J-adic filtration of orders with application to orders of finite representation type

By
Osamu Iyama*

For a ring Λ with the Jacobson radical J_{Λ}, we denote by $\mathrm{Gr} \Lambda$ the associated completely graded ring with respect to the J_{Λ}-adic filtration, namely $\operatorname{Gr} \Lambda:=$ $\prod_{i \geq 0} J_{\Lambda}^{i} / J_{\Lambda}^{i+1}$. In Section 1, for an order Λ over a complete discrete valuation ring R, we will study the associated ring $\mathrm{Gr} \Lambda$, which is not even noetherian in general (Remark 1.3 (2)). Our main theorem (Theorem 1.2) asserts that Gr Λ is again an order over some complete discrete valuation ring if and only if Λ has the filtering overorder Γ (Section 1.1), which is a hereditary overorder of Λ such that $J_{\Lambda}^{n}=\Lambda \cap J_{\Gamma}^{n}$ for any $n \geq 0$.

Now, we explain background and application in Section 2. For an additive category \mathcal{C} with the Jacobson radical $\mathcal{J}_{\mathcal{C}}$, we denote by $\operatorname{Gr} \mathcal{C}$ the associated completely graded category $\prod_{i \geq 0} \mathcal{J}_{\mathcal{C}}^{i} / \mathcal{J}_{\mathcal{C}}^{i+1}$. In study of representation theory of an order Δ over a complete regular local ring R of dimension $d \leq 2$, the associated category $\operatorname{Gr}(\operatorname{lat} \Delta)$ of lat Δ plays an important role. Under the assumption that Δ is an isolated singularity, we can define a combinatorial invariant $\mathbb{A}($ lat $\Delta)$ called the Auslander-Reiten quiver and its "algebraic realization" $\widehat{\mathbb{A}}(\operatorname{lat} \Delta)$ called the Auslander-Reiten species. It is important that we can recover $\operatorname{Gr}(\operatorname{lat} \Delta)$ from $\widehat{\mathbb{A}}($ lat $\Delta)$, namely $\operatorname{Gr}(\operatorname{lat} \Delta)$ is equivalent to the mesh category $\widehat{\mathbb{M}}(\widehat{\mathbb{A}}(\operatorname{lat} \Delta))$ of $\widehat{\mathbb{A}}($ lat $\Delta)([\mathrm{I} 2],[\mathrm{IT}],[\mathrm{BG}])$.

When Δ is of finite representation type, it is convenient to study the endomorphism ring $\Lambda:=\operatorname{End}_{\Delta}(M)$ of an additive generator M of lat Δ, which is called the Auslander order of Δ. The category pr Λ of finitely generated projective Λ-modules is equivalent to lat Δ, and $\operatorname{pr}(\operatorname{Gr} \Lambda)$ is equivalent to $\operatorname{Gr}(\operatorname{lat} \Delta)$. For $d \leq 2$, it is surprising that we can characterize Auslander orders by some homological conditions ([ARS], [ARo], [RV] and Definition 2.1). It is also remarkable that, if R is an algebraically closed field ($d=0$) with chr $R \neq 2$, then $\operatorname{Gr} \Lambda$ is always isomorphic to Λ, so lat Δ is completely recoverd by the combinatorial data $\mathbb{A}(\operatorname{lat} \Delta)([\mathrm{BGRS}])$.

In Section 2, we will study the associated ring $\operatorname{Gr} \Lambda$ of an Auslander order Λ over a complete discrete valuation ring $R(d=1)$. In many important cases like $R=\mathbb{Z}_{p}$, the ring $\operatorname{Gr} \Lambda$ is not isomorphic to Λ. But, we know by

[^0]a result of [13] that Gr Λ is again an Auslander order over the formal power series ring $\left(R / J_{R}\right)[[t]]$ (Proposition 2.2.1), and consequently, Λ has the filtering overorder Γ (Section 2.2). This leads us to concept of the filtering functor $\mathbb{F}_{\Delta}:$ lat $\Delta \rightarrow \operatorname{lat} \Gamma$ of an order Δ of finite representation type (Definition 2.3), where Γ is the filtering overorder of the Auslander order Λ of Δ. We will study some properties of \mathbb{F}_{Δ} in Section 2 . We also study the relationship with additive functions (Section 2.5) and the Grothendieck group of an order (Section 2.6).
0.1 Notations. In the rest of this paper, assume that R is a complete discrete valuation ring unless explicitly stated otherwise.
(1) For a commutative ring C, we denote by \widetilde{C} the total quotient ring of C. For a ring Λ, we denote by $\operatorname{Cen}(\Lambda)$ the center of Λ, and put $\widetilde{\Lambda}:=$ $\widetilde{\operatorname{Cen}(\Lambda)} \otimes_{\operatorname{Cen}(\Lambda)} \Lambda$. We denote by $\bmod \Lambda$ the category of finitely generated (left) Λ-modules, by pr Λ the category of finitely generated projective Λ-modules, and by $\operatorname{len}_{\Lambda}(X)$ the length of a Λ-module X. We have a functor $\widetilde{()}:=\widetilde{\Lambda} \otimes_{\Lambda}$: $\bmod \Lambda \rightarrow \bmod \widetilde{\Lambda}$.
(2) Let Λ be an R-order, namely it is an R-algebra that is finitely generated free as an R-module. A (left) Λ-module L is called a Λ-lattice if it is finitely generated free as an R-module. We denote by lat Λ the category of Λ-lattices. Notice that $\widetilde{\Lambda}=\widetilde{R} \otimes_{R} \Lambda$ and $\widetilde{L}=\widetilde{R} \otimes_{R} L$ hold for any $L \in \bmod \Lambda$ by the following easy fact 0.1 .1 , which will be used in the proof of 1.2.
0.1.1. Let R be a commutative noetherian domain, Λ an R-algebra, and $C:=\operatorname{Cen}(\Lambda)$. Assume that Λ is a finitely generated torsionfree R-module. Then $\widetilde{R} \otimes_{R} \Lambda=\widetilde{C} \otimes_{C} \Lambda$ holds.

Proof. Since $\widetilde{R} \otimes_{R} \Lambda=\left(\widetilde{R} \otimes_{R} C\right) \otimes_{C} \Lambda$, we may assume $\Lambda=C$. Since C is a torsionfree R-module, we have an injective map $\widetilde{R} \otimes_{R} C \rightarrow \widetilde{C}$. We only have to show that $x^{-1} \in \widetilde{R} \otimes_{R} C$ holds for any non-zerodivisor x in C. Since C is a finitely generated R-module, there exist $n>0$ and $r_{i} \in R$ such that $x^{n}+r_{1} x^{n-1}+\cdots+r_{n-1} x+r_{n}=0$ and $r_{n} \neq 0$. Then $x^{-1}=-r_{n}^{-1} y \in \widetilde{R} \otimes_{R} C$ holds for $y:=x^{n-1}+r_{1} x^{n-2}+\cdots+r_{n-1}$.

1. J-adic filtration of orders

1.1. Let R be a complete discrete valuation ring with a residue field k and Λ an R-order.
(1) We call an R-order Γ a filtering overorder of Λ if Γ is a hereditary overorder of Λ such that $J_{\Lambda}^{n}=\Lambda \cap J_{\Gamma}^{n}$ holds for any $n \geq 0$. For example, any Bäckström order $([\mathrm{RR}]) \Lambda$ has a filtering overorder $\Gamma=O_{l}\left(J_{\Lambda}\right)$.
(2) Assume that Λ has a filtering overorder Γ. Then Γ is the unique filtering overorder of Λ. In this case, there exists a subring S of $\operatorname{Cen}(\operatorname{Gr} \Lambda)$ such that S is isomorphic to the formal power series ring $k[[t]]$ and $\operatorname{Gr} \Lambda$ is an S-order in a semisimple \widetilde{S}-algebra $\widetilde{\operatorname{Gr} \Lambda}$.
(3) $J_{\mathrm{Gr} \Lambda}^{n}=\prod_{i \geq n} J_{\Lambda}^{i} / J_{\Lambda}^{i+1}$ holds for any $n \geq 0$.
1.1.1. Let R be a complete discrete valuation ring with a residue field k and a prime element π_{R}.
(1) Let Ω be a local maximal R-order with a residue k-algebra $D:=\Omega / J_{\Omega}$ and a prime element π_{Ω}. Define $\sigma \in \operatorname{Aut}_{k}(D)$ by $\bar{a}^{\sigma}:=\overline{\pi_{\Omega} a \pi_{\Omega}^{-1}}$ for $a \in \Omega$. Then $\operatorname{Gr} \Omega$ is isomorphic to the skew formal power series ring $D[[x ; \sigma]]\left(x d=d^{\sigma} x\right.$ for $d \in D)$. Take $l>0$ such that $\pi_{R} \in J_{\Omega}^{l}-J_{\Omega}^{l+1}$ and put $t:=\overline{\pi_{R}} \in J_{\Omega}^{l} / J_{\Omega}^{l+1} \subset$ $\mathrm{Gr} \Omega$. Then $\mathrm{Gr} \Omega$ is a local maximal $k[[t]]$-order.
(2) Let Λ be a ring indecomposable hereditary R-order. Then Λ is Morita equivalent to $\mathrm{T}_{n}(\Omega)$ for some local maximal R-order $\Omega([\mathrm{CR}])$, where $\mathrm{T}_{n}(\Omega)$ denotes the subring $\left(\begin{array}{ccccc}\Omega & \Omega & \cdots & \Omega & \Omega \\ J_{\Omega} & \Omega & \cdots & \Omega & \Omega \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ j_{\Omega} & J_{\Omega} & \cdots & \Omega_{n} & \dot{\Omega} \\ J_{\Omega} & J_{\Omega} & \cdots & J_{\Omega} & \Omega\end{array}\right)$ of $\mathrm{M}_{n}(\Omega)$. We can easily check that $\operatorname{Gr} \Lambda$ is Morita equivalent to $\mathrm{T}_{n}(\operatorname{Gr} \Omega)$. Thus $\mathrm{Gr} \Lambda$ is a hereditary $\left.k[t t]\right]$-order by (1).

Proof of 1.1. (2) Put $O_{l}(L):=\{x \in \widetilde{\Gamma} \mid x L \subseteq L\}$ for $L \in$ lat Γ. We can take sufficiently large n such that $J_{\Gamma}^{n} \subseteq \Lambda$. Then $\Gamma=O_{l}\left(J_{\Gamma}^{n}\right)=O_{l}\left(J_{\Lambda}^{n}\right)$ holds since Γ is hereditary ($[\mathrm{CR}])$. Thus the former assertion follows. Since we have a natural inclusion $J_{\Lambda}^{i} / J_{\Lambda}^{i+1} \rightarrow J_{\Gamma}^{i} / J_{\Gamma}^{i+1}$ for any $i \geq 0, \operatorname{Gr} \Lambda$ is a subring of $\mathrm{Gr} \Gamma$ containing $\prod_{i \geq n} J_{\Gamma}^{i} / J_{\Gamma}^{i+1}$. Thus the latter assertion follows from 1.1.1 (2).
(3) Put $I_{n}:=\prod_{i \geq n} J_{\Lambda}^{i} / J_{\Lambda}^{i+1}$. Then $I_{1}=J_{\operatorname{Gr} \Lambda}$ holds since I_{1} is quasiregular $\left([\mathrm{AF}]\right.$ Section 15) and $(\operatorname{Gr} \Lambda) / I_{1}=\Lambda / J_{\Lambda}$ is semisimple. Since $I_{1}^{n} \subseteq I_{n}$ holds, we only have to show $I_{n} I_{1} \supseteq I_{n+1}$. Take a finite subset $\left\{g_{j}\right\}_{j}$ of J_{Λ} such that $J_{\Lambda}=\sum_{j} \Lambda g_{j}$. Then $J_{\Lambda}^{i}=\sum_{j} J_{\Lambda}^{i-1} g_{j}$ holds hor any $i>0$. For any $\left(x_{i}\right)_{i \geq n+1} \in I_{n+1}$, take $y_{i-1, j} \in J_{\Lambda}^{i-1}$ such that $x_{i}=\sum_{j} y_{i-1, j} g_{j}$. Put $y_{j}:=\left(y_{i, j}\right)_{i \geq n} \in I_{n}$ and regard g_{j} as an element $\left(0, g_{j}, 0,0, \ldots\right)$ of I_{1}. Then $\left(x_{i}\right)_{i \geq n+1}=\sum_{j} y_{j} g_{j} \in I_{n} I_{1}$ holds.

Theorem 1.2. Let R be a complete discrete valuation ring and Λ an R-order in a semisimple \widetilde{R}-algebra $\widetilde{\Lambda}$. Then the following conditions are equivalent.
(1) There exists a subring S of $\operatorname{Cen}(\operatorname{Gr} \Lambda)$ such that S is a complete discrete valuation ring and $\mathrm{Gr} \Lambda$ is an S-order in a semisimple \widetilde{S}-algebra $\widetilde{\mathrm{Gr} \Lambda}$.
(2) Λ has the filtering overorder Γ (cf. 1.1).
1.2.1. Let $C=\prod_{i \geq 0} C_{(i)}$ be a commutative completely graded ring without nilpotent elements, e an idempotent of \widetilde{C} and $n \geq 0$. If $e C_{(n)} \subseteq C$ holds, then $e C_{(n)} \subseteq C_{(n)}$ holds.

Proof. For any $x \in C$, we put $x=\sum_{i \geq m(x)} x_{i}\left(x_{i} \in C_{(i)}\right.$ and $\left.x_{m(x)} \neq 0\right)$, and put $m(0):=\infty$. Then $m(x y) \geq m(x)+m(y)$ and $m\left(x^{l}\right)=\operatorname{lm}(x)$ hold for any $x, y \in C$ and $l>0$ since C has no nilpotent element.
(i) Assume that $x \in C$ and an idempotent $f \in \widetilde{C}$ satisfy $f x \in C$. We will show that $m(f x) \geq m(x)$ holds, and the equality holds if $f x \neq 0$ and x is homogeneous.

The former assertion is immediate from $2 m(f x)=m\left((f x)^{2}\right)=m((f x) x)$ $\geq m(f x)+m(x)$. We will show the latter assertion. Since x is homogeneous,
$\left(f x^{2}\right)_{i+m(x)}=(f x)_{i} x$ and $\left(f x^{3}\right)_{i+2 m(x)}=(f x)_{i} x^{2}$ hold for any $i \geq 0$. Since $(f x)_{i} x \neq 0$ is equivalent to $(f x)_{i} x^{2} \neq 0$, we obtain $2 m(f x)-m(x)=m\left(f x^{2}\right)-$ $m(x)=m\left(f x^{3}\right)-2 m(x)=3 m(f x)-2 m(x)$. Since $m(f x)<\infty$ holds, we obtain $m(f x)=m(x)$.
(ii) For any $x \in C_{(n)}$, we will show $e x \in C_{(n)}$. We may assume $e x \neq 0$. Then $m(e x)=n$ holds by (i). Put $y:=e x-(e x)_{n}$ and $\dot{e}:=1-e$. If $\dot{e}(e x)_{n} \neq 0$, then $n=m\left((e x)_{n}\right)=m\left(\dot{e}(e x)_{n}\right)=m(\dot{e} y) \geq m(y)>n$ holds by $\dot{e} y=-\dot{e}(e x)_{n} \in C$ and (i), a contradiction. Hence we obtain $\dot{e}(e x)_{n}=0$ and $e(e x)_{n}=(e x)_{n}$. If $e\left(x-(e x)_{n}\right)=e x-(e x)_{n} \neq 0$, then $n=m\left(x-(e x)_{n}\right)=$ $m\left(e x-(e x)_{n}\right)>n$ holds by (i), a contradiction. Thus $e x=(e x)_{n}$ holds.

Proof of Theorem 1.2. (2) implies (1) by 1.1 (2). We will show that (1) implies (2). For simplicity, put $\Lambda_{i}:=J_{\Lambda}^{i}$ and $\Lambda_{(i)}:=J_{\Lambda}^{i} / J_{\Lambda}^{i+1}$ for any $i \geq 0$.
(I) We will show that there exists $l>0$ and $a \in \Lambda_{(l)} \cap \operatorname{Cen}(\operatorname{Gr} \Lambda)$ such that a is an invertible element in $\widetilde{\operatorname{Gr} \Lambda}$.

Put $C:=\operatorname{Cen}(\operatorname{Gr} \Lambda)$ and $C_{(i)}:=C \cap \Lambda_{(i)}$. Then $C=\prod_{i \geq 0} C_{(i)}$ holds. Since $\widetilde{\operatorname{Gr} \Lambda}$ is semisimple, C does not have nilpotent elements. Let \mathbf{E} be a complete set of primitive idempotents of \widetilde{C}. We only have to show that there exists a homogeneous element $a \in C$ such that $e a \neq 0$ for any $e \in \mathbf{E}$.

Since $\prod_{i>n} \Lambda_{(i)}=J_{\operatorname{Gr} \Lambda}^{n}$ holds by 1.1 (3), we can take sufficiently large $n \geq 0$ such that $e \prod_{i \geq n} \Lambda_{(i)} \subseteq \operatorname{Gr} \Lambda$ holds for any $e \in \mathbf{E}$. For any $i \geq n$ and $e \in \mathbf{E}$, since $e C_{(i)} \subseteq \bar{C}$ holds, we obtain $e C_{(i)} \subseteq C_{(i)}$ by 1.2.1. For any $e \in \mathbf{E}$, we can take a non-zero element $a_{e} \in e C_{\left(l_{e}\right)} \subseteq C_{\left(l_{e}\right)}$ for some $l_{e} \geq n$. Then $a:=\sum_{e \in \mathbf{E}} a_{e}^{l / l_{e}} \in C_{(l)}\left(l:=\prod_{e \in \mathbf{E}} l_{e}\right)$ satisfies the desired condition.
(II) Fix a lift $a \in \Lambda_{l}$ of $a \in \Lambda_{(l)}$ in (I). We will show that a is an invertible element of $\widetilde{\Lambda}$.

Since $\operatorname{dim}_{\widetilde{R}} \widetilde{\Lambda}<\infty$, we only have to show that a is a non-zerodivisor in $\widetilde{\Lambda}$, or equivalently, a is a non-zerodivisor in Λ. Assume that $x \in \Lambda_{i}-\Lambda_{i+1}$ satisfies $a x=0$. Then $\bar{x} \in \Lambda_{(i)}$ satisfies $a \bar{x}=0$, a contradiction to (I).
(III) We will show that there exists $N \geq 0$ such that $a \Lambda_{i}=\Lambda_{i} a=\Lambda_{i+l}$ for any $i>N$.

By (I), $(a \cdot)$ and $(\cdot a): \Lambda_{(i)} \rightarrow \Lambda_{(i+l)}$ are injective for any $i \geq 0$. Since $\operatorname{dim}_{R / J_{R}} \Lambda_{(i)} \leq \operatorname{rank}_{R} \Lambda_{i}=\operatorname{dim}_{\widetilde{R}} \widetilde{\Lambda}$ holds for any $i \geq 0$, there exists $N \geq 0$ such that $(a \cdot)$ and $(\cdot a): \Lambda_{(i)} \rightarrow \Lambda_{(i+l)}$ are bijective for any $i>N$. Hence $a \Lambda_{i}+\Lambda_{i+l+1}=\Lambda_{i} a+\Lambda_{i+l+1}=\Lambda_{i+l}$ holds for any $i>N$. By Nakayama's Lemma, we obtain the assertion.
(IV) Put $\Gamma_{i}:=\left\{x \in \widetilde{\Lambda} \mid a^{n} x \in \Lambda_{i+n l}\right.$ for sufficiently large $\left.n\right\}$ for $i \in \mathbb{Z}$. We will show that the following (i)-(v) hold.
(i) If $i, n \in \mathbb{Z}$ satisfies $i+n l>N$, then $\Gamma_{i}=a^{-n} \Lambda_{i+n l}=\Lambda_{i+n l} a^{-n}$ holds.
(ii) $\Gamma_{i} \Gamma_{j}=\Gamma_{i+j}$ holds for any $i, j \in \mathbb{Z}$.
(iii) $\Gamma_{i+1} \cap \Lambda_{i}=\Lambda_{i+1}$ and $\Gamma_{i} \cap \Lambda=\Lambda_{i}$ hold for any $i \geq 0$.
(iv) $\Gamma_{i}=\Lambda_{i}$ holds for any $i>N$.
(v) ($a \cdot$) and ($\cdot a$) : $\Gamma_{i} \rightarrow \Gamma_{i+l}$ are bijective for any $i \in \mathbb{Z}$.
(i) is immediate since $a^{-n} \Lambda_{i+n l}=a^{-n+1} \Lambda_{i+(n+1) l}=\cdots$ holds by (III).
(ii) Taking n such that $i+n l>N$ and $j+n l>N$, we obtain $\Gamma_{i} \Gamma_{j}=$ $a^{-n} \Lambda_{i+n l} a^{-n} \Lambda_{j+n l}=a^{-2 n} \Lambda_{i+n l} \Lambda_{j+n l}=a^{-2 n} \Lambda_{i+j+2 n l}=\Gamma_{i+j}$ by (III) and (i). (iii) Taking n such that $i+n l>N$, we obtain $\Gamma_{i+1} \cap \Lambda_{i}=a^{-n} \Lambda_{i+n l+1} \cap \Lambda_{i}=$ Λ_{i+1} since $\left(a^{n}.\right): \Lambda_{(i)} \rightarrow \Lambda_{(i+n l)}$ is injective by (I). Inductively, we obtain $\Gamma_{i} \cap \Lambda=\Gamma_{i} \cap\left(\Gamma_{i-1} \cap \Lambda\right)=\Gamma_{i} \cap \Lambda_{i-1}=\Lambda_{i}$. (iv) Put $n=0$ in (i). (v) They are injective by (II) and surjective by (i).
(V) Put $\Gamma_{(i)}:=\Gamma_{i} / \Gamma_{i+1}$ and $G:=\prod_{i \in \mathbb{Z}} \Gamma_{(i)}$. Then G is a completely graded ring by (ii), and $\operatorname{Gr} \Lambda$ is a subring of G since we have a natural injection $\Lambda_{(i)} \rightarrow \Gamma_{(i)}(i \geq 0)$ by (iii).
(vi) $\Gamma_{(i)} \Gamma_{(j)}=\Gamma_{(i+j)}(i, j \in \mathbb{Z})$ holds by (ii), $\Gamma_{(i)}=\Lambda_{(i)}(i>N)$ holds by (iv), and $(a \cdot)$ and $(\cdot a): \Gamma_{(i)} \rightarrow \Gamma_{(i+l)}(i \in \mathbb{Z})$ are bijective by (v).
(vii) We will show that $\widetilde{\operatorname{Gr} \Lambda}$ is isomorphic to G.

Regard $k:=R / J_{R}$ as a subring of $\Lambda_{(0)} \subset$ Gr Λ and put $T:=k[[a]] \subset$ $\operatorname{Gr} \Lambda$. Then T is a complete discrete valuation ring, which is contained in $\operatorname{Cen}(\operatorname{Gr} \Lambda)$. Moreover, $\operatorname{Gr} \Lambda$ is a finitely generated T-module since (III) shows that $\operatorname{Gr} \Lambda$ is generated by a finite dimensional k-space $\prod_{0 \leq i \leq N+l} \Lambda_{(i)}$. Since $\operatorname{Gr} \Lambda$ is T-torsionfree by (I), $\widetilde{\operatorname{Gr} \Lambda}=\widetilde{T} \otimes_{T} \operatorname{Gr} \Lambda$ holds by 0.1.1. We will show $\widetilde{T} \otimes_{T} \operatorname{Gr} \Lambda=G$. Since a is invertible in G by (vi), any non-zero element of T is invertible in G. Hence we have an injection $\widetilde{T} \otimes_{T} \operatorname{Gr} \Lambda \rightarrow G$. It is surjective since $\Gamma_{(i)}=a^{-n} \Gamma_{(i+n l)}=a^{-n} \Lambda_{(i+n l)}$ holds for sufficiently large n by (vi).
(VI) We will show that $\Gamma_{(0)}$ is a semisimple k-algebra.

Assume $J:=J_{\Gamma_{(0)}} \neq 0$. Since $G=\widetilde{\operatorname{Gr} \Lambda}$ is semisimple, we obtain $G=$ $G J G$. Comparing degree 0 part, we obtain $\Gamma_{(0)}=\sum_{i \in \mathbb{Z}} \Gamma_{(i)} J \Gamma_{(-i)}$. By (vi), we obtain $\Gamma_{(0)}=\sum_{0 \leq i<l} \Gamma_{(i)} J \Gamma_{(-i)}$. Then Nakayama's Lemma shows $\Gamma_{(0)}=$ $\sum_{1<i<l} \Gamma_{(i)} J \Gamma_{(-i)}$. Hence $\Gamma_{(0)}=\Gamma_{(-1)} \Gamma_{(0)} \Gamma_{(1)}=\sum_{1 \leq i<l} \Gamma_{(-1)} \Gamma_{(i)} J \Gamma_{(-i)} \Gamma_{(1)}$ $=\sum_{0 \leq i<l-1} \Gamma_{(i)} J \Gamma_{(-i)}$ holds by (vi). Repeating similar argument, we obtain $J=\Gamma_{(0)}^{-}$, a contradiction.
(VII) We will show the theorem. By (i), $\Gamma:=\Gamma_{0}$ is an R-order. By (VI), $J_{\Gamma} \subseteq$ Γ_{1} holds. Since Γ_{1} is a topologically nilpotent ideal of Γ by (ii)(iv), we obtain $J_{\Gamma}=\Gamma_{1}$. Since $\Gamma_{1}^{l}=\Gamma_{l}=\Gamma a$ holds by (ii)(v), we obtain $O_{l}\left(J_{\Gamma}\right) \subseteq O_{l}\left(\Gamma_{1}^{l}\right)=\Gamma$. Hence Γ is hereditary by [CR]. Morever, $J_{\Lambda}^{i}=\Lambda_{i}=\Gamma_{i} \cap \Lambda=J_{\Gamma}^{i} \cap \Lambda$ holds by (iii).

Remark 1.3. Let Λ be an R-order.
(1) Although $R^{\prime}:=\prod_{i \geq 0}\left(R \cap J_{\Gamma}^{i} / R \cap J_{\Gamma}^{i+1}\right)$ is a subring of $\operatorname{Cen}(\operatorname{Gr} \Lambda)$, an R^{\prime}-module $\operatorname{Gr} \Lambda$ is not necessarily finitely generated even if Λ has the filtering overorder. For example, put $R:=k[[t]] \subset \Lambda:=k[[t]] \times k[[t]], f(t) \mapsto$ $\left(f(t), f\left(t^{2}\right)\right)$. Then $R^{\prime}=k[[t]] \subset \operatorname{Gr} \Lambda=k[[t]] \times k[[t]], f(t) \mapsto(f(t), f(0))$.
(2) In general, $\operatorname{Gr} \Lambda$ is neither noetherian nor a finitely generated $\operatorname{Cen}(\operatorname{Gr} \Lambda)$ module. For example, put $R:=k\left[\left[t^{2}\right]\right] \subset \Omega:=k[[t]], \Delta:=k+t^{2} \Omega \subset \Omega$ and $\Lambda:=\left(\begin{array}{cc}\Omega & \Omega \\ J_{\Omega}^{3} & \Delta\end{array}\right)$. Then $J_{\Lambda}^{n}=\left(\begin{array}{cc}J_{n}^{n} & J_{\Omega}^{n-1} \\ J_{\Omega}^{n+2} & J_{\Omega}^{n+1}\end{array}\right)$ holds for any $n>0$. Put $K:=\widetilde{\Omega}$ and $I:=\left(\begin{array}{cc}K \epsilon & K \epsilon \\ 0 & 0\end{array}\right) \subset A:=\binom{K[\epsilon]}{K \epsilon[\epsilon[\epsilon]} \subset \mathrm{M}_{2}(K[\epsilon])\left(\epsilon^{2}=0\right)$. It is easily checked that $\operatorname{Gr} \Lambda$ is isomorphic to a subring $\binom{\Omega}{J_{\Omega} \epsilon+\Omega \epsilon}$ of A / I, and $\operatorname{Cen}(\operatorname{Gr} \Lambda)=k+\left(\begin{array}{cc}0 \\ 0 & 0 \\ 0\end{array}\right)$.

2. Filtering functors of orders of finite representation type

For an R-order Δ, we denote by ind Δ the set of isomorphism classes of indecomposable Δ-lattices. We call Δ of finite representation type if ind Δ is a finite set. Let $\mathrm{F}(\Delta)\left(\right.$ resp. $\left.\mathrm{F}_{\mathrm{n}}(\Delta), \mathrm{F}_{\mathrm{p}}(\Delta)\right)$ be the free aberian group generated by the base set ind Δ (resp. ind $\Delta-\operatorname{pr} \Delta$, ind $\Delta \cap \operatorname{pr} \Delta)$.

Assume that \widetilde{R}-algebra $\widetilde{\Delta}$ is semisimple. Then lat Δ has almost split sequences, and we denote by $0 \rightarrow \tau^{+} L \rightarrow \theta^{+} L \rightarrow L \rightarrow 0$ (resp. $0 \rightarrow L \rightarrow$ $\theta^{-} L \rightarrow \tau^{-} L \rightarrow 0$) the complex of the sink map (resp. source map) of L ([ARS]). Define maps $\phi^{+}, \phi^{-} \in \operatorname{End}_{\mathbb{Z}}(\mathrm{F}(\Delta))$ by $\phi^{+} X:=X-\theta^{+} X+\tau^{+} X$ and $\phi^{-} X:=X-\theta^{-} X+\tau^{-} X$.

Definition 2.1. Let R be a complete discrete valuation ring. An R-order Λ is called an Auslander order if gl. $\operatorname{dim} \Lambda \leq 2$ and a minimal relative-injective resolution $0 \rightarrow \Lambda \xrightarrow{f^{0}} I^{0} \xrightarrow{f^{1}} I^{1} \rightarrow 0$ of Λ satisfies $I^{0} \in \operatorname{pr} \Lambda$.

A main result of [ARo] shows that there exists a bijection between Morita equivalence classes of R-orders of finite representation type and Morita equivalence classes of Auslander R-orders in semisimple algebras. It is given by $\Delta \mapsto \operatorname{End}_{\Delta}(M)$, where M is an additive generator of an R-order Δ of finite representation type. In this case, $\Lambda:=\operatorname{End}_{\Delta}(M)$ is called the Auslander order of Δ, and we have a natural equivalence $\mathbb{G}_{\Delta}:=\operatorname{Hom}_{\Delta}(M):$, lat $\Delta \rightarrow \operatorname{pr} \Lambda$.
2.2. The following theorem follows immediately from 1.2 and 2.2.1.

Theorem. Let R be a complete discrete valuation ring and Λ an Auslander R-order in a semisimple \widetilde{R}-algebra $\widetilde{\Lambda}$. Then Λ has the filtering overorder (1.1).

Proposition 2.2.1. ([I3, 3.3]) Let R be a complete discrete valuation ring with a residue field $k, k[[t]$ the formal power series ring and Λ an Auslander R-order in a semisimple \widetilde{R}-algebra $\widetilde{\Lambda}$. Then $\mathrm{Gr} \Lambda$ is an Auslander $k[[t]]$-order in a semisimple $k((t))$-algebra $\widetilde{\operatorname{Gr} \Lambda}$.

Definition 2.3. (1) Let Δ be an R-order of finite representation type with its Auslander order Λ and Γ the filtering overorder of Λ (1.1). Then the filtering functor \mathbb{F}_{Δ} : lat $\Delta \rightarrow \operatorname{lat} \Gamma$ of Δ is defined as a composition of the natural equivalence lat $\Delta \xrightarrow{G} \operatorname{pr} \Lambda$ and the functor $\operatorname{pr} \Lambda \rightarrow \operatorname{lat} \Gamma, P \mapsto \Gamma P$. We denote by $\mathbb{F}_{\Delta} \in \operatorname{Hom}_{\mathbb{Z}}(\mathrm{F}(\Delta), \mathrm{F}(\Gamma))$ the homomorphism induced by \mathbb{F}_{Δ}.
(2) Let $\mathbb{Z}\langle x, y\rangle$ be a non-commutative polynomial ring. Put $x_{0}:=1$, $x_{1}:=x$ and $x_{n}:=x x_{n-1}-y x_{n-2}$ for $n \geq 2$, or equivalently, $\left(\begin{array}{cc}0 & -y \\ 1 & x\end{array}\right)^{n}=$ $\binom{-y x_{n-2}-y x_{n-1}}{x_{n-1}}$. Define a ring morphism $\gamma: \mathbb{Z}\langle x, y\rangle \rightarrow \operatorname{End}_{\mathbb{Z}}(\mathrm{F}(\Delta))$ by $\gamma(x):=\theta^{+}$and $\gamma(y):=\tau^{+}$. Put $\theta_{n}^{+}:=\gamma\left(x_{n}\right)$.
2.3.1. (1) We have the following exact sequence for any $L \in \operatorname{lat} \Delta, n>0$ and $i \geq 0$, which gives a minimal projective resolution of $\mathcal{J}_{\text {lat }}^{n}(, L)$ for $i=0$.

$$
0 \rightarrow \mathcal{J}_{\text {lat }}^{i-1}\left(, \tau^{+} \theta_{n-1}^{+} L\right) \rightarrow \mathcal{J}_{\text {lat } \Delta}^{i}\left(, \theta_{n}^{+} L\right) \rightarrow \mathcal{J}_{\operatorname{lat} \Delta}^{n+i}(, L) \rightarrow 0
$$

(2) Let A be an abelian group, $f \in \operatorname{Hom}_{\mathbb{Z}}(\mathrm{F}(\Delta), A)$ and $a \in \operatorname{End}_{\mathbb{Z}}(A)$. If $f-a f \theta^{+}+a^{2} f \tau^{+}=0$, then $f-a^{n} f \theta_{n}^{+}+a^{n+1} f \tau^{+} \theta_{n-1}^{+}=0$ holds for any $n>0$.

Proof. (1) By [I2, 4.2 and 7.1.]
(2) Immediate from $f-a^{n} f \theta_{n}^{+}+a^{n+1} f \tau^{+} \theta_{n-1}^{+}=f-a^{n}\left(a f \theta^{+}-a^{2} f \tau^{+}\right) \theta_{n}^{+}+$ $a^{n+1} f \tau^{+} \theta_{n-1}^{+}=f-a^{n+1} f\left(\theta^{+} \theta_{n}^{+}-\tau^{+} \theta_{n-1}^{+}\right)+a^{n+2} f \tau^{+} \theta_{n}^{+}=f-a^{n+1} f \theta_{n+1}^{+}+$ $a^{n+2} f \tau^{+} \theta_{n}^{+}$.

Theorem 2.4. Let Δ be an R-order of finite representation type with its Auslander order Λ and filtering functor $\mathbb{F}_{\Delta}:$ lat $\Delta \rightarrow$ lat Γ. We denote by $l_{\Delta} \geq 0$ the minimal integer such that $J_{\Gamma}^{l_{\Delta}} \subseteq \Lambda$. Take any $L, L^{\prime} \in \operatorname{lat} \Delta$.
(1) $B y \mathbb{F}_{\Delta}, \operatorname{Hom}_{\Delta}\left(L, L^{\prime}\right)$ is a full sub R-lattice of $\operatorname{Hom}_{\Gamma}\left(\mathbb{F}_{\Delta}(L), \mathbb{F}_{\Delta}\left(L^{\prime}\right)\right)$. Thus \mathbb{F}_{Δ} induces an equivalence $\bmod \widetilde{\Delta} \rightarrow \bmod \widetilde{\Gamma}$.
(2) $\mathcal{J}_{\text {lat }}^{i}\left(L, L^{\prime}\right)=\operatorname{Hom}_{\Delta}\left(L, L^{\prime}\right) \cap \operatorname{Hom}_{\Gamma}\left(\mathbb{F}_{\Delta}(L), J_{\Gamma}^{i} \mathbb{F}_{\Delta}\left(L^{\prime}\right)\right)$ holds for any $i \geq 0$, and $\mathcal{J}_{\text {lat }}^{i} \Delta\left(L, L^{\prime}\right)=\operatorname{Hom}_{\Gamma}\left(\mathbb{F}_{\Delta}(L), J_{\Gamma}^{i} \mathbb{F}_{\Delta}\left(L^{\prime}\right)\right)$ holds for any $i \geq l_{\Delta}$,
(3) Let $\left\{L_{j}\right\}_{1 \leq j \leq c}$ be a finite subset of ind Δ such that $\left\{\widetilde{L_{j}}\right\}_{1 \leq j \leq c}$ gives the set of isomorphism classes of simple $\widetilde{\Delta}$-modules. For any j, denote by $p_{j}>0$ the minimal integer such that $J_{\Gamma}^{p_{j}} \mathbb{F}_{\Delta}\left(L_{j}\right)$ is isomorphic to $\mathbb{F}_{\Delta}\left(L_{j}\right)$. Then Γ is Morita equivalent to $\prod_{1 \leq j \leq c} \mathrm{~T}_{p_{j}}\left(\Omega_{j}\right)$ (1.1.1 (2)) for some local maximal order Ω_{j}, and ind $\Gamma=\left\{J_{\Gamma}^{i} \mathbb{F}_{\Delta}\left(L_{j}\right) \mid 1 \leq j \leq c, 0 \leq i<p_{j}\right\}$ holds.
(4)(Periodicity) Let p_{Δ} be the least common multiple of $p_{j}(1 \leq j \leq c)$. Then $\theta_{i+p_{\Delta}}^{+}=\theta_{i}^{+}$holds for any $i \geq l_{\Delta}$.
(5) $0 \rightarrow \mathcal{J}_{\text {lat } \Delta}^{i}\left(, \tau^{+} L\right) \rightarrow \mathcal{J}_{\text {lat } \Delta}^{i+1}\left(, \theta^{+} L\right) \rightarrow \mathcal{J}_{\text {lat }}^{i+2}(, L) \rightarrow 0$ is a split exact sequence for any $i \geq l_{\Delta}$.
(6) $\mathbb{F}_{\Delta}(L) \oplus J_{\Gamma}^{-n-1} \mathbb{F}_{\Delta}\left(\tau^{+} \theta_{n-1}^{+} L\right)$ is isomorphic to $J_{\Gamma}^{-n} \mathbb{F}_{\Delta}\left(\theta_{n}^{+} L\right)$ for any $n>0$.
(7) Take $X_{i} \in \mathrm{~F}(\Delta)$. Then $\sum_{0 \leq i<p_{\Delta}} J_{\Gamma}^{-i} \mathbb{F}_{\Delta}\left(X_{i}\right)=0$ holds if and only if $\sum_{0 \leq i<p_{\Delta}} \theta_{n-i}^{+} X_{i}=0$ holds for any $n \geq l_{\Delta}+p_{\Delta}-1$.

Proof. (1) Since $\operatorname{Hom}_{\Delta}\left(L, L^{\prime}\right)=\operatorname{Hom}_{\Lambda}\left(\mathbb{G}_{\Delta}(L), \mathbb{G}_{\Delta}\left(L^{\prime}\right)\right)$ is a full sub R lattice of $\operatorname{Hom}_{\Lambda}\left(\Gamma \mathbb{G}_{\Delta}(L), \Gamma \mathbb{G}_{\Delta}\left(L^{\prime}\right)\right)=\operatorname{Hom}_{\Gamma}\left(\mathbb{F}_{\Delta}(L), \mathbb{F}_{\Delta}\left(L^{\prime}\right)\right)$, the first assertion follows. Since \mathbb{G}_{Δ} induces an equivalence $\bmod \widetilde{\Delta} \rightarrow \operatorname{pr} \widetilde{\Lambda}=\bmod \widetilde{\Lambda}$, the second assertion follows.
(2) Since Γ is the filtering overorder of Λ, we obtain $\mathcal{J}_{\mathrm{pr} \Lambda}^{i}=\operatorname{pr} \Lambda \cap \mathcal{J}_{\mathrm{pr} \Gamma}^{i}=$ $\operatorname{pr} \Lambda \cap \mathcal{J}_{\text {lat } \Gamma}^{i}$ for any $i \geq 0$. Since the equivalence $\mathbb{G}_{\Delta}:$ lat $\Delta \rightarrow \operatorname{pr} \Lambda$ induces an isomorphism $\mathcal{J}_{\text {lat } \Delta}^{i} \rightarrow \mathcal{J}_{\text {pr } \Lambda}^{i}$, we obtain $\mathcal{J}_{\text {lat } \Delta}^{i}=\operatorname{lat} \Delta \cap \mathcal{J}_{\text {lat } \Gamma}^{i}$.
(3) $\left\{\widetilde{\mathbb{F}_{\Delta}\left(L_{j}\right)}\right\}_{1 \leq j \leq c}$ gives the set of isomorphism classes of simple $\widetilde{\Gamma}$-modules by (1). Since Γ is hereditary, we obtain the assertion.
(4) Since $\mathcal{J}_{\text {lat }}^{i+p_{\Delta}}(, L)=\operatorname{Hom}_{\Gamma}\left(\mathbb{F}_{\Delta}(), J_{\Delta}^{i+p_{\Delta}} \mathbb{F}_{\Delta}(L)\right) \simeq \operatorname{Hom}_{\Gamma}\left(\mathbb{F}_{\Delta}()\right.$, $\left.J_{\Delta}^{i} \mathbb{F}_{\Delta}(L)\right)=\mathcal{J}_{\text {lat }}^{i}(, L)$ holds by (2), we obtain the assertion by 2.3.1 (1).
(5) It is exact for any $i \geq 0$ by 2.3.1 (1). On lat Δ, it is isomorphic to an sequence $\mathbf{X}: 0 \rightarrow \operatorname{Hom}_{\Gamma}\left(, J_{\Gamma}^{i} \mathbb{F}_{\Delta}\left(\tau^{+} L\right)\right) \rightarrow \operatorname{Hom}_{\Gamma}\left(, J_{\Gamma}^{i+1} \mathbb{F}_{\Delta}\left(\theta^{+} L\right)\right) \rightarrow$ $\operatorname{Hom}_{\Gamma}\left(, J_{\Gamma}^{i+2} \mathbb{F}_{\Delta}(L)\right) \rightarrow 0$ by (2). By (3), \mathbf{X} is exact on lat Γ. Since the functor $\operatorname{Hom}_{\Gamma}\left(, J_{\Gamma}^{i+2} \mathbb{F}_{\Delta}(L)\right)$ is projective, \mathbf{X} splits. Thus the assertion follows.
(6) $\mathbb{F}_{\Delta}(L) \oplus J_{\Gamma}^{-2} \mathbb{F}_{\Delta}\left(\tau^{+} L\right)$ is isomorphic to $J_{\Gamma}^{-1} \mathbb{F}_{\Delta}\left(\theta^{+} L\right)$ by the proof of
(5). Applying 2.3.1 (2) to $\mathbb{F}_{\Delta} \in \operatorname{Hom}_{\mathbb{Z}}(\mathrm{F}(\Delta), \mathrm{F}(\Gamma))$ and $J^{-1} \in \operatorname{End}_{\mathbb{Z}}(\mathrm{F}(\Gamma))$ ($L \mapsto J_{\Gamma}^{-1} L$), we obtain the assertion.
(7) "if" part follows from (6) since $\sum_{i} J_{\Gamma}^{-i} \mathbb{F}_{\Delta}\left(X_{i}\right)=\sum_{i}\left(J_{\Gamma}^{-n} \mathbb{F}_{\Delta}\left(\theta_{n-i}^{+} X_{i}\right)-\right.$ $\left.J_{\Gamma}^{-n-1} \mathbb{F}_{\Delta}\left(\tau^{+} \theta_{n-i-1}^{+} X_{i}\right)\right)=0$. Conversely, put $X_{i}=L_{i}-L_{i}^{\prime}\left(L_{i}, L_{i}^{\prime} \in \operatorname{lat} \Delta\right)$ and assume $\bigoplus_{i} J_{\Gamma}^{-i} \mathbb{F}_{\Delta}\left(L_{i}\right) \simeq \bigoplus_{i} J_{\Gamma}^{-i} \mathbb{F}_{\Delta}\left(L_{i}^{\prime}\right)$. Then, for any $n \geq l_{\Delta}+p_{\Delta}-1$, we obtain $\bigoplus_{i} \mathcal{J}_{\text {lat } \Delta}^{n-i}\left(, L_{i}\right)=\bigoplus_{i} \mathcal{J}_{\text {lat } \Gamma}^{n}\left(\mathbb{F}_{\Delta}(), J_{\Gamma}^{-i} \mathbb{F}_{\Delta}\left(L_{i}\right)\right) \simeq \bigoplus_{i} \mathcal{J}_{\text {lat }}^{n}\left(\mathbb{F}_{\Delta}()\right.$, $\left.J_{\Gamma}^{-i} \mathbb{F}_{\Delta}\left(L_{i}^{\prime}\right)\right)=\bigoplus_{i} \mathcal{J}_{\text {lat } \Delta}^{n-i}\left(, L_{i}^{\prime}\right)$ by (2). Thus $\bigoplus_{i} \theta_{n-i}^{+} L_{i}=\bigoplus_{i} \theta_{n-i}^{+} L_{i}^{\prime}$ holds by 2.3.1 (1).

2.5. Additive functions

We call $f \in \operatorname{Hom}_{\mathbb{Z}}(\mathrm{F}(\Delta), \mathbb{Z})$ a right additive function (resp. left additive function) if $f \phi^{+}=0$ (resp. $f \phi^{-}=0$) holds.

Corollary 2.5.1. Let Δ be an R-order of finite representation type with its filtering functor \mathbb{F}_{Δ} : lat $\Delta \rightarrow \operatorname{lat} \Gamma$. Define $J^{-1} \in \operatorname{End}_{\mathbb{Z}}(\mathrm{F}(\Gamma))$ by $L \mapsto J_{\Gamma}^{-1} L$.
(1) Let A be an abelian group, $f \in \operatorname{Hom}_{\mathbb{Z}}(\mathrm{F}(\Delta), A)$ and $a \in \operatorname{End}_{\mathbb{Z}}(A)$. If $f-a f \theta^{+}+a^{2} f \tau^{+}=0$ holds, then there exists a unique element $g \in$ $\operatorname{Hom}_{\mathbb{Z}}(\mathrm{F}(\Gamma), A)$ such that $f=g \mathbb{F}_{\Delta}$ and $g J^{-1}=a g$.
(2)([I1, 4.1.1]) Let $\left\{e_{j}\right\}_{1 \leq j \leq c}$ be the complete set of central irreducible idempotents of $\widetilde{\Delta}$. Then $f \in \operatorname{Hom}_{\mathbb{Z}}(\mathrm{F}(\Delta), \mathbb{Z})$ is a right additive function if and only if $f(L)=\sum_{1 \leq j \leq c} l_{j} \operatorname{len}_{\widetilde{\Delta}}\left(\widetilde{L} e_{j}\right)$ for some $l_{j} \in \mathbb{Z}$ if and only if f is a left additive function.

Proof. (1) Take $X_{i} \in \mathrm{~F}(\Delta)$. If $\sum_{0 \leq i<p_{\Delta}} J_{\Gamma}^{-i} \mathbb{F}_{\Delta}\left(X_{i}\right)=0$ holds, then $\sum_{0 \leq i<p_{\Delta}} a^{i} f\left(X_{i}\right)=\sum_{0 \leq i<p_{\Delta}}\left(a^{n} f \theta_{n-i}^{+} X_{i}-a^{n+1} f \tau^{+} \theta_{n-i-1}^{+} X_{i}\right)=0$ holds by 2.3. (2) and 2.4 (7). Hence, by 2.4 (3), $g \in \operatorname{Hom}_{\mathbb{Z}}(\mathrm{F}(\Gamma), A)$ is well defined by $g\left(\sum_{0 \leq i<p_{\Delta}} J_{\Gamma}^{-i} \mathbb{F}_{\Delta}\left(X_{i}\right)\right):=\sum_{0 \leq i<p_{\Delta}} a^{i} f\left(X_{i}\right)$. Then g is a unique element which satisfies the desired properties.
(2) We only have to show the "only if" part of the first equivalence. By (1), there exists $g \in \operatorname{Hom}_{\mathbb{Z}}(\mathrm{F}(\Gamma), \mathbb{Z})$ such that $f=g \mathbb{F}_{\Delta}$ and $g J^{-1}=g$. Take $L_{j} \in \operatorname{ind}\left(\Gamma e_{j}\right)$ and put $l_{j}:=f\left(L_{j}\right)$. Then $g J^{-1}=g$ implies that $g(L)=$ $\sum_{1 \leq j \leq c} l_{j} \operatorname{len}_{\widetilde{\Gamma}}\left(\widetilde{L} e_{j}\right)$ holds for any $L \in \operatorname{lat} \Gamma$. By 2.4 (1), f has the desired form.

Remark 2.5.2. Above (2) shows that the triple ($\left.\mathbb{F}_{\Delta}, \mathrm{F}(\Gamma), J^{-1}\right)$ gives an initial object of the category $\mathcal{C}\left(\mathrm{F}(\Delta) ; 1,-\theta^{+}, \tau^{+}\right)$, which is defined by (1) below. In particular, we can construct the triple ($\left.\mathbb{F}_{\Delta}, \mathrm{F}(\Gamma), J^{-1}\right)$ by the manner in (2) below.
(1) Let F be an abelian group and $\eta_{i} \in \operatorname{End}_{\mathbb{Z}}(F)(0 \leq i \leq n)$. Define a category $\mathcal{C}=\mathcal{C}\left(F ; \eta_{0}, \ldots, \eta_{n}\right)$ as follows. An object is (f, A, a), where A is an abelian group, $f \in \operatorname{Hom}_{\mathbb{Z}}(F, A), a \in \operatorname{End}_{\mathbb{Z}}(A)$ such that $\sum_{0 \leq i \leq n} a^{i} f \eta_{i}=0$. Put $\operatorname{Hom}\left((f, A, a),\left(f^{\prime}, A^{\prime}, a^{\prime}\right)\right):=\left\{g \in \operatorname{Hom}_{\mathbb{Z}}\left(A, A^{\prime}\right) \mid f^{\prime}=g f, g a=a^{\prime} g\right\}$.
(2) \mathcal{C} has an initial object $\left(f_{F}, \widehat{F}, a_{F}\right)$ defined as follows.

Define $a_{F} \in \operatorname{End}_{\mathbb{Z}}\left(\bigoplus_{i \geq 0} F\right)$ and a subgroup G of $\bigoplus_{i \geq 0} F$ by $a_{F}\left(x_{0}, x_{1}, \ldots\right)$ $:=\left(0, x_{0}, x_{1}, \ldots\right)$ and $G:=\sum_{x \in F, i \geq 0} a_{F}^{i}\left(\eta_{0}(x), \eta_{1}(x), \ldots, \eta_{n}(x), 0,0, \ldots\right)$. Put $\widehat{F}:=\left(\bigoplus_{i \geq 0} F\right) / G$ and $f_{F}(x):=(x, 0,0, \ldots)$. Then, for any $(f, A, a) \in \mathcal{C}$, it is
easy to show that $\operatorname{Hom}\left(\left(f_{F}, \widehat{F}, a_{F}\right),(f, A, a)\right)$ is a singleton set $\{g\}$, where g is defined by $g\left(x_{0}, x_{1}, \ldots\right):=\sum_{i \geq 0} a^{i} f\left(x_{i}\right)$.

2.6. Appendix: Grothendieck groups

We denote by $\mathrm{K}_{0}(\mathcal{C})$ the Grothendieck group of an abelian category \mathcal{C}, and by $\mathrm{fl} \bmod \Delta$ the category of finite length Δ-modules. It was well known (eg. $[A R])$ that there exists an exact sequence $(*): \mathrm{K}_{0}(\mathrm{fl} \bmod \Delta) \xrightarrow{\mathrm{K}_{0}(\mathbb{I})} \mathrm{K}_{0}(\bmod \Delta) \rightarrow$ $\mathrm{K}_{0}(\bmod \widetilde{\Delta}) \rightarrow 0$ of Grothendieck groups. When Δ is of finite representation type, a main result of [W] gave an explicit description of the kernel of $\mathrm{K}_{0}(\mathbb{I})$. The following 2.6 .1 shows that his result holds for any order Δ.

On the other hand, when Δ is of finite representation type, 2.6 .2 gives a connection between each terms in $(*)$ and $\mathrm{F}(\Delta), \phi^{+}$etc. In particular, it gives another proof of 2.5.1 (2).
2.6.1. A bounded complex $\mathbf{X}: \cdots \rightarrow X_{i-1} \xrightarrow{d_{i-1}} X_{i} \xrightarrow{d_{i}} X_{i+1} \rightarrow \cdots$ on lat Δ is called rationally exact if the induced complex $\widetilde{\mathbf{X}}: \cdots \rightarrow \widetilde{X}_{i-1} \xrightarrow{\widetilde{d}_{i-1}} \widetilde{X}_{i} \xrightarrow{\widetilde{d}_{i}}$ $\widetilde{X}_{i+1} \rightarrow \cdots$ is exact. Then put $H(\mathbf{X}):=\sum_{i \in \mathbb{Z}}(-1)^{i} H_{i}(\mathbf{X}) \in \mathrm{K}_{0}(\mathrm{fl} \bmod \Delta)$. Let Z be the subgroup of $\mathrm{K}_{0}(\mathrm{fl} \bmod \Delta)$ generated by $[H(\mathbf{X})]$ for any rationally exact bounded complex \mathbf{X} on lat Δ such that $\bigoplus_{i \in \mathbb{Z}} X_{2 i}$ is isomorphic to $\bigoplus_{i \in \mathbb{Z}} X_{2 i-1}$.

Proposition. Let Δ be an R-order in a semisimple \widetilde{R}-algebra $\widetilde{\Lambda}$. Then the natural inclusion $\mathbb{I}: \mathrm{fl} \bmod \Delta \rightarrow \bmod \Delta$ and $\mathbb{J}:=\widetilde{()}: \bmod \Delta \rightarrow \bmod \widetilde{\Delta}$ induce the following exact sequence.

$$
0 \rightarrow Z \rightarrow \mathrm{~K}_{0}(\mathrm{fl} \bmod \Delta) \xrightarrow{\mathrm{K}_{0}(\mathbb{I})} \mathrm{K}_{0}(\bmod \Delta) \xrightarrow{\mathrm{K}_{0}(\mathbb{J})} \mathrm{K}_{0}(\bmod \widetilde{\Delta}) \rightarrow 0
$$

Thus $\mathrm{K}_{0}(\bmod \Delta)$ is isomorphic to $\mathrm{K}_{0}(\bmod \widetilde{\Delta}) \oplus \mathrm{K}_{0}(\mathrm{fl} \bmod \Delta) / Z$. Moreover, $Z=\langle[M]\rangle_{M \in \mathrm{fl} \bmod \Omega}$ holds for any maximal overorder Ω of Δ.

Proof. (i) Assume that $[M]-\left[M^{\prime}\right] \in \operatorname{Ker~}_{0}(\mathbb{J})$ holds for $M, M^{\prime} \in \bmod \Delta$. Then \widetilde{M} is isomorphic to \widetilde{M}^{\prime} since $\widetilde{\Delta}$ is semisimple. Hence there exists an exact sequence $0 \rightarrow M^{\prime} \rightarrow M \rightarrow M^{\prime \prime} \rightarrow 0$ such that $M^{\prime \prime} \in \mathrm{flmod} \Delta$. Thus $[M]-\left[M^{\prime}\right]=\left[M^{\prime \prime}\right] \in \operatorname{Im~K}_{0}(\mathbb{I})$. Moreover, $\langle[M]\rangle_{M \in f l}^{\bmod \Omega} \subseteq \operatorname{Ker}_{0}(\mathbb{I})$ holds since the Ω-projective resolution of M has the form $0 \rightarrow P \rightarrow P \rightarrow M \rightarrow 0$. Now, we will show $\operatorname{Ker} \mathrm{K}_{0}(\mathbb{I}) \subseteq Z$.

Assume $[M]-\left[M^{\prime}\right] \in \operatorname{Ker} \mathrm{K}_{0}(\mathbb{I})$ holds for $M, M^{\prime} \in \mathrm{fl} \bmod \Delta$. By definition, we can easily obtain an exact sequence $\mathbf{X}: 0 \rightarrow X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow X_{4} \rightarrow 0$ in $\bmod \Delta$ such that $X_{1} \oplus X_{3} \oplus M$ is isomorphic to $X_{2} \oplus X_{4} \oplus M^{\prime}$. Let $\mathbb{T}: \bmod \Delta \rightarrow$ $\mathrm{fl} \bmod \Delta$ be the functor such that $\mathbb{T}(X)$ is the torsion submodule of $X \in \bmod$ Δ, and $\mathbb{L}: \bmod \Delta \rightarrow$ lat Δ the functor defined by $\mathbb{L}(X):=X / \mathbb{T}(X)$. Since $\mathbb{T}\left(X_{1}\right) \oplus \mathbb{T}\left(X_{3}\right) \oplus M$ is isomorphic to $\mathbb{T}\left(X_{2}\right) \oplus \mathbb{T}\left(X_{4}\right) \oplus M^{\prime}$, we obtain $H(\mathbb{T}(\mathbf{X}))=$ $[M]-\left[M^{\prime}\right]$. Since we have an exact sequence $0 \rightarrow \mathbb{T}(\mathbf{X}) \rightarrow \mathbf{X} \rightarrow \mathbb{L}(\mathbf{X}) \rightarrow$ 0 of complexes, we obtain $[M]-\left[M^{\prime}\right]=H(\mathbb{T}(\mathbf{X}))-H(\mathbf{X})=-H(\mathbb{L}(\mathbf{X}))$. Thus the assertion follows since $\mathbb{L}(\mathbf{X})$ is a rationally exact complex satisfying $\mathbb{L}\left(X_{1}\right) \oplus \mathbb{L}\left(X_{3}\right) \simeq \mathbb{L}\left(X_{2}\right) \oplus \mathbb{L}\left(X_{4}\right)$.
(ii) We will show $Z \subseteq\langle[M]\rangle_{M \in f l} \bmod \Omega$ for any maximal overorder Ω of Δ.

Let \mathbf{X} be a rationally exact bounded complex on lat Δ such that $\bigoplus_{i \in \mathbb{Z}} X_{2 i}$ is isomorphic to $\bigoplus_{i \in \mathbb{Z}} X_{2 i-1}$. Let $\Omega \mathbf{X}$ be the complex $\cdots \rightarrow \Omega X_{i} \xrightarrow{d_{i}} \Omega X_{i+1} \rightarrow$ \cdots, and \mathbf{Y} the complex $\cdots \rightarrow \Omega X_{i} / X_{i} \xrightarrow{d_{i}} \Omega X_{i+1} / X_{i+1} \rightarrow \cdots$. Since $\bigoplus_{i \in \mathbb{Z}} \Omega X_{2 i} / X_{2 i}$ is isomorphic to $\bigoplus_{i \in \mathbb{Z}} \Omega X_{2 i-1} / X_{2 i-1}$, we obtain $H(\mathbf{Y})=0$. Since we have an exact sequence $0 \rightarrow \mathbf{X} \rightarrow \Omega \mathbf{X} \rightarrow \mathbf{Y} \rightarrow 0$ of complexes, we obtain $H(\mathbf{X})=H(\Omega \mathbf{X})-H(\mathbf{Y})=H(\Omega \mathbf{X}) \in\langle[M]\rangle_{M \in \mathrm{fl}} \bmod \Omega$.

Proposition 2.6.2. Let Δ be an R-order of finite representation type. Then we have the following commutative diagram of exact sequences whose vertical maps are isomorphisms.

Proof. Define $f_{i}(i=0,1,2)$ by $f_{2}(L):=\left[L / J_{\Delta} L\right], f_{1}(L):=[L]$ and $f_{0}(L):=[\widetilde{L}]$. Clearly f_{2} is an isomorphism, and f_{1} is an isomorphism by [AR, 1.1 Chapter 2]. Thus f_{0} is also an isomorphism.
2.7. We state a result concerning structure of orders of finite representation type (cf. [13, 3.3]). We call a filtration $\left(\Omega=I_{0} \supseteq I_{-1} \supseteq I_{-2} \supseteq \cdots\right)$ of a hereditary order Ω almost J-adic if there exists another hereditary order Γ, an idempotent e of Γ and an R-algebra isomorphism $f: e \Gamma e \rightarrow \Omega$ such that $I_{i}=f\left(e J_{\Gamma}^{-i} e\right)$ holds for any $i \leq 0$.

Corollary. Let R be a complete discrete valuation ring with a residue field $k, k[[t]]$ the formal power series ring and Δ an R-order of finite representation type. Then there exists a hereditary overorder Ω of Δ and an almost J-adic filtration $\left\{I_{i}\right\}_{i \leq 0}$ of Ω such that $\Delta^{\prime}:=\prod_{i \leq 0}\left(\Delta \cap I_{i} / \Delta \cap I_{i-1}\right)$ is a $k[[t]]$-order whose Auslander-Reiten quiver coincides with that of Δ.

Proof. Let Λ be the Auslander order of Δ and Γ the filtering overorder of Λ. Then there exists an idempotent e of Λ such that $e \Lambda e=\Delta$. Putting $\Omega:=e \Gamma e$ and $I_{i}:=e J_{\Gamma}^{-i} e$, we obtain the assertion by 2.2.1.

Examples 2.8. (1) Let $\Delta:=\left(\begin{array}{cc}\Omega & \Omega \\ J^{n} \\ \Omega\end{array}\right)(n=2 m-1>0)$, where Ω is a local maximal order with the radical J. Then ind $\Delta=\left\{\binom{\Omega}{J^{j}}\right\}_{0 \leq j \leq n}$ holds. The

Auslander order Λ of Δ and the filtering overorder Γ of Λ are the following.

$$
\begin{gathered}
\left(\right) \\
\\
\end{gathered}
$$

Thus Γ is Morita equivalent to $\left(\begin{array}{c}\Omega \\ J \\ \Omega\end{array}\right)$. Put $L_{\text {even }}:=\bigoplus_{0 \leq j<m}\binom{\Omega}{J^{2 j}}$ and $L_{\text {odd }}:=\bigoplus_{0<j \leq m}\binom{\Omega}{J^{2} j-1}$. Then, for sufficiently large i, it can be checked that $\theta_{i}^{+}\binom{\Omega}{J^{j}}=L_{\text {even }}\left(\right.$ resp. $\left.L_{\text {odd }}\right)$ holds if $i+j$ is even (resp. odd).
(2) Let $\left\{\Xi_{j}\right\}_{0 \leq j \leq n}$ be a local Bass chain of type(IVa) ([HN1]) and $\Delta:=\Xi_{n}$ $(n=2 m-1>0)$. Then ind $\Delta=\left\{\Xi_{j}\right\}_{0 \leq j \leq n}$ holds. The Auslander order Λ of Δ is the following order $\left(J_{\Xi_{n}}=\Xi_{n-1} x=x \Xi_{n-1}\right)$, and the filtering order Γ of Λ is the same order as in (1) above $\left(\Omega:=\Xi_{0}\right)$.

$$
\Lambda=\left(\begin{array}{ccccccc}
\Xi_{n} & \Xi_{n-1} & \Xi_{n-2} & \cdots & \Xi_{2} & \Xi_{1} & \Xi_{0} \\
\Xi_{n-1} x & \Xi_{n-1} & \Xi_{n-2} & \cdots & \Xi_{2} & \Xi_{1} & \Xi_{0} \\
\Xi_{n-2} x^{2} & \Xi_{n-2} x & \Xi_{n-2} & \cdots & \Xi_{2} & \Xi_{1} & \Xi_{0} \\
\vdots & \vdots & \vdots & \ddots & \vdots & \vdots & \vdots \\
\Xi_{2} x^{n-2} & \Xi_{2} x^{n-3} & \Xi_{2} x^{n-4} & \cdots & \Xi_{2} & \Xi_{1} & \Xi_{0} \\
\Xi_{1} x^{n-1} & \Xi_{1} x^{n-2} & \Xi_{1} x^{n-3} & \cdots & \Xi_{1} x & \Xi_{1} & \Xi_{0} \\
\Xi_{0} x^{n} & \Xi_{0} x^{n-1} & \Xi_{0} x^{n-2} & \cdots & \Xi_{0} x^{2} & \Xi_{0} x & \Xi_{0}
\end{array}\right)
$$

Put $L_{\text {even }}:=\Xi_{0} \oplus\left(\bigoplus_{0<j<m} \Xi_{2 j}^{2}\right)$ and $L_{o d d}:=\bigoplus_{0<j \leq m} \Xi_{2 j-1}^{2}$. Then, for sufficiently large i, it can be checked that $\theta_{i}^{+} \Xi_{j}=L_{\text {even }}$ (resp. $L_{\text {odd }}$) holds if $i+j$ is even (resp. odd).
(3) In this example, we will compute the filtering functor \mathbb{F}_{Δ} : lat $\Delta \rightarrow$ lat Γ without considering the Auslander order. Let $\left\{\Xi_{j}\right\}_{0 \leq j \leq n}$ be a local Bass chain of type(IVa) again, Ω a local maximal order and $f: \Omega / J_{\Omega} \rightarrow \Xi_{n} / J_{\Xi_{n}}$ an R-algebra isomorphism. Put $\Delta=\Delta_{n}:=\left\{(x, y) \in \Omega \times \Xi_{n} \mid f(\bar{x})=\bar{y}\right\}$ $(n=2 m-1>0)$. Then Δ is an order of finite representation type with the
following Auslander-Reiten quiver ([HN2]).

It is easily checked that $\left(\theta_{i}^{+} \Omega\right)_{i \geq 0}$ has the following period (1) of length $4 n$, and $\left(\theta_{i}^{+} \Xi_{n}\right)_{i \geq 0}$ has the following period (2) of length 4 for sufficiently large i. Hence Γ is Morita equivalent to $\mathrm{T}_{4 n}(\Omega) \times \mathrm{T}_{4}\left(\Xi_{0}\right)$ (1.1.1 (2)) by 2.4 (3).

$$
\begin{align*}
& \left(\theta_{i}^{+} \Omega\right)_{0 \leq i<4 n} \tag{1}\\
& =\left(\Omega, \Delta_{n}^{*}, L_{n-1}, \Delta_{n-1}^{*}, \ldots, L_{1}, \Delta_{1}^{*}, L_{0}, \Delta_{1}, L_{1}, \ldots, L_{n-2}, \Delta_{n-1}, L_{n-1}, \Delta_{n}\right)
\end{align*}
$$

$i \quad(\bmod 4)$	$\theta_{i}^{+} \Xi_{n}$
0	$\left(\oplus_{0 \leq j<m} \Xi_{n-2 j}^{2}\right) \oplus\left(\oplus_{0<j<m} L_{n-2 j+1}^{2}\right) \oplus L_{0}$
1	$\left(\oplus_{0 \leq j<m} \Delta_{n-2 j 2}^{2}\right) \oplus\left(\oplus_{0<j<m} \Delta_{n-2 j+1}^{* 2}\right)$
2	$\left(\oplus_{0<j<m}^{2} L_{n-2 j}^{2}\right) \oplus\left(\oplus_{0<j<m} \Xi_{n-2 j+1}^{2}\right) \oplus \Xi_{0}$
3	$\left(\oplus_{0 \leq j<m} \Delta_{n-2 j}^{* 2}\right) \oplus\left(\oplus_{0<j<m} \Delta_{n-2 j+1}^{2}\right)$

Putting $P:=\mathbb{F}_{\Delta}(\Omega)$ and $Q:=\mathbb{F}_{\Delta}\left(\Xi_{n}\right)$, we can obtain the following list of \mathbb{F}_{Δ} by using $\mathbb{F}_{\Delta}(L) \oplus J_{\Gamma}^{-2} \mathbb{F}_{\Delta}\left(\tau^{+} L\right) \simeq J_{\Gamma}^{-1} \mathbb{F}_{\Delta}\left(\theta^{+} L\right)$ (2.4 (6)) repeatedly.

$\mathbb{F}_{\Delta}\left(\Xi_{n-i}\right)$	$\mathbb{F}_{\Delta}\left(\Delta_{n-i}\right)$	$\mathbb{F}_{\Delta}\left(\Delta_{n-i}^{*}\right)$	$\mathbb{F}_{\Delta}\left(L_{n-i}\right)$
$J_{\Gamma}^{2 i} Q$	$J_{\Gamma}^{-2 i-1} P \oplus J_{\Gamma}^{2 i+1} Q$	$J_{\Gamma}^{2 i+1} P \oplus J_{\Gamma}^{-2 i-1} Q$	$J_{\Gamma}^{2 i} P \oplus J_{\Gamma}^{-2 i} P \oplus J_{\Gamma}^{2 i+2} Q$

Added in proof: Professor W. Rump kindly informed the author that 2.6.1 was given in his paper [R , Proposition 10.2].

Department of Mathematics
Kyoto University
Kyoto 606-8502, Japan
e-mail: iyama@kusm.kyoto-u.ac.jp
CURRENT ADDRESS:
Department of Mathematics
Himeji Institute of Technology
Himeji, 671-2201, Japan
e-mail: iyama@sci.himeji-tech.ac.jp

References

[AF] F. W. Anderson and K. R. Fuller, Rings and categories of modules, Graduate text in mathematics 13, Springer-Verlag.
[AR] M. Auslander and I. Reiten, Grothendieck groups of algebras and orders, J. Pure Appl. Algebra, 39-1, 2 (1986), 1-51.
[ARS] M. Auslander, I. Reiten and S. Smalo, Representation theory of Artin algebras, Cambridge Studies in Advanced Mathematics 36, Cambridge University Press, 1995.
[ARo] M. Auslander and K. W. Roggenkamp, A characterization of orders of finite lattice type, Invent. Math., 17 (1972), 79-84.
[BG] K. Bongartz and P. Gabriel, Covering spaces in representation-theory. Invent. Math., 65-3 (1981/82), 331-378.
[BGRS] R. Bautista, P. Gabriel, A. V. Roĭter and L. Salmerón, L, Representation-finite algebras and multiplicative bases, Invent. Math., 81-2 (1985), 217-285.
[CR] C. W. Curtis and I. Reiner, Methods of representation theory. Vol. I. With applications to finite groups and orders, Reprint of the 1981 original, Wiley Classics Library, A Wiley-Interscience Publication, John Wiley \& Sons, Inc., New York, 1990.
[HN1] H. Hijikata and K. Nishida, Classification of Bass orders, J. Reine Angew. Math., 431 (1992), 191-220.
[HN2] H. Hijikata and K. Nishida, Primary orders of finite representation type, J. Algebra, 192-2 (1997), 592-640.
[I1] O. Iyama, Some categories of lattices associated to a central idempotent, J. Math. Kyoto Univ., 38-3 (1998), 487-501.
[I2] O. Iyama, τ-categories I: Ladders, to appear in Algebras and Representation theory.
[I3] O. Iyama, τ-categories III: Auslander orders and Auslander-Reiten quivers, to appear in Algebras and Representation theory.
[IT] K. Igusa and G. Todorov, A characterization of finite Auslander-Reiten quivers, J. Algebra, 89-1 (1984), 148-177.
[R] W. Rump, Irreduzible und unzerlegbare Darstellungen Klassischer Ordnungen, Bayreuther Math. Schr., 32 (1990), 1-405.
[RR] C. M. Ringel and K. W. Roggenkamp, Diagrammatic methods in the representation theory of orders, J. Algebra, 60-1 (1979), 11-42.
[RV] I. Reiten and M. Van den Bergh, Two-dimensional tame and maximal orders of finite representation type, Mem. Amer. Math. Soc. 80, 1989.
[W] A. Wiedemann, The Grothendieck group of a classical order of finite lattice type, Illinois J. Math., 31-2 (1987), 208-217.

[^0]: Received April 17, 2001
 Revised July 12, 2001
 *The author is supported by the JSPS Research Fellowships for Young Scientists.

