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A conditional limit theorem for generalized
diffusion processes

By

Zenghu Li, Tokuzo Shiga and Matsuyo Tomisaki∗

Abstract

Let X = {X(t) : t ≥ 0} be a one-dimensional generalized diffu-
sion process with initial state X(0) > 0, hitting time τX(0) at the origin
and speed measure m which is regularly varying at infinity with exponent
1/α−1 > 0. It is proved that, for a suitable function u(c), the probability
law of {u(c)−1X(ct) : 0 < t ≤ 1} conditioned by {τX(0) > c} converges
as c → ∞ to the conditioned 2(1 − α)-dimensional Bessel excursion on
natural scale and that the latter is equivalent to the 2(1−α)-dimensional
Bessel meander up to a scale transformation. In particular, the distri-
bution of u(c)−1X(c) converges to the Weibull distribution. From the
conditional limit theorem we also derive a limit theorem for some of
regenerative process associated with X.

1. Introduction

A number of limit theorems of generalized diffusion processes and their
functionals have been obtained in the literature; see e.g. Kasahara (1975),
Minami et al. (1985), Ogura (1989), Stone (1963), Watanabe (1995), and
Yamazato (1990) among others. Let X = {X(t) : t ≥ 0} be a non-negative gen-
eralized diffusion process with speed measure m(dx) which is regularly varying
at infinity with exponent 1/α − 1 > 0. Stone (1963) proved that, for a suit-
able scale function u(c), the distribution of {u(c)−1X(ct) : t ≥ 0} converges in
distribution as c→ ∞ to a 2(1−α)-dimensional Bessel diffusion process on nat-
ural scale, and Kasahara (1975) showed that essentially only Bessel processes
can arise in this kind of limits. See Lamperti (1962, 1972) for discussions of
scale limits leading to more general classes of processes. On the other hand, a
number of conditional limit theorems for Brownian motion and random walks
have been proved which lead to Brownian meander and Brownian excursion
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processes; see e.g. Belkin (1972), Bolthausen (1976), Durrett et al. (1977),
Iglehart (1974), and Shimura (1983). Similar conditional limit theorems for
branching processes have also been studied; see e.g. Athreya and Ney (1972),
Lamperti and Ney (1968), Li (2000) and the references therein.

In this paper, we prove a conditional limit theorem of the generalized
diffusion process X = {X(t) : t ≥ 0}. Suppose that X(0) > 0 and let τX(0) =
inf{t ≥ 0 : X(t) = 0}. We prove that the distribution of {u(c)−1X(ct) : 0 <
t ≤ 1} under P { · |τX(0) > c} converges in distribution as c → ∞ and we
characterize the limit in terms of Bessel excursion and Bessel meander. In
particular, the conditional distribution of u(c)−1X(c) converges to the Weibull
distribution. From the conditional limit theorem we also derive a limit theorem
for some of regenerative processes associated with X. Bessel meanders and their
generalizations have been studied by Yor (1992a,b, 1997).

2. Preliminaries

Let M be the totality of left continuous, non-decreasing functions m :
[0,∞) → [0,∞] with m(0) = 0. For any m ∈ M, set lm = sup{x ≥ 0 : m(x) <
∞}. We shall identify m ∈ M with the measure m on [0,∞) determined by
m([0, x)) = m(x). Note that m({lm}) = ∞ is possible. We sometimes think
m ∈ M as a measure on (−∞,∞). Given m ∈ M, let Em denote its closed
support and let m−1 ∈ M denote its inverse function, that is, m−1(0) = 0
and m−1(x) = sup{y ≥ 0 : m(y) < x} for x > 0. Let M0 be the set of
elements m ∈ M such that 0 ∈ Em. For any given one-dimensional process
X = {X(t) : t ≥ 0} and a point x in its state space we define the hitting time
τX(x) = inf{t ≥ 0 : X(t) = x}.

Let m ∈ M and let B = {B(t) : t ≥ 0} be a one-dimensional Brownian
motion with initial state B(0) = 0 and generator d2/dx2. Let l(t, x) denote the
local time of B. Of course, B and l(t, x) are defined on some probability space
(Ω ,F ,P ). Let

S(x, t) =
∫

[0,∞)

l(t, y − x)m(dy), t ≥ 0, x ∈ IR,(2.1)

and

S−1(x, t) = sup{r : S(x, r) ≤ t}, t ≥ 0, x ∈ IR.(2.2)

For any x ≥ 0 we define

X(x, t) = x+B(S−1(x, t)), t ≥ 0.(2.3)

Then X(x) := {X(x, t) : t ≥ 0,P } is a cádlág strong Markov process in Em,
whose life time is the hitting time at lm. This process is the so-called generalized
diffusion process with speed measurem(dx); see e.g. Kasahara (1975) and Stone
(1963). The process has formal generator d2/dm(x)dx. Its transition function
can be characterized in terms of Krein’s correspondence as follows. Consider
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the integral equations

φ(x, λ) = 1 + λ

∫ x

0

dy

∫
[0,y)

φ(z, λ)m(dz)(2.4)

and

ψ(x, λ) = x+ λ

∫ x

0

dy

∫
[0,y)

ψ(z, λ)m(dz).(2.5)

For each λ > 0, the equations have unique solutions φ(x, λ) and ψ(x, λ) respec-
tively. Furthermore, for each x ≥ 0, both φ(x, λ) and ψ(x, λ) can be extended
to entire functions of λ. The characteristic function h(λ) of m(x) is defined as

h(λ) =
∫ ∞

0

dx

φ(x, λ)2
= lim

x→∞
ψ(x, λ)
φ(x, λ)

(2.6)

(under the conventions 1/∞ = 0 and 1/0 = ∞). The function h(λ) has repre-
sentation

h(λ) = a+
∫

[0,∞)

σ(ds)
λ+ s

, λ > 0,(2.7)

where a = inf{x ≥ 0 : m(x) > 0} and σ(ds) is a Radon measure on [0,∞)
satisfying ∫

[0,∞)

σ(ds)
1 + s

<∞.

The correspondence between m and (a, σ) is one-to-one and known as Krein’s
correspondence. Let p(t, x, y) denote the density with respect to m(dy) of the
transition function of X(x). Then we have

p(t, x, y) =
∫

[0,∞)

e−λtφ(x,−λ)φ(y,−λ)σ(dλ), x ≥ 0, y ≥ 0.(2.8)

We refer the reader to Itô and McKean (1965), Kac and Krein (1974), Kasahara
(1975), Kotani and Watanabe (1982), and Yamazato (1990) for more detailed
explanations of those results.

For m ∈ M0 and for X(x, t) defined by (2.3), let X0(x, t) := X(x, t ∧
τX(x)(0)). Then X0(x) := {X0(x, t) : t ≥ 0,P } is the absorbing barrier gener-
alized diffusion process. It is known that m−1 ∈ M0 has characteristic function
1/λh(λ), which may be represented as

(2.9)
1

λh(λ)
= m(0+) +

1
λlm

+
∫

(0,∞)

σ0(ds)
s(λ+ s)

, λ > 0,

where σ0(ds) is a Radon measure on (0,∞) satisfying∫
(0,∞)

σ0(ds)
s(1 + s)

<∞;
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see Minami et al. (1985; Lemma 3). The transition density of the absorbing
barrier process X0(x) is given by

(2.10) p0(t, x, y) =
∫

(0,∞)

e−λtψ(x,−λ)ψ(y,−λ)σ0(dλ), x > 0, y > 0;

see Minami et al. (1985; (3.17)). Now we have the following

Lemma 2.1. For x ∈ Em, we have τX(x)(0) = S(x, τB(−x)) and
τB(−x) = S−1(x, τX(x)(0)) (a.s.).

Proof. For t > τB(−x) we have l(t,−x) > l(τB(−x),−x). Since 0 ∈ Em,
by (2.1) and the continuity of l(·, ·) we get S(x, t) > σ := S(x, τB(−x)). That
is, τB(−x) is an increasing point of S(x, ·). Therefore, S−1(x, σ) = τB(−x).
This implies that X(x, σ) = B(S−1(x, σ)) + x = 0, and hence τX(x)(0) ≤ σ.
On the other hand, since S(x, ·) is continuous, S−1(x, ·) is strictly increasing.
Then for any t < σ, we have S−1(x, t) < S−1(x, σ) = τB(−x). From this it
follows that X(x, t) = B(S−1(x, t))+x > 0, yielding τX(x)(0) ≥ σ. The second
equality is immediate.

In the sequel, we consider a sequence mn ∈ M0 for n = 0, 1, . . . . Let
Xn(x) and X0

n(x) denote the corresponding generalized diffusion processes, and
let pn(t, x, y) and p0

n(t, x, y) denote their transition densities. We also write ψn,
σ0

n and so on for the corresponding quantities associated with mn. An earlier
version of the following result was proved by Stone (1963). We here present it
in a form which is more convenient for our application in the sequel.

Theorem 2.1. Suppose that Em0 = [0,∞). If Emn
� xn → x0 and

mn(x) → m0(x) for all continuity points x ≥ 0 of m0, then Xn(xn, t) →
X0(x0, t) and X0

n(xn, t) → X0
0 (x0, t) uniformly in t ∈ [0, τX0

0(x0)(0)] (a.s.).

Proof. Let Sn(x, t) be defined by (2.1) with m replaced by mn. Under the
assumption, S0(x0, t) is strictly increasing in t ∈ [0, τB(−x0)] and τB(−x0) is an
increasing point of S(x0, ·), so S−1

0 (x0, t) is continuous in t ∈ [0, τX0(x0)(0)] by
virtue of Lemma 2.1. By (2.1) we have Sn(xn, t) → S0(x0, t) for all t ≥ 0, and
hence S−1

n (xn, t) → S−1
0 (x0, t) for all t ∈ [0, τX0(x0)(0)]. Note that the functions

are non-decreasing, S0(x0, t) is continuous in t ∈ [0,∞) and S−1
0 (x0, t) is contin-

uous in t ∈ [0, τX0(x0)(0)]. Consequently Sn(xn, t) → S0(x0, t) uniformly in t ∈
[0, τB(−x0)] and S−1

n (xn, t) → S−1
0 (x0, t) uniformly in t ∈ [0, τX0(x0)(0)]. Then

the assertions follow from the relations τX0(x0)(0) = τX0
0(x0)(0), Xn(xn, t) =

B(S−1
n (xn, t)) + xn and

X0
n(xn, t) = B(S−1

n (xn, t ∧ τXn(xn)(0))) + xn

= B(S−1
n (xn, t) ∧ τB(−xn))) + xn,

where we have used Lemma 2.1 for the last equality.

Theorem 2.2. Suppose that Em0 = [0,∞) and mn(x) → m0(x) for all
continuity points x ≥ 0 of m0. Then for any t > 0 and a > 0 we have



�

�

�

�

�

�

�

�

A conditional limit theorem 571

lim
n→∞ sup

0<x,y<a

1
xy

|p0
n(t, x, y) − p0

0(t, x, y)| = 0.(2.11)

Proof. By (2.5), for any λ ∈ IR and x2 > x1 > 0 we have

∣∣∣∣ψ(x2, λ)
x2

− ψ(x1, λ)
x1

∣∣∣∣ =
|λ|
x1x2

∣∣∣∣∣x1

∫ x2

x1

dy

∫
[0,y)

ψ(z, λ)m(dz)

− (x2 − x1)
∫ x1

0

dy

∫
[0,y)

ψ(z, λ)m(dz)

∣∣∣∣∣
≤ |λ|
x1x2

[
x1

∫ x2

x1

dy

∫
[0,x2)

|ψ(z, λ)|m(dz)

+ (x2 − x1)
∫ x1

0

dy

∫
[0,x2)

|ψ(z, λ)|m(dz)

]

≤ 2|λ|(x2 − x1)
∫

[0,x2)

|ψ(z, λ)|
z

m(dz)

≤ 2|λ|(x2 − x1)m(x2) cosh
{√

2 |λ|x2m(x2)
}
,

where we have used the inequality

|ψ(x, λ)| ≤ x cosh
{√

2|λ|xm(x)
}
, x ≥ 0, λ ∈ IR;(2.12)

see Ogura (1989; (5.4)). Using these and (2.10) we get∣∣∣∣p0
n(t, x2, y)
x2y

− p0
n(t, x1, y)
x1y

∣∣∣∣
≤

∫
(0,∞)

∣∣∣∣ψn(x2, λ)
x2

− ψn(x1, λ)
x1

∣∣∣∣
∣∣∣∣ψn(y, λ)

y

∣∣∣∣ e−λtσ0
n(dλ)

≤ 2|λ|(x2 − x1)mn(x2)

·
∫

(0,∞)

cosh
{√

2|λ|x2mn(x2)
}

cosh
{√

2|λ|ymn(y)
}

e−λtσ0
n(dλ).

By Ogura (1989; Lemma 5.3) and the symmetry of p0
n(t, ·, ·), for every t >

0 and a > 0 the sequence {(xy)−1p0
n(t, x, y)} is equi-continuous and uni-

formly bounded in (x, y) ∈ (0, a] × (0, a]. Thus there is a subsequence {nk} ⊂
{n} such that (xy)−1p0

nk
(t, x, y) converges to some function q(t, x, y). Since

p0
n(t, x, y) → p0

0(t, x, y) by Ogura (1989; Theorem 2.1), we must have q(t, x, y) =
(xy)−1p0

0(t, x, y), yielding the desired result.

3. Conditional limit theorem

Given an interval I ⊂ IR, let D(I) denote the set of cadlag paths from I to
IR. We topologize D(I) by the convention that wn → w0 in D(I) if and only if
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wn(t) → w0(t) uniformly in t ∈ [a, b] for each bounded closed interval [a, b] ⊂ I.
Let C(I) denote the subspace of D(I) comprising of continuous paths. Fix a
function m ∈ M0 that is regularly varying at infinity and assume that

m(x) ∼ x1/α−1K(x), x→ ∞,(3.1)

for a constant 0 < α < 1 and a slowly varying function K(x). Let u(·) denote
the inverse function x1/αK(x). It is easy to check that u(x) ∼ xαL(x) for some
slowly varying function L(x). If we defineX(x, t) by (2.3), then Xc := {Xc(t) ≡
u(c)−1X(x, ct) : t ≥ 0,P } is a generalized diffusion process with initial state
u(c)−1x and speed measure mc(x) := c−1u(c)m(u(c)x). Observe that

(3.2) lim
c→∞mc(x) = lim

u→∞[u1/αK(u)]−1u1/αx1/α−1K(ux) = x1/α−1, x ≥ 0.

The generalized diffusion process X0 = {X0(t) : t ≥ 0,P } with speed measure
m0(dx) := (1/α− 1)x1/α−2dx is called a reflecting 2(1−α)-dimensional Bessel
diffusion process on natural scale. Indeed, X0 has generator d2/dm0dx = α(1−
α)−1x2−1/αd2/dx2 so that {√2α(1 − α)X1/2α

0 (t) : t ≥ 0,P } is a standard
2(1 − α)-dimensional Bessel diffusion with reflecting barrier 0. We shall also
need to consider the generalized diffusion processes with absorbing boundary
condition at the origin. For any c ≥ 0, let Pc(t) denote semigroup of Xc and
let P 0

c (t) denote semigroup of the corresponding absorbing barrier processes.

Lemma 3.1. The transition function P 0
0 (t, x, dy) has density

(3.3)

p0
0(t, x, y) =

α
√
xy

t
exp

{
−α(1 − α)(x1/α + y1/α)

t

}
Iα

(
2α(1 − α)(xy)1/2α

t

)

with respect to m0(dy), where

Iα(z) =
∞∑

n=0

(z/2)2n+α

n!Γ (α+ n+ 1)
.(3.4)

Proof. It is not hard to check that Y0(t) := 2α(1 − α)X0(t)1/α is the
squared Bessel process generated by 2xd2/dx2 + 2(1 − α)d/dx with absorbing
boundary condition at zero. By Borodin and Salminen (1996; p. 117), Y0(t)
has transition function

Q0
0(t, x, dy) =

1
2t

exp
{
−x+ y

2t

}
Iα

(√
xy

t

) (
x

y

)α/2

dy, t, x, y > 0.

Then (3.3) follows by a simple transformation.

Let us describe a σ-finite Markovian measure associated with P 0
0 (t) which

plays an important role in the study of our conditional limit theorems. For
t > 0 and y > 0, let κt(dy) = κt(y)m0(dy), where

(3.5) κt(y) =
αα+1(1 − α)αy

Γ (1 + α)tα+1
exp

{
−α(1 − α)

t
y1/α

}
.
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It is simple to check that

κt(y) = lim
x↓0

x−1p0
0(t, x, y), t > 0, y > 0,(3.6)

and (κt)t>0 form an entrance law for P 0
0 (t), that is κs+t = κsP

0
0 (t) for all

s > 0 and t > 0. By the general theory of Markov processes, there is a σ-finite
measure Q on C(0,∞) such that

Q{w(t1) ∈ dx1, w(t2) ∈ dx2, . . . , w(tn) ∈ dxn, tn < τw(0)}
= κt1(dx1)P 0

0 (t2 − t1, x1, dx2) · · ·P 0
0 (tn − tn−1, xn−1, dxn)

for 0 < t1 < t2 < · · · and x1, x2, · · · > 0. Indeed, for Q-almost all paths
w ∈ C(0,∞) we have w(0+) = 0, τw(0) < ∞ and w(t) ≡ w(t ∧ τw(0)), where
τw(0) = inf{t > 0 : w(t) = 0}. In the theory of diffusion processes, Q is known
as the excursion law of the α-Bessel diffusion; see e.g. Biane and Yor (1987)
and Pitman and Yor (1992, 1998) for some properties of the excursion law.

Lemma 3.2. Suppose x > 0 and let xc = u(c)−1x. Then for each t > 0,
we have x−1

c P 0
c (t, xc, ·) → κt(·) weakly as c→ ∞.

Proof. Let p0
c(t, x, y) denote the density of P 0

c (t, x, dy) with respect to
mc(dy). For b > a > 0 we may appeal Theorem 2.2 and (3.6) to see that

lim
c→∞ x−1

c P 0
c (t, xc, [a, b]) = lim

c→∞

∫ b

a

x−1
c p0

c(t, xc, y)mc(dy)

=
∫ b

a

κt(y)m0(dy) = κt([a, b]).

By Yamazato (1990; Theorem 4), we have

P 0
c (t, xc, (0,∞)) ∼ [α(1 − α)]αx

Γ (1 + α)(ct)αL(ct)

∼ [α(1 − α)]αxc

Γ (1 + α)tα
= κt(0,∞)xc, c→ ∞.

(3.7)

Then x−1
c P 0

c (t, xc, ·) → κt(·) weakly as c→ ∞.

Lemma 3.3. Suppose {fc : c ≥ 0} is a bounded family of Borel func-
tions on [0,∞) such that fc(xc) → f0(x) whenever c → ∞ and xc → x. If
{pc : c ≥ 0} is a family of Borel probabilities on [0,∞) such that pc → p0

weakly as c→ ∞, then

lim
c→∞

∫
[0,∞)

fc(x)pc(dx) =
∫

[0,∞)

f0(x)p0(dx).(3.8)

Proof. By Skorokhod’s result, we can construct a family of random vari-
ables {ξc : c ≥ 0} such that ξc has distribution pc and ξc → ξ0 as c→ ∞ (a.s.).
Then the assumption implies that fc(ξc) → f0(ξ0) as c → ∞ (a.s.), and (3.8)
follows by bounded convergence theorem.
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Theorem 3.1. For each x > 0, the distribution on D(0, 1] of the rescaled
processes {u(c)−1X(x, ct) : 0 < t ≤ 1} under P {·|τX(x)(0) > c} converges as
c→ ∞ to Q0 := Q{·|τw(0) > 1}.

Proof. Let P c
x denote the distribution on D[0,∞) of the generalized dif-

fusion process with initial state x ≥ 0 and speed measure mc(dy). Suppose
that 0 < r < 1 and F (·) is a continuous function on D[r, 1]. By (3.7) and the
Markov property,

lim
c→∞E{F ((Xc(t))r≤t≤1)|τX(x)(0) > c}

= lim
c→∞ P {τX(x)(0) > c}−1E{F ((Xc(t))r≤t≤1); τX(x)(0) > c}

= lim
c→∞

Γ (1 + α)u(c)
[α(1 − α)]αx

∫ ∞

0

P 0
c (r, u(c)−1x, dy)

· P c
y{F ((w(t− r))r≤t≤1); τw(0) > 1 − r}

=
1

κ1(0,∞)

∫ ∞

0

κr(dy)P 0
y{F ((w(t− r))r≤t≤1); τw(0) > 1 − r}

=
1

κ1(0,∞)
Q{F ((w(t))r≤t≤1); τw(0) > 1},

where we also used Theorem 2.1 and Lemmas 3.2 and 3.3 for the third equality.

Corollary 3.1. For each x > 0, the distribution of u(c)−1X(x, c) under
P {·|τX(x)(0) > c} converges as c→ ∞ to the Weibull distribution

(3.9) κ1(0,∞)−1κ1(dy) = (1 − α)y1/α−1 exp{−α(1 − α)y1/α}dy, y > 0.

From Corollary 3.1 and a theorem of Mitov et al. (1996) we can deduce a
limit theorem for some kind of regenerative processes associated with general-
ized diffusions. Let G be a probability measure on (0,∞) such that

g :=
∫

(0,∞)

yG(dy) <∞.(3.10)

Let Xi = {Xi(t) : t ≥ 0}, i = 1, 2, . . . , be a sequence of i.i.d. generalized
diffusions with initial distribution G and speed measure m(dy), and let ξi, i =
1, 2, . . . , be a sequence of i.i.d. non-negative random variables with Eξi < ∞.
Assume that the two families are defined on the same probability space and
are independent of each other. Let σ0 = 0 and let

σn =
n∑

i=1

(τi + ξi), n = 1, 2, . . . ,

where τi = τXi
(0). Then σn → ∞ as n → ∞ (a.s.). The regenerative process

{Y (t) : t ≥ 0} is defined by

Y (t) = Xn((t− σn−1) ∧ τn), σn−1 ≤ t < σn.(3.11)
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Corollary 3.2. For each x ≥ 0,

lim
t→∞P {u(t)−1Y (t) ≤ x}

= π−1 sin(πα)
∫ 1

0

y−α(1 − y)α−1(1 − exp{−α(1 − α)x1/αy−1})dy.

Proof. With Corollary 3.1 in hand, the only thing we need to do is to
check the tail of the hitting time τX(x)(0) is of the right order and to ap-
peal the general result of Mitov et al. (1996, 2001). Observe that u(x, λ) :=
E exp{−λτX(x)(0)} satisfies

d

dm(x)
d+

dx
u(x, λ) = λu(x, λ), u(0, λ) = 1, x ≥ 0, λ > 0,(3.12)

where d+/dx denotes the right derivative. But, it is well-known that

u(x, λ) = φ(x, λ) − h(λ)−1ψ(x, λ), x ≥ 0, λ > 0;(3.13)

see e.g. Itô and McKean (1965; p. 129). By (2.4), (2.5), and (3.13) we get

d+

dx
u(0, λ) = λm(0+) − h(λ)−1, λ > 0.

Combining this with (3.12) we get

u(x, λ) = 1 − h(λ)−1x+ λ

∫ x

0

dy

∫
[0,y)

u(z, λ)m(dz), x ≥ 0, λ > 0.

Then it is easy to see that 0 ≤ h(λ)[1 − u(x, λ)] ≤ x, and h(λ)[1 − u(x, λ)]
→ x as λ→ 0. Now the dominated convergence theorem yields

h(λ)[1 − E exp{−λτi}] =
∫

(0,∞)

h(λ)[1 − u(x, λ)]G(dx) → g, λ→ 0.

Using Kasahara (1975; Theorem 2) we get

1 − E exp{−λτi} ∼ g

h(λ)
∼ [α(1 − α)]αΓ (1 − α)gλα

Γ (1 + α)L(1/λ)
, λ→ 0.

By Tauberian theorem,

P {τi > c} ∼ [α(1 − α)]αg
Γ (1 + α)cαL(c)

, c→ ∞;

see e.g. Feller (1971; p. 447). Then the result follows immediately from Corol-
lary 3.1 and Mitov et al. (1996; Theorem 1) (see also Mitov et al. (2001; The-
orem 2.1)).

Note that the three limit distributions obtained above are universal, in
the sense that they only depend on the constant 0 < α < 1 rather than the
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explicit form of the speed measure. In particular, the Weibull distribution came
from the conditional excursion law of the Bessel diffusion. These are rather
similar to the results for critical branching processes; see e.g. Athreya and Ney
(1972), Lamperti and Ney (1968), and Li (2000). It would be interesting if
one could establish conditional limit theorems for generalized diffusions under
the assumption (3.1) with α = 1, which would correspond to the theorems for
sub-critical branching processes and lead to limit laws depending on the speed
measure explicitly; see e.g. Li (2000; Theorems 4.1 and 4.3).

4. Conditioned Bessel excursion and Bessel meander

In this section, we give a characterization for the limit law Q0 in Theorem
3.1 in terms of stochastic differential equation. From this characterization we
get that Q0 is in fact the law of the 2(1 − α)-dimensional Bessel meander on
natural scale. Let us define a conservative inhomogeneous transition semigroup
(Qs,t)0≤s≤t≤1 on the state space (0,∞) by

Qs,t(x, dy) =
(
P 0

0 (1 − s)1(x)
)−1

P 0
0 (1 − t)1(y)P 0

0 (t− s, x, dy).(4.1)

In view of (3.6) and (4.1), we can extend (Qs,t)0≤s≤t≤1 to a transition semi-
group on [0,∞) by continuity. It is easy to check that Q0 coincides with the
distribution on C(0, 1] of a Markov process with semigroup (Qs,t)0≤s≤t≤1 and
initial state zero. The following result is already known; see Yor (1992a, Section
2) for a detailed discussion of the result and its variations. We here include a
short proof of the result based on Lemma 3.1 for completeness.

Lemma 4.1. For t > 0 and x ≥ 0, we have P 0
0 (t)1(x) = Γ (α)−1F (t, x),

where

F (t, x) =
1

(2t)α

∫ 2α(1−α)x1/α

0

uα−1e−u/2tdu.(4.2)

Proof. By Lemma 3.1 we have

P 0
0 (t)1(x) =

(1 − α)
t

√
x exp

{
−α(1 − α)

t
x1/α

} ∞∑
n=0

[α(1 − α)x1/2α]2n+α

n!Γ (n+ α+ 1)t2n+α

·
∫ ∞

0

y(n+1)/α−1 exp
{
−α(1 − α)

t
y1/α

}
dy

=
(1 − α)

t

√
x exp

{
−α(1 − α)

t
x1/α

}

·
∞∑

n=0

[α(1 − α)x1/2α]2n+α

n!Γ (n+ α+ 1)t2n+α
· n!αtn+1

[α(1 − α)]n+1

= exp
{
−α(1 − α)

t
x1/α

} ∞∑
n=0

[α(1 − α)]n+αxn/α+1

Γ (n+ α+ 1)tn+α

=
1

Γ (α)

∫ α(1−α)x1/α/t

0

zα−1e−zdz,
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where we have used the equality

e−y
∞∑

n=0

yn+α

Γ (n+ α+ 1)
=

1
Γ (α)

∫ y

0

zα−1e−zdz,

which can be checked by differentiating both sides in y ≥ 0.

Theorem 4.1. Let {B(t) : 0 ≤ t ≤ 1} be a standard Brownian motion
(with generator 2−1d2/dx2) and let {Z(t) : 0 ≤ t < 1} be the solution to

dZ(t) =
(2α)1/2Z(t)1−1/2α

(1 − α)1/2
dB(t)

+
2Z(t)1−1/α

(1 − α)H(t, Z(t))
exp

{
−α(1 − α)Z(t)1/α

1 − t

}
dt

(4.3)

with Z(0) = 0, where
(4.4)

H(t, x) =
1

[2α(1 − α)]αx

∫ 2α(1−α)x1/α

0

uα−1e−u/2(1−t)du, 0 ≤ t < 1, x > 0.

Then the distribution of {Z(t) : 0 ≤ t < 1} on C([0, 1)) coincides with Q0.

Proof. Fix r > 0 and x > 0 and let X0
r (x, t) = X(x, (t− r)∧ τX(x)(0)) for

t ≥ r, where X(x) = {X(x, t) : t ≥ 0,P } is the generalized diffusion process
defined by (2.3) with speed measure m0(dy) := (1/α− 1)y1/α−2dy. Let

ρ(t) = F (1, x)−1F (1 − t,X0
r (x, t)), r ≤ t < 1.(4.5)

Since limt↓0 F (t, x) = Γ(α) if x > 0, = 0 if x = 0, we have

ρ(1) : = lim
t↑1

ρ(t)

= F (1, x)−1Γ(α)1{X0
r (x,1)>0}

= F (1, x)−1Γ(α)1{τX(x)(0)>1−r} a.s.

We set Qr,x(dω) = ρ(1, ω)P (dω). Then {X0
r (x, t) : r ≤ t < 1} under the

probability measure Qr,x is a Markov process with semigroup (Qs,t)r≤s≤t<1.
Recall Lemma 2.1 and observe that

S(x, t) =
∫ ∞

0

l(t, y − x)m0(dy) =
1 − α

α

∫ t

0

(B(s) + x)1/α−2ds

for t ≤ τB(−x) and

S−1(x, t) =
α

1 − α

∫ t

0

(B(S−1(x, u)) + x)2−1/αdu =
α

1 − α

∫ t

0

X(x, u)2−1/αdu
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for t ≤ τX(x)(0). Using Lemma 2.1 again one sees that

X0
r (x, t) = x+B(S−1(x, (t− r) ∧ τX(x)(0)))

= x+B(S−1(x, (t− r)) ∧ τB(−x)).
Therefore {X0

r (x, t) : r ≤ t < 1} is a continuous martingale with quadratic
variation process

〈X0
r (x, ·)〉(t) =

2α
1 − α

∫ (t−r)∧τX(x)(0)

0

X(x, s)2−1/αds

=
2α

1 − α

∫ t∧τX0
r(x)(0)

r

X0
r (x, s)2−1/αds.

By Itô’s formula

dρ(t) = F (1, x)−1F ′
x(1 − t,X0

r (x, t))dX0
r (x, t), r ≤ t < 1,(4.6)

where

F ′
x(1 − t, x) =

1
α

[
α(1 − α)

1 − t

]α

exp
{
−α(1 − α)

1 − t
x1/α

}
, r ≤ t < 1.

It follows that

ρ(t)−1d〈ρ,X0
r (x, ·)〉(t) = F (1 − t,X0

r (x, t))−1F ′
x(1 − t,X0

r (x, t))d〈X0
r (x)〉(t)

=
2

1 − α

[
α(1 − α)

1 − t

]α

X0
r (x, t)2−1/αF (1 − t,X0

r (x, t))−1

· exp
{
−α(1 − α)

1 − t
X0

r (x, t)1/α

}
1{t<τX0

r(x)(0)}dt.

By the relation

F (1 − t, x) =
[α(1 − α)]αx

(1 − t)α
H(t, x),(4.7)

we have

ρ(t)−1d〈ρ,X0
r (x, ·)〉(t) =

2
1 − α

X0
r (x, t)1−1/αH(t,X0

r (x, t))−1

· exp
{
−α(1 − α)

1 − t
X0

r (x, t)1/α

}
1{t<τX0

r(x)(0)}dt.

We note that {ρ(t) : r ≤ t ≤ 1} is continuous martingale. Then we may appeal
Girsanov’s formula to see that

dX0
r (x, t) = dM(t) +

2
1 − α

X0
r (x, t)1−1/αH(t,X0

r (x, t))−1

· exp
{
−α(1 − α)

1 − t
X0

r (x, t)1/α

}
1{t<τX0

r(x)(0)}dt,
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where {M(t) : r ≤ t < 1} under Qr,x is a continuous martingale with quadratic
variation process

〈M〉(t) =
2α

1 − α

∫ t∧τX0(x)(0)

r

X0
r (x, s)2−1/αds;

see e.g. Chung and Williams (1990; Theorem 9.8). But, Qr,x{τX0
r(x) > 1} = 1,

so {X0
r (x, t) : r ≤ t < 1} under Qr,x satisfies equation (4.3) on the time interval

[r, 1). Now the desired result is immediate since Q0{w(r) > 0} = 1 for each
0 < r < 1.

Recall that the 2(1 − α)-dimensional Bessel meander {Mα(t) : 0 ≤ t ≤ 1}
is defined by

Mα(t) =
1√

1 − gα
R−α(gα + t(1 − gα)), 0 ≤ t ≤ 1,(4.8)

where {R−α(t) : t ≥ 0} is the 2(1 − α)-dimensional Bessel process starting
at zero and gα = sup{0 ≤ t ≤ 1 : R−α(t) = 0}; see Yor (1992b, p. 42). Let
{Xα(t) : 0 ≤ t ≤ 1} be the squared 2(1+α)-dimensional Bessel process starting
at zero, which is governed by the equation

dX(t) = 2
√
X(t)dB(t) + 2(1 + α)dt, X(0) = 0,(4.9)

where {B(t) : 0 ≤ t ≤ 1} is a standard Brownian motion.
It is known that the processes {Mα(t) : 0 ≤ t ≤ 1} and {Xα(t) : 0 ≤ t ≤ 1}

are related in the following way: For any bounded measurable function F on
C([0, 1)),

(4.10) E{F (M2
α(t) : 0 ≤ t ≤ 1)} = c(α)E{F (Xα(t) : 0 ≤ t ≤ 1)Xα(1)−α},

where c(α) > 0 is a constant; see Yor (1992b, p. 42).
Using those and Theorem 4.1 we now prove the following

Theorem 4.2. Let {Z(t) : 0 ≤ t < 1} be defined by (4.3). Then the
probability law of {√2α(1 − α)Z(t)1/2α : 0 ≤ t ≤ 1} coincides with the 2(1−α)-
dimensional Bessel meander {Mα(t) : 0 ≤ t ≤ 1}.

Proof. Let Y (t) = 2α(1 − α)Z(t)1/α. By Itô’s formula, we have

dY (t) = 2
√
Y (t)dB(t) + 2(1 − α)dt+

4Y (t)V ′
x(t, Y (t))

V (t, Y (t))
dt,(4.11)

where

V (t, x) =
∫ x

0

uα−1e−u/2(1−t)du, 0 ≤ t < 1, x ≥ 0.(4.12)

Let

N(t) = exp
{∫ t

0

b(s,X(s))dB(s)− 1
2

∫ t

0

b(s,X(s))2ds
}
, 0 ≤ t ≤ 1,
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where

b(t, x) = 2
√
x

[
V ′

x(t, x)
V (t, x)

− α

x

]
, 0 ≤ t < 1, x > 0.

By Girsanov’s formula,

E{F (Y (t) : 0 ≤ t ≤ 1)} = E{F (X(t) : 0 ≤ t ≤ 1)N(1)}.(4.13)

Setting

U(t, x) = log V (t, x) − α log x, 0 ≤ t < 1, x > 0,

one may check that

U ′
x =

V ′
x

V
− α

x
, U ′

t =
x

1 − t

V ′
x

V
− α

1 − t
,

and

U ′′
xx = −

(
V ′

x

V

)2

+
V ′′

xx

V
+

α

x2
= −

(
V ′

x

V

)2

+
(
α− 1
x

− 1
2(1 − t)

)
V ′

x

V
+

α

x2
.

Then we have

U ′
t + 2(1 + α)U ′

x + 2xU ′′
xx +

α

1 − t

=
x

1 − t

V ′
x

V
+ 2(1 + α)

(
V ′

x

V
− α

x

)

+ 2x

[
−

(
V ′

x

V

)2

+
(
α− 1
x

− 1
2(1 − t)

)
V ′

x

V
+

α

x2

]

=
2(1 + α)V ′

x

V
− 2α(1 + α)

x
+ 2x

[
−

(
V ′

x

V

)2

+
α− 1
x

V ′
x

V
+

α

x2

]

= 2x

[
−

(
V ′

x

V

)2

+
2α
x

V ′
x

V
− α2

x2

]

= −1
2
b(t, x)2.

By Itô’s formula,

U(t,X(t)) − U(0, x) =
∫ t

0

b(s,X(s))dB(s)− 1
2

∫ t

0

b(s,X(s))2ds+ α log(1 − t).

Then we have

N(1) = lim
t→1

exp{U(t,X(t)) − U(0, x) − α log(1 − t)} = c(α)X(1)−α,

and the desired result follows from (4.10) and (4.13).
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By the above result, our Theorem 3.1 can be regarded as an extension of
the first conditional limit theorem of Durrett et al. (1977), where convergence
to Brownian meander was considered.
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