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A lower bound on the spectral gap of the
3-dimensional stochastic Ising models

By
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1. Introduction

Let us consider the Glauber dynamics at low temperature (large β > 0)
which evolves on a cube Λd(L) = (−L, L]d∩Zd (L ∈ N) whose side-length is 2L
with a boundary condition ω. By gap(Λd(L), ω), we will denote the spectral
gap corresponding to a boundary condition ω. Especially, By gap(Λd(L), φ)
and gap(Λd(L), +), we will mean spectral gaps corresponding to free and +
boundary conditions, respectively. L. E. Thomas proved in [Tho89] that

gap(Λd(L), φ) ≤ B exp(−βCLd−1) for any L ∈ N(1.1)

for any d ≥ 2 and sufficiently large β > 0, where B = B(β, d) > 0 and
C = C(β, d) > 0. For d = 2 and any β > βc(2), it is known that the speed
at which gap(Λ2(L), +) shrinks to zero as L ↗ ∞ is different from the one at
which gap(Λ2(L), φ) does (see [Ma94], [Ma99] and [CGMS96]). In this paper,
we confirm that it is also true for d ≥ 3 and sufficiently large β > 0. In fact,
we prove that for sufficiently large β > 0, some B > 0 and some C > 0,

gap(Λd(L), +) ≥ B exp(−βCLd−2(log L)2) for any L ∈ N.(1.2)

For each δ ∈ [0, 1], we will consider the boundary condition ηδ which is
defined by

ηδ(x) =

{
+1 if xd = −L and − δL < xi ≤ δL (i �= d),
0 otherwise.

(1.3)

For d = 3, we also prove that for sufficiently large β > 0, some B > 0 and some
C > 0,

gap(Λ3(L), η1) ≥ B exp(−βCL
5
3 (log L)2) for any L ∈ N,(1.4)

which implies at least that the speed at which gap(Λ3(L), η1) shrinks to zero as
L ↗ ∞ is different from the one at which gap(Λ3(L), φ) does, as was expected
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752 Nobuaki Sugimine

from the result for d = 2 (see [Ma94]). The proof of (1.2) and (1.4) goes along
the line of [Ma94], but the dimensionality comes in, and we have to introduce
some new geometrical lemmas besides estimates given in [D72].

Organization of the paper. In Section 1, we will introduce our results
and key ingredients of cluster expansion and the notion of standard walls. In
Section 2, we will introduce Propositions 2.1 and 2.2 and sketch the proof of
our results along the line of [Ma94]. In Section 3, we will introduce a lemma
about cluster expansion and give the proof of Proposition 2.1. In Section 4,
we will give the proof of Proposition 2.2. Because of the boundary condition
η1, the standard wall which includes much more boundary faces than interior
faces has less energy than we expect from the size of it. For this reason, we
decompose such a standard wall into pieces which do not belong the boundary
of Q(Λ3(L)) (see (4.38)–(4.46)). We analyze the energy-entropy competition
coming from these pieces. In Appendix, we will prove geometrical lemmas used
in Section 4.

Basic definitions. For x = (xi)d
i=1 ∈ Zd, we will use the l1-norm ‖x‖1 =∑d

i=1 |xi| and l∞-norm ‖x‖∞ = max{|x1|, . . . , |xd|}. Let p = 1 or p = ∞. A
set Λ ⊂ Zd is said to be lp-connected if for each distinct x, y ∈ Λ, we can find
some {z0, . . . , zm} ⊂ Λ with z0 = x, zm = y and ‖zi − zi−1‖p = 1 for all
i ≤ m. The interior and exterior boundaries of a set Λ ⊂ Zd will be denoted
respectively by

∂inΛ = {x ∈ Λ; ‖x − y‖1 = 1 for some y /∈ Λ}
and

∂exΛ = {y /∈ Λ; ‖x − y‖1 = 1 for some x ∈ Λ}.
We will use the notation Λ ⊂⊂ Zd to indicate that Λ is a non-empty finite subset
of Zd. The number of points contained in a set Λ ⊂⊂ Zd will be denoted by
|Λ|.

The boundary conditions and the Gibbs states. In addition to the usual
spin configuration spaces

ΩΛ = {σ = (σ(x))x∈Λ; σ(x) = +1 or − 1} for any Λ ⊂ Z
d,

we will introduce a configuration space Ωb.c. for boundary conditions

Ωb.c. = {ω = (ω(x))x∈Zd ; ω(x) = +1, 0 or − 1}.
We define φ ∈ Ωb.c. and + ∈ Ωb.c. by

φ(x) = 0 for all x ∈ Z
d and + (x) = +1 for all x ∈ Z

d, respectively.

The set of all real functions on ΩΛ will be denoted by CΛ. For each Λ ⊂⊂ Zd

and each ω ∈ Ωb.c., the Hamiltonian Hω
Λ ∈ CΛ is defined by

Hω
Λ(σ) = −1

2

∑
x,y∈Λ

‖x−y‖1=1

σ(x)σ(y) −
∑

x∈Λ, y /∈Λ
‖x−y‖1=1

σ(x)ω(y).
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A Gibbs state in Λ ⊂⊂ Zd with a boundary condition ω ∈ Ωb.c. and inverse
temperature β > 0 is the probability distribution µω

Λ such that the probability
of each configuration σ ∈ ΩΛ is given by

µω
Λ({σ}) =

1
Zω

Λ

exp[−βHω
Λ(σ)],

where Zω
Λ is the normalization constant.

Stochastic Ising models. Let Λ ⊂⊂ Zd and let ω ∈ Ωb.c.. The generator
of a stochastic Ising model is the linear operator Aω

Λ : CΛ → CΛ given by

Aω
Λf(σ) =

∑
x∈Λ

cω
x (σ)[f(σx) − f(σ)],

where cω
x ∈ CΛ is the transition rate and σx is the configuration obtained from

σ by replacing σ(x) with −σ(x). We will assume the following conditions on
the transition rate cω

x :
(H1) Detailed balance condition. It holds that

cω
x (σ) exp[−βHσΛω

{x} (σ(x))] = cω
x (σx) exp[−βHσΛω

{x} (−σ(x))],(1.5)

where σΛω is the configuration such that σΛω = σ on Λ and σΛω = ω on Λc.
(H2) Positivity and boundedness. There exist cm = cm(β, d) ∈ (0,∞) and

cM = cM (β, d) ∈ (0,∞) such that for any Λ ⊂⊂ Zd

cm ≤ inf{cω
x (σ); x ∈ Λ, ω ∈ Ωb.c. and σ ∈ ΩΛ}

≤ sup{cω
x (σ); x ∈ Λ, ω ∈ Ωb.c. and σ ∈ ΩΛ} ≤ cM .

(1.6)

(H3) Nearest neighbor interaction. If σ(y) = σ′(y) for all y with ‖y−x‖1 =
1, then it holds that cω

x (σ) = cω
x (σ′).

(H4) Attractivity. If σ ≤ σ′ and σ(x) = σ′(x), then it holds that

σ(x)cω
x (σ) ≥ σ′(x)cω

x (σ′).(1.7)

An example of functions cω
x is given by

cω
x (σ) = exp

[
−β

2
(HσΛω

{x} (σx) − HσΛω
{x} (σ))

]

= exp

−βσ(x)

 ∑
y∈Λ;‖x−y‖1=1

σ(y) +
∑

y/∈Λ;‖x−y‖1=1

ω(y)

 .

It can be seen by (1.5) that for any f, g ∈ CΛ

−µω
Λ[fAω

Λg] = −µω
Λ[gAω

Λf ]

=
1
2

∑
x∈Λ

∑
σ∈ΩΛ

µω
Λ(σ)cω

x (σ)[f(σx) − f(σ)][g(σx) − g(σ)].
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Finally, we define

gap(Λ, ω) = inf
{ −µω

Λ[fAω
Λf ]

µω
Λ[ |f − µω

Λ[f ]|2 ]
; f ∈ CΛ

}
,(1.8)

which is the smallest positive eigenvalue of −Aω
Λ, and hence it is called the

spectral gap.

Main Results. Let Λd(L) = (−L, L]d ∩ Zd for each L ∈ N. For each
ω ∈ Ωb.c., we define

F+
L (ω) = {y ∈ ∂exΛd(L); ω(y) = +1}.

Theorem 1.1. Let d ≥ 3. Consider a stochastic Ising model on the
square Λd(L). Then, there exists β0 = β0(d) > 0 such that for any β ≥ β0 and
any L ∈ N

gap(Λd(L), +) ≥ B exp(−βCLd−2(log L)2)(1.9)

holds, where B = B(cm, d) > 0 and C = C(β, d) > 0.

Theorem 1.2. Let d = 3. Consider a stochastic Ising model on the
square Λ3(L). Suppose that a boundary condition ω ∈ Ωb.c. satisfies that ω(x) ≥
0 for all x ∈ Zd and

F+
L (ω) ⊃ {y ∈ ∂exΛ3(L); y3 = −L}.(1.10)

Then, there exists β′
0 > 0 such that for any β ≥ β′

0 and any L ∈ N

gap(Λ3(L), ω) ≥ B′ exp(−βC ′L
5
3 (log L)2)(1.11)

holds, where B′ = B′(cm, cM ) > 0 and C ′ = C ′(β) > 0.

Hereafter, we will introduce key ingredients for the proof of Theorems 1.1
and 1.2. We will also introduce some basic lemmas which we will use here.

Block dynamics (See [Ma94] and [Ma99]). From now on, we will use
the following modified Hamiltonian for convenience: For each Λ ⊂⊂ Zd, each
ω ∈ Ωb.c. and each J = (Jx,y) ∈ [0, 1]Z

d×Z
d

, we define

Hω,J
Λ (σ) = −1

2

∑
x,y∈Λ

‖x−y‖1=1

(σ(x)σ(y) − 1) −
∑

x∈Λ, y /∈Λ
‖x−y‖1=1

Jx,y(σ(x)ω(y) − 1).(1.12)

By µω,J
Λ and Z(Λ, ω, J), we will denote the Gibbs state in Λ with having Hω,J

Λ as
its Hamiltonian and the normalization constant, respectively. By gap(Λ, ω, J),
we will also denote the spectral gap of the generator

(Aω,J
Λ f)(σ) =

∑
x∈Λ

cω,J
x (σ)[f(σx) − f(σ)],
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where cω,J
x satisfy (H1) for Hω,J

Λ , (H3), (H4) and that for any Λ ⊂⊂ Zd

cm ≤ inf{cω,J
x (σ); x ∈ Λ, ω ∈ Ωb.c., σ ∈ ΩΛ and J ∈ [0, 1]Z

d×Z
d}

≤ sup{cω,J
x (σ); x ∈ Λ, ω ∈ Ωb.c., σ ∈ ΩΛ and J ∈ [0, 1]Z

d×Z
d} ≤ cM .

For a finite family {Qi} with Qi ⊂ Λ and ∪iQi = Λ, we define

(A{Qi},ω,J
Λ f)(σ) =

∑
i

∑
η∈ΩQi

µσΛω,J
Qi

(η)[f(ση) − f(σ)],(1.13)

where ση is the configuration such that ση = η on Qi and ση = σ on Qc
i . The

dynamics having A
{Qi},ω,J
Λ as its generator is called the block dynamics. By

gap(Λ, {Qi}, ω, J), we will denote the spectral gap of the generator A
{Qi},ω,J
Λ ,

and we have that

gap(Λ, {Qi}, ω, J) = inf

{
−µω,J

Λ [fA
{Qi},ω,J
Λ f ]

µω,J
Λ [ |f − µω,J

Λ [f ]|2 ]
; f ∈ CΛ

}
.

For each l ≤ 2L, set

Qi = {x ∈ Λd(L);−L + (i − 1)l < xd ≤ −L + (i + 3)l}.

Then, we have (see Section 2 in [Ma94] or the proof of Theorem 5 in [Sch94])
that

gap(Λd(L), ω, J)

≥ cm

4|Qi| exp

[
−4β

(
4l

d∑
k=2

(2L)k−2 + 1

)]
gap(Λd(L), {Qi}, ω, J).

(1.14)

Contours and the cluster expansion (See [KP86]). Let Q(x) =∏d
i=1[x

i −(1/2), xi + (1/2)] ⊂ Rd and let Q(V ) = ∪x∈V Q(x) ⊂ Rd for each
V ⊂ Rd. By ∂Q(V ), we will denote the boundary of Q(V ) in Rd. Let us fix
L ∈ N. For each L1 ∈ Z ∪ {−∞,∞} and each L2 ∈ Z ∪ {−∞,∞}, we set

Λ(L1, L2) = Λd(L1, L2)
= {x ∈ Z

d; L1 < xd < L2 + 1, −L < x1, . . . , xd−1 ≤ L}.

We will call γ ⊂ Rd a contour (in Λ(L1, L2)) if γ = ∂Q(Θ) for a finite l∞-
connected set Θ ⊂ Λ(L1, L2) which satisfies that Θc is l∞-connected. By
C(L1, L2), we will denote the collection of contours in Λ(L1, L2). For each
n ∈ Z, we define a boundary condition ωn ∈ Ωb.c. by

ωn(x) =

{
−1 if xd ≥ n,

+1 otherwise.
(1.15)
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We will write ω = ω0. Let us fix a negative integer L1 and L2 ∈ N. For each
σ ∈ ΩΛ(L1,L2), let

Λ(L1, L2, σ, ω) =

(x, y);
x, y ∈ Λ(L1, L2) ∪ ∂exΛ(L1, L2)
such that ‖x − y‖1 = 1 and
σΛ(L1,L2)ω(x) �= σΛ(L1,L2)ω(y)

 .

For a given configuration σ ∈ ΩΛ(L1,L2), we decompose

∪(x,y)∈Λ(L1,L2,σ,ω)(Q(x) ∩ Q(y))(1.16)

into the connected components. Then, there exists a unique component which
does not belong to C(L1, L2). We will call such a component an open contour
in σ. By Γω

Λ(L1,L2)
(σ), we will denote the open contour in σ. By O(L1, L2), we

will denote the collection of open contours for some σ ∈ ΩΛ(L1,L2). We define
C(−∞,∞) = ∪N∈NC(−N, N) and O(−∞,∞) = ∪N∈NO(−N, N). We define
the maps h+ : O(−∞,∞) → Z and h− : O(−∞,∞) → Z, respectively, by

h+(Γ) = max{xd + (1/2); x ∈ Γ} and h−(Γ) = min{xd + (1/2); x ∈ Γ}.
(1.17)

Let us fix Γ ∈ O(L1, L2) and γ ∈ C(L1, L2) such that Γ ∩ γ = ∅. Then,
there exists the unique configuration σΓ ∈ ΩΛ(L1,L2) which satisfies that Γ is
the open contour in σΓ, and that there are no contours in σΓ. We can also see
that there exists the unique configuration σΓ,γ ∈ ΩΛ(L1,L2) in which Γ is the
open contour and γ is also the unique contour. We define

ΦJ(Γ) = exp[−βHω,J
Λ(L1,L2)

(σΓ)]

and
ΦJ(γ) = exp[−β(Hω,J

Λ(L1,L2)
(σΓ,γ) − Hω,J

Λ(L1,L2)
(σΓ))].

For each pair {γ1, γ2} ⊂ C(L1, L2)∪O(L1, L2), we will mean by γ1ιγ2 that
γ1 ∩ γ2 �= ∅. We will call a nonempty set C ⊂ C(L1, L2) a cluster if it is not
decomposable into two nonempty sets, C = C1 ∪ C2, such that there are no
pairs (γ1, γ2) ∈ C1×C2 satisfying that γ1ιγ2. For each Γ ∈ O(L1, L2) and each
cluster C ⊂ C(L1, L2), ΓιC will indicate that Γ ∩ C �= ∅.

Let X ⊂ C(L1, L2). By D(X), we will denote the family of subsets γ ⊂ X
such that there are no pairs {γ1, γ2} ⊂ γ with γ1ιγ2. We define

Z(X; ΦJ) =
∑

γ∈D(X)

∏
γ∈γ

ΦJ(γ)

if X is non-empty, and define Z(∅; ΦJ) = 1. Let PL1,L2 be the family of all
subsets of C(L1, L2).

Lemma 1.1. Let functions a : C(L1, L2) → [0,∞) and d : C(L1, L2) →
[0,∞) be such that ∑

γ′∈C(L1,L2);γ′ιγ

exp[a(γ′) + d(γ′)]|ΦJ(γ′)| ≤ a(γ)(1.18)
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for each γ ∈ C(L1, L2). Then, Z(X; ΦJ) �= 0 and there exists a unique function
ΦT

J
: PL1,L2 → R such that

log Z(X; ΦJ) =
∑

C;C⊂X

ΦT
J (C)(1.19)

for every X ⊂ C(L1, L2). Moreover, the function ΦT
J

is given by the formula

ΦT
J (C) =

∑
B;B⊂C

(−1)|C|−|B| log Z(B; ΦJ),(1.20)

the estimate

∑
C⊂X;Cιγ

|ΦT
J (C)| exp

 ∑
γ′∈C

d(γ′)

 ≤ a(γ)(1.21)

holds true for every γ ∈ C(L1, L2), and

ΦT
J (C) = 0 whenever C is not a cluster.(1.22)

Standard walls (See [D72]). Let d ≥ 3. We will introduce the notion
of standard walls to express contour models and to use it in the proof of key
propositions (Propositions 2.1 and 2.2). We define H(z) = {x ∈ Rd; xd = z} for
each z ∈ R. Let π be the orthogonal projection: Rd → H(−1/2) and let Hn be
the n-dimensional standard Hausdorff measure in Rd for each n ≤ d − 1. We
will call w a face if

w ∈ {Q(x) ∩ Q(y); x, y ∈ Z
d such that ‖x − y‖1 = 1}.

Let us fix Λ(L1, L2) and Γ ∈ O(L1, L2). For a face w ⊂ Γ, we will call w a
ceiling face (of Γ) if Hd−1(π(w)) = 1 and there is no other face w′ ⊂ Γ such
that π(w) = π(w′). The other faces (in Γ) will be called wall faces (of Γ). By
walls (of Γ), we will mean connected components of the set

{v ∈ R
d; for some wall face w of Γ, v ∈ w}.

Let W ′ be a wall. Then, there exists a configuration σ ∈ ΩΛ(L1,L2) such
that the family of walls corresponding to Γω

Λ(L1,L2)
(σ) consists of the only wall

W which is obtained by the vertical shift of W ′. We will call W a standard wall.
For the family of walls {W ′

i} (of Γ), we have a unique family of standard walls
{Wi} (corresponding to Γ). By SW(L1, L2), we will denote the collection
of families of standard walls which correspond to Γω

Λ(L1,L2)(σ) for some σ ∈
ΩΛ(L1,L2). We define SW(−∞,∞) = ∪N∈NSW(−N, N). Note that there
is one-to-one correspondence between O(−∞,∞) and SW(−∞,∞). By W(Γ)
and Γ(W), we will mean the family of standard walls corresponding to the open
contour Γ ∈ O(−∞,∞) and the open contour corresponding to the family of
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standard walls W ∈ SW(−∞,∞), respectively. For each W ∈ SW(−∞,∞),
we define

h+(W) = h+(Γ(W)) and h−(W) = h−(Γ(W)).(1.23)

We will introduce a partial order ≺ for standard walls of each W ∈
SW(−∞,∞). We define the map π̂ : Rd ⊃ V �→ π̂(V ) ⊂ H(−1/2) by

π̂(V ) =
{

x ∈ H
(
−1

2

)
; any path γ : x → ∞ in H

(
−1

2

)
intersects π(V )

}
.

(1.24)

We define the partial order ≺ naturally induced by ({π̂(W ); W ∈ W},⊂) for
each W ∈ SW(−∞,∞). Let W ∈ SW(−∞,∞) and let W ∈ W. We define

W(W ) = {W ′ ∈ W \{W}; W ′ � W}.(1.25)

Note that W(W ) ∈ SW(−∞,∞). We can see that xd = yd for any x, y ∈
Γ(W(W )) such that π(x) ∈ π̂(W ) and π(y) ∈ π̂(W ). Then,

b(W, W) = xd + (1/2) for some x ∈ Γ(W(W )) such that π(x) ∈ π̂(W )
(1.26)

is well-defined. For each Γ ∈ O(−∞,∞) and each W ∈ W(Γ), we also define

b(W, Γ) = b(W, W(Γ)).(1.27)

Lemma 1.2. Let W ∈ SW(−∞,∞). Suppose that {Wi}n
i=1 ⊂ W and

W1 ≺ · · · ≺ Wn. Then, it holds that Hd−1(Wn) ≥ n.

Lemma 1.3. Let W ∈ SW(−∞,∞). Suppose that {W1, W2} ⊂ W and
W1 ≺ W2. Then, it holds that

h+(W(W2)) ≤ h+(W(W1))

and
h−(W(W2)) ≥ h−(W(W1)).

Lemma 1.4. Let W ∈ SW(−∞,∞). Then, it holds that

h+(W) = max{h+(W(W ) ∪ {W}); W is a minimal standard wall in W}

and

h−(W) = min{h−(W(W ) ∪ {W}); W is a minimal standard wall in W}.

We omit the proof of these lemmas.
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Lemma 1.5. Suppose that {W, W′} ⊂ SW(−∞,∞) such that W ∩
W′ = ∅ and W ∪ W′ ∈ SW(−∞,∞). Then, we have that

h+(W ∪ W
′) ≤ h+(W) + h+(W ′)

and
h−(W ∪ W

′) ≥ h−(W) + h−(W ′).

Proof. Without loss of generality, we can assume by Lemma 1.4 that
there exists a unique minimal standard wall W ∈ W ∪ W′. Moreover, we can
assume that W ∈ W. Note that there exist unique minimal standard walls in
W and W′, respectively, and that there exist unique maximal standard walls
in W ∪ W′, W and W′, respectively. Rearrange W ∪ W′ in order of �. The
family of standard walls W ∪ W′ is divided into blocks of standard walls each
of which is a subset of either W or W′. We will show Lemma 1.5 only for h+

by induction on the number of these blocks. To be more precise, we will show
by induction that for any k ∈ N,

h+(W ∪ W
′) ≤ h+(W) + h+(W ′)(1.28)

if

W ∪ W
′ = {W k+1

nk+1
, . . . , W k+1

1 , W k
nk

, . . . , W k
1 , . . . , W 1

n1
, . . . , W 1

1 },
{W j

i }nj

i=1 ⊂ W for odd j, {W j
i }nj

i=1 ⊂ W
′ for even j

and

{W k+1
nk+1

� · · · � W k+1
1 � W k

nk
� · · · � W k

1 � · · · � W 1
n1

� · · · � W 1
1 }.

The inequality for h− can be obtained in a similar way.
We will first consider the case where k = 1. In this case, we can see that

W 2
1 � W 1

n1
for the maximal standard wall W 1

n1
∈ W and the minimal standard

wall W 2
1 ∈ W′. Then, we can see that

(W ∪ W
′)(W 1

n1
) = W

′ and b(W 1
n1

, W ∪ W
′) ≤ h+(W ′).

Therefore, we have that

h+(W ∪ W
′)

= max{h+((W ∪ W
′)(W 1

n1
)), b(W 1

n1
, W ∪ W

′) + h+(W)}
≤ h+(W ′) + h+(W),

(1.29)

which implies (1.28) for k = 1.
We will next consider the case where k = m assuming that (1.28) is true

when k = m − 1. Suppose that the maximal standard wall in W ∪ W′ is the
maximal standard wall in W (m is even). Note that

b(Wm
nm

, W ∪ W
′) = b(Wm−1

nm−1
, W).(1.30)
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Then, we have by induction hypothesis, (1.30) and Lemmas 1.3 and 1.4 that

h+(W ∪ W
′)

= max{h+((W ∪ W
′)(Wm

nm
)),

b(Wm
nm

, W ∪ W
′) + h+({Wm

nm
, . . . , W 1

1 })}
≤ max{h+(W), b(Wm−1

nm−1
, W) + h+(W \{Wm+1

i }nm+1
i=1 ) + h+(W ′)}

≤ h+(W) + h+(W ′),

(1.31)

which implies (1.28) for k = m. Similarly, we can obtain (1.31) in the case
where the maximal standard wall in W ∪ W′ is the maximal standard wall in
W′ (m is odd).

2. Key propositions for the proof of Theorems 1.1 and 1.2

We have only to modify Propositions 3.1 and 4.1 in [Ma94] to prove Theo-
rems 1.1 and 1.2, respectively. Throughout this section, we assume that β > 0
is sufficiently large. For r > 0, �r� stands for the smallest integer larger or
equal to r. We will introduce a modified proposition for the proof of Theorem
1.1. We consider the block dynamics generated by A

{Qi},+,J≡1
Λd(L) .

Proposition 2.1. Suppose that β > 0 is sufficiently large. Let l =
�K1(log L)2� and M ∈ N with 4l ≤ M ≤ 2L − l. Then, for any ε > 0
there exists K1 = K1(β, ε) > 0 such that for sufficiently large L ∈ N and
any x ∈ Λ(−L,−L + M − 3l)

µ+,J≡1
Λ(−L,−L+M)(σ(x) = +1) − µη,J≡1

Λ(−L,−L+M)(σ(x) = +1) ≤ εL−d,(2.1)

where we write η = ω−L+M+1 (see (1.15)).

We can obtain from (2.1) (see Section 3 in [Ma94]) that for sufficiently
large L ∈ N,

gap(Λd(L), {Qi}, +, J ≡ 1) ≥ exp[−L].(2.2)

From (1.14) and (2.2), we have that for some B = B(cm, d) > 0, some C =
C(K1, β, d) > 0 and for any L ∈ N

gap(Λd(L), +, J ≡ 1) ≥ B exp[−βCLd−2(log L)2],

which implies (1.9).
We will introduce a modified proposition for the proof of Theorem 1.2. Let

J̄δ be given by

J̄x,y =

{
1 if x ∈ Λ3(L), x3 = −L + 1, y ∈ ∂exΛ3(L) and y3 = −L,

δ otherwise.
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From the direct calculation, we have that

gap(Λ3(L), +, J̄0) ≥ cm

cM
exp[−160βδL2] gap(Λ3(L), +, J̄δ).(2.3)

We consider the block dynamics generated by A
{Qi},+,J̄δ

Λ3(L) .

Proposition 2.2. Suppose that d = 3 and β > 0 is sufficiently large.
Let l = �K2L

2/3(log L)2� and M ∈ N with 4l ≤ M ≤ 2L − l. Let δ =
L−2/3 log L. Then, for any ε > 0 there exists K2 = K2(β, ε) > 0 such that
for sufficiently large L ∈ N and any x ∈ Λ(−L,−L + M − 3l)

µ+,J̄δ

Λ(−L,−L+M)(σ(x) = +1) − µη,J̄δ

Λ(−L,−L+M)(σ(x) = +1) ≤ εL−3,(2.4)

where we write η = ω−L+M+1 (see (1.15)).

We can obtain from (2.4) that for sufficiently large L ∈ N,

gap(Λ3(L), {Qi}, +, J̄δ) ≥ exp[−L].(2.5)

From (1.14), (2.3) and (2.5), we have that for some B′ = B′(cm, cM ) > 0, some
C ′ = C ′(K2, β) > 0 and for any L ∈ N,

gap(Λ3(L), +, J̄0) ≥ B′ exp[−βC ′L
5
3 (log L)2],

which implies (1.11).

3. Proof of Proposition 2.1

For simplicity we will prove Proposition 2.1 for d = 3. Let us fix M ∈ N

with 4l ≤ M ≤ 2L − l. We will omit the notation J ≡ 1. We will write
η = ω−L+M+1 and ζ = ω−L+M+2l (see (1.15)) in this section. We assume that
β > 0 is sufficiently large throughout this section. We define open contours for
each σ ∈ ΩΛ(−L,−L+M) under the boundary conditions η and ζ (see (1.16)).
By Γη

Λ(−L,−L+M)(σ) and Γζ
Λ(−L,−L+M)(σ), we will denote the open contours for

each σ ∈ ΩΛ(−L,−L+M) under the boundary conditions η and ζ, respectively.
We consider the events

Aη
Λ(−L,−L+M) = {σ ∈ ΩΛ(−L,−L+M); h−(Γη

Λ(−L,−L+M)(σ)) > −L + M − 3l}

and

Aζ
Λ(−L,−L+M) = {σ ∈ ΩΛ(−L,−L+M); h−(Γζ

Λ(−L,−L+M)(σ)) > −L + M − 3l}.
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Then, we have by FKG inequality that for any x ∈ Λ(−L,−L + M − 3l),

µ+
Λ(−L,−L+M)(σ(x) = +1) − µη

Λ(−L,−L+M)(σ(x) = +1)

≤ µ+
Λ(−L,−L+M)(σ(x) = +1)

− µη
Λ(−L,−L+M)(σ(x) = +1 | Aη

Λ(−L,−L+M))µ
η
Λ(−L,−L+M)(Aη

Λ(−L,−L+M))

≤ µη
Λ(−L,−L+M)((Aη

Λ(−L,−L+M))
c)

≤ µζ
Λ(−L,−L+M)((Aζ

Λ(−L,−L+M))
c).

(3.1)

We define the event

Aω
Λ(−2L+2l,2l) = {σ ∈ ΩΛ(−2L+2l,2l); h−(Γω

Λ(−2L+2l,2l)(σ)) > −l},
where we write ω = ω0 (see (1.15)). We also have by FKG inequality that

µζ
Λ(−L,−L+M)((Aζ

Λ(−L,−L+M))
c) ≤ µω

Λ(−2L+2l,2l)((Aω
Λ(−2L+2l,2l))

c).(3.2)

Therefore, we can obtain Proposition 2.1 from (3.1), (3.2) and the following
lemma.

Lemma 3.1. Suppose that β > 0 is sufficiently large. Let l = �K1(log
L)2�. Then, for any ε > 0 there exists K1 = K1(β, ε) > 0 such that for
sufficiently large L ∈ N

µω
Λ(−2L+2l,2l)((Aω

Λ(−2L+2l,2l))
c) ≤ εL−3.(3.3)

We will use cluster expansion to prove Lemma 3.1. Recall that by W(Γ)
and Γ(W), we will mean the family of standard walls corresponding to the
open contour Γ and the open contour corresponding to the family of standard
walls W, respectively, and that SW(−∞,∞) = ∪N∈NSW(−N, N). We define
SW(−L1,∞) = ∪N∈NSW(−L1, N) and SW(−∞, L1) = ∪N∈NSW(−N, L1)
for each L1 ∈ N. For each W ∈ SW(−∞,∞), we define

Φ(W) = Φ(Γ(W))/e−8βL2

= exp[−βHω
Λ(−N,N)(σΓ(W))]/e−8βL2(3.4)

for some N ∈ N such that Γ(W) ∈ O(−N, N). We can see that it is well-defined.
We define

C = ∪N∈N{C ⊂ C(−N, N); C is a cluster}.
We also define for each n ∈ N

C(n) = {C ∈ C; diam(C) ≥ n},(3.5)

where diam(C) = sup{dist1(x, y); x, y ∈ C} and dist1 is the metric induced by
l1-norm. For each Γ ∈ O(−∞,∞), let

∑
CιΓ stand for the summation over all

elements C ∈ C such that CιΓ.
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For each σ ∈ ΩΛ(−∞,∞), let

Λ(σ, ω) =
{

(x, y);
x, y ∈ Λ(−∞,∞) ∪ ∂exΛ(−∞,∞) such that
‖x − y‖1 = 1 and σΛ(−∞,∞)ω(x) �= σΛ(−∞,∞)ω(y)

}
.

For a given configuration σ ∈ ΩΛ(−∞,∞), we decompose

∪(x,y)∈Λ(σ,ω)(Q(x) ∩ Q(y))

into the connected components. Then, there exists a unique connected compo-
nent which includes a point (L+1, 0,−1/2). We will denote such a component
by Γω

Λ(−∞,∞)(σ). Note that Γω
Λ(−∞,∞)(σ) includes

∪(x,y)∈Λex(ω)(Q(x) ∩ Q(y)),

where

Λex(ω) =
{

(x, y);
x, y ∈ ∂exΛ(−∞,∞) such that
‖x − y‖1 = 1 and ω(x) �= ω(y)

}
.

Let L1 ∈ N. We similarly define Γω
Λ(−L1,∞)(σ) and Γω

Λ(−∞,L1)
(σ) for each

σ ∈ ΩΛ(−L1,∞) and each σ ∈ ΩΛ(−∞,L1), respectively.

Lemma 3.2. Suppose that β > 0 is sufficiently large, L1 ∈ N and
L2 ∈ N. Let 1L1,L2 : C → {0, 1} be the indicator function of the event
that C ⊂ C(−L1, L2). Then, there exists a function ΦT such that for each
Γ ∈ O(−L1, L2)

µω
Λ(−L1,L2)

(Γω
Λ(−L1,L2)(σ) = Γ)

= Z(SW(−L1, L2))−1Φ(W(Γ)) exp

−∑
CιΓ

1L1,L2(C)ΦT(C)

 ,
(3.6)

where

Z(SW(−L1, L2)) =
∑

W∈SW(−L1,L2)

Φ(W) exp

− ∑
CιΓ(W)

1L1,L2(C)ΦT(C)

 .

Moreover, we have that

Z(SW(−∞,∞)) =
∑

W∈SW(−∞,∞)

Φ(W) exp

− ∑
CιΓ(W)

ΦT(C)

 < ∞,(3.7)

and that for each Γ ∈ O(−∞,∞)

µω
Λ(−∞,∞)(Γ

ω
Λ(−∞,∞)(σ) = Γ)

= Z(SW(−∞,∞))−1Φ(W(Γ)) exp

−∑
CιΓ

ΦT(C)

 .
(3.8)
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We also have that for each Γ ∈ O(−L1,∞)

µω
Λ(−L1,∞)(Γ

ω
Λ(−L1,∞)(σ) = Γ)

= Z(SW(−L1,∞))−1Φ(W(Γ)) exp

−∑
CιΓ

1L1,∞(C)ΦT(C)

 ,
(3.9)

where

Z(SW(−L1,∞)) =
∑

W∈SW(−L1,∞)

Φ(W) exp

− ∑
CιΓ(W)

1L1,∞(C)ΦT(C)

 ,

(3.10)

and that for each Γ ∈ O(−∞, L1)

µω
Λ(−∞,L1)

(Γω
Λ(−∞,L1)

(σ) = Γ)

= Z(SW(−∞, L1))−1Φ(W(Γ)) exp

−∑
CιΓ

1∞,L1(C)ΦT(C)

 ,
(3.11)

where

Z(SW(−∞, L1)) =
∑

W∈SW(−∞,L1)

Φ(W) exp

− ∑
CιΓ(W)

1∞,L1(C)ΦT(C)

 .

(3.12)

Proof. Let us fix L1 ∈ N and L2 ∈ N. Set Λ = Λ(−L1, L2) and
Γ(·) = Γω

Λ(−L1,L2)(·). Let ∆(Γ) = {x ∈ Z3; dist∞(x, Γ) = 1/2} for each
Γ ∈ O(−L1, L2), where dist∞ is the metric induced by l∞-norm. Let us fix
Γ ∈ O(−L1, L2). We decompose Λ\∆(Γ) into two sets R+

Γ and R−
Γ which lie,

in a natural way, below and above Γ, respectively. We have by Lemma 1.1 that

∑
σ∈ΩΛ;Γ(σ)=Γ

exp[−βHω
Λ(σ)] = Φ(Γ)Z(R+

Γ , +)Z(R−
Γ ,−)

= Z(Λ, +)Φ(Γ) exp

[
−

∑
CιΓ

1L1,L2(C)ΦT(C)

]
.

(3.13)

Set in Lemma 1.1, a(·) = 6H2(·) and d(·) = (β − β̂)H2(·) for sufficiently large
β̂ > 0. We have that for any γ ∈ C(−L1, L2)

Φ(γ) = exp[−2βH2(γ)].(3.14)

Therefore, we can see by Lemma 1.1 that there exist c1 > 0 and c2 > 0 such
that for each x ∈ Λ(−∞,∞) and any n ∈ N (see (3.5)),∑

C∈C(n);Cι∂Q(x)

|ΦT(C)| ≤ c1 exp[−(β − β̂)c2n](3.15)
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Note that β̂, c1 and c2 do not depend on β > 0, L1 ∈ N, L2 ∈ N and L ∈ N.
For each Γ ∈ O(−L1, L2), we can see from (3.4) and (3.13) that∑

σ∈ΩΛ;Γ(σ)=Γ

exp [−βHω
Λ(σ)]

= e−8βL2
Z(Λ, +)Φ(W(Γ)) exp

[
−

∑
CιΓ

1L1,L2(C)ΦT(C)

]
.

(3.16)

Then, we have that

µω
Λ(Γ(σ) = Γ) = Z(SW(−L1, L2))−1Φ(W(Γ)) exp

[
−

∑
CιΓ

1L1,L2(C)ΦT(C)

]
,

(3.17)

where

Z(SW(−L1, L2)) =
∑

W∈SW(−L1,L2)

Φ(W) exp

− ∑
CιΓ(W)

1L1,L2(C)ΦT(C)

 .

We obtained (3.6). We can also obtain from (3.4) and (3.15) that

∑
W∈SW(−∞,∞)

Φ(W) exp

 ∑
CιΓ(W)

|ΦT(C)|
 < ∞,

which implies (3.7). We have by the definition of Z(SW(−∞,∞)) that

lim
N→∞

Z(SW(−N, N)) = Z(SW(−∞,∞)),

which implies (3.8). Similarly, we can obtain (3.9) and (3.11).

Let L1 ∈ N ∪ {∞} and L2 ∈ N ∪ {∞}. For each W ∈ SW(−L1, L2), we
define

PΛ(−L1,L2)(W) = Z(SW(−L1, L2))−1Φ(W) exp

− ∑
CιΓ(W)

1L1,L2(C)ΦT(C)

 .

(3.18)

Proof of Lemma 3.1. Let Λ = Λ(−2L+2l, 2l). We have by FKG inequal-
ity that

µω
Λ((Aω

Λ)c) ≤ µω
Λ(−∞,2l)(A′

1),(3.19)

where
A′

1 = {σ ∈ ΩΛ(−∞,2l); h−(Γω
Λ(−∞,2l)(σ)) ≤ −l}.
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We also have by FKG inequality that

µω
Λ(−∞,2l)(A′

2) ≤ µω
Λ(−∞,∞)(A′′

2),(3.20)

where

A′
2 = {σ ∈ ΩΛ(−∞,2l); h+(Γω

Λ(−∞,2l)(σ)) ≥ l}
and

A′′
2 = {σ ∈ ΩΛ(−∞,∞); h+(Γω

Λ(−∞,∞)(σ)) ≥ l}.
Let

ŜW−
= {W ∈ SW(−∞, 2l); h−(W) ≤ −l, h+(W) < l}

and let

ŜW+
= {W ∈ SW(−∞,∞); h+(W) ≥ l}.

Then, we have from (3.8), (3.11), (3.18), (3.19) and (3.20) that

µω
Λ((Aω

Λ)c) ≤ µω
Λ(−∞,2l)(A′

1\A′
2) + µω

Λ(−∞,∞)(A′′
2)

=
∑

W∈dSW−
PΛ(−∞,2l)(W) +

∑
W∈dSW+

PΛ(−∞,∞)(W).(3.21)

We will estimate the first term in RHS of (3.21) from above. Note that
ΦT is invariant under the vertical shift. Therefore, we can see from (3.15) that
there exists c3 = c3(β, c1, c2) > 0 such that for any W ∈ SW(−∞,∞),∣∣∣∣∣∣

∑
CιΓ(W \{W})

ΦT(C) −
∑

CιΓ(W)

ΦT(C)

∣∣∣∣∣∣ ≤ c3H2(W ) for all W ∈ W.(3.22)

Note that c3 is independent of L ∈ N. We can also see from (3.15) that

2
∑

x∈Λ;x3=2l

∣∣∣∣∣∣
∑

C∈C(l/2);Cι∂Q(x)

ΦT(C)

∣∣∣∣∣∣ ≤ 8L2c1 exp[−(β − β̂)c2K1(log L)2/2].

(3.23)

Let {ci}i≥4 be some positive constants which may depend on β̂ > 0 and
β > 0. Note that by the definition of standard walls

H2(π(W )) ≤ 1
3
H2(W )(3.24)

for any {W} ∈ SW(−∞,∞). For any pair {W, W′} ⊂ SW(−∞, 2l) such that
W′ = W \{W} for some W ∈ W, h+(W) < l and h+(W′) ≤ 3l/2, we have from
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(3.22), (3.23) and (3.24) that for sufficiently large L ∈ N,

PΛ(−∞,2l)(W)/PΛ(−∞,2l)(W ′)
= (Φ(W)/Φ(W ′))

×
exp

− ∑
CιΓ(W)

1∞,2l(C)ΦT(C)

/
exp

− ∑
CιΓ(W ′)

1∞,2l(C)ΦT(C)


≤ Φ({W}) exp[c3H2(W ) + c4e

−c5(β−β̂)K1(log L)2 ]

≤ c6 exp[−2β(H2(W ) −H2(π(W ))) + c3H2(W )]

≤ c6 exp[−(β − c3)H2(W )].

(3.25)

Let K3 > 0 be a large constant to be specified later. Suppose that L ∈
N is sufficiently large and K1 > 2(K3)2. Then, for any W ∈ ŜW−

there
exists W ∈ W such that H2(W ) ≥ K3 log L, W \{W} ∈ SW(−∞, 2l) and
h+(W \{W}) ≤ 3l/2. To see this, we will first show that the set

Wbig = {W ′ ∈ W;H2(W ′) ≥ K3 log L}(3.26)

is not empty. Assuming that Wbig is empty, we can see by Lemma 1.2 that

the number of elements of W(W ) < �K3 log L�

for all W ∈ W, where �r� denotes the integer part of r for each r ∈ R. By this,
the hypothesis that H2(W ) < K3 log L for all W ∈ W, Lemmas 1.3 and 1.5, we
have that

h−(W) > −(K3 log L)2 > −l,(3.27)

which contradicts that W ∈ ŜW−
. Since Wbig is not empty, we can take a

minimal element W from Wbig. We will next show that h+(W \{W}) ≤ 3l/2.
We can see by Lemmas 1.3, 1.4 and 1.5 that

h+(W \{W}) = max{h+(W), h+(W(W ) ∪ {W ′ ∈ W \{W}; W ′ ≺ W})}
≤ max{h+(W), h+(W(W )) + h+({W ′ ∈ W \{W}; W ′ ≺ W})}
≤ h+(W) + h+({W ′ ∈ W \{W}; W ′ ≺ W}).

(3.28)

We can also see by Lemmas 1.2, 1.5 and the definition of W that

h+({W ′ ∈ W \{W}; W ′ ≺ W}) < (K3 log L)2 < l/2,(3.29)

which together with W ∈ ŜW−
and (3.28) implies that h+(W \{W}) ≤ 3l/2.
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Note that W is the union of all faces belonging to W . Therefore, we have
from (3.25) that

∑
W∈dSW−

PΛ(−∞,2l)(W)

≤
 ∑

W ′∈SW(−∞,2l)

PΛ(−∞,2l)(W ′)

 ×
4L2

∑
n≥K3 log L

κnc6e
−(β−c3)n


≤ c7 exp[−(β − c8)K3 log L],

(3.30)

where κ > 0 is the connectivity constant.
Similarly, we can estimate the second term in RHS of (3.21) from above

by

c9 exp[−(β − c10)K3 log L].(3.31)

From (3.21), (3.30) and (3.31), we have that

µω
Λ((Aω

Λ)c) ≤ 2c11 exp[−(β − c12)K3 log L].(3.32)

Let us fix ε > 0. From (3.32), we can obtain (3.3) for some K3 > 0 and
K1 > 2(K3)2 large enough and for sufficiently large L ∈ N, and we finished the
proof of Proposition 2.1.

4. Proof of Proposition 2.2

Let L′ = 2L − 2l and L′′ = L′ − l. We define Jδ by

Jx,y =

{
δ if x ∈ Λ(−L′, 2l), y ∈ ∂exΛ(−L′, 2l) and − L′′ ≤ x3, y3 < 0,

1 otherwise.

In the same way as in the proof of Proposition 2.1, we can obtain Proposition
2.2 from the following lemma. Throughout this section, we assume that β > 0
is sufficiently large. Let {ci}i≥13 be some positive constants which may depend
on β̄ > 0 (see (4.4)) and β > 0.

Lemma 4.1. Suppose that β > 0 is sufficiently large. Let

l = �K2L
2/3(log L)2� and δ = L−2/3 log L.

Then, for any ε > 0 there exists K2 = K2(β, ε) > 0 such that for sufficiently
large L ∈ N

µω,Jδ

Λ(−L′,2l)((Aω
Λ(−L′,2l))

c) ≤ εL−3.(4.1)
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Let Λ = Λ(−L′, 2l). For each δ ∈ [0, 1] and each W ∈ SW(−L′, 2l), we set

Φδ(W) = Φδ(Γ(W))/e−8βL2

= exp[−βHω,Jδ

Λ (σΓ(W))]/e−8βL2
.

(4.2)

Lemma 4.2. Suppose that β > 0 is sufficiently large and δ ∈ [0, 1].
Then, there exists a function ΦT

δ such that for each Γ ∈ O(−L′, 2l)

µω,Jδ

Λ (Γω
Λ(σ) = Γ)

= Z(SW(−L′, 2l), Jδ)−1Φδ(W(Γ)) exp

−∑
CιΓ

1L′,2l(C)ΦT
δ (C)

 ,
(4.3)

where

Z(SW(−L′, 2l), Jδ) =
∑

W∈SW(−L′,2l)

Φδ(W) exp

− ∑
CιΓ(W)

1L′,2l(C)ΦT
δ (C)

 .

Moreover, there exist β̄ > 0, c′1 > 0 and c′2 > 0 such that for each x ∈ Λ and
any n ∈ N (see (3.5)),∑

C∈C(n);Cι∂Q(x)

|ΦT
δ (C)| ≤ c′1 exp[−(β − β̄)c′2n].(4.4)

The constants β̄, c′1 and c′2 do not depend on β > 0, δ ∈ [0, 1] and L ∈ N.

Proof. In the same way as we obtained (3.6), we can see that there exists
a function ΦT

δ satisfying (4.3). Set in Lemma 1.1, a(·) = 6H2(·) and d(·) =
(β − β̄)H2(·) for sufficiently large β̄ > 0. We have from (A.6) (see Appendix)
that for any γ ∈ C(−L′, 2l),

Φ0(γ) ≤ exp
[
−β

2
H2(γ)

]
.(4.5)

Therefore, we can see by Lemma 1.1 that there exist c′1 > 0 and c′2 > 0 such
that for each x ∈ Λ and any n ∈ N,∑

C∈C(n);Cι∂Q(x)

|ΦT
δ (C)| ≤ c′1 exp[−(β − β̄)c′2n].

Note that β̄, c′1 and c′2 do not depend on β > 0, δ ∈ [0, 1] and L ∈ N.

For each W ∈ SW(−L′, 2l), we define

P δ
Λ(W) = Z(SW(−L′, 2l), Jδ)−1Φδ(W) exp

− ∑
CιΓ(W)

1L′,2l(C)ΦT
δ (C)

 .(4.6)
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Proof of Lemma 4.1. We define the events

F1 = {σ ∈ ΩΛ; h+(Γω
Λ(σ)) ≥ l}

and
F ′

1 = {σ ∈ ΩΛ(−L′,∞); h+(Γω
Λ(−L′,∞)(σ)) ≥ l}.

We have by FKG inequality that

µω,Jδ

Λ (F1) ≤ µω,J1
Λ(−L′,∞)(F ′

1).(4.7)

We also have by FKG inequality that

µω,J1
Λ(−L′,∞)(F ′

2) ≤ µω,J1
Λ(−∞,∞)(F ′′

2 ),(4.8)

where
F ′

2 = {σ ∈ ΩΛ(−L′,∞); h−(Γω
Λ(−L′,∞)(σ)) ≤ −l}

and
F ′′

2 = {σ ∈ ΩΛ(−∞,∞); h−(Γω
Λ(−∞,∞)(σ)) ≤ −l}.

Let
SW+ = {W ∈ SW(−L′,∞); h+(W) ≥ l, h−(W) > −l}

and let
SW− = {W ∈ SW(−∞,∞); h−(W) ≤ −l}.

Then, we have from (3.8), (3.9), (4.7) and (4.8) that

µω,Jδ

Λ (F1) ≤ µω,J1
Λ(−L′,∞)(F ′

1\F ′
2) + µω,J1

Λ(−∞,∞)(F ′′
2 )

=
∑

W∈SW+

P 1
Λ(−L′,∞)(W) +

∑
W∈SW−

P 1
Λ(−∞,∞)(W).(4.9)

By a similar argument as in (3.21)–(3.32), we can estimate the first and second
terms in RHS of (4.9) from above, respectively, by

c13 exp[−(β − c14)K3 log L].(4.10)

Set
G1 = {σ ∈ ΩΛ; h−(Γω

Λ(σ)) ≤ −L′ + l/2}
and

G′
1 = {σ ∈ ΩΛ(−∞,2l); h−(Γζ

Λ(−∞,2l)(σ)) ≤ −L′ + l/2},
where we write ζ = ω−L′′ (see (1.15)). We define Γζ

Λ(−∞,2l)(·) in a similar way
as Γω

Λ(−∞,∞)(·) (see Section 3). Then, we have by FKG inequality that

µω,Jδ

Λ (G1) ≤ µζ,J1
Λ(−∞,2l)(G′

1).(4.11)

Therefore, we can see by a similar argument as in (4.7)–(4.10) that

µω,Jδ

Λ (G1) ≤ c15 exp[−(β − c16)K3 log L].(4.12)
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Now, we are going to estimate µω,Jδ

Λ ((Aω
Λ)c\(F1 ∪ G1)). Let

SW = {W ∈ SW(−L′, 2l); Γ(W) = Γω
Λ(σ) for some σ ∈ (Aω

Λ)c\(F1 ∪ G1)}.
We will introduce some definitions and notations. For each Θ ⊂ Z3, ∂Θ will
indicate ∂Q(Θ). For each Θ ⊂ Λ, we define TΘ : ΩΛ → ΩΛ by

TΘ(σ)(x) =

{
−σ(x) if x ∈ Θ,

σ(x) otherwise.

For each Γ ∈ O(−L′, 2l), there exists a unique finite l∞-connected Θ(Γ) ⊂ Z3

which satisfies the following conditions:
(i) {x ∈ ∂exΛ; x3 ≥ 0} ⊂ Θ(Γ) ⊂ (Λ ∪ {x ∈ ∂exΛ; x3 ≥ 0}),
(ii) (Θ(Γ))c is l∞-connected, and
(iii) Γ = ∂Θ(Γ)\∂(Λ ∪ ∂exΛ).

Let V ⊂ R3. For each i ∈ N, we define shift(V, i) = V + (0, 0, i). For each
r1 ∈ R and each r2 ∈ R, we define

cyl(V, r1, r2) = {x ∈ R
3; π(x) ∈ ∂2π̂(V ), r1 − (1/2) ≤ x3 ≤ r2 − (1/2)},

where for V̂ ⊂ H(−1/2), ∂2V̂ indicates the boundary of V̂ under the induced 2-
dimensional topology of H(−1/2). Especially, cyl(Q(V ), r1, r2) will be indicated
by cyl(V, r1, r2) if V ⊂ Z3.

Let us fix W ∈ SW and let Γ = Γ(W). We decompose Γ\cyl(Λ,−L′′, 0)
into connected components. We define F = F(Γ) = F(W) by

F ;
F is a connected component of Γ\cyl(Λ,−L′′, 0) and

there exists a unique l∞-connected Θ ⊂ Λ which satisfies that
Θc is l∞-connected and F � ∂Θ ⊂ cyl(Λ,−L′′, 0)

 ,

(4.13)

where � denotes the symmetric difference. The set Θ is uniquely determined
by each F ∈ F, and hence is denoted by Θ(F ). Let L ∈ N be sufficiently large
(δ > 0 is small enough). By the definition of Jδ and (A.6), we can see that for
each F ∈ F,

Hω,Jδ

Λ (σ) − Hω,Jδ

Λ (TΘ(F )σ)

= 2H2(F ) − 2δH2(∂Θ(F ) ∩ cyl(Λ,−L′′, 0))

≥ 1
2
H2(∂Θ(F )) − 2δH2(∂Θ(F ))

≥ 1
3
H2(∂Θ(F )),

(4.14)

where σ ∈ ΩΛ satisfies that Γω
Λ(σ) = Γ. Therefore, we have by a part of

standard Peierls’ argument that for each F ∈ F,

µω,Jδ

Λ (Γω
Λ(σ) contains F ) ≤ exp

[
−β

3
H2(∂Θ(F ))

]
.(4.15)
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Let K4 > 0 be a large constant to be specified later. We define

SW ′ =

{
W ∈ SW;

there exist no elements F ∈ F(W)

such that H2(F ) ≥ K4 log L

}
.(4.16)

Note that H2(F ) ≤ H2(∂Θ(F )) for each F ∈ F. Then, we have by standard
Peierls’ counting argument, (4.15) and (4.16) that∑

W∈SW\SW′
P δ

Λ(W) ≤ c17 exp
[
−

(
β

3
− c18

)
K4 log L

]
.(4.17)

Due to Jδ, there can exist a standard wall having less energy than we
expect from the size of it. For this reason, we will estimate

∑
W∈SW′ P δ

Λ(W) in
separate four cases. We define

SW1 = {W ∈ SW ′; (Φ0({W}))5/Φ1({W}) ≤ 1 for all W ∈ W},(4.18)

which corresponds to the first case where the energy of each standard wall is
proportional to the size of it.

Let W ∈ SW(−L′, 2l) and let z ∈ Z. For each W ∈ W, we will denote by
B(W, z) the collection of connected components of W ∩H(z) if it is not empty.
We define for each W ∈ W,

ρ(W, z) =

inf
{H1(B\∂Λ)

H1(B)
; B ∈ B(W, z)

}
if W ∩ H(z) �= ∅,

∞ otherwise,
(4.19)

and define

ρ(W, z) = inf
W∈W

ρ(W, z).(4.20)

By the definition of Jδ, we can see that W ∈ SW1 if ρ(W, z) ≥ 1/5 for all z ∈ Z

with −L′′ ≤ z < 0. Hence, we will consider

SW ′′ = {W ∈ SW ′; ρ(W, z) < 1/5 for some z ∈ Z with −L′′ ≤ z < 0}.

Lemma 4.3. For each W ∈ SW(−L′, 2l), we have the following prop-
erties :

(i) If ρ(W, z0) < 1/5 for some z0 ∈ Z, then there exists a unique standard
wall W0 ∈ W such that ρ(W0, z) < 1/5 whenever ρ(W, z) < 1/5.

(ii) For any W ∈ W \{W0}, (Φ0({W}))5/Φ1({W}) ≤ 1 holds.

Proof. We will first prove (i). Let W ∈ W and let z0 ∈ Z be some integer
such that ρ(W, z0) < 1/5. Then, we can see by the definition of ρ and (A.11)
that

H1(W ∩ H(z0)) ≥ 8L and H1(W ∩ H(z0) ∩ ∂Λ) ≥ 6L.(4.21)
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Hence, if there exist W1 ∈ W, W2 ∈ W, z1 ∈ Z and z2 ∈ Z such that
ρ(W1, z1) < 1/5 and ρ(W2, z2) < 1/5, we can see from (4.21) that π(W1) ∩
π(W2) �= ∅. By this and the definition of (standard) walls, it holds that
W1 = W2.

We will next prove (ii). Note that for each δ > 0,

Φδ({W}) = e8βL2
exp[−2βH2(Γ({W})\cyl(Λ,−L′′, 0))

− 2βδH2(Γ({W}) ∩ cyl(Λ,−L′′, 0))].
(4.22)

By the definition of ρ, (i) and (4.22), we have that for any W ∈ W \{W0}
(Φ0({W}))5 ≤ exp[−10βH2((W\π(W ))\cyl(Λ,−L′′, 0))]

≤ e8βL2
exp[−2βH2(Γ({W}))]

= Φ1({W}).
(4.23)

We define

SW2 =
{

W ∈ SW ′′\SW1;
there exist some W ∈ W \{W0}
with H2(W ) ≥ K5 log L

}
,

where W0 is the unique standard wall in (i) of Lemma 4.3 and K5 > 0 is a
large constant to be specified later. SW2 corresponds to the second case. In
the same way as in (3.26)–(3.29), we can see that

|h∗(W \{W0})| ≤ (K5 log L)2(4.24)

for ∗ = + and − if W ∈ SW ′′\(SW1 ∪ SW2). We define

zmin = zmin(W) = min{z ∈ Z; ρ(W0, z) < 1/5, z ≥ −L′′},(4.25)

for each W ∈ SW ′′. We define

SW3 = {W ∈ SW ′′\(SW1 ∪ SW2); zmin(W) ≤ −l/2}
and

SW4 = {W ∈ SW ′′\(SW1 ∪ SW2); zmin(W) > −l/2},
which corresponds to the third and fourth cases, respectively.

First, we claim that for any W ∈ SW ′′\SW1,

H1(W0 ∩ H(z)) > 2L(4.26)

holds for all negative integer z with z ≥ zmin. To see this, assume that W ∈
SW ′′\SW1 and H1(W0 ∩ H(z0)) ≤ 2L for some negative integer z0 with z0 >
zmin. Then, we will show that

H2

({
x ∈ R

3;
x ∈ w for some face w ∈ Γ({W0})
such that H2(π(w)) = 1

})
− 4L2

≥ 4L2,

(4.27)
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which together with the definitions of W0 and zmin implies that (Φ0({W0}))5
/Φ1({W0}) ≤ 1 (see (4.22) and (4.23)). This together with (ii) of Lemma
4.3 shows that W ∈ SW1, which contradicts W ∈ SW ′′\SW1. Thus, we
obtained (4.26). We will show (4.27) assuming that W ∈ SW ′′\SW1 and
H1(W0 ∩ H(z0)) ≤ 2L for some negative integer z0 with z0 > zmin. Note that
there exists a unique B0 ∈ B(W0, zmin) such that H1(B0\∂Λ)/H1(B0) < 1/5.
From this and (A.12), we have that H2(π̂(B0)) ≥ 3(4L2)/4. Therefore, we have
that

H2(π̂(W0)) ≥ 3
4
(4L2).(4.28)

By the hypothesis that H1(W0 ∩ H(z0)) ≤ 2L and Lemma A.1, we have that

H2(π̂(W0 ∩ H(z0))) ≤ 1
4
L2.(4.29)

Therefore, we can see from (4.28) and (4.29) that

H2

({
x ∈ R

3;
x ∈ w for some face w ∈ Γ({W0})
such that H2(π(w)) = 1

})
− 4L2

≥ 2
3
H2

({
x ∈ R

3;
x ∈ w for some face w ∈ W0

such that H2(π(w)) = 1

})

≥ 2
(

3
4
(4L2) − 1

2
L2

)
≥ 4L2.

(4.30)

In considering the four cases, we have to be aware that ΦT
δ is not invariant

under the vertical shift due to Jδ. Hence, we will introduce the following lemma
before we proceed to the four cases.

Lemma 4.4. Suppose that β > 0 and L ∈ N are sufficiently large.
Let W ∈ SW and let W ∈ W. Let W′ = W \{W}. Suppose that W′ ∈
SW(−L′, 2l), h+(W′) ≤ 3l/2 and h−(W′) ≥ −L′ + l/4. Then, we have that

∣∣∣∣∣∣
∑

CιΓ(W)

1L′,2l(C)ΦT
δ (C) −

∑
CιΓ(W ′)

1L′,2l(C)ΦT
δ (C)

∣∣∣∣∣∣ ≤ c19H2(W ).(4.31)

Proof. Let β > 0 and L ∈ N be sufficiently large. We will first prove
(4.31) for the special case where W = cyl(W,−h, 0) for some h ∈ N. We have
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by the definition of Jδ and (4.4) (see (3.15) and (3.23)) that∣∣∣∣∣∣
∑

CιΓ(W)

1L′,2l(C)ΦT
δ (C) −

∑
CιΓ(W ′)

1L′,2l(C)ΦT
δ (C)

∣∣∣∣∣∣
≤ 16L2c′1 exp[−(β − β̄)c20L

2
3 (log L)2]

+ c21

h∑
i=1

∑
x∈D(−i;W )

c′1 exp[−(β − β̄)c20dist1(x, cyl(Λ,−i,−i + 1))]

+ c21

h∑
i=1

∑
x∈D(−i;W )

c′1 exp[−(β − β̄)

× c20dist1(x, cyl(Λ,−L′′ − i,−L′′ − i + 1))]

≤ (c22 + c23)H2(W ),

(4.32)

where D(−i; W ) = {x ∈ cyl(W ∩ H(−i),−L′, 2l + 1); x + (1/2, 1/2, 0) ∈ Z3}.
We will next prove (4.31) for a general case. By the same argument as in

(4.32), we have that∣∣∣∣∣∣
∑

CιΓ(W)

1L′,2l(C)ΦT
δ (C) −

∑
CιΓ(W ′)

1L′,2l(C)ΦT
δ (C)

∣∣∣∣∣∣
≤ c22 + c21

∑
i∈Z

∑
x∈D(i;W )

c′1 exp[−(β − β̄)c20dist1(x, cyl(Λ, i, i + 1))]

+ c21

∑
i∈Z

∑
x∈D(i;W )

c′1 exp[−(β − β̄)

× c20dist1(x, cyl(Λ,−L′′ + i,−L′′ + i + 1))]

≤ (c22 + c23)H2(W ),

(4.33)

where D(i; W ) = {x ∈ cyl(W ∩ H(i),−L′, 2l + 1); x + (1/2, 1/2, 0) ∈ Z3} if
W ∩ H(i) �= ∅ and D(i; W ) = ∅ otherwise.

From now on, we will estimate∑
W∈SW1

P δ
Λ(W),

∑
W∈SW2

P δ
Λ(W),

∑
W∈SW3

P δ
Λ(W) and

∑
W∈SW4

P δ
Λ(W).

We assume that L ∈ N is sufficiently large (δ > 0 is sufficiently small) through-
out this section.

Case 1. We will consider the case where W ∈ SW1. Recall that

SW1 = {W ∈ SW ′; (Φ0({W}))5/Φ1({W}) ≤ 1 for all W ∈ W}.
Note that Φδ({W}) ≤ exp[−βH2(W )/5] for all W ∈ W if W ∈ SW1 (see
(3.24)). Thus, by a similar argument as in (3.22)–(3.30) together with (4.31),
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we have that ∑
W∈SW1

P δ
Λ(W) ≤ c24 exp

[
−

(
β

5
− c25

)
K5 log L

]
.(4.34)

Case 2. We will consider the case where W ∈ SW2. Recall that

SW2 =
{

W ∈ SW ′′\SW1;
there exist some W ∈ W \{W0}
with H2(W ) ≥ K5 log L

}
,

where SW ′′ = {W ∈ SW ′; ρ(W, z) < 1/5 for some z ∈ Z with −L′′ ≤ z < 0}.
In this case, by a similar argument as in (3.22)–(3.30) together with (ii) of
Lemma 4.3 and (4.31), we also have that

∑
W∈SW2

P δ
Λ(W) ≤ c26 exp

[
−

(
β

5
− c27

)
K5 log L

]
.(4.35)

Case 3. We will consider the case where W ∈ SW3. Recall that

SW3 = {W ∈ SW ′′\(SW1 ∪ SW2); zmin(W) ≤ −l/2}.

We define

SW◦ = {W ∈ SW ′′\(SW1 ∪ SW2); for any W ∈ W \{W0}, W ∩ ∂Λ = ∅}
(4.36)

and SW◦
3 = SW3 ∩ SW◦. By a similar argument as in (3.22)–(3.30) together

with (ii) of Lemma 4.3 and (4.31), we have that∑
W∈SW3

P δ
Λ(W)

≤
 ∑

W∈SW◦
3

P δ
Λ(W)


×

 8L∑
k=1

(
4L2

k

) ∑
n1≥1

· · ·
∑

nk≥1

κn1+···+nke−(β/5−c28)(n1+···+nk)


≤ c29 exp[c30L log L]

∑
W∈SW◦

3

P δ
Λ(W).

(4.37)

Let us fix W ∈ SW◦
3. Let Γ = Γ(W) and m = zmin(W). We decompose

W0\cyl(Λ, m, 0) into connected components. By F1 = F1(W), we will denote
the collection of such components which belong to F(W) and are included in
Q(Λ(m + 1, 0)). Note that F � ∂Θ(F ) ⊂ cyl(Λ, m + 1, 0) for each F ∈ F1. Let

F0 = F0(W) = cyl(Λ, m, 0) � (∪F∈F1∂Θ(F )).(4.38)
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From (4.36) and (4.38), we can define the open contour Γ′(W) which satisfies

H2(Γ′(W) � (F0(W) ∪ shift(Γ(W \{W0}), m))) = 0,(4.39)

and define

W
′ = W

′(W) = W(Γ′(W)).(4.40)

Note that Γ′(W) = Γ(W′). We also define

Γ(W) = (Γ({W0})\(∪F∈F1∂Θ(F ))) ∪ (∪F∈F1(∂Θ(F ) ∩ cyl(Λ, m + 1, 0))).
(4.41)

Let

{F 2
i }k2

i=0 = {F 2
i (W)}k2

i=0 = W(Γ(W))(4.42)

and let

F 2
0 = the unique maximal standard wall such that H2(π̂(F 2

0 )) ≥ 3
4
(4L2).

(4.43)

Then, we can see from the definitions of SW3 (SW ′), (standard) walls, and
{F 2

i }k2
i=1 that for any 1 ≤ i ≤ k2,

π̂(F 2
i ) ∩

{
x ∈ H

(
−1

2

)
; dist1(x, ∂Λ) ≤ K4 log L

}
�= ∅.(4.44)

We decompose F 2
0 \cyl(Λ, m, 0) into connected components. We will de-

note by {F̃ 3
i } = {F̃ 3

i (W)} and {F 4
i }k4

i=1 = {F 4
i (W)}k4

i=1, the collections of such
components belonging to F(W) and not belonging to F(W), respectively. Note
that 0 ≤ k4 ≤ 8L. Let

{xi} = {π(x); x ∈ ∂inΛ and x3 = 0}.
We define {F 3

i }k3
i=1 = {F 3

i (W)}k3
i=1, inductively, by

F 3
1 = ∪i;π(F̃ 3

i )∩{x1}�=∅F̃
3
i ,(4.45)

and

F 3
j = (∪i;π(F̃ 3

i )∩{xj}�=∅F̃
3
i )\(∪i≤j−1F

3
i ).(4.46)

Note that k3 ≤ 8L.
We will show that the estimate

P δ
Λ(W)/P δ

Λ(W ′)
= (Φδ(W)/Φδ(W ′))

×
exp

− ∑
CιΓ(W)

1L′,2l(C)ΦT
δ (C)

/
exp

− ∑
CιΓ(W ′)

1L′,2l(C)ΦT
δ (C)


≤ c31 exp

[
−

(
β

3
− c32

) (
k2∑

i=1

H2(F 2
i ) +

k3∑
i=1

H2(F 3
i ) +

k4∑
i=1

H2(F 4
i )

)]

(4.47)
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holds, as follows.
We will first bound Φδ(W)/Φδ(W′) from above. For j = 1 or 2, let

S±j = {x ∈ ∂Λ; xj = ±L + (1/2)}.
Take i with −1 ≥ i ≥ m. If for every B ∈ B(W0, i), there exist some j ∈
{±1,±2} such that B ∩ Sj = ∅, then we can see from (4.16) and (4.26) that

4∑
p=2

kp∑
j=1

H1(F p
j ∩ H(i)) ≥ inf

n∈N∪{0}
max

{
2L,

1
4
(2L − nK4 log L), n

}
≥ 2L

4 + K4 log L
.

(4.48)

From this together with

H1((W0\∂Λ) ∩ H(i)) −H1((F0\∂Λ) ∩ H(i)) = H1((∪4
p=2 ∪kp

j=1 F p
j ) ∩ H(i)),

(4.49)

we have that

H1((W0\∂Λ) ∩ H(i)) + δH1((W0 ∩ ∂Λ) ∩ H(i))

−H1((F0\∂Λ) ∩ H(i)) − δH1((F0 ∩ ∂Λ) ∩ H(i))

≥ 1
2
H1((∪4

p=2 ∪kp

j=1 F p
j ) ∩ H(i)) +

L

4 + K4 log L
− 8δL

≥ 1
2
H1((∪4

p=2 ∪kp

j=1 F p
j ) ∩ H(i)).

(4.50)

If there exists a unique B0 ∈ B(W0, i) such that B0 ∩ Sj �= ∅ for all
j ∈ {±1,±2}, then we can see that

H1((∪4
p=2 ∪kp

j=1 F p
j ) ∩ H(i)) + H1((W0 ∩ ∂Λ) ∩ H(i))

≥ H1(B0\(∪F∈F1F ))

≥ H1(∂Λ ∩ H(i)) −H1((∪F∈F1(∂Θ(F ) ∩ ∂Λ)) ∩ H(i))

= H1((F0 ∩ ∂Λ) ∩ H(i)).

(4.51)

From this and (4.49), we have that

LHS(4.50) ≥ (1 − δ)H1((∪4
p=2 ∪kp

j=1 F p
j ) ∩ H(i))

≥ 1
2
H1((∪4

p=2 ∪kp

j=1 F p
j ) ∩ H(i)).

(4.52)

From (3.24), (4.50), (4.52) and the definitions of zmin, {F 2
j }k2

j=0, {F 3
j }k3

j=1 and
{F 4

j }k4
j=1, we have that

Φδ(W)/Φδ(W ′) ≤ exp

−β

3

 k2∑
j=1

H2(F 2
j ) +

k3∑
j=1

H2(F 3
j ) +

k4∑
j=1

H2(F 4
j )

 .

(4.53)



�

�

�

�

�

�

�

�

A lower bound on the spectral gap of the 3-dimensional stochastic Ising models 779

In order to estimate the effect of entropy, we will next bound from above∣∣∣∣∣∣
∑

CιΓ(W)

1L′,2l(C)ΦT
δ (C) −

∑
CιΓ(W ′)

1L′,2l(C)ΦT
δ (C)

∣∣∣∣∣∣ .
To do this, we have only to look at standard walls W ∈ W \{W0} such that
(see (1.26))

b(W, W) �= b(W, W ′).

Note that
b(W, W ′) = m − 1

for all W ∈ {W ′ ∈ W \{W0}; W ′ is a maximal standard wall}. Let v(W ) =
b(W, W) − b(W, W′). We will first consider standard walls such that π̂(W ) ⊂
(H(−1/2)\π̂(W0)). We define

Wex =
{

W ∈ W; π̂(W ) ⊂
(

H
(
−1

2

)
\π̂(W0)

)}
.

Note that v(W ) = m < 0 for any W ∈ Wex. We decompose π̂(Q(Λ))\π̂(W0)
into connected components {Rk}r

k=1. For each k ≤ r and any −1 ≥ i ≥ m,
there exist Dk(i) ⊂ H(−1/2) such that Rk ⊂ Dk(i) and

∂2Dk(i) � ∂2π̂(Q(Λ)) + (0, 0, i + (1/2)) ⊂ F 4
j ∩ H(i)

for some j = j(k, i). By the definition of W0, we can see that

H1(∂2Dk(i)) ≤ 2H1(F 4
j ∩ H(i)).(4.54)

It may happen that j(k1, i) = j(k2, i) even if k1 �= k2. In this case, Dk1(i) =
Dk2(i). From this and (4.54), we can see that

m∑
i=−1

H1(∪r
k=1∂

2Dk(i)) ≤ 2
m∑

i=−1

k4∑
j=1

H1(F 4
j ∩ H(i))

≤ 2
k4∑

j=1

H2(F 4
j ).

(4.55)

We will next consider standard walls W such that v(W ) �= 0 and π̂(W ) ⊂
π̂(W0). We define

W
−
in = {W ∈ W \{W0}; v(W ) < 0 and π̂(W ) ⊂ π̂(W0)}

and
W

+
in = {W ∈ W \{W0}; v(W ) > 0 and π̂(W ) ⊂ π̂(W0)}.

For each W ∈ W
−
in and any m − 1 ≥ i ≥ m + v(W ), there exist DW (i) ⊂

H(−1/2) such that π̂(W ) ⊂ DW (i) and

∂2DW (i) + (0, 0, i + (1/2)) ⊂ (F 2
j ∪ F 4

k ) ∩ H(i)(4.56)
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for some j = j(W, i) and k = k(W, i). It may happen that j(W1, i) = j(W2, i)
and k(W1, i) = k(W2, i) even if W1 �= W2. In this case, DW1(i) = DW2(i).
From this and (4.56), we can see that for any i ≤ m − 1,

H1(∪W∈W
−
in

∂2DW (i)) ≤
k2∑

j=1

H1(F 2
j ∩ H(i)) +

k4∑
j=1

H1(F 4
j ∩ H(i)).(4.57)

Hence, we have from (4.57) that

∑
i≤m−1

H1(∪W∈W
−
in

∂2DW (i)) ≤
k2∑

j=1

H2(F 2
j ) +

k4∑
j=1

H2(F 4
j ).(4.58)

Similarly, we have that

∑
i≥m+1

H1(∪W∈W
+
in

∂2DW (i)) ≤
k2∑

j=1

H2(F 2
j ) +

k4∑
j=1

H2(F 4
j ).(4.59)

Therefore, in a similar way as in the proof of Lemma 4.4, we can see from
(4.55), (4.58) and (4.59) that∣∣∣∣∣∣

∑
CιΓ(W)

1L′,2l(C)ΦT
δ (C) −

∑
CιΓ(W ′)

1L′,2l(C)ΦT
δ (C)

∣∣∣∣∣∣
≤ c22 + 2c23

(
k2∑

i=1

H2(F 2
i ) +

k4∑
i=1

H2(F 4
i )

)
+ 2c23

k4∑
i=1

H2(F 4
i )

≤ c33

(
1 +

k2∑
i=1

H2(F 2
i ) +

k4∑
i=1

H2(F 4
i )

)
(4.60)

in this time ∪W ′∈W
−
in∪W

+
in

∂2DW ′(i) and ∪r
k=1∂

2Dk(i) play the role of W ∩H(i).
Thus, (4.47) follows from (4.53) and (4.60).

We will next show that∑
W ′

P δ
Λ(W ′) ≤ c34 exp[−(β − c35)K2L(log L)3],(4.61)

where
∑

W′ stands for the summation over all families of the standard walls
such that W′ = W′(W) for some W ∈ SW◦

3. Let us fix Γ ∈ O(−L′, 2l) such
that for ∗ = + and −

|h∗(Γ)| < (K5 log L)2,(4.62)

and such that

{W ∈ W(Γ); W ∩ ∂Λ �= ∅} = ∅.(4.63)
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For each i ∈ Z such that shift(Γ, i) ⊂ Q(Λ), let Γi = shift(Γ, i). We have from
(4.63) that for any negative integer i ≥ −L′′,

µω,Jδ

Λ (Γω
Λ(σ) ⊃ Γi)

µω,Jδ

Λ (Γω
Λ(σ) = Γ)

=
Z(R+

Γi
, +, Jδ)Z(R−

Γi
,−, Jδ)

Z(R+
Γ , +, Jδ)Z(R−

Γ ,−, Jδ)
· Z(R−

Γi
, ω, Jδ)

Z(R−
Γi

,−, Jδ)
.(4.64)

We can see by Jensen’s inequality that

(
Z(R−

Γi
, ω, Jδ)

Z(R−
Γi

,−, Jδ)

)−1

≥ exp

−2βδ
∑

x∈∂inR−
Γi

∩∂inΛ;−L′′≤x3≤−1

µω,Jδ

R−
Γi

[σ(x)]

 .

(4.65)

By a similar argument as in (4.14) and (4.15), we can show that µω,Jδ

R−
Γi

[σ(x)] ≤
−1/4. From this and (4.65), we have that

Z(R−
Γi

, ω, Jδ)/Z(R−
Γi

,−, Jδ) ≤ exp[−4βδL|i|].(4.66)

By the definition of Jδ, we can see that

ΦT
δ (C) = ΦT

δ (shift(C, i))(4.67)

if C ∩ ∂Λ = ∅ and shift(C, i) ∩ ∂Λ = ∅. We can see from (4.4) (see (3.15) and
(3.23)), (4.62) and (4.67) that∣∣∣∣∣∣

∑
C∈C;C∩Γi �=∅

1L′,2l(C)ΦT
δ (C) −

∑
CιΓ

1L′,2l(C)ΦT
δ (C)

∣∣∣∣∣∣
≤ 16L2c′1 exp[−(β − β̄)c36L

2
3 (log L)2]

+ c37H2(cyl(Λ,−(K5 log L)2, (K5 log L)2))

+ c37H2(cyl(Λ,−L′′ − (K5 log L)2,−L′′ + (K5 log L)2)),

(4.68)

which together with (3.13) implies that

Z(R+
Γi

, +, Jδ)Z(R−
Γi

,−, Jδ)

Z(R+
Γ , +, Jδ)Z(R−

Γ ,−, Jδ)
≤ c38 exp[c39L(log L)2].(4.69)

Therefore, we have from (4.64), (4.66) and (4.69) that

µω,Jδ

Λ (Γω
Λ(σ) ⊃ Γi) ≤ c38 exp[−4βδL|i| + c39L(log L)2] µω,Jδ

Λ (Γω
Λ(σ) = Γ).

(4.70)

Recall that we only consider the case where i ≤ −l/2. Then, we can prove
(4.61) from (4.24), (4.39), (4.40), (4.62) and (4.70).

Let p = 2 or 4 and let 1 ≤ i ≤ kp. Note that F p
i is connected, and that we

can regard F p
i as the union of all faces w such that H2(w ∩ F p

i ) = 1. For each
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1 ≤ i ≤ k3, there exists a union of faces Gi ⊃ F 3
i such that Gi is connected

and that

H2(Gi) ≤ 2H2(F 3
i ).(4.71)

We can see this, as follows. By the definition of {F 3
i }k3

i=1 (see (4.45) and (4.46)),
we can connect all components of F 3

i by using only faces in cyl(∂Λ,−m, 0).
Let Gi be the smallest one among such connected sets containing F 3

i . For each
k2 ≥ 0, each k3 ≥ 1 and each k4 ≥ 0, we can see from (4.44) that the number
of the combinations of the starting points of {F 2

i }k2
i=1, {Gi}k3

i=1 and {F 4
i }k4

i=1 is
bounded from above, by(

8K4L log L

k2

) (
16L2

k3

) (
16L2

k4

)
.(4.72)

Thus, we have from (4.37), (4.47), (4.61) and (4.72) that

∑
W∈SW3

P δ
Λ(W)

≤ c40L exp[−(β − c35)K2L(log L)3 + c30L log L]

×
8K4L log L∑

k2=1

8L∑
k3=1

8L∑
k4=1

∑
n1≥1

· · ·
∑

nk2+k3+k4≥1

(
8K4L log L

k2

)(
16L2

k3

)(
16L2

k4

)

× κn1+···+nk2+k3+k4 e−(β/3−c32)(n1+···+nk2+k3+k4 )

)
≤ c41 exp[−(β − c42)K2L(log L)3].

(4.73)

Case 4. We will consider the case where W ∈ SW4. Recall that

SW4 = {W ∈ SW ′′\(SW1 ∪ SW2); zmin(W) > −l/2}.
We define Γ(W), {F 2

i (W)}k2
i=0, {F 3

i (W)}k3
i=1 and {F 4

i (W)}k4
i=1 for each W ∈ SW4

in the same way as in (4.38)–(4.46). Consider the set (see (1.27))

SW41 =
{

W ∈ SW4;
for some i ≥ 1, H2(F 2

i (W)) ≥ K5 log L

and b(F 2
i (W), Γ(W)) < zmin(W) − l/8

}
.

Then, by a similar argument as in Case 1 together with the definition of zmin,
we have that ∑

W∈SW41

P δ
Λ(W) ≤ c43 exp

[
−

(
β

5
− c44

)
K5 log L

]
.(4.74)

Let W ∈ SW4\SW41 and let Γ = Γ(W). We can see by the definition of
SW4 (or SW) that Θ(Γ) � x for some x ∈ Λ with x3 = −l. For such a point
x ∈ Λ and each z ∈ Z with −3l/4 ≤ z ≤ −5l/8, we define

Θ(Γ, x, z) = {y ∈ Θz(Γ); y is l∞-connected to x in Θz(Γ)} ∩ H(z),(4.75)
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where

Θz(Γ) = {y ∈ Θ(Γ); y3 ≤ z}.(4.76)

We define Θ(Γ, x, z) = ∅ for all z ∈ Z with −3l/4 ≤ z ≤ −5l/8 if Θ(Γ) �� x.
For each x ∈ Λ with x3 = −l, we define

SW42(x) =
{

W ∈ SW4\SW41;
|Θ(Γ(W), x, z)| ≥ L

2
3 for all z ∈ Z

with − 3l/4 ≤ z ≤ −5l/8

}
.

For each W ∈ SW42(x), we can see by the definition of SW42(x) that for p = 2
or 4, there exists some 1 ≤ i ≤ kp such that

H2(F p
i (W)) ≥ L

1
3 l/8 ≥ K2L(log L)2/8.(4.77)

We define
SW42 = ∪x∈Λ;x3=−lSW42(x)

and
SW43 = SW4\(SW41 ∪ SW42).

Then, by a similar argument as in Case 3, the definition of SW42 and (4.77),
we have that for N = �K2L(log L)2/8� and N ′ = �8K4L(log L)�

∑
W∈SW42

P δ
Λ(W)

≤ 4L2

 N ′∑
k2=1

8L∑
k3=1

8L∑
k4=1

∑
n1≥N

∑
n2≥1

· · ·
∑

nk2+k3+k4≥1

(
N ′

k2

)(
16L2

k3

)(
16L2

k4

)

× κn1+···+nk2+k3+k4 e−(β/3−c32)(n1+···+nk2+k3+k4 )


≤ c45 exp

[
− 1

24
(β − c46)K2L(log L)2

]
.

(4.78)

Finally, we will consider the case where W ∈ SW43. Let us fix W ∈ SW43

and let Γ = Γ(W). In this case, there exists some x ∈ Λ with x3 = −l such
that |Θ(Γ, x, z)| < L2/3 for some z ∈ Z with −3l/4 ≤ z ≤ −5l/8. Let us fix
such a point x ∈ Λ and an integer z ∈ Z. We define

A(Θ(Γ, x, z)) =

{
σ ∈ ΩΛ;

W(Γω
Λ(σ)) ∈ SW43, Θ(Γω

Λ(σ)) � x

and Θ(Γω
Λ(σ), x, z) = Θ(Γ, x, z)

}
,

A±(Θ(Γ, x, z)) = {σ ∈ ΩΛ; for some η ∈ ΩΘ(Γ,x,z), ηΘ(Γ,x,z)σ ∈ A(Θ(Γ, x, z))}
and

A+(Θ(Γ, x, z)) = {σ ∈ A±(Θ(Γ, x, z)); σ(y) = +1 for all y ∈ Θ(Γ, x, z)}.
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Then, we have by the finite energy property that

µω,Jδ

Λ (A(Θ(Γ, x, z))) ≤ exp[12β|Θ(Γ, x, z)|] µω,Jδ

Λ (A+(Θ(Γ, x, z))).(4.79)

By (A.6) and standard Peierls’ argument, we have that

µω,Jδ

Λ (A+(Θ(Γ, x, z))) ≤ c47 exp[−(β − c48)l/2],

which together with (4.79) implies that

µω,Jδ

Λ (A(Θ(Γ, x, z))) ≤ c47 exp
[
12βL

2
3 −

(
β

2
− c49

)
K2L

2
3 (log L)2

]
≤ c50 exp

[
−

(
β

2
− c51

)
K2L

2
3 (log L)2

]
.

(4.80)

For each x ∈ Λ with x3 = −l and each collection Θ(z) of l∞-connected
components in H(z) ∩ Λ, we define

A(x, Θ(z)) =
{

σ ∈ ΩΛ; W(Γω
Λ(σ)) ∈ SW43, Θ(Γω

Λ(σ)) � x
and Θ(Γω

Λ(σ), x, z) = Θ(z)

}
.

We have from (4.80) that

∑
W∈SW43

P δ
Λ(W) ≤

∑
x

∑
z

∑
Θ(z)

µω,Jδ

Λ (A(x, Θ(z)))

≤ c50 exp
[
−

(
β

2
− c51

)
K2L

2
3 (log L)2

]∑
x

∑
z

L
2
3∑

N=1

(
4L2

N

)
≤ c52 exp

[
−

(
β

2
− c53

)
K2L

2
3 (log L)2

]
,

(4.81)

where
∑

x and
∑

z stand for
∑

x∈Λ;x3=−l and
∑

z∈Z;−3l/4≤z≤−5l/8, respectively,
and

∑
Θ(z) stands for the summation over all collections Θ(z) of l∞-connected

components in H(z) ∩ Λ such that |Θ(z)| < L2/3.
Let us fix ε > 0. From (4.9), (4.10), (4.12), (4.17), (4.34), (4.35), (4.73),

(4.74), (4.78) and (4.81), we have that for some K3, K4, K5 and K2 large
enough and for sufficiently large L ∈ N,

µω,Jδ

Λ ((Aω
Λ)c) ≤ εL−3,

and we finished the proof of Proposition 2.2.

Appendix

In this appendix, we will prove the claims which we used in Section 4. By
∂Θ, we will denote ∂Q(Θ) if Θ ⊂ Zd. Let

C(L, d) =

{
γ;

γ = ∂Θ for some l∞-connected Θ ⊂ Λd(L)
which satisfies that Θc is l∞-connected

}
.(A.1)
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The set Θ is uniquely determined by each γ ∈ C(L, d), and hence is denoted by
Θ(γ). We define for each i ≤ d,

Ci(L, d) =
{

γ ∈ C(L, d);
if x ∈ Θ(γ) and y ∈ Li(x)
with yi ≤ xi, then y ∈ Θ(γ)

}
,

where Li(x) = {y ∈ Λd(L); yj = xj for any j �= i}. We also define

S(L, d) = ∩d
i=1Ci(L, d).

By ∂̂Λd(L), we will denote

∂Λd(L)\{x ∈ R
d; xd = L + (1/2) or − L + (1/2)}.

Lemma A.1. Suppose that d ≥ 2. For each i ≤ d, consider the map
ϕi : C(L, d) � γ �→ ϕi(γ) ∈ Ci(L, d) which satisfies that for any x ∈ Λd(L)

|Θ(γ) ∩ Li(x)| = |Θ(ϕi(γ)) ∩ Li(x)|.(A.2)

Then, for each i ≤ d and any γ ∈ C(L, d)

Hd−1(γ) ≥ Hd−1(ϕi(γ))(A.3)

holds. Moreover, for each i ≤ d and any γ ∈ C(L, d) with Hd−1(γ\∂̂Λd(L))/
Hd−1(γ) ≤ 1/2

Hd−1(γ\∂Λd(L))
Hd−1(γ)

≥ Hd−1(ϕi(γ)\∂Λd(L))
Hd−1(ϕi(γ))

(A.4)

and

Hd−1(γ\∂̂Λd(L))
Hd−1(γ)

≥ Hd−1(ϕi(γ)\∂̂Λd(L))
Hd−1(ϕi(γ))

(A.5)

hold.

See Section 3 of [S02] for the proof of (A.3) and (A.4). To obtain (A.5),
we have only to replace ∂ with ∂̂ in Section 3 of [S02].

Corollary A.2. Suppose that d = 3 and γ ∈ C(L, 3). Then, it holds
that

H2(γ\∂̂Λ3(L)) ≥ 1
4
H2(γ).(A.6)

Proof. From (A.5), we have only to show (A.6) for all γ ∈ S(L, 3). For
each γ ∈ S(L, 3) and each i ≤ 3, we set

S±i(γ) = γ ∩ {x ∈ R
3; xi = ±L + (1/2)}.
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Let λ > 0 be a constant to be specified later. Let us fix γ ∈ S(L, 3). If
H2(S−3(γ)) ≥ λH2(γ), then we have that

H2(γ\∂̂Λ3(L))
H2(γ)

=
1

H2(γ)

(
2H2(S−3(γ)) +

2∑
i=1

[H2(S−i(γ)) −H2(S+i(γ))]

)
≥ 2λ.

(A.7)

Hence, we assume that H2(S−3(γ)) < λH2(γ). Since we can see by the
definition of S(L, 3) that for any i ≤ 3,

2LH2(S+i(γ)) ≤ |Θ(γ)| ≤ 2LH2(S−3(γ)),

we have that for any i ≤ 3,

H2(S+i(γ)) < λH2(γ).(A.8)

We have from (A.8) that

H2(γ\∂̂Λ3(L))
H2(γ)

≥ 1
H2(γ)

(
H2(γ)

2
−

2∑
i=1

H2(S+i(γ))

)
≥ (1 − 4λ)/2.

(A.9)

Therefore, from (A.7), (A.9) and λ = 1/8, we obtained (A.6).

Corollary A.3. Suppose that d = 2 and γ ∈ C(L, 2). If

H1(γ\∂Λ2(L))
H1(γ)

<
1
4

(A.10)

holds, then we have that

H1(γ) ≥ 8L and H1(γ ∩ ∂Λ2(L)) ≥ 6L,(A.11)

and that

|Θ(γ)| ≥ 3(4L2)/4.(A.12)

Proof. Let us fix γ ∈ C(L, 2). Let γ′ = ϕ2 ◦ϕ1(γ). Assume that H1(γ) <
8L. Then, we have from (A.3) that H1(γ′) < 8L. By this and the definition of
γ′, we can see that

S+1(γ′) = ∅ or S+2(γ′) = ∅,(A.13)

which implies that

H1(γ′\∂Λ2(L))/H1(γ′) ≥ 1/4.(A.14)
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From this and (A.4), we have that

H1(γ\∂Λ2(L))/H1(γ) ≥ 1/4,(A.15)

which contradicts (A.10). Thus, we obtained the first inequality in (A.11).
Since

H1(γ\∂Λ2(L))/H1(γ) ≥ 1 −H1(γ ∩ ∂Λ2(L))/H1(γ),

we can see that the second inequality in (A.11) is also true.
We will show (A.12). Assume that |Θ(γ)| < 3(4L2)/4. Then, we can see

from (A.2) that |Θ(γ′)| < 3(4L2)/4, which implies that H1(γ′\∂Λ2(L)) ≥ 2L.
By this and the definition of S(L, 2), we have that

H1(γ′\∂Λ2(L))/H1(γ′) ≥ 2L/8L = 1/4,

which together with (A.4) contradicts (A.10). Thus, we obtained (A.12).

Added in proof. Let d = 3. We define the surface tension in (0, 0, 1)
direction τβ by (see [MMR92])

τβ = − lim
L→∞

1
β(2L)2

log
Z(Λ3(L), ω0)
Z(Λ3(L), +)

.(A.16)

Here, ω0 is the boundary condition defined in (1.15).

Theorem A.4. Let d = 3. Consider a stochastic Ising model on the
square Λ3(L) with the free boundary condition. Then, there exists β0 > 0 such
that for any β ≥ β0 and any L ∈ N

gap(Λ3(L), φ) ≥ B exp(−4βτβL2 − βCL
5
3 (log L)2)(A.17)

holds, where B = B(cm, cM ) > 0 and C = C(β) > 0.

From the proof of Proposition 2.2, we can see under the same hypothesis
as in Proposition 2.2 that for any ε > 0 and any κ > 0 there exists K6 =
K6(β, ε, κ) > 0 such that for sufficiently large L ∈ N and any x ∈ Λ(−L,−L +
M − 3l),

µ+,J̄δ

Λ(−L,−L+M)(σ(x) = +1) − µη,J̄δ

Λ(−L,−L+M)(σ(x) = +1) ≤ εL−κ.(A.18)

From this and the same argument as in Section 4 and Appendix in [Ma94] (or
Appendix in [CGMS96]), we can obtain Theorem A.4.
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