The topology of spaces of maps between real projective spaces

By

Kohhei Yamaguchi

1. Introduction

Let $O(k)$ be the group of orthogonal $(k \times k)$ matrices. For connected spaces X and Y, let $\operatorname{Map}(X, Y)$ denote the space consisting of all continuous maps $f: X \rightarrow Y$ with compact-open topology. For $m \leq n$, we define the inclusion map $i_{m, n}: \mathbb{R P}^{m} \rightarrow \mathbb{R P}^{n}$ by

$$
i_{m, n}\left(\left[z_{0}: z_{1}: \cdots: z_{m}\right]\right)=\left[z_{0}: z_{1}: \cdots: z_{m}: 0: 0: \cdots: 0\right] .
$$

We denote by $\operatorname{Map}_{1}\left(\mathbb{R} P^{m}, \mathbb{R P}^{n}\right)$ the path component of $\operatorname{Map}\left(\mathbb{R P}^{m}, \mathbb{R P}^{n}\right)$ containing $i_{m, n}$. Define the map $\tilde{s}_{m, n}: O(n+1) \rightarrow \operatorname{Map}_{1}\left(\mathbb{R} \mathrm{P}^{m}, \mathbb{R P}^{n}\right)$ by the matrix multiplication

$$
\tilde{s}_{m, n}(A)\left(\left[z_{0}: \cdots: z_{m}\right]\right)=\left[z_{0}: \cdots: z_{m}: 0: 0: \cdots: 0\right] \cdot A .
$$

Let Δ_{k} denote the center of $O(k)$ given by $\Delta_{k}=\left\{\epsilon E_{k}: \epsilon= \pm 1\right\} \cong \mathbb{Z} / 2$, where E_{k} denotes the $(k \times k)$ identity matrix. Since $\tilde{s}_{m, n}$ is constant on the subgroup $\Delta_{m+1} \times O(n-m) \subset O(n+1)$, it induces the map

$$
s_{m, n}: \mathrm{PV}_{n+1, m+1} \rightarrow \operatorname{Map}_{1}\left(\mathbb{R P}^{m}, \mathbb{R P}^{n}\right)
$$

where let $\mathrm{PV}_{n+1, m}$ denote the real projective Stiefel manifold of orthogonal $(m+1)$-frames in \mathbb{R}^{n+1} given by $\mathrm{PV}_{n+1, m+1}=\left(\Delta_{m+1} \times O(n-m)\right) \backslash O(n+1)$.

The main purpose of this paper is to prove the following result.
Theorem 1.1. If $m \leq n, s_{m, n}: \mathrm{PV}_{m+1, m+1} \rightarrow \operatorname{Map}_{1}\left(\mathbb{R P}^{m}, \mathbb{R P}^{n}\right)$ is a homotopy equivalence up to dimension $D(m, n)=2(n-m)-1$.

Remark 1. A map $f: X \rightarrow Y$ is called a homotopy equivalence up to dimension N if the induced homomorphism $f_{*}: \pi_{i}(X) \rightarrow \pi_{i}(Y)$ is bijective when $i<N$ and surjective when $i=N$.

[^0]A similar result for $\mathbb{K} \mathrm{P}^{n}$ was first obtained in [2] (cf. [1]) for the case $\mathbb{K}=\mathbb{C}$ and in this paper we shall treat the case $\mathbb{K}=\mathbb{R}$. However, a partial result only holds for the case $\mathbb{K}=\mathbb{H}$ (cf. [3]) because the quaternion field \mathbb{H} is not commutative.

2. Reduction of the proof

The inclusion map $i=i_{m-1, m}: \mathbb{R} P^{m-1} \rightarrow \mathbb{R} P^{m}$ induces the fibration

$$
i^{*}: \operatorname{Map}_{1}\left(\mathbb{R P}^{m}, \mathbb{R P}^{n}\right) \rightarrow \operatorname{Map}_{1}\left(\mathbb{R P}^{m-1}, \mathbb{R P}^{n}\right)
$$

given by $i^{*}(f)=f \circ i$ with fiber F_{m}, where the space F_{m} is defined by

$$
F_{m}=\left\{f \in \operatorname{Map}_{1}\left(\mathbb{R P}^{m}, \mathbb{R P}^{n}\right): f \circ i=i_{m-1, n}\right\} .
$$

We remark that the homeomorphism

$$
\phi_{m, n}: \frac{\Delta_{m} \times O(n-m+1)}{\Delta_{m+1} \times O(n-m)} \cong \frac{O(n-m+1)}{O(n-m)} \xlongequal{\cong} S^{n-m}
$$

is induced from the map $O(n-m+1) \rightarrow S^{n-m}$ given by

$$
A=\left(\begin{array}{cccc}
z_{0} & z_{1} & \cdots & z_{n-m} \tag{2.0}\\
a_{1,0} & a_{1,1} & \cdots & a_{1, n-m} \\
\vdots & \ddots & \ddots & \vdots \\
a_{n-m, 0} & a_{n-m, 1} & \cdots & a_{n-m, n-m}
\end{array}\right) \mapsto\left(z_{0}, \ldots, z_{n-m}\right) .
$$

Then we have the commutative diagram

where two horizontal sequences are fibration sequences.
We identify $\mathbb{R P}^{k}=\mathbb{R P}^{k-1} \cup_{\gamma_{k-1}} e^{k}$, where $\gamma_{k}: S^{k} \rightarrow \mathbb{R P}^{k}$ denotes the usual Hopf fibering. Let $\mu: \mathbb{R P}^{m} \rightarrow \mathbb{R P}^{m} \vee S^{m}$ denote the co-action map given by pinching the hemisphere of the top cell e^{m}. Then consider a pairing $P: F_{m} \times \Omega^{m} \mathbb{R P}^{n} \rightarrow F_{m}$ defined by $P(f, \omega)=\nabla \circ(f \vee \omega) \circ \mu$ for $(f, \omega) \in$ $F_{m} \times \Omega^{m} \mathbb{R P}^{m}$, where $\nabla: \mathbb{R} \mathrm{P}^{m} \vee \mathbb{R} \mathrm{P}^{m} \rightarrow \mathbb{R} \mathrm{P}^{m}$ denotes a folding map. It also induces a homotopy equivalence $F_{m} \simeq \Omega^{m} \mathbb{R P}^{n}$ by multiplying by the element $i_{m, n}$. Because there is a homotopy equivalence $\Omega^{m} \mathbb{R P}^{n} \simeq \Omega^{m} S^{n}$, we obtain the homotopy commutative diagram
(\ddagger

where two horizontal sequences are fibration sequences.
Now we introduce the following result.
Lemma 2.1. $\quad\left(s_{m}^{\prime}\right)_{*}: \pi_{n-m}\left(S^{n-m}\right) \xlongequal{\cong} \pi_{n-m}\left(\Omega^{m} S^{n}\right) \cong \mathbb{Z}$ is an isomorphism.

We postpone the proof of Lemma 2.1 to the next section and complete the proof of Theorem 1.1.

Proof of Theorem 1.1. The proof of Theorem 1.1 is by induction on m keeping n fixed. If $m=0$, the map $s_{m, n}$ is a homeomorphism and the assertion clearly holds. Suppose $n \geq m \geq 1$ and that the assertion is true for $m-1$. Consider the homotopy exact sequences induced from (\ddagger):

It follows from Lemma 2.1 that s_{m}^{\prime} is identified with the m-fold suspension $E^{m}: S^{n-m} \rightarrow \Omega^{m} S^{n}$ (up to homotopy equivalence). Hence, s_{m}^{\prime} is a homotopy equivalence up to dimension $D(m, n)=2(n-m)-1$. Then the assertion easily follows from the Five Lemma. This completes the proof of Theorem 1.1.

3. Proof of Lemma 2.1

In this section we prove Lemma 2.1. Since we can identify s_{m} with s_{m}^{\prime} up to homotopy equivalence, it is sufficient to show the following result.

Lemma 3.1. $\left(s_{m}\right)_{*}: \pi_{n-m}\left(S^{n-m}\right) \xlongequal{\leftrightharpoons} \pi_{n-m}\left(F_{m}\right) \cong \mathbb{Z}$ is an isomorphism.

Proof. We note that the map $s_{m}: S^{n-m} \rightarrow F_{m}$ is the composite of maps

$$
\begin{aligned}
S^{n-m} & \stackrel{\phi_{m, n}}{\cong} \frac{\Delta_{m} \times O(n-m+1)}{\Delta_{m+1} \times O(n-m)} \stackrel{j}{\rightarrow} \frac{O(n+1)}{\Delta_{m+1} \times O(n-m)} \\
& \xrightarrow{s_{m, n}} \operatorname{Map}_{1}\left(\mathbb{R P}^{m}, \mathbb{R P}^{n}\right),
\end{aligned}
$$

where j denotes the natural inclusion map induced from the inclusion map $\Delta_{m} \times O(n-m+1) \subset O(n+1)$. Since

$$
\begin{aligned}
& {\left[w_{0}: \cdots: w_{m}: 0: \cdots: 0\right] \cdot\left(\begin{array}{cc}
E_{m} & O \\
O & A
\end{array}\right)} \\
& \quad=\left[w_{0}: \cdots: w_{m-1}: w_{m} z_{0}: w_{m} z_{1}: \cdots w_{m} z_{n-m}\right]
\end{aligned}
$$

for $\left(z_{0}, z_{1}, \ldots, z_{n-m}\right) \in S^{n-m}$ and

$$
A=\left(\begin{array}{cccc}
z_{0} & z_{1} & \cdots & z_{n-m} \\
a_{1,0} & a_{1,1} & \cdots & a_{1, n-m} \\
\vdots & \ddots & \ddots & \vdots \\
a_{n-m, 0} & a_{n-m, 1} & \cdots & a_{n-m, n-m}
\end{array}\right)
$$

it follows from (2.0) that the map $S^{n-m} \xrightarrow{s_{m}} F_{m} \subset \operatorname{Map}_{1}\left(\mathbb{R P}^{m}, \mathbb{R P}^{n}\right)$ corresponds to a map $\phi: \mathbb{R} \mathrm{P}^{m} \times S^{n-m} \rightarrow \mathbb{R} \mathrm{P}^{n}$ given by

$$
\phi(\mathbf{w}, \mathbf{z})=\left[w_{0}: \cdots: w_{m-1}: w_{m} z_{0}: w_{m} z_{1}: \cdots: w_{m} z_{n-m}\right]
$$

for $(\mathbf{w}, \mathbf{z})=\left(\left[w_{0}: \cdots: w_{m}\right],\left(z_{0}, \ldots, z_{n-m}\right)\right) \in \mathbb{R P}^{m} \times S^{n-m}$.
Let $\epsilon: S^{n-m} \rightarrow \operatorname{Map}_{1}\left(\mathbb{R P}^{m}, \mathbb{R} \mathrm{P}^{n}\right)$ be the constant map at $i_{m, n}$, which is defined by $\epsilon(\mathbf{w})=i_{m, n}$ for any $\mathbf{w} \in \mathbb{R P}^{m}$. Then the map ϵ corresponds to a map $\psi: \mathbb{R P}^{m} \times S^{n-m} \rightarrow \mathbb{R P}^{n}$ given by

$$
\psi(\mathbf{w}, \mathbf{z})=\left[w_{0}: \cdots: w_{m-1}: w_{m}: 0: \cdots: 0\right]
$$

for $(\mathbf{w}, \mathbf{z})=\left(\left[w_{0}: \cdots: w_{m}\right],\left(z_{0}, \ldots, z_{n-m}\right)\right) \in \mathbb{R} \mathrm{P}^{m} \times S^{n-m}$.
Then two maps ϕ and ψ agree on the subspace

$$
\left(\mathbb{R P}^{m-1} \times S^{n-m}\right) \cup\left(\mathbb{R P}^{m} \times(1,0, \ldots, 0)\right)
$$

and we would like to study the difference element between them. For this purpose, it is sufficient to replace the pair $\left(\mathbb{R P}^{m}, \mathbb{R P}^{m-1}\right)$ by the pair $\left(D^{m}, S^{m-1}\right)$ (using a characteristic map of the top cell in $\mathbb{R} P^{m}$) and to find the difference element between the two resulting maps on $D^{m} \times S^{n-m}$.

From now on, we embed $D^{m} \times S^{n-m}$ in $S^{n}=\partial\left(D^{m} \times D^{n-m+1}\right)$ in the usual way. Let $\mathbf{w}=\left(w_{0}, \ldots, w_{m-1}\right)$ and $\mathbf{z}=\left(z_{0}, \ldots, z_{n-m}\right)$ run over S^{m} and S^{n-m}, respectively. Then the points $((\sin \theta) \mathbf{w},(\cos \theta) \mathbf{z})$ runs over $S^{n}(0 \leq \theta \leq \pi / 2)$, and the space $D^{m} \times S^{n-m}$ may be regarded as the subset

$$
\left\{((\sin \theta) \mathbf{w},(\cos \theta) \mathbf{z}): \mathbf{w} \in S^{m}, \mathbf{z} \in S^{n-m}, 0 \leq \theta \leq 4 / \pi\right\} .
$$

We define the map $\bar{\gamma}_{m}: D^{m} \rightarrow \mathbb{R} P^{m}$ by

$$
\bar{\gamma}_{m}((\sin \theta) \mathbf{w})=((\sin 2 \theta) \mathbf{w}, \cos \theta) \quad(0 \leq \theta \leq 4 / \pi) .
$$

Then $\bar{\gamma}_{m}$ represents the characteristic map of the top cell e^{m} in $\mathbb{R P}^{m}$. In this case, the corresponding two maps $\phi^{\prime}, \psi^{\prime}: D^{m} \times S^{n-m} \rightarrow \mathbb{R P}^{m}$ are given by

$$
\left\{\begin{array}{l}
\phi^{\prime}((\sin \theta) \mathbf{w},(\cos \theta) \mathbf{z})=[(\sin 2 \theta) \mathbf{w}:(\cos 2 \theta) \mathbf{z}] \\
\psi^{\prime}((\sin \theta) \mathbf{w},(\cos \theta) \mathbf{z})=[(\sin 2 \theta) \mathbf{w}:(\cos 2 \theta)(1,0, \ldots, 0)]
\end{array}\right.
$$

for $0 \leq \theta \leq \pi / 4,(\mathbf{w}, \mathbf{z}) \in S^{m} \times S^{n-m}$.
Two maps ϕ^{\prime} and ψ^{\prime} agree on $\left(S^{m-1} \times S^{n-m+1}\right) \cup\left(D^{m} \times(1,0, \ldots, 0)\right)$ and we wish to know the difference element between them. For this purpose, we extend ϕ^{\prime} and ψ^{\prime} over $S^{m-1} \times D^{n-m+1}$ by

$$
\phi^{\prime}((\sin \theta) \mathbf{w},(\cos \theta) \mathbf{z})=\psi^{\prime}((\sin \theta) \mathbf{w},(\cos \theta) \mathbf{z})=[\mathbf{w}: \mathbf{0}] \quad(\pi / 4 \leq \theta \leq \pi / 2) .
$$

Now two maps ϕ^{\prime} and ψ^{\prime} agree on $\left(S^{m-1} \times D^{n-m+1}\right) \cup\left(D^{m} \times(1,0, \ldots, 0)\right)$, which is a contractible space. Hence their difference element is

$$
\left[\phi^{\prime}\right]-\left[\psi^{\prime}\right] \in \pi_{n}\left(\mathbb{R P}^{n}\right)
$$

However, since ψ^{\prime} factors through $D^{n},\left[\psi^{\prime}\right]=0$. Thus, the required difference element is $\left[\phi^{\prime}\right] \in \pi_{n}\left(\mathbb{R P}^{n}\right)$. Now define the map $\phi^{\prime \prime}: S^{n} \rightarrow S^{n}$ by

$$
\begin{gathered}
\phi^{\prime \prime}((\sin \theta) \mathbf{w},(\cos \theta) \mathbf{z})=((\sin \theta) \mathbf{w},(\cos \omega(\theta)) \mathbf{z}), \quad \text { where } \\
\omega(\theta)=\left\{\begin{array}{lll}
2 \theta & \text { if } \quad 0 \leq \theta \leq \pi / 4 \\
\pi / 2 & \text { if } & \pi / 4 \leq \theta \leq \pi / 2
\end{array}\right.
\end{gathered}
$$

Then $\phi^{\prime \prime}$ is a lifting of ϕ^{\prime} to S^{n} such that $\gamma_{n} \circ \phi^{\prime \prime}=\phi^{\prime}$. Because the function $\omega(\theta)$ is homotopic to the identity keeping 0 and $\pi / 2$ fixed. Hence $\phi^{\prime \prime} \simeq \mathrm{id}$: $S^{n} \rightarrow S^{n}$. So the required difference element is $\left[\phi^{\prime}\right]=\left[\gamma_{n}\right]$, and it is a generator of $\pi_{n}\left(\mathbb{R P}^{n}\right) \cong \mathbb{Z}$. Because ϕ^{\prime} and ψ^{\prime} correspond to s_{m} and ϵ, respectively, $\left[s_{m}\right] \in \pi_{n-m}\left(F_{m}\right) \cong \mathbb{Z}$ is a generator.

Department of Information Mathematics
University of Electro-Communications Chofu, Tokyo 182-8585, Japan
e-mail: kohhei@im.uec.ac.jp

References

[1] A. Kozlowski and K. Yamaguchi, Spaces of holomorhic maps between complex projective spaces of degree one, Topology Appl. 132 (2003), 139-145.
[2] S. Sasao, The homotopy of $\operatorname{Map}\left(\mathbb{C P}^{m}, \mathbb{C P}^{n}\right)$, J. London Math. Soc. 8 (1974), 193-197.
[3] K. Yamaguchi, On the rational homotopy of $\operatorname{Map}\left(\mathbb{H} \mathrm{P}^{m}, \mathbb{H P}^{n}\right)$, Kodai Math. J. 6 (1983), 279-288.
[4] \qquad , Spaces of algebraic loops on real projective spaces, preprint.

[^0]: 2000 Mathematics Subject Classification(s). Primary 55P10, 55P15; Secondary 55S15
 Received January 15, 2002

