Good elements and metric invariants in $B_{d R}^{+}$

By
Victor Alexandru, Nicolae Popescu and Alexandru Zaharescu

Abstract

Let p be a prime, \mathbb{Q}_{p} the field of p-adic numbers and $\overline{\mathbb{Q}}_{p}$ a fixed algebraic closure of $\mathbb{Q}_{p} . B_{d R}^{+}$is the ring of p-adic periods of algebraic varieties over p-adic fields introduced by Fontaine. For each n one defines a canonical valuation w_{n} on $\overline{\mathbb{Q}}_{p}$ such that $B_{d R}^{+} / I^{n}$ becomes the completion of $\overline{\mathbb{Q}}_{p}$ with respect to w_{n}, where I is the maximal ideal of $B_{d R}^{+}$. An element $\alpha \in \overline{\mathbb{Q}}_{p}^{*}$ is said to be good at level n if $w_{n}(\alpha)=v(\alpha)$ where v denotes the p-adic valuation on $\overline{\mathbb{Q}}_{p}$. The set \mathcal{G}_{n} of good elements at level n is a subgroup of $\overline{\mathbb{Q}}_{p}^{*}$. We prove that each quotient group $\overline{\mathbb{Q}}_{p}^{*} / \mathcal{G}_{n}$ is a torsion group and that each quotient $\mathcal{G}_{1} / \mathcal{G}_{n}$ is a p-group. We also show that a certain sequence of metric invariants $\left\{l_{n}(Z)\right\}_{n \in \mathbb{N}}$ associated to an element $Z \in B_{d R}^{+}$, is constant.

1. Introduction

Let p be a prime number, \mathbb{Q}_{p} the field of p-adic numbers, $\overline{\mathbb{Q}}_{p}$ a fixed algebraic closure of \mathbb{Q}_{p} and \mathbb{C}_{p} the completion of $\overline{\mathbb{Q}}_{p}$ with respect to the unique extension of the p-adic valuation v on $\mathbb{Q}_{p} . \quad B_{d R}^{+}$denotes the ring of p-adic periods of algebraic varieties defined over local (p-adic) fields as considered by J.-M. Fontaine in [Fo]. It is a topological local ring with residue field \mathbb{C}_{p} (see the section Notations) and it is endowed with a canonical, continuous action of $G:=\operatorname{Gal}\left(\overline{\mathbb{Q}}_{p} / \mathbb{Q}_{p}\right)$. Let I be its maximal ideal and let $B_{n}:=B_{d R}^{+} / I^{n}$. Then $B_{d R}^{+}$(and B_{n} for each $n \geq 1$) is canonically a $\overline{\mathbb{Q}}_{p}$-algebra and moreover $\overline{\mathbb{Q}}_{p}$ is dense in $B_{d R}^{+}$(and in each B_{n} respectively) if we consider the "canonical topology" on $B_{d R}^{+}$which is finer than the I-adic topology (see [F-C]).

In [I-Z1] a canonical sequence of valuations $\left\{w_{n}\right\}_{n}$ on $\overline{\mathbb{Q}}_{p}$ is defined such that for each n, w_{n} induces the canonical topology in B_{n}, thus B_{n} becomes the completion of $\overline{\mathbb{Q}}_{p}$ with respect to w_{n}. Naturally, one is more interested in $B_{d R}^{+}$ itself than in the $B_{n}^{\prime} \mathrm{s}$ and for this reason it would be useful to know how the topology on $\overline{\mathbb{Q}}_{p}$ induced by w_{n} is changing as $n \rightarrow \infty$.

Let $\alpha \in \overline{\mathbb{Q}}_{p}^{*}$. From the definition of the valuations w_{n} we know that

$$
v(\alpha) \geq w_{1}(\alpha) \geq w_{2}(\alpha) \geq \cdots \geq w_{n}(\alpha) \geq \cdots
$$

We say that α is "good" at level n if $w_{n}(\alpha)=v(\alpha)$. Let \mathcal{G}_{n} be the set of good elements of $\overline{\mathbb{Q}}_{p}^{*}$ at level n. We will see that each \mathcal{G}_{n} is a subgroup of $\overline{\mathbb{Q}}_{p}^{*}$. Therefore we have a filtration

$$
\overline{\mathbb{Q}}_{p}^{*} \supseteq \mathcal{G}_{1} \supseteq \mathcal{G}_{2} \supseteq \cdots \supseteq \mathcal{G}_{n} \supseteq \cdots .
$$

Our object in this paper is to study how far is a given element α of $\overline{\mathbb{Q}}_{p}^{*}$ from being good at various levels. With this in mind we study the structure of the quotient groups $\mathcal{H}_{n}:=\overline{\mathbb{Q}}_{p}^{*} / \mathcal{G}_{n}$. We prove that one can raise any α to a certain power to make it good at a given level n, in other words one has the following:

Theorem 1. For any $n \geq 1, \mathcal{H}_{n}$ is a torsion group.
The structure of \mathcal{H}_{1} is easily described : one has a canonical isomorphism

$$
\mathcal{H}_{1} \cong \mathbb{Q} / \mathbb{Z}
$$

In what follows we are mainly concerned with the quotients

$$
\operatorname{Ker}\left(\mathcal{H}_{n} \rightarrow \mathcal{H}_{1}\right) \cong \mathcal{G}_{1} / \mathcal{G}_{n}
$$

We will prove the following:
Theorem 2. For any $n \geq 2$ the quotient $\mathcal{G}_{1} / \mathcal{G}_{n}$ is a p-group.
As an application of the above results we answer a question raised in [I-Z2] concerning certain metric invariants for elements in $B_{d R}^{+}$. As was pointed out in [I-Z2], although the topology on $B_{d R}^{+}$does not come from a canonical metric the B_{n} 's do have canonical metric structures. This shows us a way to obtain metric invariants for elements in $B_{d R}^{+}$, by sending them canonically to any B_{n} and recovering various metric invariants from those metric spaces.

In particular, for any element Z in $B_{d R}^{+}$whose projection in \mathbb{C}_{p} is transcendental over \mathbb{Q}_{p} one defines at each level $n \geq 1$ a certain metric invariant $l_{n}(Z) \in \mathbb{R} \cup\{\infty\}$ of Z (see Section 4 below). The question is to describe for a fixed Z the behavior of the sequence $\left\{l_{n}(Z)\right\}_{n \in \mathbb{N}}$. One has the following rather surprising:

Theorem 3. For any element Z in $B_{d R}^{+}$whose projection in \mathbb{C}_{p} is transcendental over \mathbb{Q}_{p} the sequence $\left\{l_{n}(Z)\right\}_{n \in \mathbb{N}}$ is constant:

$$
l_{1}(Z)=l_{2}(Z)=\cdots=l_{n}(Z)=\cdots
$$

We obtain in this way a metric invariant $l(Z)=l_{n}(Z)$ for any $n \geq 1$ which depends on Z only.

Acknowledgements. We are very grateful to the referee who provided us with the simpler approach described in the last section of the paper.

2. Notations, Definitions and Results

Let p be a prime number, $K=\mathbb{Q}_{p}^{u r}$ the maximal unramified extension of \mathbb{Q}_{p}, \bar{K} a fixed algebraic closure of K and \mathbb{C}_{p} the completion of \bar{K} with respect to the unique extension v of the p-adic valuation on \mathbb{Q}_{p} (normalized such that $v(p)=1$). All the algebraic extensions of K considered in this paper will be contained in \bar{K}. Let L be such an algebraic extension. We denote by $G_{L}:=$ $\operatorname{Gal}(\bar{K} / L), \hat{L}$ the (topological) closure of L in \mathbb{C}_{p}, O_{L} the ring of integers in L and m_{L} its maximal ideal. If $K \subset L \subset F \subset \bar{K}$, and F is a finite extension of $L, \Delta_{F / L}$ denotes the different of F over L.

If A and B are commutative rings and $\phi: A \rightarrow B$ is a ring homomorphism we denote by $\Omega_{B / A}$ the B-module of Kähler differentials of B over A, and $d: B \rightarrow \Omega_{B / A}$ the structural derivation.

Let A be a Banach space whose norm is given by the valuation w and suppose that the sequence $\left\{a_{m}\right\}$ converges in A to some α. We will write this: $a_{m} \xrightarrow{w} \alpha$.

We now recall some of the main results and definitions from [Fo], [F-C] and [I-Z1]. We first recall the construction of $B_{d R}^{+}$, which is due to J.-M. Fontaine in [Fo]. Let R denote the set of sequences $x=\left(x^{(n)}\right)_{n \geq 0}$ of elements of $O_{\mathbb{C}_{p}}$ which verify the relation $\left(x^{(n+1)}\right)^{p}=x^{(n)}$. Let's define: $v_{R}(x)$: $=v\left(x^{(0)}\right)$, $x+y=s$ where $s^{(n)}=\lim _{n \rightarrow \infty}\left(x^{(n+m)}+y^{(n+m)}\right)^{p^{m}}$ and $x y=t$ where $t^{(n)}=$ $x^{(n)} y^{(n)}$. With these operations R becomes a perfect ring of characteristic p on which v_{R} is a valuation. R is complete with respect to v_{R}. Let $W(R)$ be the ring of Witt vectors with coefficients in R and if $x \in R$ we denote by $[x]$ its Teichmüller representative in $W(R)$. Denote by θ the homomorphism $\theta: W(R) \rightarrow O_{\mathbb{C}_{p}}$ which sends $\left(x_{0}, x_{1}, \ldots, x_{n}, \ldots\right)$ to $\sum_{n=0}^{\infty} p^{n} x_{n}^{(n)}$. Then θ is surjective and its kernel is principal. Let also θ denote the map $W(R)\left[p^{-1}\right] \rightarrow$ \mathbb{C}_{p}. We denote $B_{d R}^{+}:=\lim _{\leftarrow} W(R)\left[p^{-1}\right] /(\operatorname{Ker}(\theta))^{n}$. Then θ extends to a continuous, surjective ring homomorphism $\theta=\theta_{d R}: B_{d R}^{+} \rightarrow \mathbb{C}_{p}$ and we denote $I:=\operatorname{Ker}\left(\theta_{d R}\right)$ and $I_{+}:=I \bigcap W(R)$. Let $\epsilon=\left(\epsilon^{(n)}\right)_{n \geq 0}$ be an element of R, where $\epsilon^{(n)}$ is a primitive p^{n}-th root of unity such that $\epsilon^{(0)}=1$ and $\epsilon^{(1)} \neq 1$. Then the power series

$$
\sum_{n=1}^{\infty}(-1)^{n-1}([\epsilon]-1)^{n} / n
$$

converges in $B_{d R}^{+}$, and its sum is denoted by $t:=\log [\epsilon]$. It is proved in [Fo] that t is a generator of the ideal I, and as $G_{K}:=\operatorname{Gal}(\bar{K} / K)$ acts on t by multiplication with the cyclotomic character, we have $I^{n} / I^{n+1} \cong \mathbb{C}_{p}(n)$, where the isomorphism is \mathbb{C}_{p}-linear and G_{K}-equivariant. Therefore for each integer $n \geq 2$, if we denote by $B_{n}:=B_{d R}^{+} / I^{n}$ we have an exact sequence of G_{K}-equivariant homomorphisms

$$
0 \rightarrow J_{n+1} \rightarrow B_{n+1} \xrightarrow{\phi_{n+1}} B_{n} \rightarrow 0
$$

where $J_{n+1} \cong I^{n} / I^{n+1} \cong \mathbb{C}_{p}(n)$. This exact sequence is called "the fundamental exact sequence". We denote by $\theta_{n}: B_{d R}^{+} \rightarrow B_{n}:=B_{d R}^{+} / I^{n}$ and by $\eta_{n}: B_{n} \rightarrow \mathbb{C}_{p}$ the canonical projections induced by θ.

Let us now review Colmez's differential calculus with algebraic numbers as in the Appendix of [F-C]. We should point out that as our K is unramified over \mathbb{Q}_{p} and so $W(R)$ is canonically an O_{K} as well as an $O_{\hat{K}}$-algebra, we'll work with $W(R)$ instead of $A_{\text {inf }}$. For each nonnegative integer k, we set $A_{i n f}^{k}$: = $W(R) / I_{+}^{k+1}$. We define recurrently the sequences of subrings $O_{\bar{K}}^{(k)}$ of $O_{\bar{K}}$ and of $O_{\bar{K}}$-modules $\Omega^{(k)}$ setting: $O_{\bar{K}}^{(0)}=O_{\bar{K}}$ and if $k \geq 1 \Omega^{(k)}:=O_{\bar{K}} \otimes_{O \frac{(k-1)}{}}$ $\Omega_{O_{K}^{(k-1)} / O_{K}}^{1}$ and $O_{\bar{K}}^{(k)}$ is the kernel of the canonical derivation $d^{(k)}: O_{\bar{K}}^{(k-1)} \rightarrow$ $\Omega^{(k)}$. Then we have

Theorem 4 (Colmez, Appendice of [F-C], Théorème 1). (i) If $k \in \mathbf{N}$, then $O_{\bar{K}}^{(k)}=\bar{K} \bigcap\left(W(R)+I^{k+1}\right)$ and for all $n \in \mathbf{N}$ the inclusion of $O_{\bar{K}}^{(k)}$ in $W(R)+I^{k+1}$ induces an isomorphism

$$
A_{i n f}^{k} / p^{n} A_{i n f}^{k} \cong O \frac{(k)}{K} / p^{n} O \frac{(k)}{K}
$$

(ii) If $k \geq 1$, then $d^{(k)}$ is surjective and $\Omega^{(k)} \cong\left(\bar{K} / \mathbf{a}^{k}\right)(k)$, where \mathbf{a} is the fractional ideal of \bar{K} whose inverse is the ideal generated by $\epsilon^{(1)}-1\left(\right.$ recall $\epsilon^{(1)}$ is a fixed primitive p-th root of unity).

Some consequences of this theorem are gathered in the following
Corollary 5. (i) $A_{i n f}^{n} \cong \stackrel{\lim }{\leftarrow}\left(O_{\bar{K}}^{(n)} / p^{i} O_{\bar{K}}^{(n)}\right)$ and $A_{\text {inf }}^{n} \otimes_{\mathbb{Z}_{p}} \mathbb{Q}_{p} \cong B_{n+1}$ for all $n \geq 0$.
(ii) $\Omega^{(n)}$ is a p-divisible and a p-torsion $O_{\bar{K}}$-module.

In [I-Z1] a sequence $\left\{w_{n}\right\}_{n}$ of valuations on \bar{K} is defined. We recall the definition and their main properties. For each $n \geq 1$ let $O_{\bar{K}}^{(n)}$ be the subring of $O_{\bar{K}}$ defined above. For $a \in \bar{K}^{*}$ we define

$$
w_{n}(a):=\max \left\{m \in \mathbf{Z} \mid a \in p^{m} O_{\bar{K}}^{(n-1)}\right\} .
$$

In particular when $n=1$ one has $w_{1}(a)=[v(a)]$, where [] denotes the integer part function.

Properties of w_{n}.
a) $w_{n}(a+b) \geq \min \left(w_{n}(a), w_{n}(b)\right)$ and if $w_{n}(a) \neq w_{n}(b)$ then we have equality, for all $a, b \in \bar{K}$.
b) $w_{n}(a b) \geq w_{n}(a)+w_{n}(b)$ for all a, b.
c) $w_{n}(a)=\infty$ if and only if $a=0$.
d) $v(a) \geq w_{n-1}(a) \geq w_{n}(a)$ for all $a \in \bar{K}$ and $n \geq 2$.
e) For each $n \geq 1$ the completion of \bar{K} with respect to w_{n} is canonically isomorphic to B_{n}.
f) For each $n \geq 1, \sigma \in \operatorname{Gal}(\bar{K} / K)$ and $a \in \bar{K}$ we have $w_{n}(\sigma(a))=w_{n}(a)$.

Remark. If we define the norm $\|a\|_{n}:=p^{-w_{n}(a)}$ for all $a \in \bar{K}$, then w_{n} and $\|\cdot\|_{n}$ extend naturally to B_{n} which becomes a Banach algebra over \hat{K}. Furthermore the canonical maps $\phi_{n}: B_{n+1} \rightarrow B_{n}$ are continuous Banach algebra homomorphisms of norm 1. As mentioned before, $B_{d R}^{+}=\lim _{\leftarrow} B_{n}$, with transition maps the ϕ 's. The canonical topology on $B_{d R}^{+}$is the projective limit topology, with topology on each B_{n} induced by w_{n}.

3. Good elements

We'll work with a slightly more general definition than the one from the introduction, when we only considered good elements α from $\overline{\mathbb{Q}}_{p}^{*}$.

Definition. An element $z \in B_{n}$ is called good if $w_{n}(z)=v\left(\eta_{n}(z)\right)$. An element Z in $B_{d R}^{+}$is said to be good at a given level n if its image in B_{n} is a good element of B_{n}.

We have the following
Proposition 6. (i) If $x, y \in B_{n}$ are good then $x y$ is good.
(ii) If $z \in B_{n}$ is good then $\phi_{n}(z)$ is a good element of B_{n-1}.
(iii) For each $n \geq 1, \mathcal{G}_{n}$ is a subgroup of $\overline{\mathbb{Q}}_{p}^{*}$.

Proof. For (i) note that $w_{n}(x y) \geq w_{n}(x)+w_{n}(y)=v\left(\eta_{n}(x)\right)+v\left(\eta_{n}(y)\right)=$ $v\left(\eta_{n}(x y)\right)$ but $w_{n}(x y) \leq v\left(\eta_{n}(x y)\right)$.

For (ii) note that $\left.w_{n-1}\left(\phi_{n}(z)\right) \geq w_{n}(z)=v\left(\eta_{n}(z)\right) \geq w_{n-1}\left(\phi_{n}(z)\right)\right)$.
In order to prove (iii) it remains to show that for any element $\alpha \in \overline{\mathbb{Q}}_{p}^{*}$ which is good in B_{n}, α^{-1} is also good in B_{n}.

We prove this by induction on n. For $n=1$ the statement is clear: α is good if and only if $v(\alpha) \in \mathbb{Z}$, in which case α^{-1} will have the same property.

Let us assume that the statement holds true for $n-1$ and let us prove it for n. Assume α is good at level n. By (ii) we know that α is also good in B_{n-1} and from the induction hypothesis it follows that α^{-1} is good in B_{n-1}. By multiplying α if necessary by a power of p we may assume that $w_{n}(\alpha)=0$. Then

$$
0=v(\alpha)=v\left(\alpha^{-1}\right)=w_{n-1}\left(\alpha^{-1}\right) .
$$

This shows that α and α^{-1} lie in $O_{\bar{K}}^{(n-2)}$. We can then differentiate the equality $1=\alpha \cdot \alpha^{-1}$ to obtain:

$$
0=\alpha d^{(n-1)}\left(\alpha^{-1}\right)+\alpha^{-1} d^{(n-1)}(\alpha)
$$

We multiply this equality by $\alpha^{-1} \in O_{\bar{K}}^{(n-2)}$ to put it in the form:

$$
0=d^{(n-1)}\left(\alpha^{-1}\right)+\alpha^{-2} d^{(n-1)}(\alpha)
$$

Since $w_{n}(\alpha)=0$ we have $\alpha \in O_{\bar{K}}^{(n-1)}$, thus $d^{(n-1)}(\alpha)=0$. Therefore $d^{(n-1)}\left(\alpha^{-1}\right)$ $=0$ from which it follows that $\alpha^{-1} \in O \frac{(n-1)}{K}, w_{n}\left(\alpha^{-1}\right)=0$ and hence α^{-1} is good in B_{n}.

In order to prove Theorem 1 we also need the following:

Lemma 7. Let $n \geq 2$. For any $y \in B_{n-1}$ there exists $x \in B_{n}$ with $\phi_{n}(x)=y$ such that $w_{n}(x)=w_{n-1}(y)$.

This is Proposition 5.2 (i) from [I-Z1]. We use it to derive:
Lemma 8. For any $n \geq 2$ and any $z \in B_{n}$ there exists $i \in J_{n}$ such that $w_{n}(z-i)=w_{n-1}\left(\phi_{n}(z)\right)$.

This follows immediately by applying the above lemma to $\phi_{n}(z)$: there exists $x \in B_{n}$ with $\phi_{n}(x)=\phi_{n}(z)$ such that $w_{n}(x)=w_{n-1}\left(\phi_{n}(z)\right)$. If we now write $x=z-i$ then we have $\phi_{n}(i)=0$, so $i \in J_{n}$ and the lemma is proved.

By a repeated application of this lemma we obtain the following:
Corollary 9. For any $n \geq 2$ and any $z \in B_{n}$ there exists $i \in I_{n}$ such that $w_{n}(z-i)=w_{1}\left(\eta_{n}(z)\right)$.

Corollary 10. Let $n \geq 2$ and $z \in B_{n}$ such that $v\left(\eta_{n}(z)\right) \in \mathbb{Z}$. Then there exists $i \in I_{n}$ such that $z-i$ is good in B_{n}.

Corollary 11. Let $n \geq 2$ and $z \in B_{n}$ such that $\phi_{n}(z)$ is good in B_{n-1}. Then there exists $i \in J_{n}$ such that $z-i$ is good in B_{n}.

We now prove the following
Lemma 12. Let $z \in B_{n}$ with $\eta_{n}(z) \in O_{\mathbb{C}_{p}}$. Then the sequence $\left\{z^{m}\right\}_{m \in \mathbb{N}}$ is bounded in B_{n}.

The proof is by induction on n. The case $n=1$ follows from the hypothesis of the Lemma. Assume now that the statement holds true for $n-1$ and prove it for n. The sequence $\left\{\phi_{n}\left(z^{m}\right)\right\}$ is bounded in B_{n-1} thus there exists r (which depends on $(n-1)$ and on $\left.\phi_{n}(z)\right)$ such that $w_{n-1}\left(p^{r} \phi_{n}(z)^{m}\right) \geq 0$ for every m. Let's now fix an m. We choose a sequence $\left\{\alpha_{k}\right\}_{k \in \mathbb{N}}$ in \bar{K} such that $\alpha_{k} \rightarrow_{(k \rightarrow \infty)}^{w_{n}} z$. Then $\alpha_{k}^{m} \rightarrow{ }_{(k \rightarrow \infty)}^{w_{n}} z^{m}$ and in particular $w_{n}\left(\alpha_{k}^{m}\right)=w_{n}\left(z^{m}\right)$ for k large enough. Since $\alpha_{k}=\eta_{n}\left(\alpha_{k}\right) \rightarrow_{k \rightarrow \infty} \eta_{n}(z)$ we also have $\alpha_{k} \in O_{\bar{K}}$ for large k. Similarly $\alpha_{k}=\phi_{n}\left(\alpha_{k}\right) \rightarrow \phi_{n}(z)$ so $w_{n-1}\left(p^{r} \alpha_{k}^{m}\right)=w_{n-1}\left(p^{r} \phi_{n}(z)^{m}\right) \geq 0$.

We now know how to compute $w_{n}\left(\beta_{m, k}\right)$ where $\beta_{m, k}=p^{r} \alpha_{k}^{m}$.
We have: $\beta_{1, k} \beta_{m, k}=p^{r} \beta_{m+1, k}$. Since $w_{n-1}\left(\beta_{1, k}\right) \geq 0, w_{n-1}\left(\beta_{m, k}\right) \geq 0$ and $w_{n-1}\left(\beta_{m+1, k}\right) \geq 0$ we can differentiate the above equality and obtain:

$$
\begin{equation*}
\beta_{m, k} d \beta_{1 k}+\beta_{1, k} d \beta_{m, k}=p^{r} d \beta_{m+1, k} . \tag{3.1}
\end{equation*}
$$

It now follows that for each m and the corresponding chosen large enough k we either have:
$p^{r} d \beta_{m+1, k}=0$ and then for this m we have

$$
0 \leq w_{n}\left(p^{r} \beta_{m+1, k}\right)=w_{n}\left(p^{2 r} \alpha_{k}^{m+1}\right)=w_{n}\left(p^{2 r} z^{m+1}\right),
$$

which implies $w_{n}\left(z^{m+1}\right) \geq-2 r$, or we have:
$p^{r} d \beta_{m+1, k} \neq 0$ and then at least one of the two terms from the Left Hand Side of (3.1) is nonzero and moreover we have:

$$
\begin{align*}
r+w_{n}\left(p^{r} z^{m+1}\right) & =r+w_{n}\left(\beta_{m+1, k}\right) \tag{3.2}\\
& \geq \min \left\{v\left(\beta_{m, k}\right)+w_{n}\left(\beta_{1, k}\right), v\left(\beta_{1, k}\right)+w_{n}\left(\beta_{m, k}\right)\right\} \\
& =\min \left\{v\left(p^{r} \eta_{n}(z)^{m}\right)+w_{n}\left(p^{r} z\right), v\left(p^{r} \eta_{n}(z)\right)+w_{n}\left(p^{r} z^{m}\right)\right\} \\
& =2 r+\min \left\{v\left(\eta_{n}(z)^{m}\right)+w_{n}(z), v\left(\eta_{n}(z)\right)+w_{n}\left(z^{m}\right)\right\} .
\end{align*}
$$

Since $v\left(\eta_{n}(z)\right) \geq 0$ from (3.2) we get:

$$
w_{n}\left(z^{m+1}\right) \geq \min \left\{w_{n}(z), w_{n}\left(z^{m}\right)\right\}
$$

It is now clear by induction on m that:

$$
w_{n}\left(z^{m}\right) \geq \min \left\{w_{n}(z),-2 r\right\}
$$

for any $m \geq 1$ and this completes the proof of the lemma.
Theorem 1 is implied by the following more general:
Theorem 13. For any $z \in B_{n}$ there exists $m \in \mathbb{N}^{*}$ such that z^{m} is good.

Proof. Our proof is by induction on n. The case $n=1$ is clear: here one only needs to choose an m such that $v\left(z^{m}\right) \in \mathbb{Z}$, then $w_{1}\left(z^{m}\right)=v\left(z^{m}\right)$ and z^{m} is good.

Let us assume that the statement holds true for $n-1$ and let us prove it for n. Let $z \in B_{n}$. From the induction hypothesis we know that there exists $m_{0} \geq 1$ such that $\phi_{n}(z)^{m_{0}}$ is good in B_{n-1}. Then Corollary 11 can be applied to $z^{m_{0}}$. It follows that there exists $i \in J_{n}$ such that $y=z^{m_{0}}-i$ is good in B_{n}.

As a consequence, y^{m} is good in B_{n} for any $m \geq 1$, so:

$$
w_{n}\left(y^{m}\right)=v\left(\eta_{n}(y)^{m}\right)=m v\left(\eta_{n}(y)\right)=m_{0} m v\left(\eta_{n}(z)\right)=v\left(\eta_{n}\left(z^{m_{0} m}\right)\right) .
$$

On the other hand since $i^{2}=0$ one has:

$$
y^{m}=\left(z^{m_{0}}-i\right)^{m}=z^{m_{0} m}-m i z^{m_{0}(m-1)}
$$

from which it follows:

$$
w_{n}\left(z^{m_{0} m}\right) \geq \min \left\{w_{n}\left(y^{m}\right), w_{n}\left(m i z^{m_{0}(m-1)}\right)\right\} .
$$

We derive:

$$
\begin{align*}
0 & \geq w_{n}\left(z^{m_{0} m}\right)-v\left(\eta_{n}\left(z^{m_{0} m}\right)\right) \\
& \geq \min \left\{0, w_{n}\left(m i z^{m_{0}(m-1)}\right)-m_{0} m v\left(\eta_{n}(z)\right)\right\} \tag{3.3}
\end{align*}
$$

Here one has:

$$
\begin{array}{rl}
w_{n}\left(m i z^{m_{0}(m-1)}\right)-m_{0} & m v\left(\eta_{n}(z)\right) \tag{3.4}\\
& \geq v(m)+w_{n}(i)+w_{n}\left(z^{m_{0}(m-1)}\right)-m_{0} m v\left(\eta_{n}(z)\right)
\end{array}
$$

We set $l=m_{0} v\left(\eta_{n}(z)\right)$ and $u=z^{m_{0}} p^{-l}$. Note that y being good, $l=$ $v\left(\eta_{n}(y)\right)=w_{n}(y) \in \mathbb{Z}$. Note also that $\eta_{n}(u) \in O_{C_{p}}$. From Lemma 12 it follows that the sequence $\left\{u^{m}\right\}_{m \in N}$ is bounded in B_{n}. In other words, the sequence $\left\{w_{n}\left(u^{m}\right)\right\}_{m \in N}$ is bounded from below.

Now the point is that the Right Hand Side of (3.4) equals:

$$
v(m)+w_{n}(i)-m_{0} v\left(\eta_{n}(z)\right)+w_{n}\left(u^{m-1}\right),
$$

and this quantity can be made positive by choosing an m with $v(m)$ large enough.

The Left Hand Side of (3.4) will then be positive and hence for such an m the inequalities in (3.3) become equalities. Thus $z^{m_{0} m}$ is good in B_{n} and this completes the proof of the theorem.

Proof of Theoerm 2. In order to prove the theorem we need to show that for each $n \geq 2$ the quotient $\mathcal{G}_{n-1} / \mathcal{G}_{n}$ is a p-group.

We start with a remark: If $z \in B_{n}$ is good and $i \in I_{n}$ then

$$
w_{n}(z+i)=\min \left\{w_{n}(z), w_{n}(i)\right\} .
$$

Indeed, if $w_{n}(z+i)>\min \left\{w_{n}(z), w_{n}(i)\right\}$ then

$$
w_{n}(z)=w_{n}(i)<w_{n}(z+i) .
$$

Since z is good one has

$$
w_{n}(z)=v\left(\eta_{n}(z)\right)=v\left(\eta_{n}(z+i)\right) \geq w_{n}(z+i) .
$$

We obtained a contradiction and the remark is proved.
Now let us fix an $n \geq 2$ and assume that $\mathcal{G}_{n-1} / \mathcal{G}_{n}$ is not a p-group. Then there will be an element $z \in B_{n} \cap \overline{\mathbb{Q}}_{p}^{*}$ and a positive integer q which is not a multiple of p, such that $\phi_{n}(z)$ is good in B_{n-1}, z^{q} is good in B_{n} but z is not good in B_{n}. By multiplying if necessarily z by a power of p we may assume that $v\left(\eta_{n}(z)\right)=0$. Thus $w_{n-1}\left(\phi_{n}(z)\right)=0, w_{n}\left(z^{q}\right)=0$ and $w_{n}(z)<0$.

From Corollary 11 we know that there exists $i \in J_{n}$ such that $y=z-i$ is good in B_{n}. Hence $w_{n}(y)=0$.

Now $z^{q}=(y+i)^{q}=y^{q}+q i y^{q-1}$. From the above remark applied to y^{q} which is good and to qiy ${ }^{q-1}$ which belongs to I_{n}, it follows that:

$$
0=w_{n}\left(z^{q}\right)=\min \left\{w_{n}\left(y^{q}\right), w_{n}\left(q i y^{q-1}\right)\right\}
$$

so $w_{n}\left(q i y^{q-1}\right) \geq 0$. As q was not a multiple of p we get $w_{n}\left(i y^{q-1}\right) \geq 0$. On the other hand note that y is invertible in B_{n}, more precisely since $z \in \overline{\mathbb{Q}}_{p}^{*}$ and
$i^{2}=0$ in B_{n} we find that $y^{-1}=z^{-1}\left(1+z^{-1} i\right)$. Then from $v\left(\eta_{n}(y)\right)=0$ and the fact that y is good in B_{n} it follows as in the proof of Proposition 6 (iii) that y^{-1} is also good. Then y^{1-q} will be good and hence:

$$
w_{n}\left(y^{1-q}\right)=v\left(\eta_{n}\left(y^{1-q}\right)\right)=0 .
$$

From this we derive:

$$
w_{n}(i)=w_{n}\left(i y^{q-1} y^{1-q}\right) \geq w_{n}\left(i y^{q-1}\right)+w_{n}\left(y^{1-q}\right) \geq 0
$$

This in turn implies:

$$
w_{n}(z)=w_{n}(y+i) \geq \min \left\{w_{n}(y), w_{n}(i)\right\}=0
$$

We obtained a contradiction, which completes the proof of Theorem 2.

4. Metric invariants

Let z be an element of B_{n} which is transcendental over \mathbb{Q}_{p}. For any positive integer m we set:

$$
\delta(m, z)=\sup \left\{w_{n}(f(z)): f \in \mathbb{Q}_{p}[X], \text { monic, } \operatorname{deg} f=m\right\}
$$

It is shown in [I-Z2] that the sup above is attained, and any polynomial for which the sup is attained is called "admissible". An "admissible sequence of polynomials for $z^{\prime \prime}$ is a sequence $\left\{f_{m}(X)\right\}_{m \geq 0}$ of polynomials with coefficients in \mathbb{Q}_{p} suct that $f_{0}(X)=1$ and $f_{m}(X)$ is an admissible polynomial of degree m, for any $m \geq 1$. The importance of such sequences lies in the fact that they can be used to construct orthonormal bases for the topological closure E of $\mathbb{Q}_{p}[z]$ in B_{n}. More precisely, if $\left\{f_{m}(X)\right\}_{m \geq 0}$ is an admissible sequence of polynomials for z and if we denote $r_{m}=w_{n}\left(f_{m}(z)\right), M_{m}(z)=p^{-r_{m}} f_{m}(z)$ then the sequence $\left\{M_{m}(z)\right\}_{m \geq 0}$ is an integral, orthonormal basis of E as a Banach space over \mathbb{Q}_{p}. In particular if z is a so called generating element of B_{n} over \mathbb{Q}_{p}, i.e. if $\mathbb{Q}_{p}[z]$ is dense in B_{n}, then the above procedure will exhibit bases of B_{n} over \mathbb{Q}_{p}. For more details and various related questions see $[\mathrm{I}-\mathrm{Z} 2],[\mathrm{A}-\mathrm{P}-\mathrm{Z}]$ and $[\mathrm{P}-\mathrm{Z}]$.

Returning to the metric invariants $\delta(m, z)$, let us note that for any m_{1}, m_{2} ≥ 1 one has:

$$
\begin{equation*}
\delta\left(m_{1}+m_{2}, z\right) \geq \delta\left(m_{1}, z\right)+\delta\left(m_{2}, z\right) \tag{4.1}
\end{equation*}
$$

Indeed, if $f_{m_{1}}(X)$ and $f_{m_{2}}(X)$ are admissible polynomials for z of degrees m_{1} and m_{1} respectively, then

$$
\begin{aligned}
\delta\left(m_{1}, z\right)+\delta\left(m_{2}, z\right) & =w_{n}\left(f_{m_{1}}(z)\right)+w_{n}\left(f_{m_{2}}(z)\right) \\
& \leq w_{n}\left(f_{m_{1}} f_{m_{2}}(z)\right) \leq \delta\left(m_{1}+m_{2}, z\right) .
\end{aligned}
$$

It is easy to see that the sequence $\{(\delta(m, z)) / m\}_{m \geq 1}$ has a limit $l(z)$ in $\mathbb{R} \cup\{\infty\}$. In fact one has:

$$
\begin{equation*}
l(z)=\sup \left\{\frac{w_{n}(g(z))}{\operatorname{deg} g} ; g \in \mathbb{Q}_{p}[X], \text { monic, } \operatorname{deg} g>0\right\} \tag{4.2}
\end{equation*}
$$

Indeed, let us define $l(z)$ by (4.2) and let us show that

$$
\lim _{m \rightarrow \infty} \frac{\delta(m, z)}{m}=l(z) .
$$

Clearly one has

$$
\frac{\delta(m, z)}{m} \leq l(z)
$$

for any $m \geq 1$ and

$$
\sup _{m \geq 1} \frac{\delta(m, z)}{m}=l(z) .
$$

We need to show that for any real number $l<l(z)$ one has

$$
\frac{\delta(m, z)}{m}>l
$$

for all m large enough. Fix such an $l<l(z)$ and choose $m_{0} \geq 1$ such that

$$
\frac{\delta\left(m_{0}, z\right)}{m_{0}}>l
$$

Now take a large m and write it in the form $m=k m_{0}+r$ with $0 \leq r<m_{0}$. By a repeated application of (4.1) we have

$$
\delta(m, z) \geq k \delta\left(m_{0}, z\right)+\delta(r, z)
$$

from which we obtain:

$$
\begin{equation*}
\frac{\delta(m, z)}{m} \geq \frac{\delta\left(m_{0}, z\right)}{m_{0}}-\frac{r}{m m_{0}} \delta\left(m_{0}, z\right)+\frac{\delta(r, z)}{m} . \tag{4.3}
\end{equation*}
$$

The Right Hand Side of (4.3) is $>l$ for m large enough and this proves the claim.

Now let Z be an element of $B_{d R}^{+}$whose projection $\theta(Z)$ in \mathbb{C}_{p} is transcendental over \mathbb{Q}_{p}. Then for each n the image $\theta_{n}(Z)$ of Z in B_{n} is transcendental over \mathbb{Q}_{p} and one can define the metric invariants $l_{n}(Z):=l\left(\theta_{n}(Z)\right)$.

The inequalities between the valuations w_{n} in combination with (4.2) show that

$$
l_{1}(Z) \geq l_{2}(Z) \geq \cdots \geq l_{n}(Z) \geq \cdots
$$

In order to prove Theorem 3 let us fix an element Z as above and an integer $n \geq 2$. We want to show that for any $l<l_{1}(Z)$ one has $l_{n}(Z)>l$.

Fix such an $l<l_{1}(Z)$ and choose a nonconstant polynomial $g(X)$ such that:

$$
\frac{v(g(\theta(Z)))}{\operatorname{deg} g}>l
$$

Here we don't have any control on the magnitude of $w_{n}(g(\theta(Z)))$, which might be much smaller than $v(g(\theta(Z)))$. Now the idea is to consider the contribution in (4.2) of the powers of g. On one hand we have for any $m \geq 1$:

$$
\frac{v\left(g^{m}(\theta(Z))\right)}{\operatorname{deg} g^{m}}=\frac{v(g(\theta(Z)))}{\operatorname{deg} g}>l .
$$

On the other hand we know from Theorem 13 applied to the element $g\left(\theta_{n}(Z)\right)$ of B_{n} that there exists an integer $m_{1} \geq 1$ such that $g^{m_{1}}\left(\theta_{n}(Z)\right)$ is good in B_{n}. In other words one has $w_{n}\left(g^{m_{1}}\left(\theta_{n}(Z)\right)\right)=v\left(g^{m_{1}}(\theta(Z))\right)$.

In conclusion we have:

$$
l_{n}(Z) \geq \frac{w_{n}\left(g^{m_{1}}\left(\theta_{n}(Z)\right)\right)}{\operatorname{deg} g^{m_{1}}}=\frac{v\left(g^{m_{1}}(\theta(Z))\right)}{\operatorname{deg} g^{m_{1}}}>l
$$

and this completes the proof of Theorem 3.

5. A new proof of the results in Section 3

One can prove the results of Section 3 on good elements more easily without using the differential modules of the rings $O \frac{(n)}{K}$. The proofs below were kindly provided to us by the referee.

Notation.

$A_{\text {inf }}^{n}:=W(R) / I_{+}^{n+1}=\lim _{\leftarrow m} O_{\bar{K}}^{(n)} / p^{m} O_{\bar{K}}^{(n)} \quad(n \geq 0)$
($A_{\text {inf }}^{n}$ is p-torsion free and p-adically complete and separated.)
$B_{n}:=B_{d R}^{+} / I^{n}=A_{i n f}^{n-1} \otimes \mathbb{Q}_{p} \quad(n \geq 1)$
$w_{n}(z):=\max \left\{m \in \mathbb{Z} \mid z \in p^{m} A_{i n f}^{n-1}\right\}, z \in B_{n} \quad(n \geq 1)$
$\eta_{n}: B_{n} \rightarrow \mathbb{C}_{p}$
$v:$ the valuation on \mathbb{C}_{p} normalized by $v(p)=1$.
$z \in B_{n}$ is good if and only if $w_{n}(z)=v\left(\eta_{n}(z)\right)$.
Lemma 14. For $z \in A_{\text {inf }}^{n-1}, z \in\left(A_{\text {inf }}^{n-1}\right)^{*}$ if and only if $\eta_{n}(z) \in O_{\mathbb{C}_{p}}^{*}$.
Proof. This follows from the fact that $\eta_{n}: A_{i n f}^{n-1} \rightarrow O_{\mathbb{C}_{p}}$ is surjective and its kernel is a nilpotent ideal.

Corollary 15. For a non-zero element z of B_{n}, z is good if and only if $\eta_{n}(z) \neq 0, v\left(\eta_{n}(z)\right) \in \mathbb{Z}$ and $p^{-v\left(\eta_{n}(z)\right)} z \in\left(A_{\text {inf }}^{n-1}\right)^{*}$.

Proof. The sufficiency is trivial. If $z \in B_{n}$ is good and $z \neq 0$, then $v\left(\eta_{n}(z)\right)=w_{n}(z) \in \mathbb{Z}$. Hence $\eta_{n}(z) \neq 0$ and $p^{-v\left(\eta_{n}(z)\right)} z \in A_{\text {inf }}^{n-1}$. Since $\eta_{n}\left(p^{-v\left(\eta_{n}(z)\right)} z\right)=p^{-v\left(\eta_{n}(z)\right)} \eta_{n}(z) \in O_{\mathbb{C}_{p}}^{*}, p^{-v\left(\eta_{n}(z)\right)} z \in\left(A_{i n f}^{n-1}\right)^{*}$ by Lemma 14.

Corollary 16. The set of non-zero good elements of B_{n} is a subgroup of B_{n}^{*}.

Proof. Obvious from Corollary 15.
Lemma 17. For $z \in B_{n}, n \geq 2$, if the image \bar{z} of z in B_{n-1} is contained in $\left(A_{\text {inf }}^{n-2}\right)^{*}$, then there exists an integer $M \geq 0$ such that $z^{p^{M}} \in\left(A_{\text {inf }}^{n-1}\right)^{*}$.

Proof. Let $w \in A_{i n f}^{n-1}$ be a lifting of \bar{z}. By Lemma 14, $w \in\left(A_{i n f}^{n-1}\right)^{*}$. Set $a:=z w^{-1}-1$, which is contained in I^{n-1} / I^{n}, and let M be an integer such that $p^{M} a \in I_{+}^{n-1} / I_{+}^{n}$. Then, we have $\left(z w^{-1}\right)^{p^{M}}=1+p^{M} a \in 1+I_{+}^{n-1} / I_{+}^{n} \subset\left(A_{i n f}^{n-1}\right)^{*}$. Hence $z^{p^{M}} \in\left(A_{\text {inf }}^{n-1}\right)^{*}$.

Corollary 18. (1) For any $z \in B_{1}=\mathbb{C}_{p}$, there exists an integer $m \geq 1$ such that z^{m} is good.
(2) For any $z \in B_{n}$ such that its image in B_{1} is good, there exists an integer $M \geq 1$ such that $z^{p^{M}}$ is good.

Proof. (1) follows from $v\left(\mathbb{C}_{p}\right)=\mathbb{Q} \cup\{\infty\}$. For $z \in B_{n}$, if its image in B_{1} is good, $v\left(\eta_{n}(z)\right) \in \mathbb{Z}$. Replacing z with $p^{-v\left(\eta_{n}(z)\right)} z$, we may assume $v\left(\eta_{n}(z)\right)=0$, i.e. $\eta_{n}(z) \in O_{C_{p}}^{*}$. By applying Lemma 17 repeatedly, we see that there exists an integer $M \geq 0$ such that $z^{p^{M}} \in\left(A_{\text {inf }}^{n-1}\right)^{*}$ and hence $z^{p^{N}}$ is a good element.
V. Alexandru:

University of Bucharest
Department of Mathematics
Str. Academiei 14, RO-70109
Bucharest, Romania
N. Popescu:

Institute of Mathematics
P.O. Box 1-764, RO-70700

Bucharest, Romania
e-mail: Nicolae.Popescu@imar.ro

A. Zaharescu:
Institute of Mathematics
P.O. Box 1-764, RO-70700
Bucharest, Romania and
Department of Mathematics
University of Illinois
at Urbana-Champaign
1409 W. Green Street, Urbana
IL, 61801, UsA
e-mail: zaharesc@math.uiuc.edu

References

[A-P-Z] V. Alexandru, N. Popescu and A. Zaharescu, On the closed subfields of \mathbb{C}_{p}, J. Number Theory 68-2 (1998), 131-150.
[C-G] J. Coates and R. Greenberg, Kummer theory of abelian varieties, Invent. Math. 126 (1996), 129-174.
[Fo] J.-M. Fontaine, Sur certains types de représentations p-adiques du groupe de Galois d'un corps local; construction d'un anneau de Barsotti-Tate, Ann. of Math. 115 (1982), 529-577.
[F-C] Le corps des périodes p-adique (avec une appendice par P. Colmez), Astérisque 223 (1994), 59-111.
[I-Z1] A. Iovita and A. Zaharescu, Galois theory of $B_{d R}^{+}$, Compositio Math. 117-1 (1999), 1-33.
[I-Z2] , Generating elements for $B_{d R}^{+}$, J. Math. Kyoto Univ. 39-2 (1999), 233-249.
[P1] E. L. Popescu, A generalization of Hensel's Lemma, Rev. Roum. Math. Pures Appl. 38-3 (1993), 802-805.
[P2] , v-basis and Fundamental basis of local fields, Rev. Roumaine Math. Pures Appl. 45-4 (2000), 671-680.
[P-Z] N. Popescu and A. Zaharescu, On the structure of irreducible polynomials over local fields, J. Number Theory 52-1 (1995), 98-118.

