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Families of Galois closure curves for plane
quartic curves

By

Hisao Yoshihara

Abstract

For a smooth quartic plane curve C we show an existence of a family
of Galois closure curves ϕ : S −→ C, where S is a nonsingular projective
surface and ϕ−1(P ) is isomorphic to the Galois closure curve CP for a
general point P ∈ C. Moreover we determine the types of singular fibers.
As a corollary we can say that CP is not isomorphic to CQ if P is close
to Q.

1. Introduction

Let the ground field of our discussions be the complex number field. Let
C be a smooth curve of degree d (≥ 4) in the projective plane P2 and P be a
point in C. Then we have a projection πP : C −→ l with center P , where l is
a line not passing through P . This projection induces the extension of fields
πP

∗ : k(l) ↪→ k(C) = K with [K : k(l)] = d−1. The structure of this extension
does not depend on the choices of l, but on P . So we denote k(l) by KP .
There rise several questions under this situation. We have studied them from
several points of view, see [4], [8] and also [9]. Especially we have considered
the following: let LP be the Galois closure of this extension K/KP .

Definition. Let CP be the nonsingular projective model of LP . We call
CP the Galois closure curve at P ∈ C and let g(P ) be the genus of CP . In the
case where K/KP is a Galois extension, we call P a Galois point for C.

We have studied the Galois group GP := Gal(LP/KP ), the genus g(P )
and the number of Galois points etc. (cf. [8])

The motive for this research is the interest to know how the curve CP

varies when P moves on C. In the case where d = 4 we can answer the problem
raised from this motive. We can construct a family ϕ : S −→ C satisfying that
ϕ−1(P ) ∼= CP for a general point P ∈ C and study the structure of this fiber
space. Then we consider whether CP is not isomorphic to CQ if P �= Q.
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652 Hisao Yoshihara

2. Statement of results

Unless otherwise mentioned, we assume that C is a smooth quartic curve.
We have found several facts by the study under the above frame work, see [4].
Especially the Galois group GP is isomorphic to the symmetric group of degree
three if P is a general point, and there exist at most four Galois points.

Let TP denote the tangent line to C at P and I(C1, C2;Q) denote the
intersection number of C1 and C2 at Q. The point P ∈ C is said to be an i-flex
(i = 1, 2), where i = I(C, TP ;P ) − 2. We have the fact

∑
Q∈C{I(C, TQ;C) −

2} = 24 (cf. [3]).
Note that a Galois point is a 2-flex (but not the converse). Since the center

of the projection is in C, we make the following definition. Let νi = νi(P ),
where i = 1, 2, be the number of lines l satisfying that l � P and I(C, l;Q) =
i+1 for some Q ∈ C, where Q �= P . Then put m = ν1 [resp. ν1 +1] if P is not
a flex [resp. is a 1-flex], and n = ν2 [resp. ν2 + 1] if P is a 1-flex [resp. 2-flex].
Applying the Riemann-Hurwitz formula to the covering πP : C −→ l, we get
m+2n = 10, moreover we have g(P ) = 10−n if P is not a Galois point, where
0 ≤ n ≤ 4 (cf. [4]). Let Σ be the set of points P in C satisfying the following
condition (1) or (2):

(1) P is a 2-flex.
(2) Q( �= P ) is a 1-flex and TQ � P .
Clearly the number of elements of Σ is at most 24.
Let (D1, D2) [resp. D2] denote the intersection number of D1 and D2 [resp.

the self-intersection number of D] on some surface.
Under these situations our main theorem can be stated as follows:

Theorem 2.1. There exist a nonsingular projective minimal surface of
general type S and a morphism ϕ : S −→ C with the following properties:

(1) If P ∈ C \ Σ, then ϕ∗(P ) ∼= CP and g(P ) = 10.
(2) If P ∈ Σ, then the assertions are stated in three sub cases separately.

(2-1) If P is not a 2-flex, then ϕ∗(P ) is an irreducible curve with n-pieces of
nodes and g(P ) = 10 − n.

(2-2) If P is a 2-flex but not a Galois point, then ϕ∗(P ) = ∆+E as divisors,
where ∆ and E are irreducible curves with the following properties:

(i) g(∆) = 10 − n and ∆ has (n− 1)-pieces of nodes.
(ii) ∆2 = −2 and E is a (−2)-curve.
(iii) ∆ and E meet at in two points, where they have normal crossings.

(2-3) If P is a Galois point, then ϕ∗(P ) = C1 +C2 +E as divisors with the
following properties:

(i) Ci
∼= C (i = 1, 2), (Ci)2 = −5 and E is a (−2)-curve.

(ii) ϕ∗(P ) is a divisor with normal crossings.
(iii) (C1, C2) = 4, (Ci, E) = 1 (i = 1, 2).
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C1

C2

E

Especially, if C is a general quartic curve, then the cardinality of Σ is 24,
and for the point P ∈ Σ, ϕ∗(P ) is an irreducible curve with one node and its
genus is 9. Furthermore the canonical bundle of S is ample.

As a corollary we have the following assertion which has a close relation
to the one in [5, Theorem 2.3.1]

Corollary 2.1. For any P ∈ C, there exists an open neighborhood UP

of P satisfying that CQ is not isomorphic to CQ′ if Q and Q′ belong to UP and
Q �= Q′.

This assertion does not necessarily hold true if Q′ is not near to Q. Indeed,
we have the following.

Remark 1. Suppose C has a non-trivial automorphism σ. Then, it is
a restriction of a projective transformation. It is easy to see that CQ

∼= Cσ(Q),
however σ(Q) �= Q for a general point Q.

Remark 2. We mention a uniqueness of S in the following sense: let
ϕ′ : S′ −→ C be a surjective morphism satisfying that S′ is a smooth projec-
tive minimal algebraic surface and ϕ′−1(P ) ∼= CP for a general point P ∈ C.
Suppose that ϕ′ is induced from the projection πP , i.e., S′ is the nonsingular
projective minimal model of the minimal splitting variety (see [7], for the defini-
tion) for the triple covering p1 : C×C −→ C×P1, where p1(P,Q) = (P, πP (Q)).
Then, there exists an isomorphism ψ : S′ −→ S satisfying that ϕ · ψ = ϕ′.

The author expresses his gratitude to T. Takahashi and H. Sakai for useful
conversations and also to the referee who pointed out the error in the determi-
nation of the singular fiber.

3. Proofs

Let (X : Y : Z) be a set of homogeneous coordinates on P2 and put
x = X/Z, y = Y/Z. Let C0 be the affine part Z �= 0 of C and f(x, y) = 0 be
the defining equation. In this first paragraph and two lemmas below, we do not
assume that the degree d of C is four. Let y = t(x − u) + v be a line passing
through a point P = (u, v) ∈ A2 and let D = D(t, u, v) be the discriminant
of f(x, t(x − u) + v) with respect to x. Then the degree of D with respect to
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t is c = d(d − 1), which is the class of C. Similarly the (total) degree of D
with respect to u and v is c = d(d− 1). Let Φ be the homogeneous equation of
the dual curve Ĉ of C and put D′(t, u, v) = Φ(t,−1,−ut + v). The following
assertion is shown in [8, Lemma 3].

Lemma 3.1. We have D = D′.

Moreover, in case P = (u, v) is in C0, we let Ψ(t, u, v) be the discriminant
of F (x, t, u, v) := f(x, t(x− u) + v)/(x− u) with respect to x. Define f̄(t, u, v)
to be the value of F (x, t, u, v) at x = u. Then we have the following.

Lemma 3.2. (−1)d−1(f̄(t, u, v))2Ψ(t, u, v) = Φ(t,−1,−ut+ v).

Proof. The proof is done by direct computation of the discriminant and
is essentially the same as in the proof of [8, Lemma 12].

Hereafter we assume that d = 4. Let B0 be the divisor defined by Ψ in
A1×C0. Take the other affine parts of S0 := P1×C and define the similar divisor
as B0. Let B be the divisor on S0 obtained from patching such ones. It is easy
to see that the support of B \ B0 consists of finitely many points. Moreover,
putting t = T1/T0, u = U/W and v = V/W , we define D̃(T0, T1;U, V,W ) :=
T 12

0 W 12D(t, u, v).

Claim 1. The divisor B is even, i.e., OS0(B) = L⊗2 for some L ∈
Pic(S0).

Proof. We can find a polynomialG satisfying that D̃/G2 defines a rational
function on P1×P2 and the restriction of D̃/G2 to P1×C defines also a rational
function on P

1 × C. The right hand side of the equation in Lemma 3.2 is
obtained by restricting D to A1 × C0. The same fact holds true on each affine
part, hence we infer that B is even.

Let X1 be the affine surface defined by f(u, v) = 0 and F (x, t, u, v) = 0 in
A2 × A2 ⊂ P2 × P2. Let X1 be the projective closure of X1 in P2 × P2. Then
it is easy to see that the second projection induces a fiber space X1 −→ C,
each fiber of which is isomorphic to C. Hence X1 is irreducible. Let S1 be a
nonsingular projective relative minimal surface which is birational to X1.

Claim 2. S1 is isomorphic to C × C.

Proof. Since the function field k(S1) is equal to k(X1) = k(x, t, u, v),
where x, t, u and v satisfy f(u, v) = F (x, t, u, v) = 0 and t = (y−v)/(x−u), we
have k(x, t, u, v) = k(x, y, u, v). Thus S1 and C ×C are birationally equivalent
to each other. They are not ruled surfaces, hence they are isomorphic to each
other.

Claim 3. There exists a finite morphism p1 : S1 −→ S0 of degree three.
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Proof. Define p1 : C × C −→ l × C ∼= P1 × C by p1(Q,P ) = (πP (Q), P ).
Since πP : C −→ l is a triple covering for each P , the assertion is clear.

Claim 4. The divisor B is reduced and its singularity is isomorphic to
the one defined by y2 + x3k = 0, where k = 1, 2.

Proof. Since C has only a finitely many flexes, for a general (a, b) =
(a : b : 1) ∈ C [resp. general τ ∈ P1], Ψ(t, a, b) [resp. Ψ(τ, u, v)] has no
multiple factors. Therefore B is reduced. Similarly we infer that the point
(t0, u0, v0) ∈ B is a singular point if and only if P = (u0, v0) ∈ C and the line
l0 : y = t0(x− u0) + v0 satisfy one of the following conditions:

(1) l0 = TQ, where Q �= P and Q is a flex of C.
(2) l0 = TP and P is a 2-flex.
We make use of Lemma 3.2 to determine the type of the singularity. The

singularity is a local property, so we can assume as follows:
In the case (1), P = (0, 0), f(x, y) = x + ay + f2 + f3 + f4 and f(x, 0) =

x(bx+ 1)3, where fi is a homogeneous polynomial of degree i and b �= 0.
In the case (2), P = (0, 0), f(x, y) = y + f2 + f3 + f4 and f(x, 0) = cx4,

where c �= 0.
First we treat the case (1). We consider the singularity at t = u = v = 0.

By direct computation we have f̄(t, u, v) = 1 + at + (∗), where (∗) vanishes
at (0, 0, 0). Since (−1/b, 0) = (1 : 0 : −b) is a 1-flex of C and Y = 0 is
the tangent line to C at the flex, we see that the dual curve Ĉ of C has
a (2, 3)-cusp at (0 : 1 : 0) ∈ P̂2 and the tangent line to Ĉ at the cusp is
given by X − bZ = 0. Therefore, putting ξ = X/Y, η = Z/Y , we have the
defining equation of Ĉ is f̂(ξ, η) = (ξ − bη)2 + f̂3 + · · · + f̂12, where f̂i is the
homogeneous polynomial of degree i. Since (0, 0) ∈ Ĉ is a (2, 3)-cusp, if we
put f̂3(ξ, η) =

∑
i+j=3 aijξ

iηj , then we have f̂3(b, 1) =
∑

i+j=3 aijb
i �= 0. Thus

we obtain Φ(X,Y, Z) = (X − bZ)2Y 10 + f̂3(X,Z)Y 9 + · · · . Near (0, 0) the
curve C can be expressed locally as u = φ(v), where φ = φ(v) is a holomorphic
function at v = 0 and φ(0) = 0. Therefore we have Φ(t,−1,−φt + v) =
{(t− bv) + bφt}2 − f̂3(t,−φt+ v) + · · · . If we take a new system of coordinates
(s, v), where s = t− bv, this becomes

{s+ bφ(s+ bv)}2 − f̂3(s+ bv,−φ(s+ bv) + v) + · · ·
= s2 −

∑
i+j=3

aij(s+ bv)ivj + (higer terms).

Since f̄(t, u, v) is a unit in the convergent power series ring C{t, v} and∑
i+j=3 aijb

i �= 0, this implies that the singularity is the (2, 3)-cusp.
Next we treat the case (2). We consider the singularity at t = u = v = 0.

Since f(x, y) can be expressed as y+cx4+g(x, y)y, where c �= 0 and g(0, 0) = 0,
we have f̄(t, u, v) = t+ 4cu3 + tg(u, v) + ḡ(t, u, v)v, where ḡ(t, u, v) is the value
of {g(x, t(x − u) + v) − g(u, v)}/(x − u) at x = u. Since (0 : 0 : 1) is a 2-flex
of C and Y = 0 is the tangent line to C at the flex, the dual curve Ĉ has a
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(3, 4)-cusp at (0 : 1 : 0) ∈ P̂2 and the tangent line to Ĉ at the cusp is given by
Z = 0. Therefore, putting ξ = X/Y, η = Z/Y , we have the defining equation
of Ĉ is f̂(ξ, η) = η3 + f̂4 + · · · + f̂12, where f̂4(ξ, 0) = aξ4 �= 0. Thus we obtain
Φ(X,Y, Z) = Y 9Z3+f̂4(X,Z)Y 8+· · · . Near (0, 0) the curve C can be expressed
locally as v = φ(u) = −cu4 + · · · , where φ = φ(u) is a holomorphic function
at u = 0 and c �= 0. Therefore we have Φ(t,−1,−ut + v) = −(−ut + φ)3 +
f̂4(t,−ut+φ)+· · · , which is equal to −{t+4cu3+tg(u, v)+ḡ(t, u, v)φ}2Ψ(t, u, v).
Since f̂4(t,−ut+ φ) = at4 + · · · (a �= 0), the multiplicity of the singular point
is two. Perform the quadratic transformation t = su, u = u. After dividing
by u2 both sides, we obtain −u4(−s+ φ2)3 + u2f̂4(s,−ut+ φ3) + · · · = −(s+
4cu2 + sg(u, φ) + ḡφ)2Ψ(su, u, φ(u)), where we put φ2 = φ/u2 and φ3 = φ/u.
Therefore Ψ(su, u, φ) is divisible by u2. Put Ψ1(s, u) = Ψ(su, u, φ)/u2. Then,
we get −u2(−s+φ2)3 + f̂4(s,−us+φ3)+ · · · = −(s+4cu2 +sg+ ḡφ3)2Ψ1(s, u).
Once more perform the quadratic transformation s = ru, u = u. After dividing
by u2 both sides, we obtain

−u3(−r + φ1)3 + u2f̂4(r,−ur + φ2) + · · · = −(r + 4cu+ rg + ḡφ2)2Ψ1(ru, u),

where φ1 = φ(u)/u3. Thus Ψ1(ru, u) is divisible by u2. Putting Ψ2(r, u) =

Ψ1(ru, u)/u2, we obtain −u(−r + φ1)3 + f̂4(r,−ur + φ2) + · · · = −(r + 4cu +
rg + ḡφ2)2Ψ2(r, u). Let Q(r, u) be the leading form of Ψ2(r, u), i.e., the order
two part of Ψ2(r, u). Then we have u(r + cu)3 + ar4 = −(r + 4cu)2Q. This
implies ac = 33/44. Therefore we obtain Q = ar2+(5/32)ur+(1/16)cu2, which
has distinct factors. This implies that the singularity is of A5-type.

Remark 3. If C is a general quartic, then the divisor B is irreducible.

Proof. Suppose that B has an irreducible decomposition B = B1 + · · ·+
Br. Then, each Bi is an ample divisor, because Bi is not a fiber of the projection
π1 : S0 −→ P1 nor the one π2 : S0 −→ C. Hence B is connected. Since the
singularities of B are only (2, 3)-cusps, B cannot be reducible.

Following Definitions 1.1 and 1.2 in [7], we define S2 to be the discriminant
variety of S0. By Claim 1 we see S2 is the double covering of S0 branched along
B. Let S3 be the “minimal splitting variety” of S1, then we have the following
commutative diagram:

S0

S2

S3

S1

q1

q2p2

p1

p

�
�

�
���

�
�

�
���

�
�

�
���

�
�

�
��� �
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Clearly S3 is a surface of general type. Note that these are objects over C.
Let ϕi : Si −→ C be the structure morphism (0 ≤ i ≤ 3). It is easy to see that
if P ∈ C \ Σ, then ϕ3

∗(P ) is “the minimal splitting variety” of πP : C −→ l,
i.e., it is the Galois closure curve CP .

Claim 5. There exists an automorphism σ on S3 satisfying that S3/〈σ〉∼= S2. Moreover it has fixed points which are just q−1
2 (Sing(S2)), where

Sing(S2) denotes the set of singular points of S2.

Proof. The proofs of the former and latter statements are the same as in
the one of [7, Proposition 1.3] and [7, Proposition 3.4] respectively.

By Claim 4 the singularities of S2 are of type A3k−1, where k = 1 or 2. By
Claim 5 we see that if R0 is a singular point on S2 of type A1, then q−1

2 (R0)
is a smooth one on S3. While, in the case where k = 2, the corresponding
point on S3 is a quotient singular one. We inspect these in more detail. The
quotient map q2 can be expressed as follows near the ramification point R =
q−1
2 (R0). In the case where k = 1, the point R is nonsingular and there exist

open neighborhood U of R with coordinates (x, y) and an automorphism σ0

satisfying that σ0(x, y) = (ωx, ω−1y), where ω is a primitive cubic root of 1.
Then q2 is the quotient map U −→ U/〈σ0〉. On the other hand, in the case
where k = 2, it is easy to see that the point R is a quotient singular point.
The morphism q2 coincides with the quotient map U/〈σ1

3〉 −→ U/〈σ1〉, where
σ1(x, y) = (ζx, ζ−1y) and ζ is a primitive 6-th root of 1. Therefore R is the
singular point of type A1. Moreover, the automorphism σ in Claim 5 preserves
each fiber of ϕ3 : S3 −→ C, i.e., we have ϕ3 · σ = ϕ3.

Now we consider the singular fibers of ϕ. First we treat the case where P
is not a Galois point. Since S2 is locally defined by z2−Ψ(t, u, v) = f(u, v) = 0
and ϕ2 is given by ϕ2(z, t, u, v) = (u, v), we infer that near a singular point
S2 can be expressed as z2 = y2 + x3 [resp. z2 = y2 + x6] if P is not a 2-flex
[resp. 2-flex]. Looking in the proof of Claim 4, we infer that ϕ2 can be given
by ϕ2(x, y, z) = x. Therefore, if P is not a 2-flex, the singularity of the fiber
is a node. On the contrary, if P is a 2-flex, then S3 has the singularity of type
A1. Resolving this singularity, we obtain the assertion in the theorem.

Second we treat the case of the singular fiber over a Galois point. If
P = (a, b) is a Galois point, then the discriminant Ψ(t, a, b) is a complete square∏5

i=1(t−αi)2. Therefore ϕ∗
2(P ) is locally expressed as z2 −∏5

i=1(t−αi)2 = 0.
Hence it is a reducible curve Γ1 + Γ2, where Γi

∼= P1, Γ1 and Γ2 meet in at
five points. Since ∆i = q−1

2 (Γi) is a component of p−1
2 (C × P ), we infer that

∆i is isomorphic to C (i = 1, 2), ∆1 and ∆2 meet in at five points. Moreover
at the point corresponding to the 2-flex S3 has an A1-singularity. By resolving
the singularity, we obtain the singular fiber as in the theorem. Thus we have
proved (1), (2) and (3). In the case where C is a general quartic, there exists
no 2-flex, hence no Galois point. Therefore the number of 1-flexes is 24, each
singular fiber has one node and S3 is smooth. Since p2 : S = S3 −→ S1 = C×C
is a finite double covering, there exists no (−2)-curve on S. Hence KS is ample.
Thus we complete the proof of the theorem.
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Since ϕ : S −→ C is a semi-stable fibration, we have a holomorphic map
ρ : C −→ H10/Γ10, which is the Satake’s compactification of the period domain
(cf. [1]). Since ρ is not constant, the corollary holds true.

The proof of the assertion of Remark 3.1 is clear. Since S′ is birational to
the minimal splitting variety of the triple covering and is the minimal model,
there exists such the isomorphism.

Finally we raise problems.

Problems. (1) Do the similar study as in Theorem 2.1 in the case where
C is a smooth curve of degree d ≥ 5.

(2) Let C be a smooth plane curve of degree d ≥ 3 and P a point in P
2. For

the projection πP : C −→ l consider the Galois closure curve CP at P . Then we
will obtain similarly a smooth threefold V and a morphism ϕ : V −→ P2, whose
fiber over P is isomprphic to CP for a general point P . Study the structure
of V and singular fibers of ϕ. In this case, if P ∈ C, then ϕ∗(P ) becomes a
singular fiber. Are these singular fibers semi-stable, too?

Remark 4. Concerning (2) we have the following remarks.
For all P ∈ P2 \ C the Galois group GP is “constant”, i.e., is isomorphic

to the full symmetric group of degree d if C is general (cf. [2]). However the
moduli of the Galois closure curves will vary. In fact, Sakai [6] has shown that
in the case where C is a cubic and the points are general, CP and CQ is not
isomorphic to each other if P and Q are close.
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