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Homotopy normality of Lie groups and the
adjoint action

By

Akira Kono and Osamu Nishimura∗

Abstract

Homotopy normality of Lie groups is studied by using the adjoint
action on the space of based loops.

1. Introduction

The notion of homotopy normality of topological groups was introduced by
James and McCarty in the different ways. (See [13] and [22].) The concept of
homotopy normality is closely related to that of Samelson products of homotopy
groups. In fact, if H is homotopy normal in G in the sense of McCarty where
(G, H) is a pair of topological groups, then all mixed Samelson products from
πk(H)×πl(G, H) to πk+l(G, H) vanish and H is homotopy normal in G in the
sense of James. If H is homotopy normal in G in the sense of James, then all
Samelson products from i∗πk(H)×πl(G) to πk+l(G) lie in the image of i∗ where
i : H ↪→ G is the inclusion and i∗ : π∗(H) → π∗(G) is induced from i. Note that
we may consider homotopy normality not only of a pair of topological groups
but also of a homomorphism of topological groups. Moreover, for a prime p,
we may consider mod p homotopy normality by localizing at p.

The purpose of this paper is to study mod p homotopy normality of ho-
momorphisms of Lie groups by a new method. In [6], Furukawa used the Hopf
algebra structure of the mod p cohomology of a Lie group G to study homotopy
normality of a Lie group H in G. We modify his method and use the mod p
homology map of the adjoint action of G on ΩG, the space of based loops on
G, and the Hopf algebra structure of the mod p homology of ΩG. (See [17], [7],
[8], [9], [10], and [11].) We can prove some new results (see Theorem 5.1 and
Section 6) and we can reprove many of the results of [4], [5], [6], [19], and [20]
concerning mod p homotopy normality of homomorphisms of Lie groups. Note
that Kudou and Yagita in [19] and [20] used the Morava K-theory of homology
and cohomology but we only use the ordinary theory.
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2. Method

Let f : H → G be a homomorphism of topological groups and p a prime.
In the following, assume that all spaces and maps have been localized at
p. Recall that the self adjoint action ad: G × G → G of G is defined by
ad(g1, g2) = g1g2g

−1
1 and the commutator map co: G × G → G of G by

co(g1, g2) = g1g2g
−1
1 g−1

2 for g1, g2 ∈ G. We define that f is mod p homo-
topy normal (mod p homotopy normal in the sense of James) if there exist a
homotopy γt : G ∧ H → G and a continuous map γ′ : G ∧ H → H such that
γ1 = f ◦ γ′ and γ0(g ∧ h) = co(g, f(h)) for g ∈ G and h ∈ H. (See [13], [6], and
[21]. Let denote π(g, h) by g∧h for the natural projection π : G×H → G∧H.)
It is easy to see that if f is mod p homotopy normal, then we have a homotopy
νt : G × H → G and a continuous map ν′ : G × H → H such that ν1 = f ◦ ν′

and ν0(g, h) = ad(g, f(h)) for g ∈ G and h ∈ H.
Denote the mod p (ordinary) homology and cohomology by H∗( ) and

H∗( ) respectively. If f : H → G is mod p homotopy normal, then we have the
following commutative diagram.

(2.1) H∗(G) ⊗ H∗(H) H∗(G) ⊗ H∗(G)
1⊗f∗
�� H∗(G)

ad∗(resp. co∗)��

f∗

��
H∗(H)

(ν′)∗(resp. (γ′◦π)∗)

����������������������������������

Thus, if we can find an element x ∈ H∗(G) such that f∗(x) = 0 and (1⊗ f∗) ◦
ad∗(x) �= 0, then we know that f is not mod p homotopy normal. Note that we
can compute ad∗ using the Hopf algebra structure of H∗(G). In [6], Furukawa
used this argument to show non (mod p) homotopy normality in various cases.

We modify his argument as follows. Assume that f : H → G is mod
p homotopy normal. Then, we have a homotopy Nt : G × ΩH → ΩG and
a continuous map N ′ : G × ΩH → ΩH defined by Nt(g, l)(s) = νt(g, l(s))
and N ′(g, l)(s) = ν′(g, l(s)), respectively, for g ∈ G, l ∈ ΩH, and s ∈ [0, 1].
Similarly, we have a homotopy Γt : ΩG × H → ΩG and a continuous map
Γ′ : ΩG × H → ΩH defined by Γt(l, h)(s) = γt(l(s) ∧ h) and Γ′(l, h)(s) =
γ′(l(s) ∧ h), respectively, for l ∈ ΩG, h ∈ H, and s ∈ [0, 1].

Define the adjoint action Ad: G×ΩG → ΩG of G on ΩG by Ad(g, l)(s) =
ad(g, l(s)) and the commutator map Co: ΩG × G → ΩG of G with ΩG by
Co(l, g)(s) = co(l(s), g) for g ∈ G, l ∈ ΩG, and s ∈ [0, 1]. Given a Hopf algebra
A, let PA and QA denote the primitives and the indecomposables respectively.
Then, we have the following commutative diagrams.

(2.2)

H∗(G) ⊗ H∗(ΩH)
1⊗(Ωf)∗��

N ′
∗ ������������������������������

H∗(G) ⊗ H∗(ΩG)
Ad∗ �� H∗(ΩG) �� �� QH∗(ΩG)

H∗(ΩH)

(Ωf)∗

��

�� �� QH∗(ΩH)

Q(Ωf)∗

��
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(2.3)

H∗(ΩG) ⊗ H∗(H)
1⊗f∗ ��

Γ′
∗ ������������������������������

H∗(ΩG) ⊗ H∗(G)
Co∗ �� H∗(ΩG) �� �� QH∗(ΩG)

H∗(ΩH)

(Ωf)∗

��

�� �� QH∗(ΩH)

Q(Ωf)∗

��

Note that since

Co = m ◦ (1 × Ad) ◦ (1 × 1 × ι) ◦ (1 × tw) ◦ (∆ × 1),

where ∆: ΩG → ΩG × ΩG is the diagonal map, tw : ΩG × G → G × ΩG is
the twisting map, ι : ΩG → ΩG is the inverse map, and m : ΩG×ΩG → ΩG is
the multiplication map, we can compute Co∗ using Ad∗ and the Hopf algebra
structure of H∗(ΩG). In particular, we can easily see that

Co∗(t ⊗ x) = (−1)|t||x|+1Ad∗(x ⊗ t)

for t ∈ PH∗(ΩG) and x ∈ H∗(G) with |x| > 0.
Similarly we define that f : H → G is strongly mod p homotopy normal

(mod p homotopy normal in the sense of McCarty) if f is mod p homotopy
normal and if there exists a homotopy ξt : H ∧H → H such that γt ◦ (f ∧ 1) =
f ◦ ξt. (See [22].) Then, if f is strongly mod p homotopy normal and if f is
monomorphic, we have the following commutative diagrams.

(2.4) H∗(G) ⊗ H∗(H)

f∗⊗1

��

H∗(G) ⊗ H∗(G)
1⊗f∗
�� H∗(G)

ad∗(resp. co∗)��

f∗

��
H∗(H) ⊗ H∗(H) H∗(H)

(ν′)∗(resp. (γ′◦π)∗)

����������������������������������
ad∗(resp. co∗)

��

(2.5)

H∗(G) ⊗ H∗(ΩH)
1⊗(Ωf)∗��

N ′
∗ ������������������������������

H∗(G) ⊗ H∗(ΩG)
Ad∗ �� H∗(ΩG) �� �� QH∗(ΩG)

H∗(H) ⊗ H∗(ΩH)

f∗⊗1

��

Ad∗
�� H∗(ΩH)

(Ωf)∗

��

�� �� QH∗(ΩH)

Q(Ωf)∗

��

(2.6)

H∗(ΩG) ⊗ H∗(H)
1⊗f∗ ��

Γ′
∗ ������������������������������

H∗(ΩG) ⊗ H∗(G)
Co∗ �� H∗(ΩG) �� �� QH∗(ΩG)

H∗(ΩH) ⊗ H∗(H)

(Ωf)∗⊗1

��

Co∗
�� H∗(ΩH)

(Ωf)∗

��

�� �� QH∗(ΩH)

Q(Ωf)∗

��

We can use (2.2), (2.3), (2.4), (2.5), and (2.6) to show non (strong) mod p
homotopy normality in various cases as Furukawa used (2.1).

The following lemma is easily proved.
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Lemma 2.1. Let f : H → G be a homomorphism of topological groups
where H is connected and G is 1-connected. Let q : H ′ → H be the universal
covering over H and set f ′ = f ◦ q : H ′ → G, which is also a homomorphism
of topological groups. Then, if f is mod p homotopy normal, so is f ′.

3. Homomorphisms of Lie groups and regular sequences

For a compact, connected Lie group K and a prime p, let TH∗(K) =
TH∗(K; Fp) denote the set of the transgressive elements in the mod p coho-
mology Serre spectral sequence associated with the fibering K → K/T → BT
where T is a maximal torus of K. (See Toda [26] and Ishitoya-Kono-Toda
[12].) Denote by τ the transgression of such a spectral sequence. Recall that
TH∗(K) is invariant under Ap, the mod p Steenrod algebra, and that for a
homomorphism k : K1 → K2 between compact, connected Lie groups, we have
k∗(TH∗(K2)) ⊂ TH∗(K1). Moreover, recall that we may assume that all alge-
bra generators of H∗(K) lie in TH∗(K). Set ℘j = Sq2j if p = 2.

Proposition 3.1.
(1) Let i : H ↪→ G be a pair of compact, connected Lie groups and p a

prime such that π1(H)(p) = π1(G)(p) = 0. Suppose that there exists an element
x3 ∈ H3(G) such that ℘pm−1 · · ·℘p℘1x3 �= 0. Further suppose that rank G −
rank H ≤ m. Then, i∗(x3) �= 0.

(2) Let H and G be compact, connected Lie groups, p a prime, and Cp =
Z/p a central subgroup of H such that π1(H)(p) = π1(G)(p) = 0 and that
i : H/Cp ↪→ G is a Lie pair. Suppose that there exists an element x3 ∈ H3(G)
such that ℘pm−1 · · ·℘p℘1x3 �= 0. Further suppose that rank G − rank H < m.
Then, q∗ ◦ i∗(x3) �= 0 where q : H → H/Cp is the projection.

Proof. (1) Put n = rank G and n′ = rank H. Pick a maximal torus
Tn of G which contains a maximal torus Tn′

of H. Consider the following
commutative diagram:

(3.1) G �� G/Tn �� BTn

H ��

i

��

H/Tn′ ��

��

BTn′
,

Φ

��

where the horizontal sequences are fiberings and the vertical maps are natural
ones. We have H∗(BTn) = Fp[T1, T2, . . . , Tn] as an algebra where |Tj | = 2. We
may assume that Ker Φ∗ = (T1, T2, . . . , Tn−n′). Pick a basis {aj}n

j=1 over Fp of
THodd(G) such that |aj | ≤ |aj+1| for any j. For each j, pick a representative
bj ∈ H∗(BTn) of τ (aj). Then, according to Toda [26], {bj}n

j=1 is a regular
sequence in H∗(BTn). By the hypothesis, we may assume that it contains a
subsequence {b1, ℘

1b1, . . . , ℘
pm−1 · · ·℘1b1} where b1 is a representative of τ (x3).

Now, suppose that i∗(x3) = 0. By naturality of the transgressions in the
diagram (3.1) and by π1(H)(p) = 0, this implies that Φ∗(b1) = 0. It follows
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that the regular sequence {b1, ℘
1b1, . . . , ℘

pm−1 · · ·℘1b1} is in the ideal Ker Φ∗ =
(T1, T2, . . . , Tn−n′). Since n − n′ ≤ m, this is a contradiction. (See Baum [2]
and Quillen [25].) Hence we have i∗(x3) �= 0.

(2) Similarly, put n = rank G and n′ = rank H = rank H/Cp. Pick a
maximal torus Tn of G which contains a maximal torus Tn′

of H/Cp. Put T̃n′
=

q−1(Tn′
) which is a maximal torus of H. Consider the following commutative

diagram:
G �� G/Tn �� BTn

H ��

i◦q

��

H/T̃n′ ��

��

BT̃n′
,

Φ

��

where the horizontal sequences are fiberings and the vertical maps are natural
ones. We have H∗(BTn) = Fp[T1, T2, . . . , Tn] as an algebra where |Tj | = 2.

The map Φ is decomposable into the natural maps BT̃n′ Φ1→ BTn′ Φ2→ BTn and
we may assume that Ker Φ∗

2 = (T1, T2, . . . , Tn−n′) and that Ker Φ∗
1 is generated

by one generator. Hence we may assume that Ker Φ∗ = (T1, T2, . . . , Tn−n′+1).
Then, the same argument as that in (1) can be applied to the map i◦q : H → G
and hence we have q∗ ◦ i∗(x3) �= 0.

Remark 1. We can prove results such as Proposition 3.1 also by using
Lie algebras and root systems of Lie groups. (See Mimura-Toda [24].)

4. Furukawa’s method

In this section, we formulate Furukawa’s method [6] in a particular case.
We refer to it in Section 5. The proof is omitted.

Theorem 4.1. Set p = 3. Let f : H → E8 be a homomorphism of Lie
groups where H is compact and connected. If one of

(1) ℘1f∗H3(E8) �= 0 and TH27(H) = 0,
(2) ℘3℘1f∗H3(E8) �= 0 and TH39(H) = 0

is satisfied, then f is not mod 3 homotopy normal.

5. Homotopy normality of maximal subgroups of maximal rank

In this section, we prove the following theorem. (For the detail of maximal
subgroups of maximal rank, see Borel-Siebenthal [3] and Mimura-Toda [24].)

Theorem 5.1. Let p be a prime and G a compact, 1-connected, simple,

exceptional Lie group which has integral p-torsion. Let H
f
↪→ G be a maximal

subgroup of maximal rank. Then, H is not mod p homotopy normal in G if
(G, H, p) �= (F4, Spin(9), 2) and Spin(9) is not strongly mod 2 homotopy normal
in F4.
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Remark 2. The last assertion was proved first in Furukawa [4].

The rest of this section is devoted to the proof of Theorem 5.1. Let gener-
ators of H∗(E8; F3) be as in Kono-Mimura [18]. (We use the symbol xj instead
of ej in [18].)

First consider the case (G, H, p) = (E8, Ss(16), 3). By Proposition 3.1.1, we
have f∗(x3) �= 0. Hence we have f∗(x19) = ℘3℘1f∗(x3) �= 0. By TH39(Ss(16))
= 0 and Theorem 4.1, the assertion follows. Similarly, we can show the assertion
for the following cases:

(E8, H, 5), H �= SU(5) × SU(5)
Z/5

,

(
E8,

SU(5) × SU(5)
Z/5

, 3
)

,

(
E8,

SU(9)
Z/3

, 2
)

,

(
E8,

SU(5) × SU(5)
Z/5

, 2
)

,

(
E8,

E6 × SU(3)
Z/3

, 2
)

.

Next, consider the case (G, H, p) = (E8, (SU(9))/(Z/3), 3). Let q : SU(9) →
(SU(9))/(Z/3) be the universal covering. By Proposition 3.1.2, we have
q∗ ◦ f∗(x3) �= 0. Hence we have q∗ ◦ f∗(x7) = ℘1q∗ ◦ f∗(x3) �= 0. By
TH27(SU(9)) = 0 and Theorem 4.1, f ◦ q is not mod 3 homotopy normal.
By Lemma 2.1, the assertion follows. Similarly, we can show the assertion for
the following cases:(

E8,
SU(5) × SU(5)

Z/5
, 5

)
,

(
E6,

SU(3) × SU(3) × SU(3)
Z/3

, 3
)

,

(
F4,

SU(3) × SU(3)
Z/3

, 3
)

, (E8, Ss(16), 2),
(

E7,
SU(8)
Z/2

, 2
)

.

Next, consider the case (G, H, p) = (E8, (E6 × SU(3))/(Z/3), 3). Let
q : E6 × SU(3) → (E6 × SU(3))/(Z/3) be the universal covering and i : E6 ↪→
E6 × SU(3) the natural inclusion. Then, applying Proposition 3.1.1 to the
inclusion f ◦ q ◦ i : E6 ↪→ E8, we have i∗ ◦ q∗ ◦ f∗(x3) �= 0. Hence we have
i∗ ◦ q∗ ◦ f∗(x7) = ℘1i∗ ◦ q∗ ◦ f∗(x3) �= 0. It follows that q∗ ◦ f∗(x7) �= 0. By
TH27(E6 ×SU(3)) = 0 and Theorem 4.1, f ◦ q is not mod 3 homotopy normal.
By Lemma 2.1, the assertion follows. Similarly, we can show the assertion for
the following cases:(

E8,
E7 × SU(2)

Z/2
, 3

)
,

(
E7,

Spin(12) × SU(2)
Z/2

, 3
)

,

(
E7,

SU(3) × SU(6)
Z/3

, 3
)

,

(
E7,

E6 × T

Z/3
, 3

)
,

(
E6,

SU(2) × SU(6)
Z/2

, 3
)

,

(
F4,

Sp(3) × Sp(1)
Z/2

, 3
)

,

(
E8,

E7 × SU(2)
Z/2

, 2
)

,

(
E7,

Spin(12) × SU(2)
Z/2

, 2
)

,

(
E7,

SU(3) × SU(6)
Z/3

, 2
)

,

(
E7,

E6 × T

Z/3
, 2

)
,

(
E6,

Spin(10) × T

Z/4
, 2

)
,

(
E6,

SU(2) × SU(6)
Z/2

, 2
)

.

For the cases (G, H, p) = (E7, (SU(8))/(Z/2), 3), (E6, (Spin(10)×T )/(Z/4),
3), and (F4, Spin(9), 3), the assertion follows from the following theorem with
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the technique as above. Given a Hopf algebra A, let x̄ ∈ QA denote the inde-
composable class of an element x ∈ A.

Theorem 5.2. Set p = 3. Let f : H → G be a homomorphism of Lie
groups where H is compact and connected, π1(H)(3) = 0, and G = F4, E6, or
E7. If ℘1f∗H3(G) �= 0, if H∗(H; Z) is 3-torsion free, and if QH23(H; Q) = 0,
then f is not mod 3 homotopy normal.

Proof. Assume that we have the diagram (2.2) where G and H are as
above. (Of course, localize all spaces and maps at 3.) Let generators of H∗(ΩG)
be as in Hamanaka-Hara [10]. Also let y8 ∈ H8(G) be as in [10]. We can pick
t′6 ∈ H6(ΩH) such that (Ωf)∗(t′6) = t6 ∈ H6(ΩG). Then, by [10], we have

Ad∗ ◦ (1 ⊗ (Ωf)∗)(y2
8 ⊗ t′6) = y2

8 ∗ t6 = t̄22.

By the hypothesis, we have QH22(ΩH) = 0. This is a contradiction and the
theorem follows.

Similarly, for the cases (G, H, p) = (E6, (SU(3)×SU(3)×SU(3))/(Z/3), 2),
(F4, (SU(3) × SU(3))/(Z/3), 2), and (G2, SU(3), 2), we can show the assertion
by considering the relation y6 ∗ b4 = b̄10 in QH∗(ΩG) = QH∗(ΩG; F2) where
G = E6, F4, or G2. (For the notation, see Hamanaka [7].)

Next, consider the case (G, H, p) = (F4, (Sp(3) × Sp(1))/(Z/2), 2). Let
q : Sp(3)× Sp(1) → (Sp(3)× Sp(1))/(Z/2) be the universal covering. Then, we
can apply a method similar to the above to the map f ◦ q : Sp(3)× Sp(1) → F4

by considering the relation y6 ∗ b2 = b2
4 in H∗(ΩF4). (For the notation, see

Hamanaka [7].) Thus, f ◦ q is not mod 2 homotopy normal. By Lemma 2.1,
the assertion follows. The case (G2, SO(4), 2) is similar.

Finally, we prove that Spin(9) is not strongly mod 2 homotopy normal in
F4. We use the result of Hamanaka [9]. Set p = 2. Let bj , b

′
j ∈ H∗(ΩSpin(9))

be as in [9]. Put z2 = b1, z4 = b2, z6 = b3 + b2b1, z10 = b′5 + b′4b1, and z14 =
b′7 + b′6b1 + b′5b2 + b′4b3. Then, we have

H∗(ΩSpin(9)) = ∧(z2) ⊗ F2[z4, z6, z10, z14]

as an algebra where |zj | = j and zj is primitive if j �= 4. Let y6 ∈ H∗(Spin(9))
be as in [9]. Then, we have

Co∗(z6 ⊗ y6) = y6 ∗ z6 = z2
6 .

We can easily see that (Ωf)∗(z6) = 0. (For the detail of H∗(ΩF4), see Kono-
Kozima [16].) Then, we can prove the assertion by using the diagram (2.6).

6. Other applications

We close this paper by showing some more applications.
Furukawa in [5] showed that the natural inclusion G2 ↪→ F4 is not strongly

mod 2 homotopy normal by calculating Samelson products of homotopy groups.
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Then, Kudou and Yagita in [20] showed that G2 ↪→ F4 is not mod 2 homotopy
normal by using the Morava K-theory. We can reprove this result by using the
relation

Co∗(b22 ⊗ y6) = y6 ∗ b22 = b2
14

in H∗(ΩF4) = H∗(ΩF4; F2) and the diagram (2.3). (For the notation, see
Hamanaka [7].)

Kudou and Yagita in [19] asked whether the natural inclusions G2 ↪→ F4

and Spin(9) ↪→ F4 are mod 3 homotopy normal or not. We showed in Theorem
5.1 that the latter is not mod 3 homotopy normal. We can show that the former
is also not mod 3 homotopy normal. In fact, we have the following theorem.

Theorem 6.1. Set p = 3. Let f : H → G be a homomorphism of Lie
groups where H is compact and connected, π1(H)(3) = 0, and G = F4, E6,
or E7. If f∗H3(G) �= 0, if H∗(H; Z) is 3-torsion free, and if QH7(H; Q) =
QH19(H; Q) = 0, then f is not mod 3 homotopy normal.

We can prove this theorem by using the relation y2
8 ∗ t2 = ±t36 in H∗(ΩG)

and the diagram (2.2). (For the notation, see Hamanaka-Hara [10].) Also we
have the following theorem.

Theorem 6.2. Set p = 3. Let f : H → E8 be a homomorphism of Lie
groups where H is compact and connected, and π1(H)(3) = 0. If f∗H3(E8) �= 0,
if H∗(H; Z) is 3-torsion free, and if QH23(H; Q) = 0, then f is not mod 3
homotopy normal.

We can prove this theorem by using the relation y20∗t2 = ±t22 in H∗(ΩE8)
and the diagram (2.2). (For the notation, see [10].) For example, SU(2), SU(3),
Spin(4), and G2 are not mod 3 homotopy normal in E8.
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