Good elements and metric invariants in B_{dR}^+

By

Victor ALEXANDRU, Nicolae POPESCU and Alexandru ZAHARESCU

Abstract

Let p be a prime, \mathbb{Q}_p the field of p-adic numbers and $\overline{\mathbb{Q}}_p$ a fixed algebraic closure of \mathbb{Q}_p . B_{dR}^+ is the ring of p-adic periods of algebraic varieties over p-adic fields introduced by Fontaine. For each n one defines a canonical valuation w_n on $\overline{\mathbb{Q}}_p$ such that B_{dR}^+/I^n becomes the completion of $\overline{\mathbb{Q}}_p$ with respect to w_n , where I is the maximal ideal of B_{dR}^+ . An element $\alpha \in \overline{\mathbb{Q}}_p^*$ is said to be good at level n if $w_n(\alpha) = v(\alpha)$ where vdenotes the p-adic valuation on $\overline{\mathbb{Q}}_p$. The set \mathcal{G}_n of good elements at level n is a subgroup of $\overline{\mathbb{Q}}_p^*$. We prove that each quotient group $\overline{\mathbb{Q}}_p^*/\mathcal{G}_n$ is a torsion group and that each quotient $\mathcal{G}_1/\mathcal{G}_n$ is a p-group. We also show that a certain sequence of metric invariants $\{l_n(Z)\}_{n\in\mathbb{N}}$ associated to an element $Z \in B_{dR}^+$, is constant.

1. Introduction

Let p be a prime number, \mathbb{Q}_p the field of p-adic numbers, $\overline{\mathbb{Q}}_p$ a fixed algebraic closure of \mathbb{Q}_p and \mathbb{C}_p the completion of $\overline{\mathbb{Q}}_p$ with respect to the unique extension of the p-adic valuation v on \mathbb{Q}_p . B_{dR}^+ denotes the ring of p-adic periods of algebraic varieties defined over local (p-adic) fields as considered by J.-M. Fontaine in [Fo]. It is a topological local ring with residue field \mathbb{C}_p (see the section Notations) and it is endowed with a canonical, continuous action of G: = Gal($\overline{\mathbb{Q}}_p/\mathbb{Q}_p$). Let I be its maximal ideal and let B_n : = B_{dR}^+/I^n . Then B_{dR}^+ (and B_n for each $n \ge 1$) is canonically a $\overline{\mathbb{Q}}_p$ -algebra and moreover $\overline{\mathbb{Q}}_p$ is dense in B_{dR}^+ (and in each B_n respectively) if we consider the "canonical topology" on B_{dR}^+ which is finer than the I-adic topology (see [F-C]).

In [I-Z1] a canonical sequence of valuations $\{w_n\}_n$ on $\overline{\mathbb{Q}}_p$ is defined such that for each n, w_n induces the canonical topology in B_n , thus B_n becomes the completion of $\overline{\mathbb{Q}}_p$ with respect to w_n . Naturally, one is more interested in B_{dR}^+ itself than in the B'_n 's and for this reason it would be useful to know how the topology on $\overline{\mathbb{Q}}_p$ induced by w_n is changing as $n \to \infty$.

Let $\alpha \in \mathbb{Q}_n^*$. From the definition of the valuations w_n we know that

 $v(\alpha) \ge w_1(\alpha) \ge w_2(\alpha) \ge \cdots \ge w_n(\alpha) \ge \cdots$.

²⁰⁰⁰ Mathematics Subject Classification(s). 11S99 Received March 26, 2001

Revised April 8, 2002

We say that α is "good" at level n if $w_n(\alpha) = v(\alpha)$. Let \mathcal{G}_n be the set of good elements of $\overline{\mathbb{Q}}_p^*$ at level n. We will see that each \mathcal{G}_n is a subgroup of $\overline{\mathbb{Q}}_p^*$. Therefore we have a filtration

$$\bar{\mathbb{Q}}_p^* \supseteq \mathcal{G}_1 \supseteq \mathcal{G}_2 \supseteq \cdots \supseteq \mathcal{G}_n \supseteq \cdots$$

Our object in this paper is to study how far is a given element α of $\overline{\mathbb{Q}}_p^*$ from being good at various levels. With this in mind we study the structure of the quotient groups $\mathcal{H}_n := \overline{\mathbb{Q}}_p^*/\mathcal{G}_n$. We prove that one can raise any α to a certain power to make it good at a given level n, in other words one has the following:

Theorem 1. For any $n \ge 1$, \mathcal{H}_n is a torsion group.

The structure of \mathcal{H}_1 is easily described : one has a canonical isomorphism

 $\mathcal{H}_1 \cong \mathbb{Q}/\mathbb{Z}.$

In what follows we are mainly concerned with the quotients

$$\operatorname{Ker}(\mathcal{H}_n \to \mathcal{H}_1) \cong \mathcal{G}_1/\mathcal{G}_n.$$

We will prove the following:

Theorem 2. For any $n \ge 2$ the quotient $\mathcal{G}_1/\mathcal{G}_n$ is a p-group.

As an application of the above results we answer a question raised in [I-Z2] concerning certain metric invariants for elements in B_{dR}^+ . As was pointed out in [I-Z2], although the topology on B_{dR}^+ does not come from a canonical metric the B_n 's do have canonical metric structures. This shows us a way to obtain metric invariants for elements in B_{dR}^+ , by sending them canonically to any B_n and recovering various metric invariants from those metric spaces.

In particular, for any element Z in B_{dR}^+ whose projection in \mathbb{C}_p is transcendental over \mathbb{Q}_p one defines at each level $n \geq 1$ a certain metric invariant $l_n(Z) \in \mathbb{R} \cup \{\infty\}$ of Z (see Section 4 below). The question is to describe for a fixed Z the behavior of the sequence $\{l_n(Z)\}_{n\in\mathbb{N}}$. One has the following rather surprising:

Theorem 3. For any element Z in B_{dR}^+ whose projection in \mathbb{C}_p is transcendental over \mathbb{Q}_p the sequence $\{l_n(Z)\}_{n\in\mathbb{N}}$ is constant:

$$l_1(Z) = l_2(Z) = \dots = l_n(Z) = \dots$$

We obtain in this way a metric invariant $l(Z) = l_n(Z)$ for any $n \ge 1$ which depends on Z only.

Acknowledgements. We are very grateful to the referee who provided us with the simpler approach described in the last section of the paper.

2. Notations, Definitions and Results

Let p be a prime number, $K = \mathbb{Q}_p^{ur}$ the maximal unramified extension of $\mathbb{Q}_p, \overline{K}$ a fixed algebraic closure of K and \mathbb{C}_p the completion of \overline{K} with respect to the unique extension v of the p-adic valuation on \mathbb{Q}_p (normalized such that v(p) = 1). All the algebraic extensions of K considered in this paper will be contained in \overline{K} . Let L be such an algebraic extension. We denote by G_L : = $\operatorname{Gal}(\overline{K}/L), \hat{L}$ the (topological) closure of L in \mathbb{C}_p, O_L the ring of integers in L and m_L its maximal ideal. If $K \subset L \subset F \subset \overline{K}$, and F is a finite extension of $L, \Delta_{F/L}$ denotes the different of F over L.

If A and B are commutative rings and $\phi: A \to B$ is a ring homomorphism we denote by $\Omega_{B/A}$ the B-module of Kähler differentials of B over A, and $d: B \to \Omega_{B/A}$ the structural derivation.

Let A be a Banach space whose norm is given by the valuation w and suppose that the sequence $\{a_m\}$ converges in A to some α . We will write this: $a_m \xrightarrow{w} \alpha$.

We now recall some of the main results and definitions from [Fo], [F-C] and [I-Z1]. We first recall the construction of B_{dR}^+ , which is due to J.-M. Fontaine in [Fo]. Let R denote the set of sequences $x = (x^{(n)})_{n\geq 0}$ of elements of $O_{\mathbb{C}_p}$ which verify the relation $(x^{(n+1)})^p = x^{(n)}$. Let's define: $v_R(x) := v(x^{(0)})$, x + y = s where $s^{(n)} = \lim_{n\to\infty} (x^{(n+m)} + y^{(n+m)})^{p^m}$ and xy = t where $t^{(n)} = x^{(n)}y^{(n)}$. With these operations R becomes a perfect ring of characteristic p on which v_R is a valuation. R is complete with respect to v_R . Let W(R) be the ring of Witt vectors with coefficients in R and if $x \in R$ we denote by [x] its Teichmüller representative in W(R). Denote by θ the homomorphism $\theta \colon W(R) \to O_{\mathbb{C}_p}$ which sends $(x_0, x_1, \ldots, x_n, \ldots)$ to $\sum_{n=0}^{\infty} p^n x_n^{(n)}$. Then θ is surjective and its kernel is principal. Let also θ denote the map $W(R)[p^{-1}] \to \mathbb{C}_p$. We denote $B_{dR}^+ := \lim_{k \to \infty} W(R)[p^{-1}]/(\operatorname{Ker}(\theta))^n$. Then θ extends to a continuous, surjective ring homomorphism $\theta = \theta_{dR} \colon B_{dR}^+ \to \mathbb{C}_p$ and we denote $I := \operatorname{Ker}(\theta_{dR})$ and $I_+ := I \cap W(R)$. Let $\epsilon = (\epsilon^{(n)})_{n\geq 0}$ be an element of R, where $\epsilon^{(n)}$ is a primitive p^n -th root of unity such that $\epsilon^{(0)} = 1$ and $\epsilon^{(1)} \neq 1$.

$$\sum_{n=1}^{\infty} (-1)^{n-1} ([\epsilon] - 1)^n / n$$

converges in B_{dR}^+ , and its sum is denoted by $t: = \log[\epsilon]$. It is proved in [Fo] that t is a generator of the ideal I, and as $G_K: = \operatorname{Gal}(\overline{K}/K)$ acts on t by multiplication with the cyclotomic character, we have $I^n/I^{n+1} \cong \mathbb{C}_p(n)$, where the isomorphism is \mathbb{C}_p -linear and G_K -equivariant. Therefore for each integer $n \ge 2$, if we denote by $B_n: = B_{dR}^+/I^n$ we have an exact sequence of G_K -equivariant homomorphisms

$$0 \to J_{n+1} \to B_{n+1} \stackrel{\phi_{n+1}}{\to} B_n \to 0,$$

where $J_{n+1} \cong I^n/I^{n+1} \cong \mathbb{C}_p(n)$. This exact sequence is called "the fundamental exact sequence". We denote by $\theta_n \colon B_{dR}^+ \to B_n \colon = B_{dR}^+/I^n$ and by $\eta_n \colon B_n \to \mathbb{C}_p$ the canonical projections induced by θ . Let us now review Colmez's differential calculus with algebraic numbers as in the Appendix of [F-C]. We should point out that as our K is unramified over \mathbb{Q}_p and so W(R) is canonically an O_K as well as an $O_{\hat{K}}$ -algebra, we'll work with W(R) instead of A_{inf} . For each nonnegative integer k, we set A_{inf}^k : = $W(R)/I_+^{k+1}$. We define recurrently the sequences of subrings $O_K^{(k)}$ of $O_{\overline{K}}$ and of $O_{\overline{K}}$ -modules $\Omega^{(k)}$ setting: $O_{\overline{K}}^{(0)} = O_{\overline{K}}$ and if $k \geq 1$ $\Omega^{(k)}$: $= O_{\overline{K}} \otimes_{O_{\overline{K}}^{(k-1)}}$ $\Omega_{O_{\overline{K}}^{(k-1)}/O_K}^1$ and $O_{\overline{K}}^{(k)}$ is the kernel of the canonical derivation $d^{(k)}: O_{\overline{K}}^{(k-1)} \to$ $\Omega^{(k)}$. Then we have

Theorem 4 (Colmez, Appendice of [F-C], Théorème 1). (i) If $k \in \mathbf{N}$, then $O_{\overline{K}}^{(k)} = \overline{K} \bigcap (W(R) + I^{k+1})$ and for all $n \in \mathbf{N}$ the inclusion of $O_{\overline{K}}^{(k)}$ in $W(R) + I^{k+1}$ induces an isomorphism

$$A_{inf}^k/p^n A_{inf}^k \cong O_{\overline{K}}^{(k)}/p^n O_{\overline{K}}^{(k)}.$$

(ii) If $k \geq 1$, then $d^{(k)}$ is surjective and $\Omega^{(k)} \cong (\overline{K}/\mathbf{a}^k)(k)$, where **a** is the fractional ideal of \overline{K} whose inverse is the ideal generated by $\epsilon^{(1)} - 1$ (recall $\epsilon^{(1)}$ is a fixed primitive p-th root of unity).

Some consequences of this theorem are gathered in the following

Corollary 5. (i) $A_{inf}^n \cong \stackrel{\text{lim}}{\leftarrow} (O_{\overline{K}}^{(n)}/p^i O_{\overline{K}}^{(n)})$ and $A_{inf}^n \otimes_{\mathbb{Z}_p} \mathbb{Q}_p \cong B_{n+1}$ for all $n \ge 0$. (ii) $\Omega^{(n)}$ is a p-divisible and a p-torsion $O_{\overline{K}}$ -module.

In [I-Z1] a sequence $\{w_n\}_n$ of valuations on \overline{K} is defined. We recall the definition and their main properties. For each $n \ge 1$ let $O_{\overline{K}}^{(n)}$ be the subring of $O_{\overline{K}}$ defined above. For $a \in \overline{K}^*$ we define

$$w_n(a): = \max\{m \in \mathbf{Z} | a \in p^m O_{\overline{K}}^{(n-1)}\}$$

In particular when n = 1 one has $w_1(a) = [v(a)]$, where [] denotes the integer part function.

Properties of w_n .

a) $w_n(a+b) \ge \min(w_n(a), w_n(b))$ and if $w_n(a) \ne w_n(b)$ then we have equality, for all $a, b \in \overline{K}$.

b) $w_n(ab) \ge w_n(a) + w_n(b)$ for all a, b.

c) $w_n(a) = \infty$ if and only if a = 0.

d) $v(a) \ge w_{n-1}(a) \ge w_n(a)$ for all $a \in \overline{K}$ and $n \ge 2$.

e) For each $n \geq 1$ the completion of \overline{K} with respect to w_n is canonically isomorphic to B_n .

f) For each $n \ge 1$, $\sigma \in \operatorname{Gal}(\overline{K}/K)$ and $a \in \overline{K}$ we have $w_n(\sigma(a)) = w_n(a)$.

Remark. If we define the norm $||a||_n := p^{-w_n(a)}$ for all $a \in \overline{K}$, then w_n and $|| \cdot ||_n$ extend naturally to B_n which becomes a Banach algebra over \hat{K} . Furthermore the canonical maps $\phi_n : B_{n+1} \to B_n$ are continuous Banach algebra homomorphisms of norm 1. As mentioned before, $B_{dR}^+ = \lim_{\leftarrow} B_n$, with transition maps the ϕ 's. The canonical topology on B_{dR}^+ is the projective limit topology, with topology on each B_n induced by w_n .

3. Good elements

We'll work with a slightly more general definition than the one from the introduction, when we only considered good elements α from $\overline{\mathbb{Q}}_n^*$.

Definition. An element $z \in B_n$ is called good if $w_n(z) = v(\eta_n(z))$. An element Z in B_{dR}^+ is said to be good at a given level n if its image in B_n is a good element of B_n .

We have the following

Proposition 6. (i) If $x, y \in B_n$ are good then xy is good. (ii) If $z \in B_n$ is good then $\phi_n(z)$ is a good element of B_{n-1} . (iii) For each $n \ge 1$, \mathcal{G}_n is a subgroup of $\overline{\mathbb{Q}}_n^*$.

Proof. For (i) note that $w_n(xy) \ge w_n(x) + w_n(y) = v(\eta_n(x)) + v(\eta_n(y)) = v(\eta_n(xy))$ but $w_n(xy) \le v(\eta_n(xy))$.

For (ii) note that $w_{n-1}(\phi_n(z)) \ge w_n(z) = v(\eta_n(z)) \ge w_{n-1}(\phi_n(z))).$

In order to prove (iii) it remains to show that for any element $\alpha \in \overline{\mathbb{Q}}_p^*$ which is good in B_n , α^{-1} is also good in B_n .

We prove this by induction on n. For n = 1 the statement is clear: α is good if and only if $v(\alpha) \in \mathbb{Z}$, in which case α^{-1} will have the same property.

Let us assume that the statement holds true for n-1 and let us prove it for n. Assume α is good at level n. By (ii) we know that α is also good in B_{n-1} and from the induction hypothesis it follows that α^{-1} is good in B_{n-1} . By multiplying α if necessary by a power of p we may assume that $w_n(\alpha) = 0$. Then

$$0 = v(\alpha) = v(\alpha^{-1}) = w_{n-1}(\alpha^{-1})$$

This shows that α and α^{-1} lie in $O_{\overline{K}}^{(n-2)}$. We can then differentiate the equality $1 = \alpha \cdot \alpha^{-1}$ to obtain:

$$0 = \alpha d^{(n-1)}(\alpha^{-1}) + \alpha^{-1} d^{(n-1)}(\alpha).$$

We multiply this equality by $\alpha^{-1} \in O_{\overline{K}}^{(n-2)}$ to put it in the form:

$$0 = d^{(n-1)}(\alpha^{-1}) + \alpha^{-2}d^{(n-1)}(\alpha).$$

Since $w_n(\alpha) = 0$ we have $\alpha \in O_{\overline{K}}^{(n-1)}$, thus $d^{(n-1)}(\alpha) = 0$. Therefore $d^{(n-1)}(\alpha^{-1}) = 0$ from which it follows that $\alpha^{-1} \in O_{\overline{K}}^{(n-1)}$, $w_n(\alpha^{-1}) = 0$ and hence α^{-1} is good in B_n .

In order to prove Theorem 1 we also need the following:

Lemma 7. Let $n \ge 2$. For any $y \in B_{n-1}$ there exists $x \in B_n$ with $\phi_n(x) = y$ such that $w_n(x) = w_{n-1}(y)$.

This is Proposition 5.2 (i) from [I-Z1]. We use it to derive:

Lemma 8. For any $n \ge 2$ and any $z \in B_n$ there exists $i \in J_n$ such that $w_n(z-i) = w_{n-1}(\phi_n(z))$.

This follows immediately by applying the above lemma to $\phi_n(z)$: there exists $x \in B_n$ with $\phi_n(x) = \phi_n(z)$ such that $w_n(x) = w_{n-1}(\phi_n(z))$. If we now write x = z - i then we have $\phi_n(i) = 0$, so $i \in J_n$ and the lemma is proved.

By a repeated application of this lemma we obtain the following:

Corollary 9. For any $n \ge 2$ and any $z \in B_n$ there exists $i \in I_n$ such that $w_n(z-i) = w_1(\eta_n(z))$.

Corollary 10. Let $n \ge 2$ and $z \in B_n$ such that $v(\eta_n(z)) \in \mathbb{Z}$. Then there exists $i \in I_n$ such that z - i is good in B_n .

Corollary 11. Let $n \ge 2$ and $z \in B_n$ such that $\phi_n(z)$ is good in B_{n-1} . Then there exists $i \in J_n$ such that z - i is good in B_n .

We now prove the following

Lemma 12. Let $z \in B_n$ with $\eta_n(z) \in O_{\mathbb{C}_p}$. Then the sequence $\{z^m\}_{m \in \mathbb{N}}$ is bounded in B_n .

The proof is by induction on n. The case n = 1 follows from the hypothesis of the Lemma. Assume now that the statement holds true for n - 1 and prove it for n. The sequence $\{\phi_n(z^m)\}$ is bounded in B_{n-1} thus there exists r(which depends on (n-1) and on $\phi_n(z)$) such that $w_{n-1}(p^r\phi_n(z)^m) \ge 0$ for every m. Let's now fix an m. We choose a sequence $\{\alpha_k\}_{k\in\mathbb{N}}$ in \bar{K} such that $\alpha_k \to_{(k\to\infty)}^{w_n} z$. Then $\alpha_k^m \to_{(k\to\infty)}^{w_n} z^m$ and in particular $w_n(\alpha_k^m) = w_n(z^m)$ for klarge enough. Since $\alpha_k = \eta_n(\alpha_k) \to_{k\to\infty} \eta_n(z)$ we also have $\alpha_k \in O_{\bar{K}}$ for large k. Similarly $\alpha_k = \phi_n(\alpha_k) \to \phi_n(z)$ so $w_{n-1}(p^r\alpha_k^m) = w_{n-1}(p^r\phi_n(z)^m) \ge 0$.

We now know how to compute $w_n(\beta_{m,k})$ where $\beta_{m,k} = p^r \alpha_k^m$.

We have: $\beta_{1,k}\beta_{m,k} = p^r\beta_{m+1,k}$. Since $w_{n-1}(\beta_{1,k}) \ge 0$, $w_{n-1}(\beta_{m,k}) \ge 0$ and $w_{n-1}(\beta_{m+1,k}) \ge 0$ we can differentiate the above equality and obtain:

(3.1)
$$\beta_{m,k}d\beta_{1k} + \beta_{1,k}d\beta_{m,k} = p^r d\beta_{m+1,k}.$$

It now follows that for each m and the corresponding chosen large enough k we either have:

 $p^r d\beta_{m+1,k} = 0$ and then for this m we have

$$0 \le w_n(p^r \beta_{m+1,k}) = w_n(p^{2r} \alpha_k^{m+1}) = w_n(p^{2r} z^{m+1}),$$

which implies $w_n(z^{m+1}) \ge -2r$, or we have:

 $p^r d\beta_{m+1,k} \neq 0$ and then at least one of the two terms from the Left Hand Side of (3.1) is nonzero and moreover we have:

$$(3.2) r + w_n(p^r z^{m+1}) = r + w_n(\beta_{m+1,k}) \geq \min\{v(\beta_{m,k}) + w_n(\beta_{1,k}), v(\beta_{1,k}) + w_n(\beta_{m,k})\} = \min\{v(p^r \eta_n(z)^m) + w_n(p^r z), v(p^r \eta_n(z)) + w_n(p^r z^m)\} = 2r + \min\{v(\eta_n(z)^m) + w_n(z), v(\eta_n(z)) + w_n(z^m)\}.$$

Since $v(\eta_n(z)) \ge 0$ from (3.2) we get:

$$w_n(z^{m+1}) \ge \min\{w_n(z), w_n(z^m)\}.$$

It is now clear by induction on m that:

$$w_n(z^m) \ge \min\{w_n(z), -2r\}$$

for any $m \ge 1$ and this completes the proof of the lemma.

Theorem 1 is implied by the following more general:

Theorem 13. For any $z \in B_n$ there exists $m \in \mathbb{N}^*$ such that z^m is good.

Proof. Our proof is by induction on n. The case n = 1 is clear: here one only needs to choose an m such that $v(z^m) \in \mathbb{Z}$, then $w_1(z^m) = v(z^m)$ and z^m is good.

Let us assume that the statement holds true for n-1 and let us prove it for n. Let $z \in B_n$. From the induction hypothesis we know that there exists $m_0 \ge 1$ such that $\phi_n(z)^{m_0}$ is good in B_{n-1} . Then Corollary 11 can be applied to z^{m_0} . It follows that there exists $i \in J_n$ such that $y = z^{m_0} - i$ is good in B_n .

As a consequence, y^m is good in B_n for any $m \ge 1$, so:

$$w_n(y^m) = v(\eta_n(y)^m) = mv(\eta_n(y)) = m_0 mv(\eta_n(z)) = v(\eta_n(z^{m_0 m})).$$

On the other hand since $i^2 = 0$ one has:

$$y^m = (z^{m_0} - i)^m = z^{m_0m} - miz^{m_0(m-1)}$$

from which it follows:

$$w_n(z^{m_0m}) \ge \min\{w_n(y^m), w_n(miz^{m_0(m-1)})\}$$

We derive:

(3.3)
$$0 \ge w_n(z^{m_0m}) - v(\eta_n(z^{m_0m})) \\ \ge \min\{0, w_n(miz^{m_0(m-1)}) - m_0mv(\eta_n(z))\}\}$$

Here one has:

(3.4)
$$w_n(miz^{m_0(m-1)}) - m_0 mv(\eta_n(z))$$

 $\geq v(m) + w_n(i) + w_n(z^{m_0(m-1)}) - m_0 mv(\eta_n(z)).$

We set $l = m_0 v(\eta_n(z))$ and $u = z^{m_0} p^{-l}$. Note that y being good, $l = v(\eta_n(y)) = w_n(y) \in \mathbb{Z}$. Note also that $\eta_n(u) \in O_{C_p}$. From Lemma 12 it follows that the sequence $\{u^m\}_{m \in N}$ is bounded in B_n . In other words, the sequence $\{w_n(u^m)\}_{m \in N}$ is bounded from below.

Now the point is that the Right Hand Side of (3.4) equals:

$$v(m) + w_n(i) - m_0 v(\eta_n(z)) + w_n(u^{m-1})$$

and this quantity can be made positive by choosing an m with v(m) large enough.

The Left Hand Side of (3.4) will then be positive and hence for such an m the inequalities in (3.3) become equalities. Thus z^{m_0m} is good in B_n and this completes the proof of the theorem.

Proof of Theoerm 2. In order to prove the theorem we need to show that for each $n \geq 2$ the quotient $\mathcal{G}_{n-1}/\mathcal{G}_n$ is a p-group.

We start with a remark: If $z \in B_n$ is good and $i \in I_n$ then

$$w_n(z+i) = \min\{w_n(z), w_n(i)\}.$$

Indeed, if $w_n(z+i) > \min\{w_n(z), w_n(i)\}$ then

$$w_n(z) = w_n(i) < w_n(z+i).$$

Since z is good one has

$$w_n(z) = v(\eta_n(z)) = v(\eta_n(z+i)) \ge w_n(z+i).$$

We obtained a contradiction and the remark is proved.

Now let us fix an $n \geq 2$ and assume that $\mathcal{G}_{n-1}/\mathcal{G}_n$ is not a p-group. Then there will be an element $z \in B_n \cap \overline{\mathbb{Q}}_p^*$ and a positive integer q which is not a multiple of p, such that $\phi_n(z)$ is good in B_{n-1} , z^q is good in B_n but z is not good in B_n . By multiplying if necessarily z by a power of p we may assume that $v(\eta_n(z)) = 0$. Thus $w_{n-1}(\phi_n(z)) = 0, w_n(z^q) = 0$ and $w_n(z) < 0$.

From Corollary 11 we know that there exists $i \in J_n$ such that y = z - i is good in B_n . Hence $w_n(y) = 0$.

Now $z^q = (y+i)^q = y^q + qiy^{q-1}$. From the above remark applied to y^q which is good and to qiy^{q-1} which belongs to I_n , it follows that:

$$0 = w_n(z^q) = \min\{w_n(y^q), w_n(qiy^{q-1})\}\$$

so $w_n(qiy^{q-1}) \ge 0$. As q was not a multiple of p we get $w_n(iy^{q-1}) \ge 0$. On the other hand note that y is invertible in B_n , more precisely since $z \in \overline{\mathbb{Q}}_p^*$ and

132

 $i^2 = 0$ in B_n we find that $y^{-1} = z^{-1}(1 + z^{-1}i)$. Then from $v(\eta_n(y)) = 0$ and the fact that y is good in B_n it follows as in the proof of Proposition 6 (iii) that y^{-1} is also good. Then y^{1-q} will be good and hence:

$$w_n(y^{1-q}) = v(\eta_n(y^{1-q})) = 0$$

From this we derive:

$$w_n(i) = w_n(iy^{q-1}y^{1-q}) \ge w_n(iy^{q-1}) + w_n(y^{1-q}) \ge 0.$$

This in turn implies:

$$w_n(z) = w_n(y+i) \ge \min\{w_n(y), w_n(i)\} = 0$$

We obtained a contradiction, which completes the proof of Theorem 2. \Box

4. Metric invariants

Let z be an element of B_n which is transcendental over \mathbb{Q}_p . For any positive integer m we set:

$$\delta(m, z) = \sup\{w_n(f(z)) : f \in \mathbb{Q}_p[X], monic, \deg f = m\}.$$

It is shown in [I-Z2] that the sup above is attained, and any polynomial for which the sup is attained is called "admissible". An "admissible sequence of polynomials for z" is a sequence $\{f_m(X)\}_{m\geq 0}$ of polynomials with coefficients in \mathbb{Q}_p suct that $f_0(X) = 1$ and $f_m(X)$ is an admissible polynomial of degree m, for any $m \geq 1$. The importance of such sequences lies in the fact that they can be used to construct orthonormal bases for the topological closure E of $\mathbb{Q}_p[z]$ in B_n . More precisely, if $\{f_m(X)\}_{m\geq 0}$ is an admissible sequence of polynomials for z and if we denote $r_m = w_n(f_m(z)), M_m(z) = p^{-r_m} f_m(z)$ then the sequence $\{M_m(z)\}_{m\geq 0}$ is an integral, orthonormal basis of E as a Banach space over \mathbb{Q}_p . In particular if z is a so called generating element of B_n over \mathbb{Q}_p , i.e. if $\mathbb{Q}_p[z]$ is dense in B_n , then the above procedure will exhibit bases of B_n over \mathbb{Q}_p . For more details and various related questions see [I-Z2], [A-P-Z] and [P-Z].

Returning to the metric invariants $\delta(m, z)$, let us note that for any $m_1, m_2 \ge 1$ one has:

(4.1)
$$\delta(m_1 + m_2, z) \ge \delta(m_1, z) + \delta(m_2, z).$$

Indeed, if $f_{m_1}(X)$ and $f_{m_2}(X)$ are admissible polynomials for z of degrees m_1 and m_1 respectively, then

$$\delta(m_1, z) + \delta(m_2, z) = w_n(f_{m_1}(z)) + w_n(f_{m_2}(z))$$

$$\leq w_n(f_{m_1}f_{m_2}(z)) \leq \delta(m_1 + m_2, z).$$

It is easy to see that the sequence $\{(\delta(m, z))/m\}_{m \ge 1}$ has a limit l(z) in $\mathbb{R} \cup \{\infty\}$. In fact one has:

(4.2)
$$l(z) = \sup\left\{\frac{w_n(g(z))}{\deg g}; g \in \mathbb{Q}_p[X], monic, \deg g > 0\right\}.$$

Indeed, let us define l(z) by (4.2) and let us show that

$$\lim_{m \to \infty} \frac{\delta(m, z)}{m} = l(z).$$

Clearly one has

$$\frac{\delta(m,z)}{m} \le l(z)$$

for any $m \ge 1$ and

$$\sup_{m \ge 1} \frac{\delta(m, z)}{m} = l(z).$$

We need to show that for any real number l < l(z) one has

$$\frac{\delta(m,z)}{m} > l$$

for all m large enough. Fix such an l < l(z) and choose $m_0 \ge 1$ such that

$$\frac{\delta(m_0, z)}{m_0} > l.$$

Now take a large m and write it in the form $m = km_0 + r$ with $0 \le r < m_0$. By a repeated application of (4.1) we have

$$\delta(m, z) \ge k\delta(m_0, z) + \delta(r, z)$$

from which we obtain:

(4.3)
$$\frac{\delta(m,z)}{m} \ge \frac{\delta(m_0,z)}{m_0} - \frac{r}{mm_0}\delta(m_0,z) + \frac{\delta(r,z)}{m}.$$

The Right Hand Side of (4.3) is > l for m large enough and this proves the claim.

Now let Z be an element of B_{dR}^+ whose projection $\theta(Z)$ in \mathbb{C}_p is transcendental over \mathbb{Q}_p . Then for each n the image $\theta_n(Z)$ of Z in B_n is transcendental over \mathbb{Q}_p and one can define the metric invariants $l_n(Z) := l(\theta_n(Z))$.

The inequalities between the valuations w_n in combination with (4.2) show that

$$l_1(Z) \ge l_2(Z) \ge \cdots \ge l_n(Z) \ge \cdots$$
.

In order to prove Theorem 3 let us fix an element Z as above and an integer $n \ge 2$. We want to show that for any $l < l_1(Z)$ one has $l_n(Z) > l$.

Fix such an $l < l_1(Z)$ and choose a nonconstant polynomial g(X) such that:

$$\frac{v(g(\theta(Z)))}{\deg g} > l.$$

Here we don't have any control on the magnitude of $w_n(g(\theta(Z)))$, which might be much smaller than $v(g(\theta(Z)))$. Now the idea is to consider the contribution in (4.2) of the powers of g. On one hand we have for any $m \ge 1$:

$$\frac{v(g^m(\theta(Z)))}{\deg g^m} = \frac{v(g(\theta(Z)))}{\deg g} > l.$$

134

On the other hand we know from Theorem 13 applied to the element $g(\theta_n(Z))$ of B_n that there exists an integer $m_1 \ge 1$ such that $g^{m_1}(\theta_n(Z))$ is good in B_n . In other words one has $w_n(g^{m_1}(\theta_n(Z))) = v(g^{m_1}(\theta(Z)))$.

In conclusion we have:

$$l_n(Z) \ge \frac{w_n(g^{m_1}(\theta_n(Z)))}{\deg g^{m_1}} = \frac{v(g^{m_1}(\theta(Z)))}{\deg g^{m_1}} > l$$

and this completes the proof of Theorem 3.

5. A new proof of the results in Section 3

One can prove the results of Section 3 on good elements more easily without using the differential modules of the rings $O_{\overline{K}}^{(n)}$. The proofs below were kindly provided to us by the referee.

Notation.

 $A_{inf}^{n} := W(R)/I_{+}^{n+1} = \lim_{\leftarrow m} O_{\overline{K}}^{(n)}/p^{m}O_{\overline{K}}^{(n)} \quad (n \ge 0)$ $(A_{inf}^{n} \text{ is } p\text{-torsion free and } p\text{-adically complete and separated.})$ $B_{n} := B_{dR}^{+}/I^{n} = A_{inf}^{n-1} \otimes \mathbb{Q}_{p} \quad (n \ge 1)$ $w_{n}(z) := \max\{m \in \mathbb{Z} | z \in p^{m}A_{inf}^{n-1}\}, z \in B_{n} \quad (n \ge 1)$ $\eta_{n} : B_{n} \to \mathbb{C}_{p}$ $v : \text{the valuation on } \mathbb{C}_{p} \text{ normalized by } v(p) = 1.$ $z \in B_{n} \text{ is good if and only if } w_{n}(z) = v(\eta_{n}(z)).$

Lemma 14. For $z \in A_{inf}^{n-1}$, $z \in (A_{inf}^{n-1})^*$ if and only if $\eta_n(z) \in O^*_{\mathbb{C}_p}$.

Proof. This follows from the fact that $\eta_n : A_{inf}^{n-1} \to O_{\mathbb{C}_p}$ is surjective and its kernel is a nilpotent ideal.

Corollary 15. For a non-zero element z of B_n , z is good if and only if $\eta_n(z) \neq 0$, $v(\eta_n(z)) \in \mathbb{Z}$ and $p^{-v(\eta_n(z))}z \in (A_{inf}^{n-1})^*$.

Proof. The sufficiency is trivial. If $z \in B_n$ is good and $z \neq 0$, then $v(\eta_n(z)) = w_n(z) \in \mathbb{Z}$. Hence $\eta_n(z) \neq 0$ and $p^{-v(\eta_n(z))}z \in A_{inf}^{n-1}$. Since $\eta_n(p^{-v(\eta_n(z))}z) = p^{-v(\eta_n(z))}\eta_n(z) \in O_{\mathbb{C}_p}^*$, $p^{-v(\eta_n(z))}z \in (A_{inf}^{n-1})^*$ by Lemma 14.

Corollary 16. The set of non-zero good elements of B_n is a subgroup of B_n^* .

Proof. Obvious from Corollary 15.

Lemma 17. For $z \in B_n$, $n \ge 2$, if the image \overline{z} of z in B_{n-1} is contained in $(A_{inf}^{n-2})^*$, then there exists an integer $M \ge 0$ such that $z^{p^M} \in (A_{inf}^{n-1})^*$.

Proof. Let $w \in A_{inf}^{n-1}$ be a lifting of \bar{z} . By Lemma 14, $w \in (A_{inf}^{n-1})^*$. Set $a := zw^{-1} - 1$, which is contained in I^{n-1}/I^n , and let M be an integer such that $p^M a \in I_+^{n-1}/I_+^n$. Then, we have $(zw^{-1})^{p^M} = 1 + p^M a \in 1 + I_+^{n-1}/I_+^n \subset (A_{inf}^{n-1})^*$. Hence $z^{p^M} \in (A_{inf}^{n-1})^*$.

Corollary 18. (1) For any $z \in B_1 = \mathbb{C}_p$, there exists an integer $m \ge 1$ such that z^m is good.

(2) For any $z \in B_n$ such that its image in B_1 is good, there exists an integer $M \ge 1$ such that z^{p^M} is good.

Proof. (1) follows from $v(\mathbb{C}_p) = \mathbb{Q} \cup \{\infty\}$. For $z \in B_n$, if its image in B_1 is good, $v(\eta_n(z)) \in \mathbb{Z}$. Replacing z with $p^{-v(\eta_n(z))}z$, we may assume $v(\eta_n(z)) = 0$, i.e. $\eta_n(z) \in O_{C_p}^*$. By applying Lemma 17 repeatedly, we see that there exists an integer $M \ge 0$ such that $z^{p^M} \in (A_{inf}^{n-1})^*$ and hence z^{p^N} is a good element. \Box

V. Alexandru: University of Bucharest Department of Mathematics Str. Academiei 14, RO-70109 Bucharest, Romania

N. POPESCU: INSTITUTE OF MATHEMATICS P.O. Box 1-764, RO-70700 BUCHAREST, ROMANIA e-mail: Nicolae.Popescu@imar.ro

A. ZAHARESCU: INSTITUTE OF MATHEMATICS P.O. BOX 1-764, RO-70700 BUCHAREST, ROMANIA AND DEPARTMENT OF MATHEMATICS UNIVERSITY OF ILLINOIS AT URBANA-CHAMPAIGN 1409 W. GREEN STREET, URBANA IL, 61801, USA e-mail: zaharesc@math.uiuc.edu

References

- [A-P-Z] V. Alexandru, N. Popescu and A. Zaharescu, On the closed subfields of C_p, J. Number Theory 68-2 (1998), 131–150.
- [C-G] J. Coates and R. Greenberg, Kummer theory of abelian varieties, Invent. Math. 126 (1996), 129–174.
- [Fo] J.-M. Fontaine, Sur certains types de représentations p-adiques du groupe de Galois d'un corps local; construction d'un anneau de Barsotti-Tate, Ann. of Math. 115 (1982), 529–577.
- [F-C] _____, Le corps des périodes p-adique (avec une appendice par P. Colmez), Astérisque 223 (1994), 59–111.

- [I-Z1] A. Iovita and A. Zaharescu, Galois theory of B_{dR}^+ , Compositio Math. 117-1 (1999), 1–33.
- [I-Z2] _____, Generating elements for B_{dR}^+ , J. Math. Kyoto Univ. **39**-2 (1999), 233–249.
- [P1] E. L. Popescu, A generalization of Hensel's Lemma, Rev. Roum. Math. Pures Appl. 38-3 (1993), 802–805.
- [P2] _____, v-basis and Fundamental basis of local fields, Rev. Roumaine Math. Pures Appl. 45-4 (2000), 671–680.
- [P-Z] N. Popescu and A. Zaharescu, On the structure of irreducible polynomials over local fields, J. Number Theory 52-1 (1995), 98–118.