G-complexes with a compatible CW structure

By
Matija Cencelj, Neža Mramor Kosta and Aleš Vavpetič*

Abstract

If G is a toral group, i.e. an extension of a torus by a finite group, and X is a G-CW complex we prove that there exists a G-homotopy equivalent CW complex Y with the property that the action map $\rho: G \times$ $Y \rightarrow Y$ is a cellular map.

1. Formulation of the result

Let G be a compact Lie group. A G-cell of dimension n is a space of the form $G / H \times D^{n}$, where H is a closed subgroup of G and D^{n} is an n-cell. A G - $C W$ complex X (or an equivariant $C W$ complex in the terminology of [9]) is constructed by iterated attaching of G-cells. It is the union of G-spaces $X^{(n)}$ such that $X^{(0)}$ is a disjoint union of G-cells of dimension 0 , i.e. orbits G / H, and $X^{(n+1)}$ is obtained from $X^{(n)}$ by attaching G-cells of dimension $n+1$ along equivariant attaching maps $G / H \times \partial D^{n+1} \rightarrow X^{(n)}$. The space $X^{(n)}$, which is called the n-skeleton of X, is thus the union of all G-cells of dimension at most n (the topological dimension of the space $X^{(n)}$ is in general greater than n). For basic facts about G-complexes see the original papers of Matumoto [6] and Illman [4] or the exposition in [9].

For discrete groups G it is well known that every G-CW complex is also a CW complex with a cellular action of G (this follows for example from [9, Propositon 1.16, p. 102]). For non-discrete groups, Illman [5] gave an example showing that a G-CW complex X does not always admit a CW decomposition, compatible with the given G-CW decomposition, and proved that there always exists a homotopy equivalent CW complex Y which is finite if X is a finite G-complex.

In this paper we consider the following problem: given a G-CW complex X, does there exist a G-space Y, G-homotopy equivalent to X, with a CW decomposition such that the action $\rho: G \times Y \rightarrow Y$ is a cellular map with respect to some decomposition of G. The existence of such a Y is interesting from the point of view of equivariant homology and cohomology. For example, Greenlees

[^0]and May showed that for some groups G the generalized Tate cohomology defined in [3] can be calculated from the CW decomposition of Y. Also, the Borel equivariant cohomology $H_{G}^{*}(X)=H^{*}\left(E G \times_{G} X\right)$ of a G-CW complex X can be computed using the cellular cohomology of the CW complex Y which is G-homotopy equivalent to $E G \times_{G} X$.

For a general compact Lie group G it is not known if every G-CW complex is G-homotopy equivalent to a CW complex Y with the required properties. Greenlees and May [3, Lemma 14.1] gave a construction of Y for any $S O(2)-\mathrm{CW}$ complex X. For non-abelian groups, the construction of Y is more difficult, since the fixed point sets $(G / H)^{K}$ of actions of subgroups $K<G$ on the orbits G / H can be nontrivial. In [7] the original proof for $G=S O(2)$ was generalized to the two non-abelian 1-dimensional compact Lie groups, the orthogonal group $O(2)$ and the continuous quaternionic group $N_{S U(2)} T$. In [1] a sufficient condition for the existence of Y in the non-commutative case was identified and it was shown that the group $S U(2)$ satisfies this condition. Here we consider general toral groups, i.e. groups G which are extensions

of a torus T over a finite group F. The two groups in [7] are both toral groups, but there the construction of Y rests on a property of these two groups which is satisfied only for a few particular groups G. It is not satisfied for any group G containing a copy of S_{7}, the symmetric group on 7 letters [1], and in particular for a general toral group, since a toral group may well contain a copy of S_{7}. We prove

Theorem 1.1. For any toral group G and any $G-C W$ complex X, there exists a G-homotopy equivalent $C W$ complex Y with a cellular action of G.

The construction of the complex Y is similar to the construction of Greenlees and May for $G=S O(2)$, generalized to the non-abelian case $G=S U(2)$ in [1]. It requires the existence of a CW decomposition of every orbit G / H such that first, the action $\rho: G \times G / H \rightarrow G / H$ is cellular with respect to some given decomposition of G, and second, the fixed point set $(G / H)^{K}$ of the natural action of K on G / H is a subcomplex for every $K<G$. More precisely, since the orbit type of a cell is determined only up to the conjugacy type of the group H, it suffices to show that there exists a family of subgroups \mathcal{K}, containing at least one representative from every conjugacy class of subgroups of G, and a CW decomposition of every $G / H, H \in \mathcal{K}$, such that the action $G \times G / H \rightarrow G / H$ is a cellular map and every fixed point set $(G / H)^{K}, K \in \mathcal{K}$, is a subcomplex of G / H. In the terminology of [1], such a family \mathcal{K} is a good representative family of subgroups. In Section 2 we consider the case where G is a torus. In this case the situation is simpler, since conjugation in an abelian group is trivial. This implies first, that the only good representative family \mathcal{K} is the family of all subgroups of G, and second, that the fixed point sets $(G / H)^{K}=\left\{g H \mid g^{-1} K g \subset H\right\}$ are either the whole space G / H (if $\left.K<H\right)$ or empty, and therefore automatically subcomplexes of G / H. Therefore it suffices
to give an explicit description of decompositions of orbits $G / H, H<G$, such that the natural action of G with the standard decomposition is cellular. In Section 3 we find a good representative family \mathcal{K} of subgroups in a general toral group G and extend the decompositions of tori from Section 2 to decompositions of G and of $G / H, H \in \mathcal{K}$ with the required properties. The proof of the theorem now follows from [1, Proposition 1]. Nevertheless, to complete the arguments in the context of this paper, we give a proof of Theorem 1.1 in Section 4.

2. Decompositions of tori

In this section, G is a compact connected abelian group, i.e. a torus $T=$ $(S O(2))^{s}$. We can view T as $\mathbb{R}^{s} / \mathbb{Z}^{s}$, where \mathbb{R}^{s} is identified with the tangent space of T at the identity, or equivalently, as the cube $I^{s} \subset \mathbb{R}^{s}$, (where $I=$ $[0,1])$, with identified parallel sides. Let $\left\{a_{1}, \ldots, a_{s}\right\}$ be the standard basis of \mathbb{R}^{s} and $\pi: \mathbb{R}^{s} \rightarrow T^{s}$ the projection. The standard (product) CW decomposition of T has one 0 -cell $e=\pi(0)=e^{0}$ (the unit of T), s closed 1-cells $e_{i}^{1}=\pi\left(L_{i}^{1}\right)$, where L_{i}^{1} is the 1 -dimensional subspace of \mathbb{R}^{s} spanned by a_{i}, and $\binom{s}{j}$ closed j-cells $e_{J}^{j}=\pi\left(L_{J}^{j}\right)$ for every $j \leq s$, where $J=\left\{i_{1}, \ldots, i_{j}\right\} \subset\{1, \ldots, s\}$ and L_{J}^{j} is the j-dimensional linear subspace spanned by $\left\{a_{i}, i \in J\right\}$. Clearly, every cell of this decomposition is a closed subgroup of T, and a j-cell e_{J}^{j} is the product $e_{J}^{j}=e_{i_{1}}^{1} \cdots e_{i_{j}}^{1}$. Let \mathbf{T} denote the torus T with this standard decomposition.

Figure 1. The standard decomposition \mathbf{T}^{3}

We call a CW decomposition of T linear if every j-cell, $j=0, \ldots, s$, lies on $\pi(L)$, where L is a j-dimensional linear subspace of \mathbb{R}^{s}. Clearly, the standard decomposition \mathbf{T} is linear.

Theorem 2.1. For any closed subgroup $H \leq T$, there exists a linear $C W$ decomposition of T, inducing a $C W$ decomposition on the quotient T / H, such that the actions $\rho: \mathbf{T} \times T \rightarrow T$ and $\rho: \mathbf{T} \times T / H \rightarrow T / H$ are cellular maps.

Proof. Since the quotient map $q: T \rightarrow T / H$ is a homomorphism of groups, every orbit T / H ($H \leq T$ closed) is a compact connected abelian group, i.e. a torus.

A closed subgroup $H<T$ is a product $H=H_{0} \times D$, where $H_{0} \cong T^{r}$ is a torus of dimension $r \leq s$, and $D \cong \mathbb{Z} / n_{1} \times \cdots \times \mathbb{Z} / n_{k}$ is a discrete torus. We first consider the case where $H=H_{0} \cong T^{r}$. The tangent space of H at the identity is a subspace $L \subset \mathbb{R}^{s}$ spanned by vectors $b_{i}=\alpha_{1 i} a_{1}+\cdots+\alpha_{s i} a_{s}, \alpha_{j i} \in$ $\mathbb{Z}, i=1, \ldots, r$. If we imagine the torus as I^{s} with identified parallel sides, then $H=\pi(L)$ consists of finitely many parallel r-dimensional planes inside the cube I^{s}. We cut the cube I^{s} along all possible $(s-1)$-planes which are spanned by one of these planes and any $s-r-1$ basis vectors $a_{i_{1}}, \ldots, a_{i_{s-r-1}}$. Since there are finitely many such hyperplanes this gives a subdivision of I^{s} into convex polyhedra, and since the cuts along parallel sides coincide, this subdivision determines a CW decomposition \tilde{T} of T which is linear and has H as a subcomplex. For every $k \geq 0$, the $(k+r)$-skeleton of \tilde{T} consists of all $(k+r)$-planes in I^{s}, parallel to some $(k+r)$-subspace of \mathbb{R}^{s} spanned by L and by k vectors $\left\{a_{i_{1}}, \ldots, a_{i_{k}}\right\}$.

Figure 2 shows the decomposition \tilde{T}^{2} with respect to the subgroup $H_{3,1}<$ T^{2} generated by the vector $b=3 a_{1}+a_{2} \in \mathbb{R}^{2}$ (in this case $r=1$, so $s-r-1=0$).

Figure 2. The decomposition \tilde{T}^{2} with respect to $H_{3,1}$
The quotient map $T \rightarrow T / H$ is covered by the projection $\mathbb{R}^{s} \rightarrow M$ in the direction of L onto any linear subspace M of \mathbb{R}^{s} spanned by a subset $a_{i_{1}}, \ldots, a_{i_{s-r}}$ of basis vectors such that $M \oplus L=\mathbb{R}^{s}$. This projection maps the subdivision of I^{s} into polyhedra to a subdivision of the unit cube I^{s-r} in M which determines a linear CW decomposition of T / H.

For example, let $H_{1,1,1}$ be the subgroup of T^{3} generated by the vector $b=a_{1}+a_{2}+a_{3} \in \mathbb{R}^{3}$ (in this case $s-r-1=1$). Figure 3 shows the decomposition \tilde{T}^{3} with respect to $H_{1,1,1}$. If M is the complementary subspace to L in \mathbb{R}^{3} spanned by a_{1} and a_{2}, then the projection $\mathbb{R}^{3} \rightarrow M$ in the direction of L maps the cube I^{3} onto the hexagon shown in Figure 4. We can imagine T^{2} as the shaded square I^{2} with identified parallel sides. Thus, the induced decomposition \tilde{T}^{2} has two 2-simplices and projection $\tilde{T}^{3} \rightarrow \tilde{T}^{3} / H_{1,1,1}=\tilde{T}^{2}$

Figure 3. The decomposition of \tilde{T}^{3} with respect to $H_{1,1,1}$

Figure 4. The induced decomposition of the quotient $\tilde{T}^{3} / H_{1,1,1}$
maps three 3 -simplices onto any one of these two 2 -simplices.
Let us prove that the actions of \mathbf{T} on T and on T / H with these decompositions is cellular. In $T=\mathbb{R}^{s} / \mathbb{Z}^{s}$, the product of two points $\pi(x), \pi(y), x, y \in \mathbb{R}^{s}$, equals $\pi(z)$ where $z=x+y$. For any $(k+r)$-cell τ^{k+r} of \tilde{T} and any cell e_{J}^{j} of \mathbf{T}, multiplication in T maps the product $e_{J}^{j} \times \tau^{k+r}$ into the plane in I^{s} spanned by τ^{k+r} and $\left\{a_{i}, i \in J\right\}$, and this is contained in the $(k+r+j)$-skeleton of \tilde{T}. Passing to the quotient, this implies that the product of a j-cell of \mathbf{T} and a k-cell of T / H is in the $(j+k)$-skeleton of T / H, so the action

$$
\rho: \mathbf{T} \times T / H \rightarrow T / H
$$

is a cellular map.
If $H=H_{0} \times D$, where $H_{0} \cong T^{r}$ is a torus and $D=\mathbb{Z} / n_{1} \times \cdots \times \mathbb{Z} / n_{k}$, is a discrete torus, the proof of the proposition follows directly from the following simple lemma, applied to the torus T with the decomposition \tilde{T} and to the torus $T^{\prime}=T^{s-r}$ with the induced decomposition.

Lemma 2.1. Let $T^{\prime}=T / H$ be a torus with a given linear $C W$ decomposition, such that the action of \mathbf{T} is cellular. For every closed discrete subgroup $D<T^{\prime}$ there exists a $C W$ decomposition of T^{\prime} / D such that the induced action of \mathbf{T} on T^{\prime} / D is cellular.

Proof. The projection $T^{\prime} \rightarrow T^{\prime} / D$ can be decomposed into

$$
T^{\prime} \rightarrow T^{\prime} / D_{1}=T_{1} \rightarrow \cdots \rightarrow T_{k-1} / D_{k-1}=T^{\prime} / D
$$

where every group D_{i} is isomorphic to a cyclic group \mathbb{Z} / n_{i}. Let β be a generator of D_{1} and $b=\left(b_{1}, \ldots, b_{s-r}\right)$ a generator of $\pi^{-1} D_{1}$ in \mathbb{R}^{s-r}, where $r=\operatorname{dim} H$. Every component b_{i} is of the form p_{i} / q_{i}, where q_{i} divides the order n_{1} of D_{1}. Let $h: \mathbb{R}^{r-s} \rightarrow \mathbb{R}^{r-s}$ be the linear isomorphism given by

$$
h:\left(x_{1}, \ldots, x_{r-s}\right) \mapsto\left(q_{1} x_{1}, \ldots, q_{r-s} x_{r-s}\right) .
$$

The map h^{-1} induces a subdivision of the unit cube I^{s-r} into ν copies I_{1}, \ldots, I_{ν}, where ν is a multiple of n_{1}. If the original decomposition of I^{s-r} into convex polyhedra arising from the given CW decomposition of T^{\prime} is repeated in each one of these copies, a linear subdivision of I^{s-r} is obtained which induces a D_{1}-invariant CW decomposition of T^{\prime}. Figure 5 illustrates this decomposition of T^{\prime} in the case where $T^{\prime}=T^{3} / H_{1,1,1} \cong T^{2}$ from Figure 4, and the discrete subgroup $D<T^{\prime}$ is generated by $b=(1 / 3,1 / 6) \in \mathbb{R}^{2}$.

The induced CW decomposition of T^{\prime} / D_{1} obtained in this way is linear and clearly has the property that the action of \mathbf{T} is cellular.

In the same way we construct a map $h_{i}: T_{i-1} \rightarrow T_{i-1} / D_{i-1}=T_{i}$ for each $i=1, \ldots, k$. The CW decomposition of T^{\prime} / D induced by $h=h_{k} \circ \cdots \circ h_{1}$ has the required property.

T^{\prime} / D_{1}

Figure 5. The decompositions of T^{\prime} and of T^{\prime} / D in the case where D is the cyclic group $Z / 6$ generated by $b=(1 / 3,1 / 6) \in \mathbb{R}^{2}$

3. Toral groups

In this section G is a toral group, i.e. an extension

$$
T \longrightarrow G \xrightarrow{p} F,
$$

of a torus T over a finite group F. Our aim is to construct suitable CW decompositions of G and of every orbit G / H where H is a member of a good representative family \mathcal{K} of subgroups of G. In order to do this, we first prove

Proposition 3.1. For every toral group G, where $T \rightarrow G \rightarrow F$, there exists a finite subgroup $F^{\prime} \subset G$ such that $p: F^{\prime} \rightarrow F$ is surjective.

Proof. Let p_{1}, \ldots, p_{r} be all primes that divide $|F|$ and let

$$
A=\left(\mathbb{Z}\left[\frac{1}{p_{1}}, \ldots, \frac{1}{p_{r}}\right] / \mathbb{Z}\right)^{s}
$$

The group A is a subgroup of T^{s}. Since $H^{2}(F, A) \cong H^{2}\left(F, T^{s}\right)($ Lemma 3.1) there exists a subgroup B of G which is an extension of A by F. We can write A as the union

$$
A=\cup_{n=1}^{\infty} A_{n}, \quad A_{n}=\left\{x \in A \mid\left(p_{1} \cdots p_{r}\right)^{n} x=0\right\} \subset A
$$

Let $[\phi] \in H^{2}(F, A)$ be an element representing the extension B. Because $\phi: F \times$ $F \rightarrow A$ is a map from a finite set, there exists an n such that $\operatorname{Im} \phi \subset A_{n}$. So $[\phi] \in H^{2}\left(F, A_{n}\right)$ which means that there exists a finite subgroup F^{\prime} of B which is an extension of F by A_{n}.

Lemma 3.1. $\quad H^{2}(F, A) \cong H^{2}\left(F, T^{s}\right)$.
Proof. An exact sequence of groups $A \rightarrow T^{s} \rightarrow T^{s} / A$ induces a long exact sequence

$$
\cdots \rightarrow H^{n-1}\left(F, T^{s} / A\right) \rightarrow H^{n}(F, A) \rightarrow H^{n}\left(F, T^{s}\right) \rightarrow H^{n}\left(F, T^{s} / A\right) \rightarrow \cdots
$$

Let $[\phi] \in H^{n}\left(F, T^{s} / A\right)$. By [2, Corollary 4.2.3], $|F| \cdot[\phi]=0$. There exists a cochain $\psi \in C^{n-1}\left(F, T^{s} / A\right)$ such that $|F| \cdot \phi=\delta(\psi)$. Therefore $\phi=$ $(1 /|F|) \delta(\psi)=\delta((1 /|F|) \psi)$, hence $[\phi]=0$ and $H^{n}\left(F, T^{s} / A\right)=0$.

Next, we generalize the standard decomposition \mathbf{T} to a suitable CW decomposition \mathbf{G} of G with the property that multiplication $\mathbf{G} \times \mathbf{G} \rightarrow \mathbf{G}$ is a cellular map. The basic property of \mathbf{G} is that every product $\left(f_{1}^{\prime} e_{1}^{1} f_{1}\right) \cdots\left(f_{j}^{\prime} e_{j}^{1} f_{j}\right)$, where $f_{i}, f_{i}^{\prime} \in F^{\prime}$ and e_{i}^{1} is a 1 -cell of $\mathbf{T}, i=1, \ldots, j$, is in the j-skeleton $\mathbf{G}^{(j)}$. As a result, the restriction $\left.\mathbf{G}\right|_{T}$ is a subdivision of \mathbf{T}, since every j-cell $e_{J}^{j} \in \mathbf{T}$ is contained in the j-skeleton of \mathbf{G}. In addition to the (subdivided) cells of \mathbf{T}, the j-skeleton $\left(\left.\mathbf{G}\right|_{T}\right)^{(j)}$ contains products of the form

$$
\sigma^{j}=\left(u_{1} f_{1}^{-1} e_{1}^{1} f_{1}\right) \cdots\left(u_{j} f_{j}^{-1} e_{j}^{1} f_{j}\right)=u\left(f_{1}^{-1} e_{1}^{1} f_{1}\right) \cdots\left(f_{j}^{-1} e_{j}^{1} f_{j}\right)
$$

where $u_{i} \in F^{\prime} \cap T, f_{i} \in F^{\prime}, i=1, \ldots, j$, and $u=u_{1} \cdots u_{j}$. Geometrically σ^{j} can be described as the projection $\pi\left(L_{u}^{j}\right)$ of the affine space $L_{u}^{j}=\tilde{u}+L^{j}$ where L^{j} is the tangent space of the subgroup $\left(f_{1}^{-1} e_{1}^{1} f_{1}\right) \cdots\left(f_{j}^{-1} e_{j}^{1} f_{j}\right)$, and $\tilde{u} \in \pi^{-1}(u)$. If we imagine T as the cube I^{s} with identified parallel sides, then every σ^{j} consists of finitely many parallel j-dimensional planes.

The required CW decomposition $\left.\mathbf{G}\right|_{T}$ is constructed by cutting the cube I^{s} along the finitely many planes $\pi\left(L^{s-1}\right)$ corresponding to all possible σ^{s-1}. Since the cuts on parallel sides coincide, this decomposition of I^{s} into convex polyhedra determines a CW decomposition of T, such that every σ_{j} is contained in a union of j-faces, and thus in the j-skeleton. This decomposition is not linear, since L^{s-1} is in general an affine and not a linear subspace of \mathbb{R}^{s}. Nevertheless, multiplication is a cellular map, since the sum $a+b$ of elements $a \in L_{u_{1}}^{j_{1}}$ and $b \in L_{u_{2}}^{j_{2}}$ is in $L_{u_{1} u_{2}}^{j}$, where $j \leq j_{1}+j_{2}$.

The decomposition of T obtained in this way is extended to other components of G in the following way. For every $f \in F^{\prime}$ the map $u \mapsto f u$ is a homeomorphism from T to the component $f T$ which induces a CW decomposition $\left.\mathbf{G}\right|_{f T}=f\left(\left.\mathbf{G}\right|_{T}\right)$ on $f T$. The j-skeleton $\left(\left.\mathbf{G}\right|_{f T}\right)^{(j)}$ is the union of all products $f \sigma^{j}$. If $f_{1} \in F^{\prime} \cap f T$ then $f_{1}=f u, u \in F^{\prime} \cap T$ and $f_{1} \sigma^{j}=f u \sigma^{j}=$ $f\left(\sigma^{\prime}\right)^{j}$ is also in the j-skeleton $\left(\left.\mathbf{G}\right|_{f T}\right)^{(j)}$, so the decompositions of $f T$ obtained from multiplication by two different elements $f, f^{\prime} \in f T$ coincide. Every product $\left(f_{1}^{\prime} e_{1}^{1} f_{1}\right) \cdots\left(f_{j}^{\prime} e_{j}^{1} f_{j}\right)$ is contained in $\mathbf{G}^{(j)}$, since it can be rewritten as $f\left(g_{1}^{-1} e_{1} g_{1}\right) \cdots\left(g_{j}^{-1} e_{j} g_{j}\right), f, g_{i} \in F^{\prime}, i=1, \ldots, j$, and multiplication is clearly cellular.

Example 1. Let $G=N_{S U(2)} T$ be the infinite quaternionic group, which is an extension

$$
T^{1} \longrightarrow G \xrightarrow{p} \mathbb{Z} / 2
$$

We can represent G as the subgroup of $S U(2)$ generated by rotations

$$
T=\left\{r_{\varphi}=\left[\begin{array}{cc}
\alpha & 0 \\
0 & \bar{\alpha}
\end{array}\right], \alpha \in S^{1} \subset \mathbb{C}\right\}<S U(2),
$$

and the element

$$
u=\left[\begin{array}{cc}
0 & i \\
i & 0
\end{array}\right]
$$

Since u is of order 4 in $S U(2)$, it generates a copy of $\mathbb{Z} / 4$, so we let $F^{\prime}=$ $\langle u\rangle \cong \mathbb{Z} / 4$, and $F^{\prime \prime}=F^{\prime} \cap T= \pm I$ (where I denotes the identity matrix in $S U(2)$). We give $T<G$ the common subdivision of the standard decomposition $\mathbf{T}=\left\{e^{0}=I, e^{1}=T\right\}$, and of $-\mathbf{T}$, i.e. $\left\{e_{1}^{0}=I, e_{2}^{0}=-I, e_{1}^{1}=S_{+}^{1}, e_{2}^{1}=S_{-}^{1}\right\}$, and the second component $u T$ the decomposition induced by multiplication by u, i.e. $\left\{e_{3}^{0}=u, e_{4}^{0}=-u, e_{3}^{1}=u S_{+}^{1}, e_{4}^{1}=u S_{-}^{1}\right\}$.

Let \mathcal{K}^{\prime} be any family of closed subgroups, containing precisely one representative of every conjugacy class in G, and define

$$
\mathcal{K}=\left\{f^{-1} K f, K \in \mathcal{K}^{\prime}, f \in F^{\prime}\right\}
$$

The following theorem is an extension of Theorem 2.1 to toral groups.
Theorem 3.1. Let G be a toral group and $H \in \mathcal{K}$. There exists a $C W$ decomposition of the orbit space G / H such that the action $\rho: \mathbf{G} \times G / H \rightarrow G / H$ is cellular and for every $K \in \mathcal{K}$ the fixed point set $(G / H)^{K}$ of the natural action of K on G / H is a subcomplex of G / H.

In the proof of the theorem we will need three additional propositions.
Proposition 3.2. For any two closed subgroups $H, A \leq G$ such that $H \leq A$, and for any given $u \in T$, there exists a $C W$ decomposition of $T /(H \cap T)$ such that $(u A \cap T) /(H \cap T)$ is a subcomplex and the action of T on $T /(H \cap T)$ with the decomposition $\left.\mathbf{G}\right|_{T}$ is cellular.

Proof. Again we imagine the unit component T of G as the cube I^{s} with identified parallel sides. Then $u A \cap T$ is the union of finitely many parallel planes $\left\{\left(u+c_{q}\right)+L_{A} \mid q=1, \ldots, Q\right\}$, where L_{A} is the tangent space of A at the identity. Since $H<A$, the tangent space L_{H} of H is a linear subspace of L_{A}. Let $\left\{b_{i}, i=1, \ldots, r^{\prime}\right\}$ be a basis of L_{A} such that the first r vectors form a basis of L_{H}. We cut the cube I^{s} along all $(s-1)$-planes $\left(u+c_{q}\right)+L_{u_{i}}^{s-1}$, where $L_{u_{i}}^{s-1}=u_{i}+L^{s-1}, u_{i} \in F^{\prime} \cap T$, and L^{s-1} is spanned by any collection of linearly independent vectors containing b_{1}, \ldots, b_{r}, and any $s-r-1$ vectors from the union $\left\{b_{i}, i=r+1, \ldots, r^{\prime}\right\} \cup\left\{f^{-1} a_{i} f, i=1, \ldots, s, f \in F^{\prime}\right\}$, where a_{i} are standard basis vectors. This gives an $(H \cap T)$-invariant decomposition of T which induces a decomposition of $T /(H \cap T)$ such that $(u A \cap T) /(H \cap T)$ is a CW subcomplex, and such that the action of T with the decomposition $\left.\mathbf{G}\right|_{T}$ is cellular.

Let us fix a subgroup $H \in \mathcal{K}$. For any $K \in \mathcal{K}$, let A_{K} denote the intersection

$$
A_{K}=q^{-1}\left((G / H)^{K}\right) \cap T=\left\{u \in T \mid u^{-1} K u<H\right\}
$$

where $q: G \rightarrow G / H$ is the quotient map. Notice that, since conjugation by elements of T preserves components, the set A_{K} is nonempty only for those subgroups K of G, for which $p(K)<p(H)$.

Proposition 3.3. If K is a subgroup of H, then the set A_{K} is a subgroup of T.

Proof. Since conjugation $\varphi_{u}: G \rightarrow G, \varphi_{u}(g)=u^{-1} g u$ by an element $u \in T$ preserves components of G, it follows that for every $u \in T$ and $g \in G$ there exists a $v \in T$ such that $u^{-1} g u=g v$. Let $u, u^{\prime} \in A_{K}$, and $k \in K$. Then there exist $v, v^{\prime} \in T$ such that $u^{-1} k u=k v \in H$ and $\left(u^{\prime}\right)^{-1} k u^{\prime}=k v^{\prime} \in H$. Then

$$
\left(u u^{\prime}\right)^{-1} k\left(u u^{\prime}\right)=\left(u^{\prime}\right)^{-1}(k v) u^{\prime}=\left(u^{\prime}\right)^{-1} k u^{\prime} v=k v^{\prime} v=\left(k v^{\prime}\right) k^{-1}(k v) .
$$

Since this is a product of three elements from H, it is in H, so $u u^{\prime} \in A_{K}$. The fact that A_{K} is a subgroup follows either from Theorem 3.5 of [8] or from the following simple argument: if $u^{-1} k u=k v \in H$, also $v \in H$, so

$$
k=u k v u^{-1}=u k u^{-1} v \in H
$$

and therefore $u k u^{-1}=k v^{-1} \in H$. Thus $u^{-1} \in A_{K}$ if $u \in A_{K}$.
Proposition 3.4. For a given H, the family $\left\{A_{K} \mid K<H\right\}$ contains at most finitely many different sets.

Proof. Let $K, K^{\prime}<H$ be such that $p(K)=p\left(K^{\prime}\right)$, i.e. K and K^{\prime} have elements in the same components of G. For every $k \in K$ there exists a $k^{\prime} \in K^{\prime}$ such that $k^{\prime}=k v$ for some $v \in T$. Then $v=k^{-1} k^{\prime} \in H \cap T$. For every $u \in T$,

$$
u^{-1} k^{\prime} u=u^{-1} k v u=u^{-1} k u v
$$

so $u^{-1} k^{\prime} u \in H$ precisely when $u^{-1} k u \in H$ which means that $u \in A_{K}$ precisely when $u \in A_{K^{\prime}}$. The set A_{K} thus depends only on the projection $p(K)<F$. Since F is finite, there are only finitely many possibilities for A_{K}.

Proof of Theorem 3.1. Let $K \in \mathcal{K}$ be such that $A_{K} \neq \emptyset$. Pick any element $y \in A_{K}$ and let $\bar{K}=y^{-1} K y<H$. Then

$$
A_{K}=\left\{u \mid u^{-1} K u=u^{-1} y \bar{K} y^{-1} u<H\right\}=\left\{y v \mid v^{-1} \bar{K} v<H\right\}=y A_{\bar{K}} .
$$

By Proposition 3.3, $A_{\bar{K}}$ is a group for every K. By Proposition 3.2 there exists a CW decomposition of $T /(H \cap T)$ such that $A_{K} /(H \cap T)$ is a subcomplex of T and the action of $\left.\mathbf{G}\right|_{T}$ is cellular. By Proposition 3 the family $\left\{A_{\bar{K}} \mid \bar{K}<H\right\}$ is finite. For every $K \in \mathcal{K}$, the number of groups $K^{\prime} \in \mathcal{K}$ which are conjugate to K equals F^{\prime}, so also the family $\left\{A_{K} \mid K \in \mathcal{K}\right\}$ is finite and there exists a common CW subdivision of $T /(H \cap T)$ such that $A_{K} /(H \cap T)$ is a subcomplex for every $K \in \mathcal{K}$, and the action of $\left.\mathbf{G}\right|_{T}$ on $T /(H \cap T)$ is cellular.

This decomposition is extended to other components of G in the same way as the standard decomposition of T : for every $f \in F^{\prime}$, the homeomorphism $h_{f}: T \rightarrow f T, h_{f}(t)=f t$, determines a CW decomposition of $h_{f}(T)$. We let every component of G have the CW decomposition which is the common subdivision of the finitely many decompositions obtained in this way. This
gives an F^{\prime}-invariant CW decomposition of G such that the restriction to T is a subdivision of the decomposition defined above. By construction, the induced decomposition of G / H is F^{\prime} invariant.

For a given $K<H$, the intersection of the fixed point set with the component $f T$ of G is

$$
q^{-1}\left((G / H)^{K}\right) \cap f T=\left\{f u \mid u \in T, u^{-1} f^{-1} K f u<H\right\}=f A_{f^{-1} K f} .
$$

Since the representative family \mathcal{K} is closed under conjugation by elements of F^{\prime}, this implies that $(G / H)^{K}$ is a subcomplex for every K. The proof that the action of G on G / H is cellular is similar to the argument used in the proof of Proposition 2.1.

4. Proof of Theorem 1.1

Now that CW decompositions of the homogeneous spaces $G / H, H \in \mathcal{K}$, are given, the CW complex Y and the G-homotopy equivalence $h: X \rightarrow Y$ is constructed inductively by a similar process as in [3] and [1].

The 0 -skeleton $X^{(0)}$ is a disjoint union of orbits G / H_{i}, where $H_{i} \in \mathcal{K}$. Let Y_{0} be $X^{(0)}$ with the CW decomposition of Theorem 3.1 on every 0-cell G / H_{i}. Then the action $\rho: G \times Y_{0} \rightarrow Y_{0}$ is cellular. For every $K \in \mathcal{K}$ the fixed point set $\left(X^{(0)}\right)^{K}$ is a disjoint union of fixed point sets $\left(G / H_{i}\right)^{K}$ and is a subcomplex. We define the G-homotopy equivalence on the 0 -skeleton by $h_{0}=\mathrm{id}: X^{(0)} \rightarrow Y_{0}$.

By induction we assume that there exists a CW complex Y_{n-1} with a cellular action of G such that for every $K \in \mathcal{K}$ the fixed point set $\left(Y_{n-1}\right)^{K}$ is a subcomplex of Y_{n-1} and a G-homotopy equivalence

$$
h_{n-1}: X^{(n-1)} \rightarrow Y_{n-1} .
$$

For any G-cell $e^{n} \in X^{(n)}$, the attaching G-map $G / H \times S^{n-1} \rightarrow X^{(n-1)}$ is determined by its restriction

$$
\varphi: S^{n-1} \rightarrow\left(X^{(n-1)}\right)^{H}
$$

Let ψ be a non-equivariant cellular approximation of the composition

$$
h_{n-1} \circ \varphi: S^{n-1} \rightarrow\left(Y_{n-1}\right)^{H} .
$$

Since the action of G on Y_{n-1} is cellular, the G-extension

$$
\tilde{\psi}: G / H \times S^{n-1} \rightarrow Y_{n-1}
$$

of ψ is also cellular, and the space

$$
Y_{n}=\coprod_{e_{i}^{n} \in X^{(n)}}\left(G / H_{i} \times D^{n}\right) \cup_{\amalg \tilde{\psi}_{i}} Y_{n-1}
$$

is a CW complex with a cellular action of G. For every $K \in \mathcal{K}$, the fixed point set $\left(Y_{n}\right)^{K}$ is the disjoint union of subcomplexes $\left(G / H_{i}\right)^{K}$ glued to the
subcomplex $\left(Y_{n-1}\right)^{K}$ along the cellular map $\tilde{\psi}$ and is a subcomplex. The G homotopy $h_{n}: Y_{n} \rightarrow X_{n}$ is obtained by extending the map h_{n-1} over the G-cells one by one. In the direct limit we obtain the desired CW complex Y and G-homotopy equivalence h.

Remark. The class of toral groups contains all normalizers of maximal tori $N T$ of compact Lie groups (including both 1-dimensional groups treated in [7]), and it might be possible to use our Theorem 1.1 to prove a similar theorem for general compact Lie groups. Nevertheless, as the example of $S U(2)$ in [1] shows, the step from $N T$ to G in a general compact Lie group is nontrivial. It seems more likely that there exists a compact Lie group for which the statement of Theorem 1.1 does not hold.

Faculty of Education
University of Ljubljana Kardeljeva ploščad 16
and Institute of mathematics
Physics and Mechanics
Jadranska 19
SI-1000 Ljubluana, Slovenia
e-mail: matija.cencelj@imfm.uni-lj.si
Faculty of Computer
and Information Science
University of Ljubljana
TRŽAŠKA 25
and Institute of mathematics
Physics and Mechanics
Ladranska 19
SI-1000 Ljubluana, Slovenia
e-mail: neza.mramor-kosta@fri.uni-lj.si
Faculty of Mathematics and Physics
University of Luubljana
and Institute of mathematics
Physics and Mechanics
Jadranska 19
SI-1000 Ljubljana, Slovenia
e-mail: ales.vavpetic@fmf.uni-lj.si

References

[1] M. Cencelj and N. Mramor Kosta, CW decompositions of equivariant complexes, Bull. Austral. Math. Soc. 65 (2002), 45-53.
[2] L. Evens, The cohomology of groups, Oxford University Press, New York, 1991.
[3] J. P. C. Greenlees and J. P. May, Generalized Tate cohomology, Mem. Amer. Math. Soc. 113-543, AMS, Providence, 1995.
[4] S. Illman, Equivariant singular homology and cohomology for actions of compact Lie groups, In: Proceedings of the Second Conference on Compact Transformation Groups (Univ. of Massachusetts, Amherst, 1971), Lecture Notes in Math. 298, Springer-Verlag, 1972, pp. 403-415.
[5] S. Illman, Restricting the transformation group in equivariant CW complexes, Osaka J. Math. 27 (1990), 191-206.
[6] T. Matumoto, On G-CW complexes and a theorem of J.H.C. Whitehead, J. Fac. Sci. Univ. Tokyo Sect. 1A Math. 18 (1971), 109-125.
[7] J. A. Perez, Substitutional lemma for G-spaces of 1-dimensional groups, Glasgow Math. J. 38 (1996), 215-220.
[8] W. Ruppert, Compact semitopological semigroups: an intrinsic theory, Lecture Notes in Math. 1079, Springer, Berlin, 1984.
[9] T. tom Dieck, Transformation Groups, Walter de Gruyter, BerlinNewYork, 1987.

[^0]: Received April 26, 2002
 Revised October 25, 2002
 *The authors were supported in part by the Ministry for Education, Science and Sport of the Republic of Slovenia Research Program No. 101-509.

