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On the general fiber of an algebraic reduction of
a compact complex manifold of algebraic

codimension two

By
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1. Introduction

Let Z be a compact complex manifold of dimension three and of algebraic
dimension one. In 1969 S. Kawai [4] has shown that a (bimeromorphically)
ruled surface of genus g ≥ 2 never appears as a general fiber of an algebraic
reduction of Z. Ueno subsequently conjectured that the result will still be
true in the higher dimensional case where Z is of dimension n and of algebraic
dimension n−2 for any n ≥ 3 (cf. [5, Remark 12.5]). The proof of Kawai of the
above result depends on his Proposition 2 in [4], which can be stated as follows.
Let f : Z → Y be a fiber space of compact complex manifolds with dim Z = 3
and dim Y = 1. (Here by a fiber space we mean a surjective holomorphic map
with connected fibers.) Suppose that a general fiber F has the Hodge numbers
h2,0(F ) = 0 and h1,0(F ) > 0. Then there exist a fiber space h : S → Y of
curves over Y and a meromorphic map β : Z → S such that f = hβ and that
for a smooth fiber Zy, y ∈ Y , of f , the induced map βy : Zy → Sy is identified
with the Albanese map onto its image. However, there seem counterexamples
to this proposition in the case where F is bimeromorphically a ruled surface
of genus one (cf. Section 3) and indeed the proof of that proposition in [4]
seems insufficient even in the general case. In the present note we shall remark
that by a slight modification of Kawai’s proof, at least the statement at the
beginning concerning ruled surfaces of genus ≥ 2 can be shown to hold true,
and in fact even in a generalized form conjectured by Ueno. Note that another
consequence of [4, Proposition 2] was also used by another authors [1, (3.5)].

2. Theorem

The precise statement is as follows.

Theorem 2.1. Let f : Z → Y be a fiber space of compact complex
manifolds which gives an algebraic reduction of Y . Then the general fiber F of
f is never bimeromorphically equivalent to a ruled surface of genus ≥ 2.
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The result follows from Proposition 2.1 below as in [4]; in fact it is noth-
ing but Kawai’s Proposition 2 except for a restriction on the general fibers in
question and for the fact that we also treat the higher dimensional case. We
note that when Z is bimeromorphic to a Kähler manifold, the theorem together
with the next proposition are known and easier to prove (cf. e.g., [2]).

Proposition 2.1. Let f : Z → Y be a fiber space of compact complex
manifolds. Suppose that the general fiber F of f is bimeromorphically a ruled
surface of genus g ≥ 2. Then there exist a flat fiber space h : S → Y of curves
over Y and a meromorphic map β of Z onto S such that f = hβ.

Proof. Let V be a Zariski open subset of Y over which f is smooth. Then
we can construct a smooth fiber space AlbZV → V of complex tori over V and a
holomorphic map αV : ZV → AlbZV over V such that on each fiber Zy, y ∈ V ,
α gives the Albanese map of Zy (cf. Kawai [4, proof of Proposition 2]). Let SV

be the image of αV , which is a smooth fiber space of curves of genus g over
V . Denote by βV : ZV → SV the induced map which is a flat fiber space with
general fiber a nonsingular rational curve. We have to show that the fiber space
SV can be compactified to a flat fiber space S → Y over the whole Y and that
the morphism βV extends to a meromorphic map β of Z onto S.

Let DZ/Y be the relative Douady space associated to f , which is a complex
space over Y and whose points universally parametrize the compact subspaces
of Z which are contained in some fiber of f . Since βV is flat and surjective, SV

is considered as parametrizing (effectively) the subspaces of fibers of f over V ,
we may consider SV as an irreducible component of DZ/Y |V and βV : ZV → SV

as the restriction of the universal family over DZ/Y to SV . Then let S be the
unique irreducible component of DZ/Y which contains SV as a Zariski open
subset with respect to the inclusion DZ/Y |V ⊆ DZ/Y . Then the restriction
Z∗ → S of the universal family to S gives a partial compactification of βV :
ZV → SV with respect to the natural inclusion SV ⊆ S and ZV ⊆ Z∗. Thus
if we can show that S is proper over Y , and that the inclusion ZV → Z∗ can
be extened to a bimeromorphic map Z → Z∗ we are done; the composition
Z → Z∗ → S gives a desired meromorphic extension β of βV .

The problem is then local with respect to Y . So, changing the notation
we assume in what follows that Y is a polydisc with center the origin of Cd,
which we may eventually shrink. Take as in [4] a nonzero section w of the direct
image sheaf f∗Ω1

Z/Y identified with a relative holomorphic 1-form on Z. For
any y ∈ V the restriction wy of w to the smooth fiber Zy is the pull-back of
a unique holomorphic 1-form w̄y on Sy via the Albanese map βy (restricted to
its image) and for a general y, w̄y vanishes at 2g−2(> 0) points on Sy counted
with mutliplicity, and hence, the zeroes of wy on Zy consists of a union of 2g−2
fibers of the morphism βy : Zy → Sy, which is a divisor Dy on Zy with Iitaka
dimension κ(Zy, Dy) = 1. Thus the zero of w on Z contains a divisor D on Z
which gives on Zy the divisor Dy for general y ∈ Y .

Then for some sufficiently large integer m the natural meromorphic map
q : Z → P (f∗OZ(mD)) over Y has an image B which is generically of dimension
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one over Y , where P (f∗OZ(mD)) is the projective fiber space associated to the
coherent direct image sheaf f∗OZ(mD). Moreover, the map q is holomorphic
when restricted to Zy for general y, giving the morphism βy : Zy → Sy above.
More precisely, suppose that the last fact is true for y ∈ U for some Zariski
open subset U of Y which is contained in V and might be strictly smaller than
V . Take the normalized graph Ẑ of the meromorphic map q, and then take the
flattening q̃ : Z̃ → B̃ of the natural projection q̂ : Ẑ → B. Then we have the
universal morphism τ : B̃ → DZ/Y over Y which gives an isomorphism onto
SU over U by the property of q. Then τ must also factors through SV over V ,
and the image is nothing but the unique irreducible component S containing
SV . Thus since B̃ is proper over Y , so is S. Moreover, by construction we
have the meromorphic map β : Z → S over Y as the composition of natural
meromorphic maps over Y ; Z → Ẑ → Z̃ → B̃ → S. It remains to show that
this meromorphic map β coincides over V with the original map βV . In fact,
by construction β clearly coincides with βV over U . Then as a meromorphic
map from ZV to SV they must also coincide over the whole V . This completes
the proof of Proposition 2.1 and hence of Theorem 2.1.

The above argument can be readily generalized as follows. Let f : Z → Y
be a fiber space of compact complex manifolds as above. For a general fiber
F = Zy of f let α : F → AlbF be the Albanese map of F and F → F̄ → AlbF
the Stein factorization of α. The dimension d of F̄ is independent of the general
fiber and we can relativize the map F → F̄ to obtain fiber spaces hV : SV → V
and βV : ZV → SV over V with fV = hV βV as before.

Proposition 2.2. Suppose that the general fiber F of f has the prop-
erties that 1) α is not surjective, and 2) F → F̄ is flat. Then there exist a
flat fiber space h : S → Y of relative dimension d over Y and a meromorphic
map β of Z onto S with f = hβ such that the general fiber of f has a positive
Kodaira dimension.

Corollary 2.1. A manifold F satisfying the above two conditions never
appears as a general fiber of an algebraic reduction of a compact complex man-
ifold.

We use in the proof a section w of f∗Ωd
Z/Y instead of f∗Ω1

Z/Y (cf. the proof
of [5, Theorem 10.3]). Because of the lack of immediate applications we omit a
detailed proof here. But this generalization would somewhat clarify the nature
of Theorem 2.1.

3. Example

For the counterexample to Proposition 2 of [4] we first note the following:
Let (M, g) be a compact connected self-dual manifold and Z the associated
twistor space. Z admits a C∞ fibration t : Z → M with fibers isomorphic to a
complex projective line P 1. The fibers of t are called twistor lines. Any twistor
line has the normal bundle which is isomorphic to O(1) ⊕ O(1) and gives rise
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to a complex four-dimensional family of curves on Z whose general members
are called complex twistor lines. From this description we easily conclude the
following:

Lemma 3.1. Suppose that there exists a surjective meromorphic map
f : Z → P 1 with connected fibers. Suppose further that f is factored as f = hu,
where h : T → P 1 is a fiber space of curves with T smooth and u : Z → T is a
surjective meromorphic map. Then T is algebraic.

Proof. From the description of the normal bundle of a twistor line we
see easily that at any point z of Z and for any tangent direction at z which is
sufficiently near to that of the unique twistor line passing through z there exists
a complex twistor line passing through z and with the given tangent direction
at z. It follows that a general complex twistor line is mapped surjectively onto
P 1 by f . So if there exists a factorization as in the lemma, the image of a
general twistor line by u gives a multi-section to the fiber space h. This implies
that T is algebraic.

Now we consider the twistor space of a Hopf surface as described in [3].
Let M be a primary Hopf surface of the form M = (C2 − {0})/〈g〉, where g
acts by

(z, w) → (re2πimθz, re2πinθw), (z, w) ∈ C2 − {0}
where r > 1 is a real number, m and n with (m, n) �= (1, 1) are positive coprime
integers, and θ is some non-rational real number. Then the associated twistor
space Z is of algebraic dimension one and its algebraic reduction is given by
a meromorphic map f : Z → Y such that the general fiber is a ruled surface
of genus one (in general non-normal) [3, Theorem 3]. On the other hand, if
f̂ : Ẑ → Y is a holomorphic model of f , f̂ does not admit any factorization as in
the above lemma although a general fiber of f̂ is isomorphic to a ruled surface of
genus one, for which we have h2,0 = 0 and h1,0 = 1. Indeed, otherwise we would
have 1 = a(Z) ≥ a(T ) = 2, a contradiction. Thus this gives a couterexample
mentioned in Section 1.
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