and its generalization
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Introduction

Let X be a nonsingular projective surface over an algebraically closed field
k, Y a nonsingular projective curve over k, and let f : X → Y be a generically
smooth semistable curve of genus g ≥ 2. In the paper [4], Moriwaki proved an
inequality

(8g + 4) deg(f∗ωX/Y ) ≥ gδ0(X/Y ) +
[ g
2 ]∑

i=1

4i(g − i)δi(X/Y )

under the assumption that the characteristic of k is zero, where δi(X/Y ) is the
number of nodes of type i in all fibers.

The purpose of this paper is to give another proof of Moriwaki’s inequality
and generalize it. First of all, let us recall his original proof in order to contrast
ours with it.

Let us pretend that the smooth fine moduli space of stable curves with
the universal family π : C → Mg exists in order to make the explanation
simple. Let δi be the reduced divisor on Mg corresponding to the locus of the
singular fibers with nodes of type i. We set M

◦
g := Mg \ Sing(δ1 + · · ·+ δ[g/2]),

C◦ := π−1(M
◦
g) and π◦ := π|C◦ . By modifying the kernel of the evaluation

homomorphism

(π◦)∗
(
(π◦)∗

(
ωC◦/M

◦
g

))
→ ωC◦/M

◦
g

along singular fibers on M
◦
g, he constructed in [3] a reflexive sheaf F on C with

the following properties.
(a) F is locally free on C◦.
(b) F |π−1(y) = Ker(H0(ωπ−1(y)) ⊗k Oπ−1(y) → ωπ−1(y)) for each y corre-

sponding to a smooth curve.

Received May 14, 2001
∗Partially supported by JSPS Research Fellowships for Young Scientists.



�

�

�

�

�

�

�

�

486 Kazuhiko Yamaki

(c) disC/Mg
(F ) = (8g + 4)c1(π∗(ωC/Mg

)) − gδ0 −
∑[g/2]

i=1 4i(g − i)δi.
If F were locally free on whole C, then pulling it back to X by the induced

morphism X → C, we would obtain a locally free sheaf on E such that the
restriction of it to the geometric generic fiber coincides with the restriction of
Ker(f∗f∗ωX/Y → ωX/Y ) and that

dis(E) = (8g + 4) deg(f∗ωX/Y ) − gδ0(X/Y ) −
[ g
2 ]∑

i=1

4i(g − i)δi(X/Y ),

and hence, by the semistability of E on the generic fiber (cf. [5]) and the
relative Bogomolov inequality (cf. [3, Theorem 2.2.1]), we would reach the non-
negativity of dis(E). It is however not a locally free sheaf actually, so that
he used another kind of positivity on divisors, namely, weak positivity. It is
stronger than numerical effectivity, and has an advantage that the weak posi-
tivity of a divisor restricted to outside of a closed subset of codimension more
than one implies that of the divisor before restricted (cf. [4, Proposition 1.4]).
Accordingly, it is sufficient to show that disC◦/M

◦
g
(F |C◦) is weakly positive. In

fact, he invented big machinery of the Bogomolov-inequality-type (cf. [4, Corol-
lary 2.5]), which tells us that the semistability of a locally free sheaf on the fiber
at a point assure the weak positivity of the discriminant of it at that point. In
this way, he achieved the conclusion that disC/Mg

(F ) is weakly positive over Mg

(cf. [4, Theorem 3.2]), pulled it back to Y and obtained Moriwaki’s inequality.
As we have seen, he studied a sheaf and its discriminant divisor on the

moduli space. In contrast, we shall deal with a semistable curve f : X →
Y directly and shall modify Ker(f∗f∗ωX/Y → ωX/Y ) along all the singular
fibers. We shall in fact show the following theorem (cf. Theorem 2.1), which
immediately leads to Moriwaki’s inequality in characteristic zero.

Theorem A (char(k) ≥ 0). There exists a locally free sheaf E on X
such that the restriction of E to each smooth fiber coincides with the restriction
of Ker(f∗f∗ωX/Y → ωX/Y ) and

dis(E) = (8g + 4) deg(f∗ωX/Y ) − gδ0(X/Y ) −
[ g
2 ]∑

i=1

4i(g − i)δi(X/Y ).

Our new approach is advantageous to Moriwaki’s one in some aspects. One
is that it is elementary: we do not need big tool like that Moriwaki invented in
[4] or even the moduli space of curves. The other one is that we can make infor-
mation hiding behind complicated singular fibers contribute to the inequality.
We shall actually construct a locally free sheaf on X with the discriminant of
smaller degree than E in Theorem A, by further elementary transformations
along singular fibers (cf. Theorem 3.2). As corollaries, we shall also obtain
inequalities to which certain pairs of nodes contribute (cf. Corollaries 3.3 and
3.4). We cannot expect to obtain them through the former approach, for the
information of singular fibers corresponding to points outside M

◦
g is lost in the

nature of things.
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This paper is organized as follows. In Section 1, we list notations and
conventions that will be used in our argument. In Section 2, we give proof of
Theorem A. In Section 3, we construct a locally free sheaf that leads a sharper
inequality. We give remarks on the quotients of fibered surfaces by finite groups
in Appendix A.

Finally, the author would like to express sincere gratitude to Prof. Mori-
waki, who gave him useful comments (cf. Remark 3.12).

1. Notations, conventions and general remarks

Throughout this paper, we fix an algebraically closed field k.
1.1. When we write f : X → Y , X is a nonsingular projective surface over

k, Y is a nonsingular projective curve over k, and f is a generically smooth
semistable curve of genus g ≥ 2. We denote the set of critical values of f by
CV(f). For a given y ∈ CV(f), we denote by f : X → Y the base change of
f : X → Y by the canonical morphism Spec(OY,y) → Y and also denote the
special fiber of X → Y by Xy. We always let t ∈ OY stand for its local regular
parameter.

1.2. A nodal curve is a reduced connected projective curve over an alge-
braically closed field with at most ordinary double points as singularities. We
denote the arithmetic genus of a nodal curve Z by pa(Z). In this paper, “genus”
always means “arithmetic genus”.

1.3. We denote by Sing(Xy) the set of singular points of a closed fiber Xy

of f . We denote the type of x by tp(x). Further, we denote by Sing+(Xy)
the set of nodes of Xy of positive type. Moreover, we set δi(Xy), δ+(Xy) and
δi(X/Y ) as follows:

δi(Xy) := the number of the nodes of type i in Xy,

δ+(Xy) := the number of the nodes of positive type in Xy,

δi(X/Y ) :=
∑

y∈CV(f) δi(Xy).

1.4. We define the discriminant dis(E) of a locally free sheaf E of rank r
on a nonsingular projective surface over k to be the degree of a cycle class
2rc2(E) − (r − 1)c1(E)2.

1.5. We defined in [6] the notion of quasi-irreducible components of Xy,
which appear as the connected components of the partial normalization of Xy

at all the nodes of positive type. We denote by QIrr(Xy) the set of quasi-
irreducible components of Xy, and further we fix the following notations:

QIrr0(Xy) := {C ∈ QIrr(Xy) | pa(C) = 0},
QIrr+(Xy) := {C ∈ QIrr(Xy) | pa(C) > 0}.

Note that #(QIrr+(Xy)) = δ+(Xy) + 1. We usually regard a member of them
as a reduced vertical divisor of X or X .

1.6. We denote by ρ the canonical homomorphism f∗ωX/Y → H0
(
Xy, ωXy

)
.

We call the restriction of ρ to a subsheaf of f∗ωX/Y the canonical restriction.
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Since f is supposed to be semistable, ρ is surjective by the base-change theorem.
For any vertical divisor D on X , the vector space H0(D,ωD) can be regarded
as a subspace of H0(Xy, ωXy

) via

ωD
∼= ωX/Y(D −Xy)|D → ωX/Y |Xy

∼= ωXy
.

Note that H0(Xy, ωXy
) =

⊕
C∈QIrr+(Xy)H

0(C, ωC) through the above. For
the base locus of ωXy

and other facts, see [3, Proposition 2.1.3].
1.7. For a connected reduced vertical effective divisors C and D on X ,

we defined in [6] the distance from C to D, denoted by by dC(D). Roughly
speaking, it is the minimal number of nodes that we have to pass through when
we move from C to D. Note dC(D) = dD(C).

1.8. Let C be a connected reduced vertical effective divisor. A stepwise
extension of a section η0 ∈ H0(C, ωC) is a global section of ωX/Y satisfying the
following conditions:

(a) ρ(η) = η0,
(b) η ∈ f∗(ωX/Y(−∑

D∈Irr(Xy) dC(D)D)), where Irr(Xy) is the set of
irreducible components.

A stepwise extension of η0 exists by [6, Lemma 2.4].
1.9. Let α be a set of nodes of Xy such that Xy \ α has exactly two con-

nected components, and let Z1 and Z2 be the closures of the two connected
components. Let S be a non-empty subset of Xy with S � α. We assume that
S ⊂ Z1 or S ⊂ Z2. We define Z∗

α(S) by

Z∗
α(S) :=

{
Z1 if S ⊂ Z1,

Z2 if S ⊂ Z2.

Moreover, we put Zα(S) := Xy − Z∗
α(S).

2. First elementary transformation for Moriwaki’s inequality

In this section, we give proof of the following theorem. As we have said in
the introduction, Moriwaki’s inequality follows from it immediately.

Theorem 2.1 (char(k) ≥ 0). Let X be a nonsingular projective surface
over k, Y a nonsingular projective curve over k, and let f : X → Y be a
generically smooth semistable curve of genus g ≥ 2. Then there exists a locally
free sheaf E on X with the following property.

(a) E|f−1(y) = Ker(H0(f−1(y), ωf−1(y)) ⊗k Of−1(y) → ωf−1(y)) for any
y ∈ Y \ CV(f).

(b) dis(E) = (8g+ 4) deg(f∗ωX/Y )− gδ0(X/Y )−∑[g/2]
i=1 4i(g− i)δi(X/Y ).

Let us begin with preliminaries. For each y ∈ CV(f), we define divisors
By, SC , S∗

C and DC supported in Xy as follows. For each E ∈ QIrr0(Xy), let
m(E) be the minimum of the distances between E and the quasi-irreducible
components of positive genus. We put By :=

∑
E∈QIrr0(Xy)m(E)E, and for
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each C ∈ QIrr+(Xy), put

SC :=
∑

x∈Sing+(Xy)

Zx(C), S∗
C :=

∑
x∈Sing+(Xy)

Z∗
x(C), DC := S∗

C −By.

They are effective divisors. Here we note that there is another description of
SC and S∗

C . For each C,C ′ ∈ QIrr(Xy), we set

Sing+[C,C ′] := {x ∈ Sing+(Xy) | Zx(C) �= Zx(C ′)},
which is the set of nodes of positive type between two quasi-irreducible com-
ponents C and C ′, and put δ[C,C′]

+ := #(Sing+[C,C ′]). Then, we can see from
the definitions that

SC =
∑

C′∈QIrr(Xy)

δ
[C,C′]
+ C ′, S∗

C = δ+(Xy)Xy −
∑

C′∈QIrr(Xy)

δ
[C,C′]
+ C ′.(2.1.1)

For a given y ∈ CV(f), let us consider the localization f : X → Y at y
(cf. 1.1). For each C ∈ QIrr+(Xy), let FC be a direct summand of f∗ωX/Y
such that

(a) ρ(FC) = H0(C, ωC),
(b) FC ⊂ f∗(ωX/Y(−SC)).
Note that it is of rank h0(ωC) and that f∗ωX/Y =

⊕
C∈QIrr+(Xy) FC . It is

possible to take such FC ’s: for each C ∈ QIrr+(Xy), let FC be the submodule
generated by stepwise extensions of a basis of H0(C, ωC) for example. Then,
it is obvious that it is a direct summand and satisfies the conditions (a), and
taking account of the expression (2.1.1), we can see that it also satisfies (b).
Throughout this section, FC is supposed to satisfy those conditions.

Let us consider the following lemma before starting the proof.

Lemma 2.2. For any C ∈ QIrr+(Xy), the canonical homomorphism
FC ⊗OY OX → ωX/Y(−SC) induced by the evaluation homomorphism of ωX/Y
is surjective at x ∈ Xy if either x ∈ C or x lies on E ∈ QIrr0(Xy) such that
there is not a quasi-irreducible component of positive genus between C and E.

Proof. If x ∈ C, then our assertion follows from the base-point-freeness
of ωC (cf. [3, Proposition 2.1.3]). Let us consider the other case.

Let η ∈ FC be such a section that ρ(η), as a section of ωC , does not have
a zero at any point of C ∩ (Xy −C). Let div(η) be the divisor of zero of η as a
section of ωX/Y . It is sufficient to show that the support of an effective divisor
div(η) − SC is disjoint to E. We prove that by induction on δ

[C,E]
+ = dC(E).

Suppose that δ[C,E]
+ = 1. By the assumption on η, we can find that the support

of div(η)−SC does not contain E. On the other hand, letting l be the number
of nodes of Xy lying on E, and taking account of the adjunction formula, we
have l− 2 = (ωX/Y ·E) = (div(η)− SC ·E) + (SC ·E). Since (SC ·E) = l− 2,
we obtain (div(η) − SC ·E) = 0. Thus, we can see that div(η) − SC is disjoint
to E.
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Now suppose it true up to d − 1 for d > 1 and suppose δ[C,E]
+ = d. Let

E′ ∈ QIrr0(Xy) be the previous one to E with respect to the distance from C.
Since the support of div(η)− SC is disjoint to E′ by the induction hypothesis,
it does not contain E. On the other hand, we find that (div(η) − SC · E) = 0
in a similar way to the above. Hence div(η)− SC is disjoint to E, and thus we
obtain our assertion.

Let us start the proof of Theorem 2.1. Our goal is to construct a locally
free sheaf E with the required properties. To do that, we perform an elementary
transformation.

The local isomorphism (f∗f∗ωX/Y )|X ∼= ⊕
C∈QIrr+(Xy) FC ⊗OY OX gives

rise to a surjective homomorphism

f∗f∗ωX/Y →
⊕

y∈CV(f)

⊕
C∈QIrr+(Xy)

FC ⊗OY ODC
=: G.

Putting F to be its kernel, which is locally free, we have an exact sequence

0 −−−−→ F −−−−→ f∗f∗ωX/Y −−−−→ G −−−−→ 0.(2.2.1)

Composing the canonical inclusion of F into f∗f∗ωX/Y with the evaluation
homomorphism f∗f∗ωX/Y → ωX/Y , we obtain a homomorphism α : F →
ωX/Y . We define E as Ker(α). It satisfies the condition (a) in Theorem 2.1 as
G vanishes on the smooth fibers.

Here we claim the following.

Lemma 2.3. We have Im(α) = ωX/Y (−∑
y∈CV(f)B

′
y), where we put

B′
y := δ+(Xy)Xy −By.

Proof. Fix an arbitrary y ∈ CV(f). Note that B′
y = SC + DC . Thus,

it is easy to see Im(α) ⊂ ωX/Y (−∑
y∈CV(f)B

′
y) from the property (b) on FC

and the definitions of DC and B′
y. We prove the other inclusion. For each

x ∈ Xy, let C ∈ QIrr+(Xy) be one of the nearest components, that is, a quasi-
irreducible component of positive genus on which x lies, or one of the nearest
components to an E ∈ QIrr0(Xy) on which x lies. It is sufficient to show
that the homomorphism FC ⊗Y OX → ωX/Y(−SC) induced by the evaluation
homomorphism is surjective at x, which is nothing more than Lemma 2.2.

By the lemma above, we have an exact sequence

0 −−−−→ E −−−−→ F −−−−→ ωX/Y (−∑
y∈CV(f)B

′
y) −−−−→ 0,(2.3.1)

and the local freeness of E follows from that of F and ωX/Y (−∑
y∈CV(f)B

′
y).

Now we only have to calculate the discriminant of E. From the exact
sequences (2.2.1) and (2.3.1), we have

ch(E) = f∗ ch(f∗ωX/Y ) − ch(G)

− ch(ωX/Y )
∏

y∈CV(f)

ch(OX(By)) ch(OX(−δ+(Xy)Xy)).
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Taking account that FC ⊗OY ODC
is free ODC

-module of rank pa(C), we find

ch(G) =
∑

y∈CV(f)

∑
C∈QIrr+(Xy)

pa(C)([X] − ch(OX(−DC)),

and further, direct calculations tell us

ch(OX(−DC)) = [X] + (By − S∗
C) +

1
2
(By

2) +
1
2
(S∗

C
2) − (By · S∗

C).

On the other hand, we can see that

ch(ωX/Y )
∏

y∈CV(f)

ch(OX(By)) = [X] +


c1(ωX/Y ) +

∑
y∈CV(f)

By




+
1
2
(c1(ωX/Y )2)

+
∑

y∈CV(f)

(
1
2
(By

2) + (c1(ωX/Y ) ·By)
)
.

Using these equalities, we can straightforwardly obtain

ch(E) = (g − 1) · [X] + f∗c1(f∗ωX/Y ) − c1(ωX/Y )

+
∑

y∈CV(f)


(g − 1)By + δ+(Xy)Xy −

∑
C∈QIrr+(Xy)

pa(C)S∗
C




− 1
2
(c1(ωX/Y )2) +

∑
y∈CV(f)

(
g − 1

2
(By

2) + δ+(Xy)(c1(ωX/Y ) ·Xy)

− (c1(ωX/Y ) ·By) +
∑

C∈QIrr+(Xy)

(
pa(C)

2
(S∗

C
2) − pa(C)(By · S∗

C)
))

,

and thus,

dis(E) = g(ωX/Y · ωX/Y ) + (4 − 4g) deg(f∗ωX/Y )

−
∑

y∈CV(f)

4g(g − 1)δ+(Xy)

+
∑

y∈CV(f)








 ∑

C∈QIrr+(Xy)

pa(C)S∗
C




2



− (g − 1)
∑

C∈QIrr+(Xy)

pa(C)(S∗
C

2)




+
∑

y∈CV(f)

2


ωX/Y ·

∑
C∈QIrr+(Xy)

pa(C)S∗
C


 .

(2.3.2)

Here we use the following to carry on the calculation.
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Claim 2.3.3. (S∗
C · S∗

C′) = −δ+(Xy) + 2δ[C,C′]
+ .

Proof. Taking account that Z∗
x(C ′) = Zx(C) for any x ∈ Sing+[C,C ′],

we have

(S∗
C · S∗

C′) =


 ∑

x∈Sing+(Xy)

Z∗
x(C) ·

∑
x∈Sing+[C,C′]

Zx(C)




+


 ∑

x∈Sing+(Xy)

Z∗
x(C) ·

∑
x∈Sing+(Xy)\Sing+[C,C′]

Z∗
x(C)


 .

We can see (Z∗
x(C) · Zx′(C)) = εx,x′ and (Z∗

x(C) · Z∗
x′(C)) = −εx,x′ , where

εx,x′ is 1 or 0 according as x = x′ or x �= x′ respectively. Thus, we obtain
(S∗

C · S∗
C′) = −δ+(Xy) + 2δ[C,C′]

+ as desired.

Expanding it and using Claim 2.3.3, we find



 ∑

C∈QIrr+(Xy)

pa(C)S∗
C




2

 = −g2δ+(Xy)

+
∑

C,C′∈QIrr+(Xy)

2pa(C)pa(C ′)δ[C,C′]
+ .

Further, we have∑
C,C′∈QIrr+(Xy)

2pa(C)pa(C ′)δ[C,C′]
+

=
∑

x∈Sing+(Xy)


 ∑

C,C′∈QIrr+(Xy) with Zx(C) �=Zx(C′)

2pa(C)pa(C ′)




=
∑

x∈Sing+(Xy)

4 tp(x)(g − tp(x))

=
[ g
2 ]∑

i=1

4i(g − i)δi(Xy).

Thus, we obtain



 ∑

C∈QIrr+(Xy)

pa(C)S∗
C




2

 = −g2δ+(Xy) +

[ g
2 ]∑

i=1

4i(g − i)δi(Xy).(2.3.4)

We can also immediately see by Claim 2.3.3

(g − 1)
∑

C∈QIrr+(Xy)

pa(C)(S∗
C

2) = −(g2 − g)δ+(Xy).(2.3.5)
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Finally, by the adjunction formula,

(ωX/Y · S∗
C) = 2

∑
x∈Sing+(Xy)

pa(Z∗
x(C)) − δ+(Xy).

Since∑
C∈QIrr+(Xy)

pa(C)pa(Z∗
x(C)) = tp(x)2 + (g − tp(x))2 = g2 − 2 tp(x)(g − tp(x))

for each x ∈ Sing+(Xy), we find

2
∑

C∈QIrr+(Xy)

pa(C)(ωX/Y · S∗
C)

= 4
∑

x∈Sing+(Xy)

(g2 − 2 tp(x)(g − tp(x))) − 2gδ+(Xy)

= (4g2 − 2g)δ+(Xy) −
[ g
2 ]∑

i=1

8i(g − i)δi(Xy).

(2.3.6)

Taking account of (2.3.4) through (2.3.6) and Noether’s formula, we obtain
from (2.3.2)

dis(E) = (8g + 4) deg(f∗ωX/Y ) − gδ0(X/Y ) −
[ g
2 ]∑

i=1

4i(g − i)δi(X/Y )

and thus we see that E has the expected discriminant.

3. Generalization of Moriwaki’s inequality

In this section, we shall modify E in Theorem 2.1 and prove a generalized
inequality. First of all, we formulate what will contribute the inequality.

Let f : X → Y be a semistable curve as before. We consider a family Py of
sets of two nodes of type 0 of Xy with the following property: Xy\σ has exactly
two connected components for any σ ∈ Py, and the two nodes in τ ∈ Py \ {σ}
belong to the same connected component of Xy \ σ. It is easy to see that if
σ ∈ Py, then both the nodes belong to the same quasi-irreducible component.
We say such Py to be favorably arranged. Further we put P :=

⋃
y∈CV(f) Py

and call it a favorably arranged family of f . We fix such a set Py and hence P
throughout this section.

We can assign a number j to each σ ∈ Py in the following way. Let
ν : (Xy)σ → Xy be the partial normalization at the nodes in σ. Then (Xy)σ

has exactly two connected components, and we put j to be the minimum of the
arithmetic genera of them. We call this number j the subtype of σ. For each
j with 1 ≤ j ≤ [(g − 1)/2], we set ξj(Py) to be the number of pairs in Py of
subtype j and we set ξ0(Py) to be the number of nodes of type 0 not in any
pair in Py of positive subtype. Note that δ0(Xy) = ξ0(Py)+2

∑[(g−1)/2]
j=1 ξj(Py).

Further we put ξj(P) :=
∑

y∈CV(f) ξj(Py).
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Example 3.1 (char(k) ≥ 0). Suppose that the generic fiber is a hyper-
elliptic curve. Let ι : X → X be the hyperelliptic involution over Y and let
π : X → X/〈ι〉 be the quotient. Let x ∈ Xy be a node of type 0 not fixed by
ι. Then π(x) is also a node of (X/〈ι〉)y and hence (X/〈ι〉)y \ π(x) is discon-
nected by Proposition A.2. Thus, we find that Xy \ {x, ι(x)} has exactly two
connected components. We can see that the set Phyp

y of all such pairs {x, ι(x)}
is favorably arranged. Thus, we have a canonical favorably arranged family in
the hyperelliptic case, and we simply write ξj(X/Y ) for ξj(Phyp).

We will give proof of the following theorem.

Theorem 3.2 (char(k) ≥ 0). Let X be a nonsingular projective surface
over k, Y a nonsingular projective curve over k and f : X → Y be a generically
smooth semistable curve of genus g ≥ 2. Let P be a favorably arranged family
of f . Then, there exists a locally free sheaf Ẽ with the following properties.

(a) Ẽ|f−1(y) = Ker(H0(f−1(y), ωf−1(y)) ⊗k Of−1(y) → ωf−1(y)) for any
y ∈ Y \ CV(f).

(b)

dis(Ẽ) = (8g + 4) deg(f∗ωX/Y ) − gξ0(P)

−
[(g−1)/2]∑

j=1

2(j + 1)(g − j)ξj(P) −
[g/2]∑
i=1

4i(g − i)δi(X/Y ).

Taking account of the semistability of Ẽ on the geometric generic fiber and
Bogomolov’s instability theorem, we can immediately obtain the following.

Corollary 3.3 (char(k) = 0). With the same notation, we have

(8g + 4) deg(f∗ωX/Y ) ≥ gξ0(P) +
[ g−1

2 ]∑
j=1

2(j + 1)(g − j)ξj(P)

+
[ g
2 ]∑

i=1

4i(g − i)δi(X/Y ).

If the generic fiberXK is hyperelliptic, then E|XK
is a pull-back of a locally

free sheaf OP1(−1)⊕(g−1) on P1 by the double covering and hence is strongly
semistable. Accordingly, by [4, Corollary 7.4] and Example 3.1, we obtain the
following inequality.

Corollary 3.4 (char(k) ≥ 0). With the same notation, if f is hyperel-
liptic, then

(8g + 4) deg(f∗ωX/Y ) ≥ gξ0(X/Y ) +
[ g−1

2 ]∑
j=1

2(j + 1)(g − j)ξj(X/Y )

+
[ g
2 ]∑

i=1

4i(g − i)δi(X/Y ).
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Although it is known in [1] that the equality holds in char(k) = 0, it
seems remarkable that the inequality holds even in char(k) = 2. Here it should
be remarked that we have to depend on Moriwaki’s theory in [4] to obtain
Corollary 3.4 in positive characteristic, for we do not know the Bogomolov
instability theorem in that case.

The proof of Theorem 3.2 occupies the rest of this section.

3.1. Preliminaries
We introduce notation and terminology that will be used in the proof first,

and prove preliminary results next.
Let us begin with the preparation of notations and the introduction of

notions on subsets of Py. Let us consider a set Py ∪Sing+(Xy) of sets of nodes
of Xy. Let b be a nonsingular point of Xy. For any α ∈ Py ∪ Sing+(Xy), the
space Xy \ α consists of exactly two connected components, and one and only
one of them contains b. From now on, we fix a nonsingular point b of Xy and
simply write Zα and Z∗

α for Zα({b}) and Z∗
α({b}) respectively (cf. 1.9 for the

notations). We further put Aσ (resp. A∗
σ) be the reduced subscheme or divisor

of which support is Zσ ∩Cσ (resp. Z∗
σ ∩Cσ), where Cσ is the quasi-irreducible

component containing σ ∈ Py.
Once such a base point b is fixed, we can introduce the following notion.

Definition 3.5. Let S be a subset of Py ∪ Sing+(Xy). A subset T of
S is called an admissible subset of S, or said to be S-admissible, if it has the
following property: for any α ∈ S, if Zα ⊂ Zβ for some β ∈ T , then α ∈ T .
When there is no danger of confusion, we simply say “admissible”.

For each σ ∈ Py, a set Γ̃σ :=
{
α ∈ Py ∪ Sing+(Xy) | Zα ⊂ Zσ

}
is an

important subset of Py ∪ Sing+(Xy). For each C ∈ QIrr+(Xy), we denote
{σ ∈ Py | σ ⊂ C} by Py ∩ C and Py \ (Py ∩ C) by Py \ C for simplicity. For
any C ∈ QIrr+(Xy) and for each σ ∈ Py ∩C, Γσ := {τ ∈ Py ∩ C | Zτ � Zσ} is
also an important subset of Py ∩ C. They will often appear in what follows.

In Section 2, we denoted by FC a certain kind of direct summand of
f∗ωX/Y . We also let the same symbol stand for a direct summand like that,
but we require stronger condition of it in this section: for any C ∈ QIrr+(Xy),
FC is a direct summand of f∗ωX/Y such that

(a) ρ(FC) = H0(C, ωC),
(b) FC ⊂ f∗(ωX/Y(−∑

α∈(Py\C)∪Sing+(Xy) Zα(C))).
Such FC does exist since

∑
C′∈Irr(Xy) dC(C ′)C ′ − ∑

α∈(Py\C)∪Sing+(Xy) Zα(C)
is an effective divisor (cf. Section 2). We call the above properties for a direct
summand of f∗ωX/Y the Py-stepwise property with respect to C. From now on,
FC is to have the Py-stepwise property with respect to C.

Finally, the following notion will be used in many steps of proofs of later
assertions.

Definition 3.6. Let S be an admissible subset of Py ∪ Sing+(Xy). An
element α ∈ Py ∪ Sing+(Xy) is said to be S-extremal if α ∈ S and there is not
an element β ∈ S with Zβ � Zα.
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In order to prove Theorem 3.2, we further perform elementary transforma-
tions of E in Theorem 2.1. In the case of Section 2, we did not require special
property of FC other than the (weaker) stepwise property, but for further mod-
ification, we have to chose a suitable FC equipped with appropriate subsheaves
in addition (cf. Proposition 3.8). The following lemma helps us to construct
such ones.

Lemma 3.7. Let us fix any C ∈ QIrr+(Xy) and any σ ∈ Py ∩ C. For
any η ∈ FC that vanishes along Zσ, there exists a section

tξ ∈

t


 ∑

D∈QIrr+(Xy) with D⊂Zσ

FD + FC







∩ f∗

ωX/Y


−

∑
α∈(Py\C)∪Sing+(Xy)

Zα(C)







such that

η − tξ ∈ f∗


ωX/Y


−

∑
α∈Γ̃σ

Zα







∩ f∗

ωX/Y


−

∑
α∈(Py\C)∪Sing+(Xy)

Zα(C)





 .

Proof. Let η′ be a stepwise extension of ρ(η) ∈ H0(A∗
σ, ωA∗

σ
) (cf. Section

1). Since η − η′ ∈ tf∗ωX/Y and f∗ωX/Y =
⊕

D∈QIrr+(Xy) FD, there exist
sections

ξ ∈
∑

D∈QIrr+(Xy) with D⊂Zσ

FD + FC

and

ξ′ ∈
∑

D∈QIrr+(Xy) with D∩Zσ=∅
FD

such that η = η′ + tξ + tξ′. We have

η − tξ ∈ f∗


ωX/Y


−

∑
α∈((Py\C)∪Sing+(Xy))\Γ̃σ

Zα(C)







as both η and tξ sit in it by the Py-stepwise property of such FD’s. On the
other hand, we have

η − tξ = η′ + tξ′ ∈ f∗


ωX/Y


−

∑
α∈Γ̃σ

Zα






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as both η′ and tξ′ sit in it. Taking account that Zα = Zα(C) for any α ∈
((Py \ C) ∪ Sing+(Xy)) ∩ Γ̃σ, we find consequently

η − tξ ∈ f∗


ωX/Y


−

∑
α∈Γ̃σ

Zα







∩ f∗

ωX/Y


−

∑
α∈((Py\C)∪Sing+(Xy))\Γ̃σ

Zα(C)







= f∗


ωX/Y


−

∑
α∈Γ̃σ

Zα







∩ f∗

ωX/Y


−

∑
α∈(Py\C)∪Sing+(Xy)

Zα(C)





 .

Finally, we have

tξ ∈ f∗


ωX/Y


−

∑
α∈(Py\C)∪Sing+(Xy)

Zα(C)







as both η and η − tξ sit in it. Thus, we obtain our lemma.

The following result plays a key role in our performing the elementary
transformations.

Proposition 3.8. For any C ∈ QIrr+(Xy), there exist a direct sum-
mand FC of f∗ωX/Y , direct summands Fσ and Eσ of FC for each σ ∈ Py ∩C,
and direct summand Eτ,σ of FC for any (τ, σ) with τ ∈ Γσ, satisfying the fol-
lowing conditions.

(a) FC has the Py-stepwise property with respect to C.
(b) ρ(Fσ) = H0(A∗

σ, ωA∗
σ
) and Fσ ⊂ f∗(ωX/Y(−∑

α∈Γ̃σ
Zα)), and hence

rk(Fσ) = pa(A∗
σ).

(c) FC = Eσ ⊕Fσ, Eσ = Eτ ⊕ Eτ,σ and Fτ = Eτ,σ ⊕Fσ.

Proof. LetM be a maximal admissible subset of Py∩ C with the following
property: there exist a direct summand F (M) of f∗ωX/Y , direct summands
F (M)

σ and E(M)
σ of F (M) for each σ ∈ M , and those E(M)

τ,σ for each σ, τ ∈ M
with τ ∈ Γσ satisfying the following conditions.

(M -a) F (M) has the Py-stepwise property with respect to C.
(M -b) ρ(F (M)

σ ) = H0(A∗
σ, ωA∗

σ
) and F (M)

σ ⊂ f∗(ωX/Y(−∑
α∈Γ̃σ

Zα)) for
any σ ∈M .

(M -c) For any σ ∈ M , we have F (M) = E(M)
σ ⊕ F (M)

σ and if τ ∈ Γσ ∩M ,
then F (M)

τ = E(M)
τ,σ ⊕F (M)

σ and E(M)
σ = E(M)

τ ⊕ E(M)
τ,σ .
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It is easy to see that M �= ∅ if Py ∩ C �= ∅, hence we may assume M �= ∅.
Suppose that M �= Py ∩ C. Let υ ∈ (Py ∩ C) \M be such an element that
M ′ := {υ} ∪M is an admissible subset of Py ∩ C, and let µ ∈ M be the M -
extremal element for υ. Since F (M) = E(M)

µ ⊕ F (M)
µ , ρ(F (M)

µ ) = H0(A∗
µ, ωA∗

µ
)

and υ ∈ Γµ, we can take a basis {upa(A∗
µ)+1, . . . , upa(C)} of E(M)

µ such that

ρ
(
F (M)

µ + OYupa(A∗
µ)+1 + · · · + OYupa(A∗

υ)

)
= H0(A∗

υ, ωA∗
υ
) ⊂ H0(C, ωC),

or equivalently such that any of upa(A∗
µ)+1, . . . , upa(A∗

υ) vanishes along Zυ as a
global section of ωX/Y . By virtue of Lemma 3.7, for each j with pa(A∗

µ) + 1 ≤
j ≤ pa(A∗

υ) there exist u′j ∈ F (M) and

tvj ∈

t ∑

D∈QIrr+(Xy) with D⊂Zυ

FD




∩ f∗

ωX/Y


−

∑
α∈(Py\C)∪Sing+(Xy)

Zα(C)





 ,

where FD is an arbitrary direct summand of f∗ωX/Y with the Py-stepwise
property with respect to D, such that

uj − tu′j − tvj ∈ f∗


ωX/Y


−

∑
α∈Γ̃υ

Zα







∩ f∗

ωX/Y


−

∑
α∈(Py\C)∪Sing+(Xy)

Zα(C)





 .

Since F (M) = E(M)
µ ⊕F (M)

µ and since

F (M)
µ ⊂ f∗


ωX/Y


−

∑
α∈Γ̃υ

Zα







∩ f∗

ωX/Y


−

∑
α∈(Py\C)∪Sing+(Xy)

Zα(C)







by (M -a) and (M -b), we can take each u′j out of E(M)
µ , and hence we replace

each uj by uj − tu′j to obtain a new basis of E(M)
µ . Thus, we may assume that
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we are given a basis {upa(A∗
µ)+1, . . . , upa(C)} of E(M)

µ such that

uj − tvj ∈ f∗


ωX/Y


−

∑
α∈Γ̃υ

Zα





(3.8.1)

∩ f∗

ωX/Y


−

∑
α∈(Py\C)∪Sing+(Xy)

Zα(C)







for any j with pa(A∗
µ) + 1 ≤ j ≤ pa(A∗

υ).
Now, we put

ũj :=

{
uj − tvj if pa(A∗

µ) + 1 ≤ j ≤ pa(A∗
υ),

uj if pa(A∗
υ) + 1 ≤ j ≤ pa(C).

We define a homomorphism T ′ : E(M)
µ → f∗ωX/Y by T ′(uj) = ũj , and define T

by

T := T ′ ⊕ I : E(M)
µ ⊕F (M)

µ → f∗ωX/Y ,

where I is the canonical inclusion map. Then, T is an isomorphism onto its
image Im(T ), to be which we defined F (M ′). Since F (M) is a direct summand of
f∗ωX/Y with the Py-stepwise property and T is the canonical inclusion modulo

t ∑
D∈QIrr+(Xy) with D⊂Zυ

FD




∩ f∗

ωX/Y


−

∑
α∈(Py\C)∪Sing+(Xy)

Zα(C)





 ,

F (M ′) is also a direct summand of f∗ωX/Y with the Py-stepwise property.

Now we put F (M ′)
σ := T (F (M)

σ ), E(M ′)
τ,σ := T (E(M)

τ,σ ) and E(M ′)
σ := T (E(M)

σ )
for those σ, τ ∈M , put

E(M ′)
υ,µ := OY ũpa(A∗

µ)+1 + · · · + OY ũpa(A∗
υ),

E(M ′)
υ,σ := E(M ′)

υ,µ + E(M ′)
µ,σ ,

F (M ′)
υ := E(M ′)

υ,µ + F (M ′)
µ ,

and define E(M ′)
υ to be any direct summand of E(M ′)

µ complementary to E(M ′)
υ,µ . It

is not difficult to see that they satisfies the condition (M ′-c) from the definitions.
We check the condition (M ′-b).

In the case of Zµ ⊂ Zσ, since F (M)
σ is a subsheaf of F (M)

µ and T |F(M)
µ

is

the canonical inclusion on F (M)
µ , we have F (M ′)

σ = F (M)
σ . Thus F (M ′)

σ has the
properties in (M ′-b).
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Let us look at F (M)
σ with Zµ ∩ Zσ = ∅. In this case, taking account that

Zυ ∩Zσ = ∅, we find that Zα(D) = Zα for any D ∈ QIrr+(Xy) contained in Zυ

and for any α ∈ Γ̃σ. Hence we see
∑

α∈(Py\D)∪Sing+(Xy) Zα(D) − ∑
α∈Γ̃σ

Zα is
an effective divisor for such D, and that implies

t ∑
D∈QIrr+(Xy) with D⊂Zυ

FD


 ⊂ f∗


ωX/Y


−

∑
α∈Γ̃σ

Zα





 .

Therefore T is the canonical inclusion modulo

(tf∗ωX/Y) ∩ f∗

ωX/Y


−

∑
α∈Γ̃σ

Zα







∩ f∗

ωX/Y


−

∑
α∈(Py∩C)∪Sing+(Xy)

Zα(C)







and hence ρ(F (M ′)
σ ) = H0(A∗

σ, ωA∗
σ
) and F (M ′)

σ remains in the submodule
f∗(ωX/Y(−∑

α∈Γ̃σ
Zα)). Thus F (M ′) has the properties in (M ′-b).

Finally, from the definition of ũj ’s and (3.8.1), it is easy to check that
F (M ′)

υ has the properties in (M ′-b).
Thus, we have constructed those subsheaves which satisfy the required

conditions for M ′, which contradicts to the maximality of M .

In what follows, we always assume that FC is that in Proposition 3.8 and
use the notations in it.

3.2. Second elementary transformations
Now we are ready to carry out further elementary transformations to con-

struct a locally free sheaf Ẽ in Theorem 3.2. As the first step, we construct
a sequence of locally free sheaves and homomorphisms, fixing our eyes upon a
given quasi-irreducible component.

Fix an arbitrary C ∈ QIrr+(Xy). Put m := #Py ∩ C and let

∅ = P0 ⊂ P1 ⊂ · · · ⊂ Pm = Py ∩ C
be a sequence of admissible subsets of Py ∩ C with #Pi = i for every i. We
denote the element of Pi \ Pi−1 by σi. Let FC be that in Proposition 3.8.
We construct inductively the following things: locally free subsheaves HPi

of
FC ⊗OY OX for any i with 0 ≤ i ≤ m having the following Property 3.9,
and surjective homomorphisms φPi

from HPi−1 to a free OZσi
-module of rank

pa(Aσi
) + 1 for any i with 1 ≤ i ≤ m, such that Ker(φPi

) = HPi
.

Property 3.9. For a given σ ∈ (Py ∩ C) \ Pi, let τ1, . . . , τl be the
elements of Pi such that Zσ � Zτl

� · · · � Zτ1 and {τ1, . . . , τl} = {τ ∈ Pi |
Zσ � Zτ}. If l �= 0, there exists an open neighborhood Uσ of Zσ such that

HPi
|Uσ

=
(
tlEτl

+ tl−1Eτl,τl−1 + · · · + tEτ2,τ1 + Fτ1

) ⊗OY OUσ
.
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First we put HP0 := FC ⊗OY OX , and we can see that it has the property
(since the condition is empty). Suppose that we have HPi

with the Property
3.9 and φPi

with the required property up to i. If i < m, we construct the
(i + 1)-th ones in the following way. Let τ1, . . . , τl be those in 3.9 for σi+1

and let Uσi+1 be an open neighborhood of Zσi+1 as in 3.9 for Pi. By the
conditions on Eτj+1,τj

’s and Fτ1 in Proposition 3.8, we find that for any η ∈
tlEτl

+ tl−1Eτl,τl−1 + · · · + tEτ2,τ1 + Fτ1 , the rational section η/tl of ωX/Y is
regular around Zσi+1 , and hence we may assume that it is regular over Uσi+1

by shrinking it if necessary. That implies, by the projection formula, there
exists a vertical effective divisor D disjoint to Zσi+1 such that

HPi
|Uσi+1

⊂ f∗(ωX/Y(D)) ⊗OY OUσi+1
(−l(Xy ∩ Uσi+1)).

By the natural homomorphisms HPi
→ HPi

|Uσi+1
and

f∗(ωX/Y(D)) ⊗OY OUσi+1
(−l(Xy ∩ Uσi+1))

→ H0(Zσi+1 , ωX/Y |Zσi+1
) ⊗k OUσi+1

(−l(Xy ∩ Uσi+1))|Zσi+1
,

we have a homomorphism

HPi
→ H0(Zσi+1 , ωX/Y |Zσi+1

) ⊗k OUσi+1
(−l(Xy ∩ Uσi+1))|Zσi+1

.

Moreover, we can see that the image of the homomorphism

H0(Zσi+1 , ωX/Y |Zσi+1
) → H0(Aσi+1 , ωX/Y |Aσi+1

)

coincides with H0(Aσi+1 , ωAσi+1
(σi+1)) which is regarded in a canonical way

as a linear subspace of H0(Aσi+1 , ωX/Y |Aσi+1
). Taking account that OZσi+1

∼=
OUσi+1

(−l(Xy ∩ Uσi+1))|Zσi+1
, we thus define a homomorphism

φPi+1 : HPi
→ H0(Aσi+1 , ωAσi+1

(σi+1)) ⊗k OZσi+1
.

We put HPi+1 := Ker(φPi+1). Let us show that it has the property 3.9 and that
φPi+1 is surjective. We fix any σ ∈ (Py ∩ C) \ Pi+1.

If Zσ ∩ Zσi+1 = ∅, then φPi+1 is a trivial homomorphism around Zσ, and
hence HPi+1 obviously has the required property.

Let us consider the case of Zσ ⊂ Zσi+1 . In this case, we may handle them
only over Uσi+1 and we put ψ := φPi+1 |Uσi+1

for simplicity. We note that
Eτl

= Eσi+1 ⊕ Eσi+1,τl
first. From the definition of φPi+1 and the conditions on

Eσi+1,τl
, Eτj+1,τj

’s and Fτ1 again, we can see that

ψ((tlEσi+1,τl
+ tl−1Eτl,τl−1 + · · · + tEτ2,τ1 + Fτ1) ⊗OY OUσi+1

) = 0.

Let us consider the restriction ψ′ of ψ to tlEσi+1 ⊗OUσi+1
. By the definition of

φPi+1 , the map ψ′ can be described as

tlη ⊗ f �→ η ⊗ f �→ r(η) ⊗ f |Zσi+1
,
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where r is the homomorphism Eσi+1 � H0(Aσi+1 , ωAσi+1
(σi+1)) induced by

the natural restriction, and we find accordingly that ψ′ is and hence φPi+1 is
surjective. Moreover, taking account that

rkOY (Eσi+1) = dimk H
0(Aσi+1 , ωAσi+1

(σi+1)),

we see that ψ′ is nothing more than the restriction homomorphism

tlEσi+1 ⊗OY OUσi+1
→ tlEσi+1 ⊗OY OZσi+1

.

We have therefore Ker(ψ′) = tlEσi+1 ⊗OY OUσi+1
(−(Zσi+1)), and hence

(3.9.2) HPi+1 |Uσi+1
= tlEσi+1 ⊗OY OUσi+1

(−Zσi+1)

+
(
tlEσi+1,τl

+ tl−1Eτl,τl−1 + · · · + tEτ2,τ1 + Fτ1

) ⊗OY OUσi+1
.

Accordingly, shrinking Uσ so that Zσi+1 ∩Uσ = Xy ∩Uσ if necessary, we obtain

HPi+1 |Uσ
=

(
tl+1Eσi+1 + tlEσi+1,τl

+ tl−1Eτl,τl−1 + · · · + tEτ2,τ1 + Fτ1

)
⊗OY OUσ

.

Since {τ1, . . . , τl, σi+1} = {τ ∈ Pi+1 | Zσ ⊂ Zτ}, that is the property 3.9 in the
case of Zσ ⊂ Zσi+1 . Thus we check that they are the (i+ 1)-th ones.

Here we note the following lemma.

Lemma 3.10. For any i, the image of HPi
⊂ f∗ωX/Y ⊗OY OX → ωX/Y

is contained in

ωX/Y


−

∑
α∈(Py\C)∪Sing+(Xy)

Zα(C) −
∑
σ∈Pi

Zσ


 .

Moreover, if x ∈ C or if x lies on such a component E ∈ QIrr0(Xy) that there
is not a quasi-irreducible component of positive genus between C and E, then
they coincide with each other at x.

Proof. We prove our assertion by induction on i. If i = 0, it is obvious
from Lemma 2.2, for

∑
α∈(Py\C)∪Sing+(Xy) Zα(C) coincides with SC around

such a point x. Suppose it up to i. Put, for simplicity

Li := ωX/Y


−

∑
α∈(Py\C)∪Sing+(Xy)

Zα(C) −
∑
σ∈Pi

Zσ


 .

We have the homomorphism HPi
→ Li surjective at x by the induction hy-

pothesis. Since, outside Zσi+1 , HPi+1 coincides with HPi
and Li+1 coincides

with Li, we only have to show it over Uσi+1 , but it can be easily seen from
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(3.9.2), the properties on Eσi+1 , Eσi+1,τl
, Eτj ,τj−1 ’s and Fτ1 in Proposition 3.8,

and the induction hypothesis.

Let us move on to the construction of Ẽ now. We do that in an inductive
way. Let us focus on one y ∈ CV(f). Put n := #Py and let

∅ = Py(0) ⊂ Py(1) ⊂ · · · ⊂ Py(n) = Py

be a ascending sequence of admissible subsets of Py with #Py(i) = i. We
denote the only element of Py(i) \ Py(i− 1) by σi. For a locally free subsheaf
Fi of f∗f∗ωX/Y , let us consider conditions:

(♠i) we have

Fi|X =
⊕

C∈QIrr+(Xy)

HPy(i)∩C ⊗OX OX


−DC −

∑
σ∈Py(i) with C⊂Zσ

Zσ


 ,

(♥i) the image Li of the homomorphism Fi ⊂ f∗f∗ωX/Y → ωX/Y is an
invertible sheaf.

Suppose that we are given a locally free sheaf F0 that satisfies (♠0) and
(♥0). We define the following things inductively: locally free sheaves Fi sat-
isfying (♠i), sheaves Gi supported in Xy and surjective homomorphisms Φi :
Fi−1 → Gi, for all i with 1 ≤ i ≤ n, and after that, we show that Fi satisfies
(♥i) for any i. Suppose that we have them up to i. In order to construct the
(i+1)-th ones, we define, for each C ∈ QIrr+(Xy), a homomorphism ψC whose
sauce is

HPy(i)∩C ⊗OX OX


−DC −

∑
σ∈Py(i) with C⊂Zσ

Zσ




as follows. For C ∈ QIrr+(Xy) with C ∩ Zσi+1 = ∅, let ψC be the trivial
homomorphism

HPy(i)∩C ⊗OX OX


−DC −

∑
σ∈Py(i) with C⊂Zσ

Zσ


 → 0.

For C ∈ QIrr+(Xy) with C ⊂ Zσi+1 , taking account that Py(i) ∩ C = ∅ hence
HPy(i)∩C = FC ⊗OY OX by the admissibility of Py(i), let ψC be the restriction
homomorphism

FC ⊗OY OX


−DC −

∑
σ∈Py(i) with C⊂Zσ

Zσ




→ FC ⊗OY OX


−DC −

∑
σ∈Py(i) with C⊂Zσ

Zσ




∣∣∣∣∣∣
Zσi+1

.
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For C ∈ QIrr+(Xy) with σi+1 ⊂ C, let ψC be the homomorphism φPy(i+1)∩C

tensored with OX (−DC − ∑
σ∈Py(i) with C⊂Zσ

Zσ). Put

Gi+1 :=
⊕

C∈QIrr+(Xy)

target(ψC),

where target(ψC) is the target of ψC . Via the identification of (♠i), we can
define a surjective homomorphism Φi+1 : Fi → Gi+1 by

Φi+1|X := (ψC)C∈QIrr+(Xy) :
⊕

C∈QIrr+(Xy)

sauce(ψC) →
⊕

C∈QIrr+(Xy)

target(ψC).

Then, we can see that Ker(Φi+1)|X is the direct sum of

⊕
C∈QIrr+(Xy) with C∩Zσi+1=∅

HPy(i)∩C ⊗OX OX


−DC −

∑
σ∈Py(i) with C⊂Zσ

Zσ


 ,

⊕
C∈QIrr+(Xy) with C⊂Zσi+1

HPy(i)∩C ⊗OX OX


−DC −

∑
σ∈Py(i+1) with C⊂Zσ

Zσ


 ,

and

HPy(i+1)∩Ci+1 ⊗OX OX


−DCi+1 −

∑
σ∈Py(i) with Ci+1⊂Zσ

Zσ


 ,

where Ci+1 is the quasi-irreducible component including σi. Thus we have

Ker(Φi+1)|X

=
⊕

C∈QIrr+(Xy)

HPy(i+1)∩C ⊗OX OX


−DC −

∑
σ∈Py(i+1) with C⊂Zσ

Zσ


 .

Now we define Fi+1 as Ker(Φi+1). It satisfies the condition (♠i+1), and thus,
we have constructed Fi satisfying (♠i) for any i. To see that it satisfies the
condition (♥i), the following lemma is sufficient, for Fi is coincides with F0

outside of Xy and (♥0) is assumed.

Lemma 3.11. Li coincides with ωX/Y (−B′
y−

∑
σ∈Py(i) Zσ) around Xy.

Proof. It is not difficult to see Li|X ⊂ ωX/Y(−B′
y − ∑

σ∈Py(i) Zσ) from
(♠i) and the former part of Lemma 3.10. We consider the other inclusion. For
any x ∈ Xy, let C ∈ QIrr+(Xy) be a nearest one to x (cf. the proof of Lemma
2.3). Then, since

∑
α∈(Py\C)∪Sing+(Xy) Zα(C) coincides with SC around x, we

can see, as in the proof of Lemma 2.3, that it is sufficient to show

HPy(i)∩C → ωX/Y


−

∑
α∈(Py\C)∪Sing+(Xy)

Zα(C) −
∑

σ∈Py(i) with C�Zσ

Zσ



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is surjective at x. Taking account of the choice of C, we can see that if C ∩Zσ

= ∅, then x /∈ Zσ, and hence the problem is the surjectivity of

HPy(i)∩C → ωX/Y


−

∑
α∈(Py\C)∪Sing+(Xy)

Zα(C) −
∑

σ∈Py(i)∩C

Zσ




at x. But it is nothing more than the latter part of Lemma 3.10.

Thus we have constructed the desired ones.
Let Ei be the kernel of Fi → Li. It is locally free. By the above con-

struction and Lemma 3.11, we have the following diagram, in which any line is
exact.

0 0� �
0 −−−−→ Ei −−−−→ Fi −−−−→ Li −−−−→ 0� �
0 −−−−→ Ei−1 −−−−→ Fi−1 −−−−→ Li−1 −−−−→ 0� �

Gi Li−1|Zσi� �
0 0

From that we have ch(Ei) = ch(Ei−1)− ch(Gi) + ch(Li−1|Zσi
). By the defini-

tion, we see

ch(Gi) =
∑

C∈QIrr+(Xy) with C⊂Zσi

pa(C)
(
Zσi

− 1
2
(Zσi

2)
)

+ (pa(Aσi
) + 1)

(
Zσi

− 1
2
(Zσi

2)
)

= (pa

(
Zσi

)
+ 1)

(
Zσi

− 1
2
(Zσi

2)
)
,

and by Lemma 3.11, we compute to have

ch(Li−1|Zσi
) = Zσi

+ (c1(ωX/Y ) · Zσi
) − 1

2
(Zσi

2).

We see accordingly

ch(Ei) = ch(Ei−1) − pa(Zσi
)Zσi

+
pa(Zσi

)
2

(Zσi

2) + (c1(ωX/Y ) · Zσi
)
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and hence

c1(Ei)
2 = c1(Ei−1)

2 + pa(Zσi
)2(Zσi

2) + 2pa(Zσi
)(c1(ωX/Y ) · Zσi

).

Taking account that deg(c1(ωX/Y ) ·Zσi
) = 2pa(Zσi

) and (Zσi

2) = −2, we have

dis(Ei) = deg(−2(g − 1)(ch(Ei))(2) + c1(Ei)
2)

= dis(Ei−1) − 2pa(Zσi
)pa(Z∗

σi
),

where (ch(Ei))(2) is the codimension 2 component of ch(Ei). Summing all them
up through 1 ≤ i ≤ n, we obtain

dis(En) = dis(E0) −
[ g−1

2 ]∑
j=1

2j(g − 1 − j)ξj(Py).

Let F be the locally free sheaf in Section 2 that is constructed from direct
summands FC ’s in Proposition 3.8. Then F0 := F satisfies (♠0) and (♥0), and
E0 is nothing more than E constructed in Section 2. Thus, beginning with this
F0 and proceeding that argument for all the singular fibers, we finally obtain
a locally free sheaf Ẽ such that

dis(Ẽ) = dis(E) −
[ g−1

2 ]∑
j=1

2j(g − 1 − j)ξj(P).

Combined with Theorem 2.1 (b), that leads

dis(Ẽ) = (8g + 4) deg(f∗ωX/Y )

− gξ0(P) −
[ g−1

2 ]∑
j=1

2(j + 1)(g − j)ξj(P) −
[ g
2 ]∑

i=1

4i(g − i)δi(X/Y ).

Theorem 3.2 (a) is trivial from the construction. Thus, we complete the proof
of Theorem 3.2.

Remark 3.12. Moriwaki knew how to modify the kernel of f∗f∗ωX/Y

→ ωX/Y around such a singular fiber Xy that has exactly two nodes of type 0
and Py consists of the pair of them, which he communicated to the author in a
master’s course. In that case, we do not need any special preparations for the
elementary transformations, and the argument is considerably simple.

Appendix. The quotient fibration of a hyperelliptic fibration

Let S be a connected locally noetherian regular scheme of dimension 1 and
let f : X → S be a generically smooth semistable curve with the normal total
space X. Let G be a finite subgroup of AutS(X). Let Y be the quotient X/G,
and let g : Y → S be the structure morphism.
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Lemma A.1 (cf. [7]). Any geometric fiber of g is reduced.

Proof. Since the finite-group-quotient is compatible with the flat base-
change, we may assume that S is the spectrum of a discrete valuation ring
(R, tR, k) with the algebraically closed residue field k (cf. [2, Theorem 29.1])
and X is a normal noetherian integral scheme over R. Then Y is also a normal
integral scheme flat over S. By the condition (S2) on Y and the flatness of g,
the special fiber Ys satisfies the condition (S1), and by the reducedness of the
fibers of f , a divisor Ys is reduced as a Cartier divisor, hence it satisfies the
condition (R0) as a scheme. Thus Ys is reduced.

Now suppose that f is hyperelliptic, i.e., there exists an S-automorphism
ι : X → X of order 2 such that the quotient of the geometric generic fiber by
G := 〈ι〉 is isomorphic to P1.

Proposition A.2. Under the assumption above, any singular fiber of g
is a nodal curve of genus 0.

Proof. We may assume that S is the spectrum of a discrete valuation ring
(R, tR, k) with the algebraically closed residue field. By the compatibility, the
geometric generic fiber must be the smooth rational curve and hence, from the
flatness of g, the arithmetic genus of the special fiber is 0. That implies any
irreducible component of the special fiber is a smooth rational curve and for any
singular point y ∈ Ys, the space Ys \{y} is not connected. If #π−1(y) = 2, then
π is étale over y hence it is a node of Ys. Suppose that π−1(y) consists of one
point, namely {x}. Then, Xs\{x} has at most two connected components, and
hence so does Ys \ {y}. That implies any singular point of Ys is a intersection
point of the two irreducible components. Again since the arithmetic genus is 0,
the two direction of components must be transversal, and thus it is a node.

See [7] for more general statements on finite-group-quotients.
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