Homotopy normality of Lie groups and the adjoint action

By

Akira Kono and Osamu Nishimura*

Abstract

Homotopy normality of Lie groups is studied by using the adjoint action on the space of based loops.

1. Introduction

The notion of homotopy normality of topological groups was introduced by James and McCarty in the different ways. (See [13] and [22].) The concept of homotopy normality is closely related to that of Samelson products of homotopy groups. In fact, if H is homotopy normal in G in the sense of McCarty where (G, H) is a pair of topological groups, then all mixed Samelson products from $\pi_k(H) \times \pi_l(G, H)$ to $\pi_{k+l}(G, H)$ vanish and H is homotopy normal in G in the sense of James. If H is homotopy normal in G in the sense of James, then all Samelson products from $i_*\pi_k(H) \times \pi_l(G)$ to $\pi_{k+l}(G)$ lie in the image of i_* where $i: H \hookrightarrow G$ is the inclusion and $i_*: \pi_*(H) \to \pi_*(G)$ is induced from i. Note that we may consider homotopy normality not only of a pair of topological groups but also of a homomorphism of topological groups. Moreover, for a prime p, we may consider mod p homotopy normality by localizing at p.

The purpose of this paper is to study mod p homotopy normality of homomorphisms of Lie groups by a new method. In [6], Furukawa used the Hopf algebra structure of the mod p cohomology of a Lie group G to study homotopy normality of a Lie group H in G. We modify his method and use the mod phomology map of the adjoint action of G on ΩG , the space of based loops on G, and the Hopf algebra structure of the mod p homology of ΩG . (See [17], [7], [8], [9], [10], and [11].) We can prove some new results (see Theorem 5.1 and Section 6) and we can reprove many of the results of [4], [5], [6], [19], and [20] concerning mod p homotopy normality of homomorphisms of Lie groups. Note that Kudou and Yagita in [19] and [20] used the Morava K-theory of homology and cohomology but we only use the ordinary theory.

Received October 13, 2002

Revised May 15, 2003

^{*}Partially supported by JSPS Research Fellowships for Young Scientists.

2. Method

Let $f: H \to G$ be a homomorphism of topological groups and p a prime. In the following, assume that all spaces and maps have been localized at p. Recall that the self adjoint action ad: $G \times G \to G$ of G is defined by $\operatorname{ad}(g_1, g_2) = g_1 g_2 g_1^{-1} g_2^{-1}$ and the commutator map co: $G \times G \to G$ of G by $\operatorname{co}(g_1, g_2) = g_1 g_2 g_1^{-1} g_2^{-1}$ for $g_1, g_2 \in G$. We define that f is mod p homotopy normal (mod p homotopy normal in the sense of James) if there exist a homotopy $\gamma_t \colon G \wedge H \to G$ and a continuous map $\gamma' \colon G \wedge H \to H$ such that $\gamma_1 = f \circ \gamma'$ and $\gamma_0(g \wedge h) = \operatorname{co}(g, f(h))$ for $g \in G$ and $h \in H$. (See [13], [6], and [21]. Let denote $\pi(g, h)$ by $g \wedge h$ for the natural projection $\pi \colon G \times H \to G \wedge H$.) It is easy to see that if f is mod p homotopy normal, then we have a homotopy $\nu_t \colon G \times H \to G$ and a continuous map $\nu' \colon G \times H \to H$ such that $\nu_1 = f \circ \nu'$ and $\nu_0(g, h) = \operatorname{ad}(g, f(h))$ for $g \in G$ and $h \in H$.

Denote the mod p (ordinary) homology and cohomology by $H_*()$ and $H^*()$ respectively. If $f: H \to G$ is mod p homotopy normal, then we have the following commutative diagram.

(2.1)
$$H^{*}(G) \otimes H^{*}(H) \xleftarrow{1 \otimes f^{*}} H^{*}(G) \otimes H^{*}(G) \xleftarrow{\operatorname{ad}^{*}(\operatorname{resp. co}^{*})} H^{*}(G)$$
$$\downarrow^{f^{*}}$$
$$\downarrow^{f^{*}}$$
$$H^{*}(H)$$

Thus, if we can find an element $x \in H^*(G)$ such that $f^*(x) = 0$ and $(1 \otimes f^*) \circ$ ad^{*} $(x) \neq 0$, then we know that f is not mod p homotopy normal. Note that we can compute ad^{*} using the Hopf algebra structure of $H^*(G)$. In [6], Furukawa used this argument to show non (mod p) homotopy normality in various cases.

We modify his argument as follows. Assume that $f: H \to G$ is mod p homotopy normal. Then, we have a homotopy $N_t: G \times \Omega H \to \Omega G$ and a continuous map $N': G \times \Omega H \to \Omega H$ defined by $N_t(g,l)(s) = \nu_t(g,l(s))$ and $N'(g,l)(s) = \nu'(g,l(s))$, respectively, for $g \in G$, $l \in \Omega H$, and $s \in [0, 1]$. Similarly, we have a homotopy $\Gamma_t: \Omega G \times H \to \Omega G$ and a continuous map $\Gamma': \Omega G \times H \to \Omega H$ defined by $\Gamma_t(l,h)(s) = \gamma_t(l(s) \wedge h)$ and $\Gamma'(l,h)(s) = \gamma'(l(s) \wedge h)$, respectively, for $l \in \Omega G$, $h \in H$, and $s \in [0, 1]$.

Define the adjoint action Ad: $G \times \Omega G \to \Omega G$ of G on ΩG by Ad(g, l)(s) = ad(g, l(s)) and the commutator map Co: $\Omega G \times G \to \Omega G$ of G with ΩG by Co(l,g)(s) = co(l(s),g) for $g \in G$, $l \in \Omega G$, and $s \in [0,1]$. Given a Hopf algebra A, let PA and QA denote the primitives and the indecomposables respectively. Then, we have the following commutative diagrams.

$$(2.2)$$

$$H_*(G) \otimes H_*(\Omega H) \xrightarrow{1 \otimes (\Omega f)_*} H_*(G) \otimes H_*(\Omega G) \xrightarrow{\operatorname{Ad}_*} H_*(\Omega G) \xrightarrow{\operatorname{Ad}_*} QH_*(\Omega G)$$

$$\uparrow^{(\Omega f)_*} \qquad \uparrow^{(\Omega f)_*} Q(\Omega f)_*$$

$$H_*(\Omega H) \xrightarrow{\longrightarrow} QH_*(\Omega H)$$

642

$$H_{*}(\Omega G) \otimes H_{*}(H) \xrightarrow{1 \otimes f_{*}} H_{*}(\Omega G) \otimes H_{*}(G) \xrightarrow{\operatorname{Co}_{*}} H_{*}(\Omega G) \xrightarrow{} QH_{*}(\Omega G)$$

$$\uparrow^{(\Omega f)_{*}} \qquad \uparrow^{(\Omega f)_{*}} \qquad \uparrow^{Q(\Omega f)_{*}} H_{*}(\Omega H) \xrightarrow{} QH_{*}(\Omega H)$$

Note that since

$$Co = m \circ (1 \times Ad) \circ (1 \times 1 \times \iota) \circ (1 \times tw) \circ (\Delta \times 1),$$

where $\Delta: \Omega G \to \Omega G \times \Omega G$ is the diagonal map, tw: $\Omega G \times G \to G \times \Omega G$ is the twisting map, $\iota: \Omega G \to \Omega G$ is the inverse map, and $m: \Omega G \times \Omega G \to \Omega G$ is the multiplication map, we can compute Co_{*} using Ad_{*} and the Hopf algebra structure of $H_*(\Omega G)$. In particular, we can easily see that

$$\operatorname{Co}_*(t \otimes x) = (-1)^{|t||x|+1} \operatorname{Ad}_*(x \otimes t)$$

for $t \in PH_*(\Omega G)$ and $x \in H_*(G)$ with |x| > 0.

Similarly we define that $f: H \to G$ is strongly mod p homotopy normal (mod p homotopy normal in the sense of McCarty) if f is mod p homotopy normal and if there exists a homotopy $\xi_t \colon H \wedge H \to H$ such that $\gamma_t \circ (f \wedge 1) =$ $f \circ \xi_t$. (See [22].) Then, if f is strongly mod p homotopy normal and if f is monomorphic, we have the following commutative diagrams.

$$(2.4) \qquad \begin{array}{c} H^*(G) \otimes H^*(H) \xleftarrow{1 \otimes f^*} H^*(G) \otimes H^*(G) \xleftarrow{\operatorname{ad}^*(\operatorname{resp. co}^*)} H^*(G) \\ f^* \otimes 1 \swarrow f^* \\ H^*(H) \otimes H^*(H) \xleftarrow{(\nu')^*(\operatorname{resp. (\gamma' \circ \pi)^*)} H^*(H)} H^*(H) \end{array}$$

$$(2.5)$$

$$H_{*}(G) \otimes H_{*}(\Omega H) \xrightarrow{1 \otimes (\Omega f)_{*}} H_{*}(G) \otimes H_{*}(\Omega G) \xrightarrow{\operatorname{Ad}_{*}} H_{*}(\Omega G) \longrightarrow QH_{*}(\Omega G)$$

$$f_{*} \otimes 1 \xrightarrow{f_{*} \otimes 1} f_{*}(\Omega H) \xrightarrow{N'_{*}} f_{*}(\Omega f)_{*} \xrightarrow{f_{*}(\Omega f)_{*}} H_{*}(\Omega H) \xrightarrow{Q(\Omega f)_{*}} H_{*}(\Omega H) \xrightarrow{Q(\Omega f)_{*}} QH_{*}(\Omega H)$$

$$(2.6)$$

We can use (2.2), (2.3), (2.4), (2.5), and (2.6) to show non (strong) mod p homotopy normality in various cases as Furukawa used (2.1).

The following lemma is easily proved.

Lemma 2.1. Let $f: H \to G$ be a homomorphism of topological groups where H is connected and G is 1-connected. Let $q: H' \to H$ be the universal covering over H and set $f' = f \circ q: H' \to G$, which is also a homomorphism of topological groups. Then, if f is mod p homotopy normal, so is f'.

3. Homomorphisms of Lie groups and regular sequences

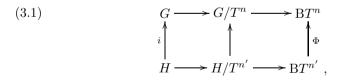
For a compact, connected Lie group K and a prime p, let $TH^*(K) = TH^*(K; \mathbb{F}_p)$ denote the set of the transgressive elements in the mod p cohomology Serre spectral sequence associated with the fibering $K \to K/T \to BT$ where T is a maximal torus of K. (See Toda [26] and Ishitoya-Kono-Toda [12].) Denote by τ the transgression of such a spectral sequence. Recall that $TH^*(K)$ is invariant under \mathcal{A}_p , the mod p Steenrod algebra, and that for a homomorphism $k: K_1 \to K_2$ between compact, connected Lie groups, we have $k^*(TH^*(K_2)) \subset TH^*(K_1)$. Moreover, recall that we may assume that all algebra generators of $H^*(K)$ lie in $TH^*(K)$. Set $\wp^j = \mathrm{Sq}^{2j}$ if p = 2.

Proposition 3.1.

(1) Let $i: H \hookrightarrow G$ be a pair of compact, connected Lie groups and p a prime such that $\pi_1(H)_{(p)} = \pi_1(G)_{(p)} = 0$. Suppose that there exists an element $x_3 \in H^3(G)$ such that $\wp^{p^{m-1}} \cdots \wp^p \wp^1 x_3 \neq 0$. Further suppose that rank G - rank $H \leq m$. Then, $i^*(x_3) \neq 0$.

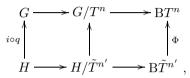
(2) Let H and G be compact, connected Lie groups, p a prime, and $C_p = \mathbb{Z}/p$ a central subgroup of H such that $\pi_1(H)_{(p)} = \pi_1(G)_{(p)} = 0$ and that $i: H/C_p \hookrightarrow G$ is a Lie pair. Suppose that there exists an element $x_3 \in H^3(G)$ such that $\varphi^{p^{m-1}} \cdots \varphi^p \varphi^1 x_3 \neq 0$. Further suppose that rank G - rank H < m. Then, $q^* \circ i^*(x_3) \neq 0$ where $q: H \to H/C_p$ is the projection.

Proof. (1) Put $n = \operatorname{rank} G$ and $n' = \operatorname{rank} H$. Pick a maximal torus T^n of G which contains a maximal torus $T^{n'}$ of H. Consider the following commutative diagram:



where the horizontal sequences are fiberings and the vertical maps are natural ones. We have $H^*(\mathbf{B}T^n) = \mathbb{F}_p[T_1, T_2, \ldots, T_n]$ as an algebra where $|T_j| = 2$. We may assume that Ker $\Phi^* = (T_1, T_2, \ldots, T_{n-n'})$. Pick a basis $\{a_j\}_{j=1}^n$ over \mathbb{F}_p of $TH^{\text{odd}}(G)$ such that $|a_j| \leq |a_{j+1}|$ for any j. For each j, pick a representative $b_j \in H^*(\mathbf{B}T^n)$ of $\tau(a_j)$. Then, according to Toda [26], $\{b_j\}_{j=1}^n$ is a regular sequence in $H^*(\mathbf{B}T^n)$. By the hypothesis, we may assume that it contains a subsequence $\{b_1, \wp^1 b_1, \ldots, \wp^{p^{m-1}} \cdots \wp^1 b_1\}$ where b_1 is a representative of $\tau(x_3)$. Now, suppose that $i^*(x_3) = 0$. By naturality of the transgressions in the diagram (3.1) and by $\pi_1(H)_{(p)} = 0$, this implies that $\Phi^*(b_1) = 0$. It follows that the regular sequence $\{b_1, \wp^1 b_1, \ldots, \wp^{p^{m-1}} \cdots \wp^1 b_1\}$ is in the ideal Ker $\Phi^* = (T_1, T_2, \ldots, T_{n-n'})$. Since $n - n' \leq m$, this is a contradiction. (See Baum [2] and Quillen [25].) Hence we have $i^*(x_3) \neq 0$.

(2) Similarly, put $n = \operatorname{rank} G$ and $n' = \operatorname{rank} H = \operatorname{rank} H/C_p$. Pick a maximal torus T^n of G which contains a maximal torus $T^{n'}$ of H/C_p . Put $\tilde{T}^{n'} = q^{-1}(T^{n'})$ which is a maximal torus of H. Consider the following commutative diagram:



where the horizontal sequences are fiberings and the vertical maps are natural ones. We have $H^*(\mathbf{B}T^n) = \mathbb{F}_p[T_1, T_2, \ldots, T_n]$ as an algebra where $|T_j| = 2$. The map Φ is decomposable into the natural maps $\mathbf{B}\tilde{T}^{n'} \stackrel{\Phi_1}{\to} \mathbf{B}T^{n'} \stackrel{\Phi_2}{\to} \mathbf{B}T^n$ and we may assume that Ker $\Phi_2^* = (T_1, T_2, \ldots, T_{n-n'})$ and that Ker Φ_1^* is generated by one generator. Hence we may assume that Ker $\Phi^* = (T_1, T_2, \ldots, T_{n-n'+1})$. Then, the same argument as that in (1) can be applied to the map $i \circ q \colon H \to G$ and hence we have $q^* \circ i^*(x_3) \neq 0$.

Remark 1. We can prove results such as Proposition 3.1 also by using Lie algebras and root systems of Lie groups. (See Mimura-Toda [24].)

4. Furukawa's method

In this section, we formulate Furukawa's method [6] in a particular case. We refer to it in Section 5. The proof is omitted.

Theorem 4.1. Set p = 3. Let $f: H \to E_8$ be a homomorphism of Lie groups where H is compact and connected. If one of

(1) $\wp^1 f^* H^3(E_8) \neq 0$ and $\operatorname{T} H^{27}(H) = 0$,

(2) $\wp^3 \wp^1 f^* H^3(E_8) \neq 0$ and $TH^{39}(H) = 0$

is satisfied, then f is not mod 3 homotopy normal.

5. Homotopy normality of maximal subgroups of maximal rank

In this section, we prove the following theorem. (For the detail of maximal subgroups of maximal rank, see Borel-Siebenthal [3] and Mimura-Toda [24].)

Theorem 5.1. Let p be a prime and G a compact, 1-connected, simple, exceptional Lie group which has integral p-torsion. Let $H \xrightarrow{f} G$ be a maximal subgroup of maximal rank. Then, H is not mod p homotopy normal in G if $(G, H, p) \neq (F_4, \text{Spin}(9), 2)$ and Spin(9) is not strongly mod 2 homotopy normal in F_4 . **Remark 2.** The last assertion was proved first in Furukawa [4].

The rest of this section is devoted to the proof of Theorem 5.1. Let generators of $H^*(E_8; \mathbb{F}_3)$ be as in Kono-Mimura [18]. (We use the symbol x_j instead of e_j in [18].)

First consider the case $(G, H, p) = (E_8, Ss(16), 3)$. By Proposition 3.1.1, we have $f^*(x_3) \neq 0$. Hence we have $f^*(x_{19}) = \wp^3 \wp^1 f^*(x_3) \neq 0$. By T $H^{39}(Ss(16)) = 0$ and Theorem 4.1, the assertion follows. Similarly, we can show the assertion for the following cases:

$$(E_8, H, 5), \ H \neq \frac{\mathrm{SU}(5) \times \mathrm{SU}(5)}{\mathbf{Z}/5}, \ \left(E_8, \frac{\mathrm{SU}(5) \times \mathrm{SU}(5)}{\mathbf{Z}/5}, 3\right), \ \left(E_8, \frac{\mathrm{SU}(9)}{\mathbf{Z}/3}, 2\right), \\ \left(E_8, \frac{\mathrm{SU}(5) \times \mathrm{SU}(5)}{\mathbf{Z}/5}, 2\right), \ \left(E_8, \frac{E_6 \times \mathrm{SU}(3)}{\mathbf{Z}/3}, 2\right).$$

Next, consider the case $(G, H, p) = (E_8, (SU(9))/(\mathbb{Z}/3), 3)$. Let $q: SU(9) \rightarrow (SU(9))/(\mathbb{Z}/3)$ be the universal covering. By Proposition 3.1.2, we have $q^* \circ f^*(x_3) \neq 0$. Hence we have $q^* \circ f^*(x_7) = \wp^1 q^* \circ f^*(x_3) \neq 0$. By $TH^{27}(SU(9)) = 0$ and Theorem 4.1, $f \circ q$ is not mod 3 homotopy normal. By Lemma 2.1, the assertion follows. Similarly, we can show the assertion for the following cases:

$$\left(E_8, \frac{\mathrm{SU}(5) \times \mathrm{SU}(5)}{\mathbf{Z}/5}, 5 \right), \left(E_6, \frac{\mathrm{SU}(3) \times \mathrm{SU}(3) \times \mathrm{SU}(3)}{\mathbf{Z}/3}, 3 \right), \\ \left(F_4, \frac{\mathrm{SU}(3) \times \mathrm{SU}(3)}{\mathbf{Z}/3}, 3 \right), \left(E_8, \mathrm{Ss}(16), 2 \right), \left(E_7, \frac{\mathrm{SU}(8)}{\mathbf{Z}/2}, 2 \right).$$

Next, consider the case $(G, H, p) = (E_8, (E_6 \times SU(3))/(\mathbb{Z}/3), 3)$. Let $q: E_6 \times SU(3) \to (E_6 \times SU(3))/(\mathbb{Z}/3)$ be the universal covering and $i: E_6 \hookrightarrow E_6 \times SU(3)$ the natural inclusion. Then, applying Proposition 3.1.1 to the inclusion $f \circ q \circ i: E_6 \hookrightarrow E_8$, we have $i^* \circ q^* \circ f^*(x_3) \neq 0$. Hence we have $i^* \circ q^* \circ f^*(x_7) = \wp^{1}i^* \circ q^* \circ f^*(x_3) \neq 0$. It follows that $q^* \circ f^*(x_7) \neq 0$. By $TH^{27}(E_6 \times SU(3)) = 0$ and Theorem 4.1, $f \circ q$ is not mod 3 homotopy normal. By Lemma 2.1, the assertion follows. Similarly, we can show the assertion for the following cases:

$$\begin{pmatrix} E_8, \frac{E_7 \times \mathrm{SU}(2)}{\mathbf{Z}/2}, 3 \end{pmatrix}, \begin{pmatrix} E_7, \frac{\mathrm{Spin}(12) \times \mathrm{SU}(2)}{\mathbf{Z}/2}, 3 \end{pmatrix}, \begin{pmatrix} E_7, \frac{\mathrm{SU}(3) \times \mathrm{SU}(6)}{\mathbf{Z}/3}, 3 \end{pmatrix}, \\ \begin{pmatrix} E_7, \frac{E_6 \times T}{\mathbf{Z}/3}, 3 \end{pmatrix}, \begin{pmatrix} E_6, \frac{\mathrm{SU}(2) \times \mathrm{SU}(6)}{\mathbf{Z}/2}, 3 \end{pmatrix}, \begin{pmatrix} F_4, \frac{\mathrm{Sp}(3) \times \mathrm{Sp}(1)}{\mathbf{Z}/2}, 3 \end{pmatrix}, \\ \begin{pmatrix} E_8, \frac{E_7 \times \mathrm{SU}(2)}{\mathbf{Z}/2}, 2 \end{pmatrix}, \begin{pmatrix} E_7, \frac{\mathrm{Spin}(12) \times \mathrm{SU}(2)}{\mathbf{Z}/2}, 2 \end{pmatrix}, \begin{pmatrix} E_7, \frac{\mathrm{SU}(3) \times \mathrm{SU}(6)}{\mathbf{Z}/3}, 2 \end{pmatrix}, \\ \begin{pmatrix} E_7, \frac{E_6 \times T}{\mathbf{Z}/3}, 2 \end{pmatrix}, \begin{pmatrix} E_6, \frac{\mathrm{Spin}(10) \times T}{\mathbf{Z}/4}, 2 \end{pmatrix}, \begin{pmatrix} E_6, \frac{\mathrm{SU}(2) \times \mathrm{SU}(6)}{\mathbf{Z}/2}, 2 \end{pmatrix}. \end{cases}$$

For the cases $(G, H, p) = (E_7, (SU(8))/(\mathbb{Z}/2), 3), (E_6, (Spin(10) \times T)/(\mathbb{Z}/4), 3)$, and $(F_4, Spin(9), 3)$, the assertion follows from the following theorem with

the technique as above. Given a Hopf algebra A, let $\bar{x} \in QA$ denote the indecomposable class of an element $x \in A$.

Theorem 5.2. Set p = 3. Let $f: H \to G$ be a homomorphism of Lie groups where H is compact and connected, $\pi_1(H)_{(3)} = 0$, and $G = F_4, E_6$, or E_7 . If $\wp^1 f^* H^3(G) \neq 0$, if $H_*(H; \mathbb{Z})$ is 3-torsion free, and if $QH^{23}(H; \mathbb{Q}) = 0$, then f is not mod 3 homotopy normal.

Proof. Assume that we have the diagram (2.2) where G and H are as above. (Of course, localize all spaces and maps at 3.) Let generators of $H_*(\Omega G)$ be as in Hamanaka-Hara [10]. Also let $y_8 \in H_8(G)$ be as in [10]. We can pick $t'_6 \in H_6(\Omega H)$ such that $(\Omega f)_*(t'_6) = t_6 \in H_6(\Omega G)$. Then, by [10], we have

$$\overline{\mathrm{Ad}_* \circ (1 \otimes (\Omega f)_*)(y_8^2 \otimes t_6')} = \overline{y_8^2 * t_6} = \overline{t_{22}}.$$

By the hypothesis, we have $QH_{22}(\Omega H) = 0$. This is a contradiction and the theorem follows.

Similarly, for the cases $(G, H, p) = (E_6, (SU(3) \times SU(3) \times SU(3))/(\mathbb{Z}/3), 2),$ $(F_4, (SU(3) \times SU(3))/(\mathbb{Z}/3), 2),$ and $(G_2, SU(3), 2),$ we can show the assertion by considering the relation $\overline{y_6 * b_4} = \overline{b_{10}}$ in $QH_*(\Omega G) = QH_*(\Omega G; \mathbb{F}_2)$ where $G = E_6, F_4$, or G_2 . (For the notation, see Hamanaka [7].)

Next, consider the case $(G, H, p) = (F_4, (\operatorname{Sp}(3) \times \operatorname{Sp}(1))/(\mathbb{Z}/2), 2)$. Let $q: \operatorname{Sp}(3) \times \operatorname{Sp}(1) \to (\operatorname{Sp}(3) \times \operatorname{Sp}(1))/(\mathbb{Z}/2)$ be the universal covering. Then, we can apply a method similar to the above to the map $f \circ q: \operatorname{Sp}(3) \times \operatorname{Sp}(1) \to F_4$ by considering the relation $y_6 * b_2 = b_4^2$ in $H_*(\Omega F_4)$. (For the notation, see Hamanaka [7].) Thus, $f \circ q$ is not mod 2 homotopy normal. By Lemma 2.1, the assertion follows. The case $(G_2, \operatorname{SO}(4), 2)$ is similar.

Finally, we prove that Spin(9) is not strongly mod 2 homotopy normal in F_4 . We use the result of Hamanaka [9]. Set p = 2. Let $b_j, b'_j \in H_*(\Omega \text{Spin}(9))$ be as in [9]. Put $z_2 = b_1, z_4 = b_2, z_6 = b_3 + b_2b_1, z_{10} = b'_5 + b'_4b_1$, and $z_{14} = b'_7 + b'_6b_1 + b'_5b_2 + b'_4b_3$. Then, we have

$$H_*(\Omega \operatorname{Spin}(9)) = \wedge(z_2) \otimes \mathbb{F}_2[z_4, z_6, z_{10}, z_{14}]$$

as an algebra where $|z_j| = j$ and z_j is primitive if $j \neq 4$. Let $y_6 \in H_*(\text{Spin}(9))$ be as in [9]. Then, we have

$$Co_*(z_6 \otimes y_6) = y_6 * z_6 = z_6^2.$$

We can easily see that $(\Omega f)_*(z_6) = 0$. (For the detail of $H_*(\Omega F_4)$, see Kono-Kozima [16].) Then, we can prove the assertion by using the diagram (2.6).

6. Other applications

We close this paper by showing some more applications.

Furukawa in [5] showed that the natural inclusion $G_2 \hookrightarrow F_4$ is not strongly mod 2 homotopy normal by calculating Samelson products of homotopy groups. Then, Kudou and Yagita in [20] showed that $G_2 \hookrightarrow F_4$ is not mod 2 homotopy normal by using the Morava K-theory. We can reprove this result by using the relation

$$Co_*(b_{22} \otimes y_6) = y_6 * b_{22} = b_{14}^2$$

in $H_*(\Omega F_4) = H_*(\Omega F_4; \mathbb{F}_2)$ and the diagram (2.3). (For the notation, see Hamanaka [7].)

Kudou and Yagita in [19] asked whether the natural inclusions $G_2 \hookrightarrow F_4$ and Spin(9) $\hookrightarrow F_4$ are mod 3 homotopy normal or not. We showed in Theorem 5.1 that the latter is not mod 3 homotopy normal. We can show that the former is also not mod 3 homotopy normal. In fact, we have the following theorem.

Theorem 6.1. Set p = 3. Let $f: H \to G$ be a homomorphism of Lie groups where H is compact and connected, $\pi_1(H)_{(3)} = 0$, and $G = F_4, E_6$, or E_7 . If $f^*H^3(G) \neq 0$, if $H_*(H;\mathbb{Z})$ is 3-torsion free, and if $QH^7(H;\mathbb{Q}) =$ $QH^{19}(H;\mathbb{Q}) = 0$, then f is not mod 3 homotopy normal.

We can prove this theorem by using the relation $y_8^2 * t_2 = \pm t_6^3$ in $H_*(\Omega G)$ and the diagram (2.2). (For the notation, see Hamanaka-Hara [10].) Also we have the following theorem.

Theorem 6.2. Set p = 3. Let $f: H \to E_8$ be a homomorphism of Lie groups where H is compact and connected, and $\pi_1(H)_{(3)} = 0$. If $f^*H^3(E_8) \neq 0$, if $H_*(H;\mathbb{Z})$ is 3-torsion free, and if $QH^{23}(H;\mathbb{Q}) = 0$, then f is not mod 3 homotopy normal.

We can prove this theorem by using the relation $y_{20} * t_2 = \pm t_{22}$ in $H_*(\Omega E_8)$ and the diagram (2.2). (For the notation, see [10].) For example, SU(2), SU(3), Spin(4), and G_2 are not mod 3 homotopy normal in E_8 .

> DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY KYOTO 606-8502, JAPAN e-mail: kono@math.kyoto-u.ac.jp

DEPARTMENT OF MATHEMATICS KYOTO UNIVERSITY KYOTO 606-8502, JAPAN e-mail: osamu@math.kyoto-u.ac.jp

References

- [1] S. Araki, Differential Hopf algebras and the cohomology mod 3 of the compact exceptional groups E_7 and E_8 , Ann. of Math. (2) **73** (1961), 404–436.
- [2] P. F. Baum, On the cohomology of homogeneous spaces, Topology 7 (1968), 15–38.

648

- [3] A. Borel and J. de Siebenthal, Les sous groupes fermés connexes de rang maximum des groupes de Lie clos, Comment. Math. Helv. 23 (1949), 200–221.
- [4] Y. Furukawa, *Homotopy-normality of Lie groups*, Quart. J. Math. Oxford Ser. (2) **36**-141 (1985), 53–56.
- [5] _____, Homotopy-normality of Lie groups II, Quart. J. Math. Oxford Ser. (2) 38-150 (1987), 185–188.
- [6] _____, Homotopy-normality of Lie groups III, Hiroshima Math. J. 25-1 (1995), 83–96.
- H. Hamanaka, Homology ring mod 2 of free loop groups of exceptional Lie groups, J. Math. Kyoto Univ. 36-4 (1996), 669–686.
- [8] _____, Adjoint action on homology mod 2 of E_8 on its loop space, J. Math. Kyoto Univ. **36**-4 (1996), 779–787.
- [9] _____, Homology ring mod 2 of free loop groups of spinor groups, J. Pure Appl. Algebra 146 (2000), 267–282.
- [10] H. Hamanaka and S. Hara, The mod 3 homology of the space of loops on the exceptional Lie groups and the adjoint action, J. Math. Kyoto Univ. 37-3 (1997), 441–453.
- [11] H. Hamanaka, S. Hara and A. Kono, Adjoint actions on the modulo 5 homology groups of E₈ and ΩE₈, J. Math. Kyoto Univ. **37**-1 (1997), 169–176.
- [12] K. Ishitoya, A. Kono, and H. Toda, Hopf algebra structures of mod 2 cohomology of simple Lie groups, Publ. RIMS Kyoto Univ. 12 (1976), 141–167.
- [13] I. M. James, On the homotopy theory of the classical groups, An. Acad. Brasil. Ciens. 39 (1967), 39–44.
- [14] _____, Products between homotopy groups, Compositio Math. 23 (1971), 329–345.
- [15] _____, The topology of Stiefel manifolds, London Mathematical Society Lecture Note Series 24, Cambridge University Press, Cambridge-New York-Melbourne, 1976.
- [16] A. Kono and K. Kozima, The mod 2 homology of the space of loops on the exceptional Lie groups, Proc. Roy. Soc. Edinburgh Sect. A 112 (1989), 187–202.
- [17] _____, The adjoint action of a Lie group on the space of loops, J. Math. Soc. Japan 45-3 (1993), 495–510.

- [18] A. Kono and M. Mimura, On the cohomology operations and the Hopf algebra structures of the compact exceptional Lie groups E₇ and E₈, Proc. London Math. Soc. **35** (1977), 345–358.
- [19] K. Kudou and N. Yagita, Modulo odd prime homotopy normality for H-spaces, J. Math. Kyoto Univ. 38-4 (1998), 643–651.
- [20] _____, Highly homotopy non-commutativity of Lie groups with 2torsion, Kyushu J. Math. 53 (1999), 133–150.
- [21] _____, Note on homotopy normality and the n-connected fiber space, Kyushu J. Math. 55 (2001), 119–129.
- [22] G. S. McCarty Jr., Products between homotopy groups and the Jmorphism, Quart. J. Math. Oxford Ser. (2) 15 (1964) 362–370.
- [23] M. Mimura, Homotopy theory of Lie groups, Handbook of algebraic topology, North-Holland, Amsterdam, 1995, pp. 951–991.
- [24] M. Mimura and H. Toda, *Topology of Lie groups I*, *II*, Translations of Mathematical Monographs **91**, American Mathematical Society, Providence, RI, 1991.
- [25] D. Quillen, The mod 2 cohomology rings of extra-special 2-groups and spinor groups, Math. Ann. 194 (1971), 197–212.
- [26] H. Toda, On the cohomology ring of some homogeneous spaces, J. Math. Kyoto Univ. 15 (1975), 185–199.