Minimal algebraic surfaces of general type with $c_{1}^{2}=3, p_{g}=1$ and $q=0$, which have non-trivial 3 -torsion divisors

By
Masaaki Murakami*

Abstract

We shall give a concrete description of minimal algebraic surfaces X 's defined over \mathbb{C} of general type with the first chern number 3 , the geometric genus 1 and the irregularity 0 , which have non-trivial 3-torsion divisors. Namely, we shall show that the fundamental group is isomorphic to $\mathbb{Z} / 3$, and that the canonical model of the universal cover is a complete intersection in \mathbb{P}^{4} of type $(3,3)$.

0. Introduction

In this paper, we shall give a concrete description of minimal algebraic surfaces X 's defined over \mathbb{C} of general type with $c_{1}^{2}=3, p_{g}=1, q=0$ and $\mathbb{Z} / 3 \subset \operatorname{Tors}(X)$. Here, as usual, c_{1}, p_{g}, q and $\operatorname{Tors}(X)$ are the first chern class, the geometric genus, the irregularity and the torsion part of the Picard group of X, respectively.

In classical classification theories of the numerical Godeaux surfaces (i.e. minimal algebraic surfaces of general type with $c_{1}^{2}=1, p_{g}=0, q=0$), one fixes the torsion group or the fundamental group as an additional invariant, and finds concrete descriptions for each case (see for example [1] and [2]). For example, Miyaoka showed that if the torsion group $\operatorname{Tors}(X)$ is isomorphic to $\mathbb{Z} / 5$, then the fundamental group π_{1} is isomorphic to $\mathbb{Z} / 5$ and the canonical model of the universal cover is a quintic surface in \mathbb{P}^{3} (see [1]). It is well-known that the order $\sharp \operatorname{Tors}(X)$ is at most 5 for the numerical Godeaux surfaces.

Similar theories can be developed for other cases of numerical invariants, and there are many papers related to this direction. Minimal algebraic surfaces with $c_{1}^{2}=1, p_{g}=1$ and $q=0$ are completely understood ([10] and [12]), while minimal algebraic surfaces with $c_{1}^{2}=2, p_{g}=1$ and $q=0$ are classified in [13] and [14].

Consider the case $c_{1}^{2}=3, p_{g}=1$ and $q=0$. In this case, we see easily that the order of the torsion group $\operatorname{Tors}(X)$ is at most 6 . Examples of surfaces

[^0]with $c_{1}^{2}=3, p_{g}=1$ and $q=0$ can be found in Todorov's paper [11]. In the present paper, we consider the case $\mathbb{Z} / 3 \subset \operatorname{Tors}(X)$, and give a concrete description of such surfaces. Namely, we shall show that the fundamental group is isomorphic to $\mathbb{Z} / 3$ in this case, and that the canonical model of the universal cover is a complete intersection in \mathbb{P}^{4} of type (3,3) (Theorem 1). Using this result, we shall show that the number of moduli of X is 14 if a canonical divisor of X is ample. We shall also show that the case $\operatorname{Tors}(X) \simeq \mathbb{Z} / 5$ is impossible (Proposition 1 or Remark 2).

In the present paper, following the method due to Miyaoka [1] and Reid [2], we take an unramified cover $Y \rightarrow X$ corresponding to a 3-torsion divisor, and study the canonical image of Y. Since we have $K_{Y}^{2}=9$ and $p_{g}(Y)=5$, we can use the results and methods given by Konno in [3]. By a result due to Konno in [3], the degree of the canonical map $\Phi_{K_{Y}}$ of Y is either 1,2 , or 3 in our case. In Section 2, we shall consider the case $\operatorname{deg} \Phi_{K_{Y}}=1$. In Section 3, we shall exclude the case $\operatorname{deg} \Phi_{K_{Y}}=2$ for our surface Y. In Section 4, we shall exclude the case $\operatorname{deg} \Phi_{K_{Y}}=3$ for our surface Y. Finally in Section 5, we shall compute the number of moduli of X with an ampleness canonical divisor. Note that only a little is known on surfaces with $c_{1}^{2}=3 p_{g}-6$ and $\operatorname{deg} \Phi_{K_{Y}}=2$ (see [3]). Thus the exclusion of the case $\operatorname{deg} \Phi_{K_{Y}}=2$ for our Y is the main part of the present paper in a sense. Throughout this paper, we work over the complex number field \mathbb{C}.

Notation. Let S be a compact complex manifold of dimension 2. We denote by $p_{g}(S), q(S)$ and K_{S}, the geometric genus, the irregularity and a canonical divisor of S, respectively. The torsion group Tors(S) of S is the torsion part of the Picard group of S. For a coherent sheaf \mathcal{F} on S, we denote by $h^{i}(\mathcal{F})=\operatorname{dim} H^{i}(S, \mathcal{F})$ the dimension of the i-th cohomology group. As usual, \mathbb{P}^{n} is the projective space of dimension n. We denote by $\Sigma_{d} \rightarrow \mathbb{P}^{1}$ the Hirzebruch surface of degree d. A curve Δ_{0} is a section with self-intersection $-d$ of the Hirzebruch surface, and Γ is a fiber of $\Sigma_{d} \rightarrow \mathbb{P}^{1}$. The symbol \sim means the linear equivalence of two divisors. For a finite set Σ, we denote by $\sharp \Sigma$ the number of elements of Σ. Moreover, we denote by $\varepsilon=\exp (2 \pi \sqrt{-1} / 3)$ a third root of unity.

1. Statement of the main results

We begin with a bound of the order of the torsion group. By Deligne's well-known argument [4, Theorem 14] and the unbranched covering trick, we have the following:

Lemma 1.1. Let X be a minimal algebraic surface of general type with $c_{1}^{2}=3, p_{g}=1$ and $q=0$. Let $\pi: Y \rightarrow X$ be an unramified cover of finite degree m. Then $m \leq 6$ and $q(Y)=0$.

Proof. Apply Noether's inequality to the surface Y.
Corollary 1.1. Let X be as in Lemma 1.1. Then $\sharp \operatorname{Tors}(X) \leq 6$.

In this paper, we consider the case $\mathbb{Z} / 3 \subset \operatorname{Tors}(X)$, and find a concrete description of such surfaces. More precisely, we shall show the following:

Theorem 1. Let X be a minimal algebraic surface of general type with $c_{1}^{2}=3, p_{g}=1, q=0$ and $\mathbb{Z} / 3 \subset \operatorname{Tors}(X)$. Then both the fundamental group $\pi_{1}(X)$ and the torsion group $\operatorname{Tors}(X)$ are isomorphic to $\mathbb{Z} / 3$. The canonical model Z of the universal cover Y of X is a complete intersection in \mathbb{P}^{4} of type $(3,3)$ defined by the following equations:

$$
\begin{align*}
F_{i}= & a_{0}^{(i)} X_{0}^{3}+a_{1}^{(i)} X_{0} X_{1} X_{3}+a_{2}^{(i)} X_{0} X_{1} X_{4}+a_{3}^{(i)} X_{0} X_{2} X_{3}+a_{4}^{(i)} X_{0} X_{2} X_{4} \\
& +a_{5}^{(i)} X_{1}^{3}+a_{6}^{(i)} X_{1}^{2} X_{2}+a_{7}^{(i)} X_{1} X_{2}^{2}+a_{8}^{(i)} X_{2}^{3} \tag{1}\\
& +a_{9}^{(i)} X_{3}^{3}+a_{10}^{(i)} X_{3}^{2} X_{4}+a_{11}^{(i)} X_{3} X_{4}^{2}+a_{12}^{(i)} X_{4}^{3}=0
\end{align*}
$$

for $i=1,2$, where $\left(X_{0}: \cdots: X_{4}\right)$ are homogeneous coordinates of the projective space \mathbb{P}^{4}.

Remark 1. Here the induced action on Z of the Galois group $\operatorname{Gal}(Y / X)$ $=G=\left\langle\tau_{0}\right\rangle$ is given by

$$
\tau_{0}:\left(X_{0}: X_{1}: X_{2}: X_{3}: X_{4}\right) \mapsto\left(X_{0}: \varepsilon X_{1}: \varepsilon X_{2}: \varepsilon^{-1} X_{3}: \varepsilon^{-1} X_{4}\right)
$$

where $\varepsilon=\exp (2 \pi \sqrt{-1} / 3)$. This action on Z has no fixed points, since any automorphism of a fundamental cycle has fixed points. This imposes certain conditions on the coefficients $a_{j}^{(i)}$,s of the defining polynomials F_{i} 's. Conversely, if a complete intersection Z in \mathbb{P}^{4} of the form given in this theorem has at most rational double points, and if, moreover, it has no fixed points by the action on \mathbb{P}^{4} defined above, then the minimal desingularization X of Z / G is a minimal algebraic surface of general type with the invariants as in Theorem 1. For example, put

$$
\begin{aligned}
& F_{1}=X_{0}^{3}+X_{1}^{3}+X_{2}^{3}+X_{3}^{3}+X_{4}^{3} \\
& F_{2}=\alpha_{0} X_{0}^{3}+\alpha_{1} X_{1}^{3}+\alpha_{2} X_{2}^{3}+\alpha_{3} X_{3}^{3}+\alpha_{4} X_{4}^{3}
\end{aligned}
$$

where $\alpha_{0}, \ldots, \alpha_{4}$ are five distinct non-zero constants.
Theorem 2. Let X be a surface as in Theorem 1. Let Θ_{X} be the sheaf of germs of holomorphic vector field on X. Assume that a canonical divisor K_{X} is ample. Then $h^{1}\left(\Theta_{X}\right)=14$ and $h^{2}\left(\Theta_{X}\right)=0$. Thus the number of moduli of X is 14 .

By Remark 2 given in the final section, we have the following:
Proposition 1. There are no minimal algebraic surfaces X 's with $c_{1}^{2}=$ 3, $p_{g}=1, q=0$ and $\operatorname{Tors}(X) \simeq \mathbb{Z} / 5$.

Theorem 1 together with Proposition 1 sharpens Corollary 1.1 as follows:

Proposition 2. Let X be as in Lemma 1.1. Then $\sharp \operatorname{Tors}(X) \leq 4$.
In what follows, X is a minimal algebraic surface of general type with $c_{1}^{2}=3, p_{g}=1, q=0$ and $\mathbb{Z} / 3 \subset \operatorname{Tors}(X)$. We denote by $\pi: Y \rightarrow X$ the unramified Galois triple covering associated with a 3 -torsion divisor.

Lemma 1.2. \quad The surface Y satisfies $p_{g}(Y)=5, q(Y)=0$ and $K_{Y}^{2}=9$.
Following the methods in [1] and [2], we study the canonical map $\Phi_{K_{Y}}$ of Y by using the canonical ring of Y. Let T_{0} be the non-trivial 3 -torsion divisor of X. We have a natural isomorphism

$$
\begin{equation*}
\alpha_{m}: H^{0}\left(Y, \mathcal{O}_{Y}\left(m K_{Y}\right)\right) \simeq \bigoplus_{l=0,1,-1} H^{0}\left(X, \mathcal{O}_{X}\left(m K_{X}-l T_{0}\right)\right) \tag{2}
\end{equation*}
$$

for $m \geq 1$. Let us choose a generator τ_{0} of the Galois $\operatorname{group} G=\operatorname{Gal}(Y / X)$ in such a way that the spaces $H^{0}\left(X, \mathcal{O}_{X}\left(m K_{X}\right)\right), H^{0}\left(X, \mathcal{O}_{X}\left(m K_{X}-T_{0}\right)\right)$ and $H^{0}\left(X, \mathcal{O}_{X}\left(m K_{X}+T_{0}\right)\right)$ correspond to the eigenspaces of τ_{0}^{*} of eigenvalue $1, \varepsilon$ and ε^{-1}, respectively, where the action of G on $H^{0}\left(Y, \mathcal{O}_{Y}\left(m K_{Y}\right)\right)$ is induced by the one on Y. We have $h^{0}\left(\Theta_{X}\left(K_{X}\right)\right)=1$, while by the Riemann-Roch theorem, we have $h^{0}\left(\mathcal{O}_{X}\left(K_{X}-l T_{0}\right)\right)=2$ for $l=-1,1$. So we can take a base x_{0}, \ldots, x_{4} of $H^{0}\left(Y, \mathcal{O}_{Y}\left(K_{Y}\right)\right)$ such that $x_{0} \in \alpha_{1}^{-1} H^{0}\left(\mathcal{O}_{X}\left(K_{X}\right)\right), x_{i} \in \alpha_{1}^{-1} H^{0}\left(\mathcal{O}_{X}\left(K_{X}-T_{0}\right)\right)$ for $i=1,2$, and $x_{i} \in \alpha_{1}^{-1} H^{0}\left(\mathcal{O}_{X}\left(K_{X}+T_{0}\right)\right)$ for $i=3,4$. The canonical map is given by

$$
\begin{equation*}
\Phi_{K_{Y}}: p \mapsto\left(x_{0}(p): x_{1}(p): x_{2}(p): x_{3}(p): x_{4}(p)\right) . \tag{3}
\end{equation*}
$$

Note that we have $K_{Y}^{2}=3 p_{g}(Y)-6$. We frequently use results and methods given in [3]. See [3, Lemma 1.3] for a proof of the following proposition.

Proposition 3 (Konno). Let Y be a minimal algebraic surface of general type with $c_{1}^{2}=3 p_{g}-6$ and $p_{g} \geq 5$. Let $\Phi_{K_{Y}}: Y \rightarrow Z \subset \mathbb{P}^{p_{g}-1}$ be the canonical map of Y. Then $1 \leq \operatorname{deg} \Phi_{K_{Y}} \leq 3$. Moreover, if $\operatorname{deg} \Phi_{K_{Y}}=1$ or 3 , then the canonical linear system $\left|K_{Y}\right|$ has no base points.

By this proposition, we have $1 \leq \operatorname{deg} \Phi_{K_{Y}} \leq 3$ for our triple cover Y of the surface X.

2. The case $\operatorname{deg} \Phi_{K_{Y}}=1$

In this section, we shall consider the case $\operatorname{deg} \Phi_{K_{Y}}=1$. In this case the canonical map $\Phi_{K_{Y}}$ is holomorphic by Proposition 3. There are 13 monomials of x_{0}, \ldots, x_{4} in $\alpha_{3}^{-1} H^{0}\left(\mathcal{O}_{X}\left(3 K_{X}\right)\right)$, while we have $h^{0}\left(\mathcal{O}_{X}\left(3 K_{X}\right)\right)=11$. Thus we have at least two non-trivial linear relations, say $F_{1}(x)=0$ and $F_{2}(x)=0$, among these 13 monomials. Here $F_{1}(X)$ and $F_{2}(X)$ are homogeneous polynomials of degree 3 of the form given in Theorem 1. Put $V_{i}=\left\{F_{i}=0\right\} \subset \mathbb{P}^{4}$ for $i=1,2$. Then we have $Z=\Phi_{K_{Y}}(Y) \subset V_{1} \cap V_{2}$. We have two cases:

Case 1. $\quad V_{1}$ and V_{2} have no common irreducible components,

Case 2. $\quad V_{1}$ and V_{2} have a common irreducible component W_{0}.
Claim 2.1. If V_{1} and V_{2} have no common irreducible components, then $Z=V_{1} \cap V_{2}$. Moreover Z is the canonical model of Y.

See [3, Theorem 4.2] for a proof of this claim. The outline is as follows. The first assertion follows from $\operatorname{deg} Z=9$. In this case, both V_{1} and V_{2} are irreducible. Let H be a hyperplane in \mathbb{P}^{4}. We have a natural inclusion $H^{0}\left(\mathcal{O}_{V_{1} \cap V_{2}}(m H)\right) \subset H^{0}\left(\mathcal{O}_{Y}\left(m K_{Y}\right)\right)$. By an easy computation we have

$$
h^{0}\left(\mathcal{O}_{V_{1} \cap V_{2}}(m H)\right)=\frac{9}{2} m(m-1)+6=h^{0}\left(\mathcal{O}_{Y}\left(m K_{Y}\right)\right)
$$

for any $m \geq 2$. This implies that the five elements $x_{0}, \ldots, x_{4} \in H^{0}\left(Y, \mathcal{O}_{Y}\left(K_{Y}\right)\right)$ span the canonical ring of the surface Y. Thus, the surface Z is the canonical model of the surface Y. We have already seen in Remark 1 that Case 1 in fact occurs.

Next, we consider Case 2. In this case, the common irreducible component W_{0} is a quadric hypersurface in \mathbb{P}^{4}. Note that W_{0} is the only quadric hypersurface containing Z, since we have $\operatorname{deg} Z=9>2 \cdot 2$. This implies that W_{0} is invariant under the action of $G=\operatorname{Gal}(Y / X)$ on \mathbb{P}^{4}, where the action of G on \mathbb{P}^{4} is induced from the one on Z. Since W_{0} is a quadric hypersurface, the isomorphism class is determined by its rank. Konno showed that W_{0} is singular ([3, Section 3]). As regards the action of the Galois group G, we can show the following using the canonical ring of Y.

Claim 2.2. Assume that V_{1} and V_{2} have a common irreducible component W_{0}. Let $\tau_{0}, T_{0}, x_{0}, \ldots, x_{4}$ be as in Section 1. Then we can take τ_{0}, T_{0}, x_{0}, \ldots, x_{4}, in such a way that we have one of the following two cases:

Case 2-1. $W_{0}=\left\{X_{0} X_{1}-X_{3} X_{4}=0\right\} \subset \mathbb{P}^{4}$,
Case 2-2. $W_{0}=\left\{X_{0} X_{1}-X_{3}^{2}=0\right\} \subset \mathbb{P}^{4}$.
Case 2 in fact occurs for certain surfaces Y 's with $p_{g}=5, q=0$ and $c_{1}^{2}=9$, when we do not restrict our Y to the triple cover of our X. Such surfaces are called surfaces of type I-0 in [3]. See [3] for such surfaces. We shall exclude both Case 2-1 and Case 2-2, using the fact that our Y is an unramified Galois triple cover of X.

2.1. Exclusion of Case 2-1

First, let us exclude Case 2-1 in Claim 2.2. In Case 2-1, the hypersurface W_{0} is a cone over the Hirzebruch surface $\Sigma_{0} \simeq \mathbb{P}^{1} \times \mathbb{P}^{1}$. Here Σ_{0} is a non-singular quadric hypersurface in $\mathbb{P}^{3} \subset \mathbb{P}^{4}$. We denote by p_{0} the vertex of W_{0}. Let Λ_{0} be the linear system consisting of the pull-back by $\Phi_{K_{Y}}$ of all hyperplanes passing through the vertex p_{0}. We denote by Λ and F, the variable part of Λ_{0} and the fixed part of Λ_{0}, respectively. We let $p: \tilde{Y} \rightarrow Y$ be a composition of quadric transformations such that the variable part $|M|$ of $p^{*} \Lambda$ is free from base points. We take the shortest one among those with this property. Then we have

$$
p^{*} K_{Y} \sim M+\tilde{E}+p^{*} F,
$$

where \tilde{E} is an exceptional divisor. We have a morphism

$$
\tilde{\mu}=\Phi_{M}: \tilde{Y} \rightarrow \Sigma_{0} \subset \mathbb{P}^{3}
$$

determined by the linear system $|M|$. This holomorphic map $\tilde{\mu}$ is just the composition $g \circ \Phi_{K_{Y}}$, where the rational map g is the projection from the vertex p_{0}.

Let us compute intersection numbers among these divisors, and derive a contradiction. First note that the vertex p_{0} is invariant under the action of $G=\operatorname{Gal}(Y / X)=\left\langle\tau_{0}\right\rangle$ on W_{0}. This together with $\left(\left.\tau_{0}\right|_{W_{0}}\right)^{3}=\mathrm{id}_{W_{0}}$ implies that the linear system Λ_{0} is spanned by the pull-back of divisors on X. Indeed, since we have $p_{0}=(0: 0: 1: 0: 0)$, the linear system Λ_{0} is spanned by $\left(x_{0}\right),\left(x_{1}\right)$, $\left(x_{3}\right)$ and $\left(x_{4}\right)$, where x_{0}, \ldots, x_{4} are global sections as in Claim 2.2 and $\left(x_{i}\right)$'s are the effective divisors determined by x_{i} 's. Thus both Λ and F are spanned by the pull-back of divisors on X, hence $\Lambda^{2} \equiv \Lambda F \equiv F^{2} \equiv 0 \bmod 3$. Moreover, we may assume that the action of G on Y lifts to the one on \tilde{Y}, since Λ is spanned by the pull-back of divisors on X. Then we have $\tilde{E}^{2} \equiv 0 \bmod 3$. Since $\Phi_{K_{Y}}(F)$ is contained in $\left\{p_{0}\right\}$, we have $\Lambda_{0} F=0$. Thus we have

$$
\begin{equation*}
9=\Lambda_{0}^{2}=M^{2}+M \tilde{E}+M p^{*} F, \tag{4}
\end{equation*}
$$

where each term of the right hand side is a non-negative integer. We have

$$
\begin{gathered}
M \tilde{E}=-\tilde{E}^{2} \equiv 0 \quad \bmod \quad 3, \\
M p^{*} F=\Lambda F \equiv 0 \quad \bmod \quad 3, \\
M^{2}=2 \operatorname{deg} \tilde{\mu}
\end{gathered}
$$

Moreover, we have

$$
\Lambda F=F^{2}+F K_{Y}-2 F^{2} \equiv 0 \quad \bmod \quad 2
$$

by the Riemann-Roch theorem. Thus we have

$$
M^{2} \equiv M p^{*} F \equiv 0 \quad \bmod \quad 6 .
$$

Since Y is not birational to a ruled surface, we have $M^{2}>0$. Thus by (4) and Hodge's index theorem, we have the following:

$$
\begin{equation*}
M^{2}=6, \quad M \tilde{E}=3, \quad \tilde{E}^{2}=-3, \quad \operatorname{deg} \tilde{\mu}=3, \quad F=0 \tag{5}
\end{equation*}
$$

Then the linear system Λ has exactly 3 base points, and the set of base points, say $\left\{p_{1}, p_{2}, p_{3}\right\}$, forms an orbit of the action of G on Y. Let $\tilde{E}=\sum_{i=1}^{3} \tilde{E}_{i}$ be the decomposition of \tilde{E} into the sums of components lying over each base point p_{i}. Then we have $M \tilde{E}_{i}=1, \tilde{E}_{i}^{2}=-1$ for each $1 \leq i \leq 3$, and $\tilde{E}_{i} \tilde{E}_{j}=0$ for $i \neq j$.

By an argument similar to the one in the proof of Theorem 1 in [5], we show that each \tilde{E}_{i} is an exceptional curve of the first kind for $1 \leq i \leq 3$. Put

$$
K_{\tilde{Y}} \sim p^{*}\left(K_{Y}\right)+E,
$$

where E is an exceptional divisor. Let $E=\sum_{i=1}^{3} E_{i}$ be the decomposition of E into the sums of components lying over each base point p_{i}. We have $\tilde{E}_{i} \geq E_{i}$ and $\operatorname{supp}\left(\tilde{E}_{i}\right)=\operatorname{supp}\left(E_{i}\right)$, since the morphism p is the shortest one. Since $M \tilde{E}_{i}=1$, we have $M E_{i}=1$. Thus there exists an exceptional curve $E_{i}^{(0)}$ of the first kind such that

$$
E_{i}=E_{i}^{(0)}+E_{i}^{\prime}, \quad \tilde{E}_{i}=E_{i}^{(0)}+\tilde{E}_{i}^{\prime}
$$

where E_{i}^{\prime} and \tilde{E}_{i}^{\prime} are effective divisors and $M E_{i}^{(0)}=1, M E_{i}^{\prime}=M \tilde{E}_{i}^{\prime}=0$. Thus we have

$$
\begin{equation*}
K_{\tilde{Y}} \sim M+\sum_{i=1}^{3}\left(2 E_{i}^{(0)}+E_{i}^{\prime}+\tilde{E}_{i}^{\prime}\right) \tag{6}
\end{equation*}
$$

Note that neither E_{i}^{\prime} nor \tilde{E}_{i}^{\prime} contain $E_{i}^{(0)}$ as a component. We have $K_{\tilde{Y}} E_{i}^{(0)}=$ -1. Thus by (6), we obtain $E_{i}^{(0)} E_{i}^{\prime}=E_{i}^{(0)} \tilde{E}_{i}^{\prime}=0$. From these equalities and the assumption that p is the shortest one, we infer that $E_{i}^{\prime}=\tilde{E}_{i}^{\prime}=0$. Thus $\tilde{E}_{i}=E_{i}^{(0)}$ is an exceptional curve of the first kind.

Finally we derive a contradiction as follows: By the argument as above, we have $K_{\tilde{Y}} \sim M+2 \tilde{E}$. We denote by Γ and Δ_{0}, a fiber and a section of the Hirzebruch surface $\Sigma_{0} \rightarrow \mathbb{P}^{1}$ as in Section 0 . Let D be the pull-back $\Phi_{M}^{*}(\Gamma)$. Since $M \sim \Phi_{M}^{*}\left(\Delta_{0}+\Gamma\right)$, we have

$$
D^{2}+D K_{\tilde{Y}}=3+2 D \tilde{E}
$$

This contradicts the Riemann-Roch theorem, since the right hand side is odd. Thus Case 2-1 in Claim 2.2 is impossible.

2.2. Exclusion of Case 2-2

Next, we exclude Case 2-2 in Claim 2.2. In Case 2-2, the hypersurface W_{0} is a generalized cone over a rational curve $C \simeq \mathbb{P}^{1}$. This rational curve C is a conic in $\mathbb{P}^{2} \subset \mathbb{P}^{4}$. The singular locus of W_{0} is given by $X_{0}=X_{1}=X_{3}=0$ in \mathbb{P}^{4}. We call this line the ridge of W_{0}. Let Λ_{0} be a linear system consisting of the pull-back of all hyperplanes containing the ridge. We denote by Λ and F, the variable part and the fixed part of Λ_{0}, respectively. Again Λ_{0} is spanned by the pull-back of divisors on X, namely by $\left(x_{0}\right),\left(x_{1}\right)$ and $\left(x_{3}\right)$. Thus Λ and F are also spanned by the pull-back of divisors on X. In particular, we have $\Lambda^{2} \equiv \Lambda F \equiv F^{2} \equiv 0 \bmod 3$. Let F^{\prime} be the maximal common component of divisors $\left(x_{0}\right)$ and $\left(x_{1}\right)$. Then we have $\left(x_{i}\right)=D_{i}^{\prime}+F^{\prime}$ for an effective divisor D_{i}^{\prime} for $i=1,2$, where D_{1}^{\prime} and D_{2}^{\prime} have no common components. By the equality $\left(x_{0} x_{1}\right)=\left(x_{3}^{2}\right)$, we have $D_{i}^{\prime}=2 D_{i}$ for an effective divisor D_{i} for $i=1,2$. Then we have $\Lambda_{0} \sim 2 D+F$ for an effective divisor $D \sim D_{1}$. The linear system $\left|D_{1}\right|=\left|D_{2}\right|$ is a linear pencil without fixed components. We have

$$
\begin{equation*}
9=\Lambda_{0}^{2}=4 D^{2}+2 D F+K_{Y} F \tag{7}
\end{equation*}
$$

where each term of the right hand side is non-negative integer. Since $4 D^{2}=$ $\Lambda^{2} \equiv 0 \bmod 3$, we get $D^{2}=0$. Then by the Riemann-Roch theorem, we have
$D F=D^{2}+D K_{Y} \equiv 0 \bmod 2$, hence $2 D F=\Lambda F \equiv 0 \bmod 12$. Thus we obtain $D^{2}=D F=0$ and $F^{2}=9$. By Hodge's index theorem, we infer $D=0$. This contradicts the equality $h^{0}\left(\mathcal{O}_{Y}(D)\right)=2$. Thus Case 2-2 is excluded.

3. The case $\operatorname{deg} \Phi_{K_{Y}}=2$

In this section, we exclude the possibility of the case $\operatorname{deg} \Phi_{K_{Y}}=2$. Surfaces Y 's of this case are called surfaces of type II in [3]. There exist many surfaces of type II, and they are not classified completely even in [3]. However for our case of triple covering, we can exclude the possibility of type II using the action of the Galois group $G=\operatorname{Gal}(Y / X)$. Since only a little is known on surfaces of type II, the exclusion of the possibility of type II for our Y is the main part of the present paper in a sense.

First we study the base points of the linear system $\left|K_{Y}\right|$. Let $|L|$ and F be the variable part and the fixed part of the linear system $\left|K_{Y}\right|$, respectively. Again we denote by $p: \tilde{Y} \rightarrow Y$ a composition of quadric transformations which is the shortest among the ones with the property that the variable part of $\left|p^{*} L\right|$ has no base point. We take p in such a way that the action of the Galois group $G=\left\langle\tau_{0}\right\rangle$ lifts to one on \tilde{Y}. This is possible, since $\left|K_{Y}\right|$ is spanned by the pull-back of divisors on X. We have

$$
p^{*} K_{Y} \sim M+\tilde{E}+p^{*} F,
$$

where M and \tilde{E} are the variable part and the fixed part of $p^{*} L$, respectively. From this we infer

$$
\begin{equation*}
9=K_{Y}^{2}=M^{2}+M \tilde{E}+M p^{*} F+K_{Y} F, \tag{8}
\end{equation*}
$$

where each term of the right hand side is a non-negative integer. We have

$$
\begin{aligned}
M \tilde{E}=-\tilde{E}^{2} \equiv 0 & \bmod \quad 3, \quad M p^{*} F=L F \equiv 0 \quad \bmod \quad 3 \\
& K_{Y} F \equiv 0 \quad \bmod \quad 3
\end{aligned}
$$

hence $M^{2} \equiv 0 \bmod 3$. Moreover we have

$$
\begin{array}{cl}
M^{2}=2 \operatorname{deg} \Phi_{M}(\tilde{Y}) \equiv 0 \quad \bmod \quad & 2 \\
M p^{*} F=L F=L^{2}+L K_{Y}-2 L^{2} \equiv 0 \quad \bmod \quad 2
\end{array}
$$

Thus from (8), we infer $M^{2}=6$ and $M p^{*} F=L F=0$. So by (8), the inequalities $K_{Y}^{2} \geq L^{2}=M^{2}+M \tilde{E} \geq M^{2}$ and Hodge's index theorem, we obtain

$$
\begin{equation*}
M^{2}=2 \operatorname{deg} Z=6, \quad M \tilde{E}=-\tilde{E}^{2}=3, \quad F=0 \tag{9}
\end{equation*}
$$

where $Z=\Phi_{M}(\tilde{Y})$ is the canonical image of Y. Similarly to the proof of exclusion of Case 2-1 of Claim 2.2, we can show that $|L|$ has exactly 3 base points and that each base point is resolved by a single quadric transformation.

$$
\text { Surfaces with } c_{1}^{2}=3, p_{g}=1 \text { and } q=0
$$

The set P of these three base points forms an orbit of the action of G. Let $q: \tilde{X} \rightarrow X$ be a quadric transformation with the center $\pi(P)$. We have the following commutative diagram:

where $\tilde{\pi}$ is an unramified Galois triple cover of \tilde{X}. Note that $\operatorname{Gal}(\tilde{Y} / \tilde{X}) \simeq$ $\operatorname{Gal}(Y / X)$. By (9), the canonical image Z of Y is a surface of minimal degree in \mathbb{P}^{4}. By a classification of surfaces of minimal degree (see for example [6, Lemma 1.2] or [9]), we have the following:

Lemma 3.1. Let $Z=\Phi_{K_{Y}}(Y)$ be the canonical image of Y, then Z is one of the following:

Case 3-1. an image of the Hirzebruch surface Σ_{3} under the morphism determined by the linear system $\left|\Delta_{0}+3 \Gamma\right|$,

Case 3-2. the Hirzebruch surface Σ_{1} embedded by $\left|\Delta_{0}+2 \Gamma\right|$.

3.1. Exclusion of Case $\mathbf{3 - 1}$

We exclude Cases 3-1 and 3-2. First, we exclude Case 3-1. In this case, the canonical image Z is a cone over a twisted cubic curve $C \subset \mathbb{P}^{3}$. We denote by p_{0} the vertex of the cone Z. Let Λ_{0} be the linear system consisting of the pull-back by Φ_{M} of hyperplanes passing through p_{0}. We denote by Λ and F^{\prime}, the variable part and the fixed part of Λ_{0}, respectively. We have a natural isomorphism $\beta: H^{0}\left(\mathcal{O}_{\tilde{Y}}(M)\right) \simeq \mathbb{C}\left[X_{0}, \ldots, X_{4}\right]_{1}$, where $\mathbb{C}\left[X_{0}, \ldots, X_{4}\right]_{1}$ is the homogeneous part of degree 1 of the homogeneous coordinate ring of \mathbb{P}^{4}. We have $\Lambda_{0}=\mathbb{P}\left(\beta^{-1}(V)\right)$ for a linear subspace $V \subset \mathbb{C}\left[X_{0}, \ldots, X_{4}\right]_{1}$. Since the vertex p_{0} is invariant under the action of $G=\operatorname{Gal}(\tilde{Y} / \tilde{X})=\left\langle\tau_{0}\right\rangle$ on \mathbb{P}^{4}, the subspace V is stable under the action of G on $\mathbb{C}\left[X_{0}, \ldots, X_{4}\right]_{1}$. This together with $\left(\tau_{0}^{*}\right)^{3}=\mathrm{id}$ implies that V is spanned by eigenvectors of τ_{0}^{*}. Thus Λ and F^{\prime} are both spanned by the pull-back of divisors on \tilde{X}. Since $\left(\tau_{0}^{*}\right)^{3}=$ id, we have $\mathbb{C}\left[X_{0}, \ldots, X_{4}\right]_{1}=V \oplus W$, where W is a 1-dimensional linear subspace invariant under the action of G. We take a base Y_{0}, \ldots, Y_{4} of $\mathbb{C}\left[X_{0}, \ldots, X_{4}\right]_{1}$ such that $Y_{i} \in V$ for $0 \leq i \leq 3$ and $Y_{4} \in W$. Let H_{0} be a hyperplane in \mathbb{P}^{4} defined by $Y_{4}=0$. Then Z is a cone over the twisted cubic $C=Z \cap H_{0}$. Note that C and H_{0} are both invariant under the action of G on \mathbb{P}^{4}. See [6, Lemma $1.5]$ for a proof of the following lemma.

Lemma 3.2. There exists a linear pencil $|D|$ on \tilde{Y} without fixed components such that $\Lambda \sim 3 D$.

We have $M \sim 3 D+F^{\prime}$. We derive a contradiction by computing intersection numbers among these divisors. First note that $M F^{\prime}=0$, since $\Phi_{M}\left(F^{\prime}\right)=p_{0}$. Thus we have $6=M^{2}=9 D^{2}+3 D F^{\prime}$, hence

$$
\begin{equation*}
D^{2}=0, \quad D F^{\prime}=2 \tag{11}
\end{equation*}
$$

Thus the linear system Λ has no base points. We have a holomorphic map Φ_{Λ} determined by the linear system Λ. This Φ_{Λ} is just the extension of the rational map $p \mapsto\left(y_{0}(p): \cdots: y_{3}(p)\right)$, where y_{i} 's are the same as in the proof of Lemma 3.2. It follows that D is a pull-back $\Phi_{M}^{*}\left(q_{0}\right)$ by Φ_{M}, where q_{0} is an effective divisor of degree 1 on C. The curve C has an action of G compatible to the one on \tilde{Y}, since C is stable under the action on H_{0} of the Galois group $G=\left\langle\tau_{0}\right\rangle$. The isomorphism $\left.\tau_{0}\right|_{C}$ has at least 2 fixed points, say q_{1} and q_{2}, since we have $\tau_{0}^{3}=\mathrm{id}$ and the curve C is isomorphic to \mathbb{P}^{1}. Put $D_{i}^{\prime \prime}=\Phi_{M}^{*}\left(q_{i}\right)$ for $i=1,2$. Then $D_{i}^{\prime \prime}$ is a member of $|D|$ stable under the action of G, hence a pull-back of a divisor on \tilde{X}, for $i=1,2$. Then both $|D|$ and F^{\prime} are spanned by pull-back of divisors on \tilde{X}. Thus the intersection number $D F^{\prime}$ must be a multiple of 3 , which contradicts the equality (11). This proves that Case 3-1 is impossible.

3.2. Exclusion of Case $\mathbf{3 - 2}$

Next, we exclude Case 3-2 in Lemma 3.1. In this case, the canonical image Z of Y is the Hirzebruch surface Σ_{1} embedded by $\left|\Delta_{0}+2 \Gamma\right|$. The curve Δ_{0} is a line in \mathbb{P}^{4}. Let Λ_{0} be a linear system consisting of the pull-back by Φ_{M} of all hyperplanes containing Δ_{0} in \mathbb{P}^{4}. We denote by F the fixed part of Λ_{0}. The curve Δ_{0} is the unique (-1)-curve on Z, since Σ_{1} is obtained by a single quadric transformation of \mathbb{P}^{2}. Thus Δ_{0} is invariant under the action of G on \mathbb{P}^{4}. Then, as in the proof of exclusion of Case 3-1, we see that Λ_{0} is spanned by the pull-back of divisors on \tilde{X}, and that so is F. So the intersection number F^{2} has to be a multiple of 3 . However, we have $F=\Phi_{M}^{*}\left(\Delta_{0}\right)$, hence $F^{2}=-2$. This is a contradiction. This proves that Case 3-2 is impossible.

4. The case $\operatorname{deg} \Phi_{K_{Y}}=3$

In this section, we exclude the case $\operatorname{deg} \Phi_{K_{Y}}=3$. This case corresponds to surfaces of type III in [3]. We exclude this case by using the action of the Galois group $\operatorname{Gal}(Y / X)$.

First, note that the canonical system $\left|K_{Y}\right|$ is free from base points by Proposition 3. The canonical image $Z=\Phi_{K_{Y}}(Y)$ is a surface of minimal degree in \mathbb{P}^{4}. Thus, as in the previous section, the surface Z is either an image of the Hirzebruch surface Σ_{3} by $\left|\Delta_{0}+3 \Gamma\right|$, or the Hirzebruch surface Σ_{1} embedded in \mathbb{P}^{4} by $\left|\Delta_{0}+2 \Gamma\right|$. For a proof of the follwing lemma, see [3, Lemma 2.2].

Lemma 4.1 (Konno). The canonical image Z of Y is an image of the Hirzebruch surface Σ_{3} by $\left|\Delta_{0}+3 \Gamma\right|$.

Thus we have only to exclude the case in which Z is an image of the Hirzebruch surface Σ_{3} by $\left|\Delta_{0}+3 \Gamma\right|$. In this case, Z is a cone over a twisted cubic curve. We denote by p_{0} the vertex of the cone Z. Let Λ_{0} be a linear system consisting of the pull-back by $\Phi_{K_{Y}}$ of all hyperplanes passing through p_{0}. We denote by Λ and F the variable part and the fixed part of Λ_{0}, respectively. As in the proof of exclusion of Case $3-1$, we see that Λ and F are both spanned by the pull-back of divisors on X. Moreover, by the proof of Lemma 3.2, we see that there exists a linear pencil $|D|=\left|D_{1}\right|=\left|D_{2}\right|$ without fixed components
such that Λ is spanned by four divisors $3 D_{1}, 2 D_{1}+D_{2}, D_{1}+2 D_{2}$ and $3 D_{2}$. We denote by b the number of base points of $|D|$. Note that the linear system Λ also has exactly b base points. By the proof of [3, Lemma 2.2], we have $D^{2}=1$. We obtain $b=1$ by this equality. However, since Λ is spanned by the pull-back of divisors on X, the number of the base points of Λ must be a multiple of 3 , which contradicts the equality $b=1$. Thus the case $\operatorname{deg} \Phi_{K_{Y}}=3$ is impossible. This completes the proof of Theorem 1.

5. The number of moduli

Let X be a surface as in Theorem 1 such that a canonical divisor K_{X} is ample. We give a proof of Theorem 2 in this section. Namely we show that $h^{1}\left(\Theta_{X}\right)=14$ and $h^{2}\left(\Theta_{X}\right)=0$, where Θ_{X} is the sheaf of germs of holomorphic vector field on X. This means that the number of moduli of X is 14 . In what follows, we assume ampleness of a canonical divisor K_{X}.

Let $\pi: Y \rightarrow X$ be the universal cover of the surface X. By the Riemann-Roch-Hirzebruch theorem, we have

$$
h^{1}\left(\Theta_{X}\right)=10 \chi\left(\mathcal{O}_{X}\right)-2 c_{1}^{2}(X)+h^{2}\left(\Theta_{X}\right)=14+h^{2}\left(\Theta_{X}\right) .
$$

The equality $h^{0}\left(\Theta_{X}\right)=0$ holds, since X is of general type. On the other hand, we have

$$
h^{2}\left(\Theta_{X}\right)=h^{0}\left(\Omega_{X}^{1} \otimes_{\mathcal{O}_{X}} \mathcal{O}_{X}\left(K_{X}\right)\right) \leq h^{0}\left(\Omega_{Y}^{1} \otimes_{\mathcal{O}_{Y}} \mathcal{O}_{Y}\left(K_{Y}\right)\right)=h^{2}\left(\Theta_{Y}\right),
$$

where Ω_{X}^{1} and Ω_{Y}^{1} are the sheaves of germs of holomorphic 1-forms on X and Y, respectively. Thus in order to prove Theorem 2, we have only to show that $h^{2}\left(\Theta_{Y}\right)=0$.

Lemma 5.1. The surface Y satisfies $h^{2}\left(\Theta_{Y}\right)=0$ on the assumption given in Theorem 2.

Proof. The morphism π is of degree three. Since a canonical divisor K_{X} is ample, the universal cover Y has no (-2)-curves. Thus Y is a smooth complete intersection in \mathbb{P}^{4} of type $(3,3)$ by Theorem 1 . Let

$$
\iota: Y \rightarrow W=\mathbb{P}^{4}
$$

be the inclusion morphism as in Theorem 1. We denote by \mathcal{J} the sheaf of ideals on W defining Y. We have natural exact sequences

$$
\begin{array}{r}
0 \rightarrow \Theta_{Y} \rightarrow \iota^{*} \Theta_{W} \rightarrow \mathcal{O}_{Y}(3 H)^{\oplus 2} \rightarrow 0 \\
0 \rightarrow \mathcal{J} \otimes_{\mathcal{O}_{W}} \Theta_{W} \rightarrow \Theta_{W} \rightarrow \iota^{*} \Theta_{W} \rightarrow 0
\end{array}
$$

of sheaves, where H is a hyperplane in \mathbb{P}^{4}. By these exact sequences of sheaves, we obtain isomorphisms

$$
\begin{equation*}
H^{2}\left(\Theta_{Y}\right) \simeq H^{2}\left(\iota^{*} \Theta_{W}\right) \simeq H^{3}\left(\mathcal{J} \otimes_{\mathcal{O}_{W}} \Theta_{W}\right) \tag{12}
\end{equation*}
$$

Thus we have only to prove that $H^{3}\left(\mathcal{J} \otimes_{\mathcal{O}_{W}} \Theta_{W}\right)=0$. Meanwhile by short exact sequences of sheaves

$$
\begin{aligned}
& 0 \rightarrow \mathcal{O}_{W}(-6 H) \rightarrow \mathcal{O}_{W}(-3 H)^{\oplus 2} \rightarrow \mathcal{J} \\
& \rightarrow 0 \\
& 0 \rightarrow \mathcal{O}_{W}(-6 H) \otimes_{\mathcal{O}_{W}} \Theta_{W} \rightarrow \mathcal{O}_{W}(-3 H)^{\oplus 2} \otimes_{\mathcal{O}_{W}} \Theta_{W} \rightarrow \mathcal{J} \otimes_{\mathcal{O}_{W}} \Theta_{W} \rightarrow 0
\end{aligned}
$$

we obtain an exact sequence of cohomology groups

$$
H^{3}\left(\mathcal{O}_{W}(-3 H) \otimes_{\mathcal{O}_{W}} \Theta_{W}\right)^{\oplus 2} \rightarrow H^{3}\left(\mathcal{J} \otimes_{\mathcal{O}_{W}} \Theta_{W}\right) \rightarrow H^{4}\left(\mathcal{O}_{W}(-6 H) \otimes_{\mathcal{O}_{W}} \Theta_{W}\right)
$$

By the Riemann-Roch theorem we have

$$
\begin{aligned}
h^{3}\left(\mathcal{O}_{W}(-3 H) \otimes_{\mathcal{O}_{W}} \Theta_{W}\right) & =h^{1}\left(\Omega_{W}^{1} \otimes_{\mathcal{O}_{W}} \mathcal{O}_{W}(-2 H)\right), \\
h^{4}\left(\mathcal{O}_{W}(-6 H) \otimes_{\mathcal{O}_{W}} \Theta_{W}\right) & =h^{0}\left(\Omega_{W}^{1} \otimes_{\mathcal{O}_{W}} \mathcal{O}_{W}(H)\right)
\end{aligned}
$$

Thus the equality $H^{3}\left(\mathcal{J} \otimes \mathcal{O}_{W} \Theta_{W}\right)=0$ follows from the well-known theorem given below (Theorem 3). This equality together with isomorphisms (12) gives the assertion, which completes the proof of Theorem 2.

Theorem 3 (Bott [15]). Let Ω^{p} be the sheaf of germs of holomorphic p-forms on the projective space \mathbb{P}^{n}. Then the dimension $h^{q}\left(\mathbb{P}^{n}, \Omega^{p}\right)$ is zero except in the following three cases: i) $p=q$ and $d=0$, ii) $q=0$ and $p<d$, iii) $q=n$ and $d<p-n$.

Remark 2. We remark that there are no minimal algebraic surfaces X 's with $c_{1}^{2}=3, p_{g}=1, q=0$ and $\operatorname{Tors}(X) \simeq \mathbb{Z} / 5$. Assume that we had a minimal algebraic surface X with such invariants. Then we would have an unramified Galois cover $Y \rightarrow X$ of degree 5 corresponding to the torsion group. Then Y is a minimal algebraic surface with $K_{Y}^{2}=2 p_{g}(Y)-3, p_{g}(Y)=9$. However, we have the following theorem:

Theorem 4 (Horikawa [7], Section 1). Let Y be a minimal algebraic surface of general type with $K_{Y}^{2}=2 p_{g}(Y)-3$. If $p_{g}(Y) \geq 5$, then the canonical linear system $\left|K_{Y}\right|$ has a unique base point.

By this theorem, we see that the canonical system $\left|K_{Y}\right|$ of our surface Y has a unique base point, and that this base point is a fixed point of any automorphisms of Y. This contradicts the assumption that $Y \rightarrow X$ is an unramified Galois cover of degree 5. Thus there are no minimal algebraic surfaces X 's with $c_{1}^{2}=3, p_{g}=1, q=0$ and $\operatorname{Tors}(X) \simeq \mathbb{Z} / 5$.

Department of Mathematics
Faculty of Science
Kyoto University
Kyoto 606-8502, Japan
e-mail: murakami@kusm.kyoto-u.ac.jp

References

[1] Y. Miyaoka, Tricanonical Maps of Numerical Godeaux Surfaces, Invent. Math. 34 (1976), 99-111.
[2] M. Reid, Surfaces with $p_{g}=0, K^{2}=1$, J. Fac. Sci. Univ. of Tokyo 25 (1978), 75-92.
[3] K. Konno, Algebraic surface of general type with $c_{1}^{2}=3 p_{g}-6$, Math. Ann. 290 (1991), 77-107.
[4] E. Bombieri, Canonical models of surfaces of general type, Inst. Hautes Études Sci. Publ. Math. 42 (1973), 171-219.
[5] E. Horikawa, On deformations of Quintic Surfaces, Invent. Math. 31 (1975), 43-85.
[6] \qquad , Algebraic surfaces of general type with small c_{1}^{2} I, Ann. Math. 104 (1976), 357-387.
[7] \qquad , Algebraic surfaces of general type with small c_{1}^{2} II, Invent. Math. 37 (1976), 121-155.
[8] , Algebraic surfaces of general type with small c_{1}^{2} III, Invent. Math. 47 (1978), 209-248.
[9] M. Nagata, On rational surfaces I, Mem. Coll. Sci. Univ. Kyoto, Ser. A 32 (1960), 351-370.
[10] A. Todorov, Surfaces of general type with $p_{g}=1$ and $(K, K)=1$, Ann. E.N.S. 13 (1980), 1-21.
[11] \qquad , A Construction of Surfaces with $p_{g}=1, q=0$, and $2 \leq\left(K^{2}\right) \leq 8$, Invent. Math. 63 (1981), 287-304.
[12] F. Catanese, Surfaces with $K^{2}=p_{g}=1$, and their period mapping, In: Algebraic Geometry, Lecture Notes in Math. 732, 1979, Springer-Verlag, pp. 1-26.
[13] F. Catanese and O. Debarre, Surfaces with $K^{2}=2, p_{g}=1, q=0$, Crelle's J. Reine. Angew. Math. 395 (1989), 1-55.
[14] F. Catanese, P. Cragnolini and P. Oliverio, Surfaces with $K^{2}=\chi=2$, and special nets of quratics in 3-space, Contemp. Math. 162 (1994), 77-128.
[15] R. Bott, Homogeneous vector bundles, Ann. Math. 66 (1957), 203-248.

[^0]: Received January 9, 2002
 Revised September 20, 2002
 *The author was supported by JSPS Research Fellowship for Young Scientists.

