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On [X, U(n)] when dim X is 2n

By

Hiroaki Hamanaka
∗ and Akira Kono

1. Introduction

Take a topological group G. Then, for a CW-complex X, the homotopy
set [X, G] forms a group. This association is a functor from the category of
CW-complexes and continuous maps up to homotopy to the category of groups
and homomorphisms.

In this paper, we consider the case G = U(n) and denote [X, U(n)] by
Un(X). In this case, remark that, even if X is base pointed, [X, U(n)] and
[X, U(n)]0 are isomorphic, since 1 → Map0(X, U(n)) → Map(X, U(n)) →
U(n)→ 1 is a splitting extension of group and U(n) is connected.

Also, if n is sufficiently large, Un(X) merely equals to K̃1(X). In fact,
this is true, when X is a CW-complex whose dimension is lower than 2n, since
(U(∞), U(n)) is 2n-connected. Thus we may say that Un(X) is “the unstable
K̃1-theory” and Un(X) may provide additional informations to the ordinary
K-theory.

Of course, an uncomputable object is useless, and we should offer some
methods, tools to compute them and show examples. In the following, we shall
investigate the case of [X, U(n)] when dimX is 2n.

Our results are the followings:

Theorem 1.1. If dim X ≤ 2n then the next exact sequence holds :

K̃0(X) Θ−→H2n (X;Z)→ Un(X)→ K̃1(X)→ 0.

(The explicit form of Θ is given in Proposition 3.1.) Denoting CokerΘ by
Nn(X), the following is a central extension:

(1.1) 0→ Nn(X) ι−→Un(X)→ K̃1(X)→ 0.

In addition, the above exact sequence has the naturality ; if X, Y are CW-
complexes with their dimensions no more than 2n and a continuous map f :
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X → Y is given, the following commutes.

K̃0(Y ) Θ−−−−→ H2n (Y ;Z) −−−−→ Un(Y ) −−−−→ K̃1(Y ) −−−−→ 0�f∗
�f∗

�f∗
�f∗

K̃0(X) Θ−−−−→ H2n (X;Z) −−−−→ Un(X) −−−−→ K̃1(X) −−−−→ 0.

Theorem 1.2. Let X be a finite CW-complex and dimX ≤ 2n. Then
Nn(X) is a finite Abelian group and the order of any element in Nn(X) divides
n!.

Also we give the following theorem concerning Nn( ).

Theorem 1.3. Let X1, X2 be finite CW-complexes whose dimensions
are 2n1, 2n2 respectively. Assume K̃0(X1) or K̃0(X1) is free and H2n1 (X1;Z)
= H2n2 (X2;Z) = Z. If Nn1(X1) ∼= Z/l1Z and Nn2(X2) ∼= Z/l2Z, then
Nn1+n2(X1 ∧X2) ∼= Z/

(
n1+n2

n1

)
l1l2Z.

When K̃1(X) = 0, Un(X) and Nn(X) coincide. As an example of such
a case, we compute Un+m−1(ΣCPn−1 ∧ ΣCPm−1). (See Corollary 4.3.) Since
we can regard ΣCPn−1 as a subspace of U(n), there is a map γ′ : ΣCPn−1 ∧
ΣCPm−1 → U(n + m− 1) which is a restriction of the commutator map from
U(n)∧U(m) to U(n + m− 1). Our calculation shows that Un+m−1(ΣCPn−1∧
ΣCPm−1) is a cyclic group and γ′ is its generator.

R. Bott has showed U(n) and U(m) does not homotopy-commute in
U(n + m− 1) by means of the Samelson product. The order of γ′ above men-
tioned indicates “how much far from homotopy-commutativity” ΣCPn−1 and
ΣCPm−1 are.

Next, we shall look into the case K̃1(X) �= 0. In this case, even if dimX =
2n, Un(X) may be non-abelian and, in fact, we show such cases. Our results
are the followings.

We set H∗ (U(n);Z) =
∧

(x1, x3, x5, . . . , x2n−1) where x2k−1 = σck, σ is
the cohomology suspension and ck is the k-th universal Chern class. We loosely
denote the cohomology map induced by a map f which lies in a homotopy class
α by α∗.

Theorem 1.4. In the same condition as Theorem 1.1, for any α̃, β̃ ∈
Un(X), their commutator [α̃, β̃] lies in ι(Nn(X)) and we have

[α̃, β̃] = ι〈u〉,

where u =
∑

k+l+1=n(α̃∗(x2k+1) ∪ β̃∗(x2l+1)) in H2n (X;Z) and 〈u〉 ∈ Nn(X)
means the class represented by u.

Corollary 1.1. In addition to the assumption of Theorems 1.4, we as-
sume that H2n (X;Z) is free. Then, if α ∈ K̃1(X) has a finite order, its inverse
image α̃ ∈ Un(X) belongs to the center of Un(X).
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As an application, we give Un(X) where X is a sphere bundle over a sphere.

Corollary 1.2. If S2n+1 → X → S2m+1 is a fibration where 0 < n <
m, then U2(n+m+1)(X) has three generators α, β and ε, and its relations are

[α, ε] = [β, ε] = 0
(n + m + 1)!ε = 0

[α, β] = n!m!ε.

2. Exact sequence

We denote U(∞)/U(n) by Wn. Then, from the fibration U(n)
j−→U(∞)

p−→Wn, we can deduce the following fibration sequence:

· · · → ΩU(∞)
Ωp−→ΩWn

δ−→U(n)
j−→U(∞)

p−→Wn.

Since j is a group homomorphism, Ωp is a loop map and also δ is the loop
map of Bδ : Wn → BU(n), for a CW-complex X, there is an exact sequence of
groups:

[X, ΩU(∞)]
Ωp∗−→[X, ΩWn] δ∗−→Un(X)

j∗−→[X, U(∞)].

Recall the natural isomorphisms [X, BU ] ∼= K̃0(X), [X, U(∞)] ∼= K̃1(X) and,
also, the Bott map β : BU

�−→ΩU(∞). Moreover, since Wn is 2n-connected,
[X, Wn] is trivial, when dimX ≤ 2n, and this implies j∗ is a surjection. These
argument implies the next exact sequence, which has the naturality:

K̃0(X)
Ωp∗β∗−→ [X, ΩWn] δ∗−→Un(X)

j∗−→K̃1(X)→ 0.

Here, we use the isomorphism [X, ΩWn] ∼= H2n (X;Z) as groups introduced
as following. In the rest, we assume dim X ≤ 2n.

Let x ∈ H2n+1 (Wn;Z) ∼= Z be the generator such that p∗(x) = x2n+1 ∈
H∗ (U(∞);Z). Consider a2n = σ(x) ∈ H2n (ΩWn;Z) as a map a2n : ΩWn →
K(Z, 2n). Then a2n∗ : π∗(ΩWn) → π∗(K(Z, 2n)) (∗ ≤ 2n) is isomorphic
and also π2n+1(K(Z, 2n)) = 0. Therefore, from Whitehead’s theorem, a2n∗ :
[X, ΩWn]→ [X, K(Z, 2n)] ∼= H2n (X;Z) is a bijection. Note that a2n : ΩWn →
K(Z, 2n) is a loop map and a2n∗ above is a group isomorphism. Here we remark
that the naturality holds for this isomorphism, i.e., if X, Y are CW-complexes
whose dimensions are no more than 2n and given a map f : X → Y , the
following is commutative;

[Y, ΩWn]
∼=−−−−→ H2n (Y ;Z)�f∗

�f∗

[X, ΩWn]
∼=−−−−→ H2n (X;Z)
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Now we set Θ = a2n∗Ωp∗β∗, Nn(X) = CokerΘ and have the exact sequence
and the extension in Theorem 1.1. The map H2n (X;Z) → Un(X) is the
composition δ∗(a2n∗)−1. The naturality can be easily checked.

Next, we shall prove that

0→ Nn(X) ι−→Un(X)→ K̃1(X)→ 0

is a central extension. Let eb(b = 1, 2, . . . , N) be the 2n-cells of X, fb be the
attaching map of 2n-cell eb and X ′ be the (2n− 1)-skeleton of X. We consider
the cofibration sequence:∨

b S2n−1 ∨fb−−−−→ X ′ −−−−→ X
ρ−−−−→ X/X ′.

Remark X/X ′ ∼= ∨b S2n.
Using this, we have a commutative diagram, in which every rows and

columns are exact, as follows:

K̃0(X)

Θ

��

⊕bπ2n(BU)

��
0

��

H2n (X;Z)

��

�� ⊕bH2n
(
S2n;Z

)
��

��

Un(X ′)

��

Un(X)

��

�� Un(X/X ′)

��

��

K̃1(X ′)

��

K̃1(X)

��

�� 0��

0 0

Hence

(2.1) Im(H2n (X;Z)→ Un(X)) = Im(Un(X/X ′)→ Un(X)).

Therefore any element α ∈ Im(H2n (X;Z) → Un(X)) can be represented by a
map whose value on neighborhood V of X ′ is constantly the unit, while any
element in Un(X) can be represented by a map whose value on the complement
of V is the unit. (The complement of V can be covered by a disjoint union
of 2n-dim open cells.) Hence α and β are commutative and we can say that
Im(H2n (X;Z)→ Un(X)) lies in the center of Un(X).

Now we have just finish the proof of Theorem 1.1 and we shall show the
proof of Theorem 1.2.

Proof of Theorem 1.2. It immediately follows that when X is a finite
CW-complex, Nn(X) is a finitely generated abelian group, since H2n (X;Z) is
finitely generated. Thus we show that n!θ = 0 for any θ ∈ Nn(X).
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From (2.1), Im(ρ∗ : Un(X/X ′)→ Un(X)) ∼= CokerΘ = Nn(X) and Nn(X)
is isomorphic to a quotient of Un(X/X ′).

On the other hand, we can see that

Un(X/X ′) ∼=
⊕

b

Un(S2n) ∼=
⊕

b

Z/n!Z.

Hence the statement follows.

3. Calculation on exact sequence

Let X be a finite CW-complex of dimension 2n. In this section, we give
the explicit form of the Θ in Theorem 1.1.

See the next diagram:

[X, ΩU(∞)]
Ωp∗−−−−→ [X, ΩWn]

β∗


 �a2n∗

K̃0(X) [X, BU ] Θ−−−−→ [X, K(2n,Z)] H2n (X;Z)

The above commutative diagram illustrates the definition of Θ. We set u,
the fundamental element of H2n (K(2n,Z);Z). Then, for any θ ∈ K̃0(X) ∼=
[X, BU ],

Θ(θ) = (a2n ◦ Ωp ◦ β ◦ θ)∗(u)
= (Ωp ◦ β ◦ θ)∗(a2n)
= θ∗β∗Ωp∗(a2n).

Since, from the definition of a2n, a2n = σ(x) and p∗(x) = σ(cn+1), we can
see that Θ(θ) = θ∗β∗(σ2(cn+1)).

For CW-complexes X and Y , we denote the adjoint isomorphism between
the homotopy sets by

τ : [ΣX, Y ]→ [X, ΩY ].

(We loosely denote the adjoint isomorphism between the mapping spaces by
the same symbol τ .)

Let ξN be the universal complex vector bundle over BU(N) and η be the
canonical complex line bundle over CP 1 ∼= S2. Also we set that ζN is the
classifying map of (η − 1) ∧ (ξN −N) over Σ2BU(N) and ζ : Σ2BU → BU is
the limit of ζN . Then the Bott map satisfies

(3.1) β � τ2ζ.

Since, regarding the homotopy class 〈ζN 〉 as an element of K̃0(Σ2BU(N))
⊂ K̃0(S2 ×BU(N)),

〈ζN 〉 = (η − 1) ∧ (ξN −N)
= η ⊗̂ ξN − 1 ⊗̂ ξN − η ⊗̂N + 1 ⊗̂N,
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we can proceed the calculation of the total Chern class of 〈ζN 〉 in
H∗ (Σ2BU(N);Z

)
as follows. We regard H∗ (BTN ;Z

) ⊃ H∗ (BU(N);Z) where
TN is the maximal torus of U(N). Let ci ∈ H∗ (BU ;Z) be the universal Chern
class, c be the generator of H2

(
S2;Z

)
and ti(i = 1, . . . , N , |ti| = 2) be the

generator of H∗ (BTN ;Z
)
. Then we have

ζN
∗
(

1 +
∞∑

i=1

ci

)
=

∏N
i=1(1 + c + ti)

(1 + Nc)
∏N

i=1(1 + ti)

= (1−Nc)
N∏

i=1

(
1 +

c

1 + ti

)

= 1 +
N∑

i=1

c

1 + ti
−Nc

= 1 + c
N∑

i=1

 ∞∑
j=0

(−ti)j

−Nc

= 1 + c

 ∞∑
j=1

(
(−1)j

N∑
i=1

ti
j

) .

Let sj =
∑N

i=1 ti
j ∈ H∗ (BU(N);Z) and we also denote the corresponding

primitive element in H2j (BU ;Z) by sj . The above equation implies ζN
∗(ci) =

c ⊗̂ (−1)i−1si−1 and hence we obtain

(3.2) ζ∗(ci) = (−1)i−1Σ2si−1.

Now we can see, from (3.1) and (3.2),

β∗(σ2(cn+1)) = (−1)nsn

and if we set sj : K̃0(X) ∼= [X, BU ] → H2j (X;Z) as sj(θ) = θ∗(sj), immedi-
ately the next proposition follows.

Proposition 3.1. For θ ∈ K̃0(X),

Θ(θ) = (−1)nsn(θ).

Now we can deduce some corollaries.

Corollary 3.1. For n ≥ 1, Un(CPn) vanishes.

Proof. Let t be the generator of H2 (CPn;Z). Then, since the first Chern
class of the canonical line bundle γn over CPn is t and other Chern classes are
zero,

sn(γn) = tn.
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Thus Θ(γn) is the generator of H2n (CPn;Z) ∼= Z and Nn(CPn) vanishes.
Remark that, since Hodd (CPn;Z) vanishes, we can see K̃1(CPn) = 0

using the Atiyah-Hirzeburch spectral sequence. (See [2].) Thus, from Theorem
1.1, Un(CPn) = 0.

Consider CW-complexes X1 and X2 whose dimensions are 2n1 and 2n2 re-
spectively. We’d like to compute Nn1+n2(X1 ∧X2) from Nn1(X1) and Nn2(X2)
under some assumptions.

First, let µN : BU(N) ∧ BU(N) → BU be the classifying map of (ξN −
N) ∧ (ξN −N) and µ : BU ∧BU → BU be the limit of µN .

Lemma 3.1. In the above situation,

µ∗(sj) =
j−1∑
k=1

(
j

k

)
sk ⊗̂ sj−k.

Proof. Since H∗ (BU ;Z) is free and the Chern character ch =
∑∞

i=0(si/i!)
satisfies

ch(ξN ⊗̂ ξN ) = ch(ξN ) ⊗̂ ch(ξN ),

we can see that

µN
∗(sj)
j!

=
j−1∑
k=1

sk

k!
⊗̂ sj−k

(j − k)!

in H2j (BU(N) ∧BU(N);Q) and

µN
∗(sj) =

j−1∑
k=1

(
j

k

)
sk ⊗̂ sj−k

in H2j (BU(N) ∧BU(N);Z). This implies the statement of the theorem.

This leads us to the next lemma.

Lemma 3.2. Let X1, X2 be CW-complexes. For θ1 ∈ K̃0(X1) and
θ2 ∈ K̃0(X2), θ1 ∧ θ2 ∈ K̃0(X1 ∧X2) satisfies

sj(θ1 ∧ θ2) =
j−1∑
k=1

(
j

k

)
sk(θ1) ⊗̂ sj−k(θ2).

Proof. We regard θ1 and θ2 as their classifying maps respectively. Then
µ ◦ (θ1 ∧ θ2) is the classifying map of θ1 ∧ θ2 ∈ K̃0(X1 ∧X2):

X1 ∧X2
θ1∧θ2−→ BU ∧BU

µ−→BU.
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Thus

sj(θ1 ∧ θ2) = (θ1 ∧ θ2)∗µ∗sj

= (θ1 ∧ θ2)∗
j−1∑
k=1

(
j

k

)
sk ⊗̂ sj−k

=
j−1∑
k=1

(
j

k

)
sk(θ1) ⊗̂ sj−k(θ2).

Now we give the proof of Theorem 1.3.

Proof of Theorem 1.3. Since H2n1+2n2 (X1 ∧X2;Z) = Z, what we have
to do is to investigate ImΘ in H2n1+2n2 (X1 ∧X2;Z). Let u1 and u2 be the
generators of H2n1 (X1;Z) and H2n2 (X2;Z) respectively.

First, we see ImΘ ⊃ 〈(n1+n2
n1

)
l1l2u1 ⊗ u2〉. Since Nni

(Xi) ∼= Z/liZ, there
exists θi ∈ K̃0(Xi) which satisfies sni

(θi) = liui. (i = 1, 2.) Thus θ1 ⊗̂ θ2 ∈
K̃0(X1 ∧X2) satisfies

Θ(θ1 ⊗̂ θ2) = ±sn1+n2(θ1 ⊗̂ θ2)

= ±
(

n1 + n2

n1

)
l1l2u1 ⊗ u2.

On the other hand, ImΘ ⊂ 〈(n1+n2
n1

)
l1l2u1⊗u2〉 is also true. Since K̃0(X1)

or K̃0(X2) is free, any θ ∈ K̃0(X1 ∧X2) has the form of
∑

θa ⊗̂ θb where θa ∈
K̃0(X1) and θb ∈ K̃0(X2). From the assumption, it holds that sn1(θ1) ∈ 〈l1u1〉
and sn2(θ2) ∈ 〈l2u2〉. Therefore sn1+n2(θa ⊗ θb) ∈ 〈

(
n1+n2

n1

)
l1l2u1 ⊗ u2〉 and,

since sn1+n2 is primitive, sn1+n2(θ) ∈ 〈(n1+n2
n1

)
l1l2u1 ⊗ u2〉.

Hence ImΘ = 〈(n1+n2
n1

)
l1l2u1 ⊗ u2〉 and the statement follows.

4. Applications

From Theorem 1.3, some corollaries follow directly.

Corollary 4.1. Let X be a finite CW-complex with its dimension 2n
and H2n (X;Z) ∼= Z. If Nn(X) ∼= Z/lZ,

Nn+1(Σ2X) ∼= Z/(n + 1)lZ.

Proof. Set X1 = S2 and X2 = X in Theorem 1.3 and the proof is straight-
forward.

Corollary 4.2. The next equality holds:

Un1+n2(CPn1 ∧ CPn2) ∼= Z/
(
n1+n2

n1

)
Z.
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Proof. As seen in Corollary 3.1, Nn(CPn) vanishes. Thus, applying The-
orem 1.3, Nn1+n2(CPn1 ∧ CPn2) ∼= Z/

(
n1+n2

n1

)
Z. And this coincides with

Un1+n2(CPn1 ∧ CPn2), since K̃1(CPn1 ∧ CPn2) vanishes.

Let εn−1 : ΣCPn−1 → U(n) be the usual embedding described in [6, pp.
22–23]. This embedding satisfies in cohomology

ε∗n−1(x2k+1) = Σtk

where t is the generator of H2
(
CPn−1;Z

)
and 1 ≤ k ≤ n− 1. Also we set the

commutator map γ : U(n)∧U(m)→ U(n + m− 1) and γ′ = γ ◦ (εn−1∧ εm−1).

Corollary 4.3. We can see

Un+m−1(ΣCPn−1 ∧ ΣCPm−1) ∼= Z/
(n + m− 1)!

(n− 1)!(m− 1)!
Z

and its generator is the class 〈γ′〉.
Proof. We set X = ΣCPn−1 ∧ ΣCPm−1. From Corollaries 4.1 and 4.2,

the first half of this corollary can be easily obtained and what we have to do is to
prove that 〈γ′〉 is a generator of Un+m−1(X). From Theorem 1.1, to prove this,
it is sufficient to show that, in the exact sequence below, 〈γ′〉 ∈ Un+m−1(X)
comes from Σ(tn−1)⊗ Σ(tm−1) ∈ H2n+2m−2 (X;Z).

K̃0(X)→ H2n+2m−2 (X;Z)→ Un+m−1(X)→ K̃1(X).

In the similar manner to that in [4], we consider the next diagram:

ΩS2(n+m)−1

δ

��

Ωj �� ΩWn+m−1

δ

��
U(n) ∧ U(m)

γ ��

λ0

��������������
U(n + m− 1)

∼= ��

��

U(n + m− 1)

��
U(n + m) i ��

��

U(∞)

��
S2(n+m)−1

j �� Wn+m−1

where two columns are fibration sequences and i and j are usual embeddings.
In [3], it is showed that there exists a map λ0 which makes the above diagram
homotopy commutative and also satisfies

λ0
∗(v) = x2n−1 ⊗ x2m−1,

where v is the generator of H2n+2m−2
(
ΩS2(n+m)−1;Z

)
. (Actually λ0 is the

adjoint of the join of the projections U(n) → U(n)/U(n− 1) and U(m) →



�

�

�

�

�

�

�

�

342 Hiroaki Hamanaka and Akira Kono

U(m)/U(m− 1).) If we set λ = Ωj ◦ λ0, since Ωj∗(a2n) = v, we have that
λ∗(a2n) = x2n−1 ⊗ x2m−1.

Hence (λ ◦ (εn−1 ∧ εm−1))∗(a2n) = Σ2(tn−1 ⊗ tm−1), i.e., by the isomor-
phism [X, ΩWn+m−1]

a2n∗−→H2n+2m−2 (X;Z), 〈λ ◦ (εn−1 ∧ εm−1)〉 corresponds to
the generator Σ2(tn−1 ⊗ tm−1).

Moreover, since δ ◦ λ = γ, δ∗(a2n∗)−1(Σ2(tn−1 ⊗ tm−1) = 〈δ∗(λ ◦ (εn−1 ∧
εm−1))〉 = 〈γ ◦ (εn−1 ∧ εm−1)〉 = 〈γ′〉 and the proof is finished.

5. Commutator in Un(X)

In the rest of this paper, we treat the case dimX = 2n and K̃1(X) �= 0.
In such cases, Un(X) may not be commutative. We prove Theorem 1.4 which
describes the commutator in Un(X) in such cases.

In the rest, let γ be the commutator map U(n) ∧ U(n) → U(n) and
consider the next diagram.

ΩWn

Ωδ
��

U(n) ∧ U(n)
γ ��

eγ
���

�
�

�
�

U(n)

i

��
U(∞)

Since i ◦ γ is null-homotopic, there exists a lift γ̃ : U(n) ∧ U(n) → ΩWn,
such that Ωδ ◦ γ̃ � γ.

To find an adequate lift γ̃, we prepare some maps and propositions. We
set j : ΣU(n) ∨ ΣU(n) → BU(n), k : ΣU(n) × ΣU(n) → BU as the following
compositions respectively:

ΣU(n) ∨ ΣU(n) τ−11∨τ−11 �� BU(n) ∨BU(n) ∇ �� BU(n),

ΣU(n)× ΣU(n)
τ−11×τ−11 �� BU(n)×BU(n)

µ �� BU,

where ∇ is the folding map and µ is the classifying map of the cross product
of the universal vector bundles over BU(n).

Also we set f : Σ(U(n)∧U(n))→ ΣU(n)∨ΣU(n) as follows: Setting (0, ∗)
be the base point of ΣU(n), we regard ΣU(n)∨ΣU(n) ⊂ ΣU(n)×ΣU(n). For
x, y ∈ U(n) and t ∈ [0, 1], we set f0 : U(n) ∗ U(n)→ ΣU(n) ∨ ΣU(n) as

f0(t, x, y) =


((1− 2t, x), ∗)

(
0 ≤ t ≤ 1

2

)
(∗, (2t− 1, y))

(
1
2
≤ t ≤ 1

)
.
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Then set f : Σ(U(n) ∧ U(n)) � U(n) ∗ U(n)
f0−→ΣU(n) ∨ ΣU(n).

Proposition 5.1. A map γ̃ : U(n)∧U(n)→ ΩWn satisfies Ωδ ◦ γ̃ � γ,
if and only if τ−1γ̃ makes the following diagram homotopy commutative:

Σ(U(n) ∧ U(n))
f ��

τ−1
eγ

��

ΣU(n) ∨ ΣU(n)

j

��
Wn

δ �� BU(n)

Proof. We recall that f induces the generalized Whitehead product

[ , ] : [ΣU(n), BU(n)]× [ΣU(n), BU(n)]→ [Σ(U(n) ∧ U(n)), BU(n)]

by associating, for η, η′ ∈ [ΣU(n), BU(n)] represented by g and h respectively,
the class [η, η′] represented by ∇◦ (g∨h) ◦ f . This implies that j ◦ f represents
[τ−11, τ−11], while it is known that τ [τ−1η, τ−1η′] = 〈η, η′〉 where 〈 , 〉 is the
generalized Samelson product. (See [1].) Thus, τ (j ◦ f) lies in τ [τ−11, τ−11] =
〈1, 1〉 and

τ (j ◦ f) � γ.

Hence, the commutativity of the above diagram is equivalent to

τ (δ ◦ τ−1γ̃) � γ,

while τ (δ ◦ τ−1γ̃) = Ωδ ◦ γ̃.

Let EU be a space that U(∞) acts freely. We denote the quotient map
EU → EU/U(n) = BU(n) by q′ and consider the next commutative diagram,
in which each row is a fibration.

(5.1)

Wn
δ−−−−→ BU(n) Bi−−−−→ BU

p


 p′

 ∥∥∥

U(∞) −−−−→ EU −−−−→ BU

Lemma 5.1. In the Leray-Serre spectral sequence of the fibration
Wn

δ−→BU(n) Bi−→BU , the cohomology element x ∈ H2n+1 (Wn;Z) transgresses
to the (n + 1)-th Chern class cn+1 ∈ H2n+2 (BU ;Z), i.e., ∂(x) = Bi∗(cn+1) in
the diagram

H2n+1 (Wn;Z) ∂−→H2n+2 (BU(n), Wn;Z)Bi∗←−H2n+2 (BU ;Z).

Proof. In the Leray-Serre spectral sequence of the fibration Wn → BU(n)
→ BU , the transgression image in H2n+2 (BU ;Z) is equals to Ker(Bi∗ :
H2n+2 (BU ;Z)→ H2n+2 (BU(n);Z)) which is generated by cn+1.
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On the other hand, in the Leray-Serre spectral sequence of the fibra-
tion U(∞) → EU → BU , x2n+1 ∈ H∗ (U(∞);Z) transgresses to cn+1 +
(decomposable elements) ∈ H2n+2 (BU ;Z).

Therefore, since p∗(x) = x2n+1 and (5.1) is commutative, it follows that x
transgresses to cn+1.

Proposition 5.2. We can take γ̃ so that

γ̃∗(a2n) =
∑

k+l+1=n

x2k+1 ⊗ x2l+1.

Proof. In this proof we set A = Σ(U(n) ∧ U(n)). Let If , Cf be the
mapping cylinder and the mapping cone of f respectively and q be the quotient
map If → If/A = Cf . Then we have a cofibration

A→ If → Cf

where it is known that Cf � ΣU(n) × ΣU(n). (See Theorem 4.2 of [1] for
detail.) Also, the homotopy commutativity of the next diagram, in which φ
is the map induced by the natural projection [0, 1] × A → A, can be easily
checked.

(5.2)

A
� � � If

φ �
��

q �� �� Cf

∼=
��

Σ(U(n) ∧ U(n))
f �� ΣU(n) ∨ ΣU(n) � � �

j

��

ΣU(n)× ΣU(n)

k

��
Wn

δ �� BU(n) Bi �� BU

We regard that BU(n) Bi−→BU is a fibration and δ is the inclusion of the
fibre Wn = Bi−1(∗) where ∗ is the base point of BU . We set A/A ∈ If/A = Cf

as the base point of Cf , deform the composition Cf
∼= ΣU(n)× ΣU(n) k−→BU

so as to be base point preserving and denote the obtained map by k′. Then, by
the homotopy lifting property, we can deform j◦φ into j′ so that k′◦q = Bi◦j′.
Now we have a commutative (not only “homotopy commutative”) diagram:

(5.3)

A
� � �

��

If

j′

��

q �� �� Cf

k′

��
Wn

� � δ � BU(n) Bi �� BU

The commutativity of the above diagram implies j′|A : A → Wn. Thus, if we
let jA = j′|A, δ ◦ jA � j ◦f and, by Proposition 5.1, it follows that τjA satisfies
the claim Ωδ ◦ τjA � γ.
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On the other hand, since j′ is a map between pairs (If , A)→ (BU(n), Wn),
we obtain the next commutative diagram.

(5.4)

H2n+1 (A, ∗;Z) ∂−−−−→ H2n+2 (If , A;Z)
q∗

←−−−− H2n+2 (Cf , ∗;Z)
jA
∗


j′∗

k′∗

H2n+1 (Wn, ∗;Z) ∂−−−−→H2n+2 (BU(n), Wn;Z) Bi∗←−−−−H2n+2 (BU, ∗;Z)

Here we observe the exact sequence of the pair (If , A)

H2n+1 (If/A;Z)
q∗
−→H2n+1 (If , ∗;Z)

f∗
−→H2n+1 (A, ∗;Z) ∂−→H2n+2 (If , A;Z).

Since, by the diagram (5.2), q∗ is equal to the cohomology map induced by
ΣU(n) ∨ ΣU(n) ↪→ ΣU(n) × ΣU(n), q∗ is epic and f∗ is 0-map. This implies
∂ : H2n+1 (A, ∗;Z)→ H2n+2 (If , A;Z) is monic.

Now, using Lemma 5.1, we chase the diagram (5.4) as

∂jA
∗(x) = j′∗∂(x) = j′∗Bi∗(cn+1) = q∗k′∗(cn+1).

By the diagram (5.2) and the definition of k, it follows that, under the identi-
fication of If/A = Cf � ΣU(n)× ΣU(n),

(5.5) ∂jA
∗(x) = q∗k∗(cn+1) =

∑
k+l=n+1

(Σx2k−1)⊗ (Σx2l−1).

Moreover we know that the next diagram commutes:

H2n+2 (ΣA;Z) π∗−−−−→ H2n+2 (Cf ;Z)∥∥∥ ∥∥∥
H2n+1 (A;Z) ∂−−−−→ H2n+2 (If , A;Z)

The map π is the quotient map Cf → Cf/(ΣU(n) ∨ ΣU(n)) ∼= ΣA, i.e., this is
homotopic to the natural projection

π : Cf
∼= ΣU(n)× ΣU(n)→ ΣU(n) ∧ ΣU(n).

Therefore,

(5.6) ∂

(
Σ

( ∑
k+l=n+1

x2k−1 ⊗ x2l−1

))
=

∑
k+l=n+1

(Σx2k−1)⊗ (Σx2l−1).

Finally, since ∂ : H2n+1 (A, ∗;Z) → H2n+2 (If , A;Z) is monic, (5.5) and
(5.6) imply that

jA
∗(x) = Σ

( ∑
k+l=n+1

x2k−1 ⊗ x2l−1

)
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and, if we set γ̃ = τjA, we have

γ̃∗(a2n) =
∑

k+l=n+1

x2k−1 ⊗ x2l−1

as desired.

Now, we shall show the proof of Theorem 1.4.

Proof of Theorem 1.4. Let X be a CW-complex with its dimension 2n,
and take any α̃ and β̃ ∈ Un(X). Assume that each class is represented by a

and b respectively. Since K̃1(X) is commutative, their commutator [α̃, β̃] comes
from Nn(X). Recall that [X, ΩWn] is isomorphic to H2n (X;Z) by the corre-
spondence which associates, for φ ∈ [X, ΩWn], the cohomology class φ∗(a2n).
Hence, what we have to do is to compute λ∗(a2n) where λ : X → ΩWn satisfies
Ωδ ◦ λ ∈ [α̃, β̃].

On the other hand, by the definition, we know [α̃, β̃] is the class represented
by the map γ ◦ (a × b) ◦∆, where ∆ is the diagonal map of X. Thus we can
set λ = γ̃ ◦ (a× b) ◦∆ as shown in the following diagram.

ΩWn

Ωδ
��

X
∆ �� X ×X

a×b �� U(n)× U(n)
γ ��

eγ
������������
U(n)

i

��
U(∞)

Therefore we have that

λ∗(a2n) = ∆∗(α̃× β̃)∗γ̃∗(a2n)

= ∆∗(α̃× β̃)∗
( ∑

k+l+1=n

x2k+1 ⊗ x2l+1

)
=

∑
k+l+1=n

α̃∗(x2k+1) ∪ β̃∗(x2l+1).

Here, if we let u =
∑

k+l+1=n α̃∗(x2k+1)∪β̃∗(x2l+1), by the correspondence
[X, ΩWn] ∼= H2n (X;Z), we have

[α̃, β̃] = ι〈u〉.

Now we give the proof of Corollary 1.1.

Proof of Corollary 1.1. Take α̃ ∈ Un(X) and assume that the order of
its image in K̃1(X) is finite. Then, for x2k+1 ∈ H∗ (U(n);Z) is primitive,
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α̃∗(x2k+1) has, also, a finite order. This implies that, for any β̃ ∈ Un(X),∑
k+l+1=n α̃∗(x2k+1) ∪ β̃∗(x2l+1) has a finite order as well, while H2n (X;Z) is

free. Hence
∑

k+l+1=n α̃∗(x2k+1) ∪ β̃∗(x2l+1) = 0 and, as seen in the proof of
Theorem 1.4, [α̃, β̃] vanishes.

6. Examples

In this section, using Theorems 1.1 and 1.4, we give Corollary 1.2 as an
example.

Proof of Corollary 1.2. Let 0 < n < m, S2n+1 i−→X
p−→S2m+1 be a fi-

bration and set N = n + m + 1, i.e., dimX = 2N . We set the generators
of H2n+1

(
S2n+1;Z

)
and H2m+1

(
S2m+1;Z

)
as u2n+1 and u2m+1 respectively.

Also we loosely denote p∗(u2m+1) ∈ H∗ (X;Z) by u2m+1 and the inverse image
(i∗)−1(u2n+1) by u2n+1, i.e.,

H∗ (X;Z) = ∧(u2n+1, u2m+1).

Since H∗ (X;Z) is free, Atiyah-Hirzeburch spectral sequence of X is trivial.
Then, if we set the generators of K̃1(S2n+1) and K̃1(S2m+1) as εn and εm

respectively, K̃1(X) ∼= Z⊕ Z has two generators α and β which satisfy

(6.1) i∗α = εn, β = p∗εm.

From Theorem 1.1 we have a central extension

0→ NN (X)→ UN (X)→ K̃1(X)→ 0.

Thus we can take α̃, β̃ ∈ UN (X) so that they come to α and β in K̃1(X)
respectively.

Lemma 6.1. Nn(X) ∼= π2N (U(N)) ∼= Z/N !Z.

Proof. We set X ′ = X(2N−1) the (2N − 1)-skeleton of X. From the
assumption of X, we have a cell decomposition,

X = S2n+1 ∪ e2m+1 ∪ e2N , X ′ = S2n+1 ∪ e2m+1.

Thus S2n+2 → ΣX ′ → S2m+2 is cofibration and 0 = UN (S2m+2) → UN (ΣX ′)
→ UN (S2n+2) = 0 is exact. Hence UN (ΣX ′) = 0.

Next, from (2.1), NN (X) = Im(UN (X/X ′)→ UN (X)) and also

0 = UN (ΣX ′)→ UN (X/X ′)→ UN (X)→ UN (X ′)

is exact. Therefore NN (X) ∼= UN (X/X ′) = π2N (U(N)) which is known to be
Z/N !Z.

Now, we set ε = u2n+1u2m+1 ∈ H2N (X;Z), 〈ε〉 ∈ NN (X) is the class
determined by ε, and ε̃ = ι〈ε〉. Then, we have prepared three generators α̃, β̃

and ε̃ of UN (X). All we have to do is to prove [α̃, β̃] = n!m!ε̃.
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Since εn is the generator of K̃1(S2n+1) ∼= [S2n+1, U(∞)], it is well known
that

εn
∗(σck) =

{
n!u2n+1 (k = n + 1)
0 (otherwise).

Hence, from (6.1) and the definition of α̃ and β̃,

α̃∗(x2k+1) =

{
n!u2n+1 (k = n)
0 (otherwise),

β̃∗(x2k+1) =

{
m!u2m+1 (k = m)
0 (otherwise).

Therefore
∑

k+l+1=n(α̃∗(x2k+1) ∪ β̃∗(x2l+1)) = n!m!ε and it follows from The-
orem 1.4 that [α̃, β̃] = n!m!ε̃.
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