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On the integrated density of states of random
Pauli Hamiltonians
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Abstract

The difference of the integrated densities of states (IDS) of the two
components of a random Pauli Hamiltonian is shown to equal a constant
given in terms of the expectation of the magnetic field. This formula is a
random version of the Aharonov and Casher theory or that of the Atiyah
and Singer index theorem. By this formula, the IDS is shown to jump
at 0 if the expectation of the magnetic field is nonzero. For simple cases
where the expectation of the magnetic field is zero, a lower estimate of the
asymptotics of the IDS at 0 is given. This lower estimate shows that the
IDS decays slower than known results for random Schrödinger operators
whose infimum of the spectrum is 0. Moreover the strong-magnetic-field
limit of the IDS is identified in a general setting.

1. Introduction

Let B = (Bω(x)) (ω ∈ Ω, x ∈ R2) be a real random field such that
(a-i)Bω(x) is stationary and ergodic with respect to the shift in the

variable x;
(a-ii) the sample path R2 � x �→ Bω(x) is continuous;
(a-iii) there exists α > 0 such that E[exp(α|Bω(0)|)] <∞;
(a-iv) there exists an R2-valued random field A = (Aj

ω(x))2j=1 such that
R2 � x �→ Aω(x) is continuous, ∂1A

2
ω(x) − ∂2A

1
ω(x) = Bω(x) and ∂1A

1
ω(x) +

∂2A
2
ω(x) = 0 in the sense of distributions.
For each ω, regarding x �→ Bω(x) as a magnetic field, and x �→ Aω(x) as

its vector potential, we consider a Pauli Hamiltonian Hω = H+
ω ⊕H−

ω formally
defined by

(1.1) H±
ω =

2∑
j=1

(i∂j +Aj
ω(x))2 ±Bω(x),
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616 Naomasa Ueki

where i =
√−1 and ∂j = ∂/(∂xj). Let N±(λ), λ ∈ R, be the integrated density

of states of the operators H±
ω . We define those as right continuous functions.

For the exact definition, see Section 2 below.
The first result in this paper is the following:

Theorem 1.1. Under the conditions (a-i)–(a-iv), we have

(1.2) N−(λ) −N+(λ) = E[Bω(0)]/(2π)

for any λ ≥ 0.

This is an extension of the index theorem to a noncompact setting in terms
of the integrated density of states. As in the usual index theorem, a main tool
for the proof is the theory on the supersymmetry (cf. Section 6.3 in [18]): by
the supersymmetry we have

(1.3) N−(λ) −N+(λ) = Ñ−(t) − Ñ+(t)

for any λ ≥ 0 and t > 0, where Ñ±(t) is the Laplace-Stieltjes transform of
N±(λ). Then (1.2) is obtained by identifying the limit of the right hand side
of (1.3) represented in terms of the heat semigroup as t ↓ 0. This is the same
technique for the proof of the index theorem (cf. [4], [18], [33], [43]). However in
our case, we should prove that the boundary condition to define the integrated
density of states does not affect the result. We carry out this in a general
setting and this is our main contribution. For this, see the proof of Lemma 4.1
and Remark 3 below.

From this theorem, we easily know on the kernels as follows:

Corollary 1.1. Under the conditions (a-i)–(a-iv), we have

(1.4) N±(0) ≥ E[Bω(0)]∓/(2π),

where a± = max{±a, 0} for any a ∈ R. Therefore, if ∓E[Bω(0)] > 0, then 0 is
the eigenvalue of H±

ω with infinite multiplicity.

Corollary 1.2. Under the conditions (a-i)–(a-iv) and H+
ω ≥ b for some

b ∈ (0,∞), we have

(1.5) N−(0) = E[Bω(0)]/(2π)

and

(1.6) inf{λ : N+(λ) �= 0} = inf{λ : N−(λ) −N−(0) �= 0} ≥ b.

Example 1.1. (i) If b1 := ess supω∈Ω infx∈R2 Bω(x) > 0, then we have
(1.5) and (1.6) with b = 2b1 by the well known estimate H+

ω ≥ 2Bω(x) (cf.
Avron, Herbst and Simon [7, Theorem 2.9]).

(ii) If there exist a random variable B0
ω and a random field ϕω(x)

such that ϕω(x) is C2 in x ∈ R2, Bω(x) = B0
ω + ∆ϕω(x) and b2 :=



�

�

�

�

�

�

�

�

Random Pauli Hamiltonians 617

ess supω∈ΩB
0
ω exp(−2osc ϕω) > 0, then we have (1.5) and (1.6) with b = 2b2

by a Raikov’s result (Proposition 1.2 in [50]), where ∆ is the Laplacian and
osc ϕω = supx∈R2 ϕω(x) − infx∈R2 ϕω(x). If the first derivatives of ϕω(x) are
almost surely bounded on R2, then B0

ω is not random and coincides with the
expectation E[Bω(0)] by the ergodic theorem and Green’s formula.

These results are extended to arbitrary even dimensional space as Theorem
2.1 below. In this paper we prove the general theorem.

On the dimension of the kernel of the deterministic Pauli Hamiltonian
H0 = H+

0 ⊕ H−
0 obtained by replacing (Aj

ω(x))2j=1 and Bω(x) in (1.1) by a
deterministic vector potential (Aj

0(x))
2
j=1 and its magnetic field B0(x), respec-

tively, we have Aharonov and Casher’s theory [2]. Their theory gave a basis
constituting ⌊

1
2π

∫
R2
B0(x)dx

⌋
elements of the kernel of H−

0 under the compactness of suppB0 and

1 ≤ 1
2π

∫
B0(x)dx <∞,

where 
a� is the largest integer smaller than a for any a > 0 (cf.[10], [18]).
Their theory has been extended to many situations where B0(x) is integrable
in x. For this aspect, see [8], [10], [18], [24], [25] and the references therein. For
the case that B0(x) is periodic as B0(x1 + T 1, x2) = B0(x1, x2 + T 2) = B0(x),
Dubrovin and Novikov [21], [22] gave a Bloch basis and showed the existence
of the gap between zero and the rest of the spectrum under the condition that

(1.7)
1
2π

∫ T 1

0

∫ T 2

0

B0(x)dx1dx2

is a natural number. From their result, we see that N−
0 (0) equals the natu-

ral number in (1.7) and inf{λ : N−
0 (λ) �= N−

0 (0)} > 0, where N−
0 (λ) is the

integrated density of states of H−
0 (cf. [29]). For the case that

(1.8) B0(x) = B0 + B̃0(x)

is almost periodic such that B0 > 0,

B̃0(x) = Re
∞∑

n=1

Bne
iCnx,

and
∞∑

n=1

|Bn|(|Cn|−2 + 1) <∞,
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Raikov [50] showed the same formulas as (1.5) and (1.6) where N±, E[Bω(0)]
and b are replaced by N±

0 , B0 and 2B0 exp(−2osc ϕ), respectively, where

ϕ(x) = ∆−1B̃0(x) = Re
∞∑

n=1

−Bn

C2
n

eiCnx.

Since

lim
R→∞

1
R2

⌊∣∣∣∣∣ 1
2π

∫
Λ(R)

Bω(x)dx

∣∣∣∣∣
⌋

=
E[Bω(0)]

2π

for an ergodic random field Bω(x) and

lim
R→∞

1
R2

∫
Λ(R)

B0(x)dx = B0

for a function B0(x) given by (1.8), our result is regarded as an extension of
[2], [21], [22] and [50] to a general stationary ergodic magnetic field.

We next consider a strong-magnetic-field asymptotics: we consider the
asymptotics as ξ → ∞ of the integrated density of states N±(λ; ξ) of the
operator formally defined by

(1.9) Hξ,±
ω =

2∑
j=1

(i∂j + ξAj
ω(x))2 ± ξBω(x).

We assume
(a-v) there are c > 0 and ν > 1 such that E[exp(α|Bω(0)|)] ≤ c exp(αν)

for any α > 0.
Then by the localizing effect of the strong magnetic field, we can determine

the leading term:

Theorem 1.2. Under the conditions (a-i), (a-ii), (a-iv) and (a-v), the
integrated density of states N±(λ; ξ) of the operators Hξ,±

ω satisfies

(1.10) lim
ξ→∞

N±(λ; ξ)
ξ

=
E[Bω(0)∓]

2π

for each λ > 0.

In the right hand side of (1.10), the positive or negative part is taken inside
the expectation whereas that is taken outside of the expectation in (1.4). This
is due to the localizing effect of the strong magnetic field. The right hand side
of (1.10) may be greater than that of (1.4). However we cannot estimate the
value of N±(0) by (1.10), since the equation (1.10) is not proven uniformly on
an interval including 0.

The strong-magnetic-field asymptotics of the integrated density of states
has been extensively studied for the Pauli Hamiltonian with the deterministic
constant magnetic field perturbed by a random electric scalar potential [11],
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[38], [39], [41], [49], [54], [55], [56]. For variable magnetic fields, we have related
deterministic results [23], [48]. In [48], Raikov gives the leading term of the
counting function of the number of the eigenvalues. Moreover in [38], [48] and
[49], the three dimensional cases are also treated, where the degeneracy of the
magnetic field brings another problem.

In this paper we concentrate only on the unperturbed Pauli Hamiltonian
with a nondegenerate magnetic field and prove the fundamental result in a
considerably general situation: we prove a generalization of Theorem 1.2 to
arbitrary even dimensional space. The result is Theorem 2.2 below.

To prove the upper estimate, we use a method of Erdös [23] proving

(1.11) lim
ξ→∞

1
ξ
E({0}; 0, 0; ξ) =

|B0(0)|
2π

under some conditions, where E(Λ;x, y; ξ), Λ ∈ B(R), x, y ∈ R2, ξ > 0, is the
integral kernel of the resolution of the identity of the deterministic Pauli Hamil-
tonian defined by Hξ

0 = Hξ,+
0 ⊕ Hξ,−

0 obtained by replacing (Aj
ω(x))2j=1 and

Bω(x) in (1.9) by a deterministic vector potential (Aj
0(x))

2
j=1 and its magnetic

field B0(x), respectively. By the same proof, we can also show

lim
ξ→∞

1
ξ
E±([0, λ]; 0, 0; ξ) =

B0(0)∓
2π

for each λ > 0, where E±
ω (Λ;x, y; ξ) is the integral kernel of the resolution

of the identity of Hξ,±
0 . This result relates with (1.10) by the representation

N±(λ; ξ) = E[E±
ω ([0, λ]; 0, 0; ξ)], where E±

ω (Λ;x, y; ξ) is the integral kernel of
the resolution of the identity of the random Pauli Hamiltonian Hξ,±

ω (cf. [13]).
To show the upper estimate for (1.11), he determined the limit of a function
defined by using the corresponding integral kernel of the heat semigroup repre-
sented by the Feynman-Kac-Itô formula. Since the Laplace-Stieltjes transform
of N±(λ; ξ) also has a similar representation (see Lemma 3.1 below), we can
show the upper estimate by the same method.

To prove the lower estimate, we estimate the number of low lying eigenval-
ues of the Hamiltonian restricted to small domains. For this we estimate the
energy of the functions obtained by restricting the functions in Aharonov and
Casher’s theory to small domains. For the higher dimensional case, we need
extra work to show the lower estimate: to construct the functions in Aharonov
and Casher’s theory, we use the theory of the ∂-Neumann problem [9]. For this
we assume that the magnetic field is derived from a skew-Hermitian matrix val-
ued random field. Moreover our estimate of the number of low lying eigenvalues
of the restricted Hamiltonian becomes best when the domain is a polydisc de-
pending on ω. Then, to obtain a sharp estimate of N(λ; ξ), we should take the
osculatory packing so that the related quantities are measurable.

We next consider the low energy asymptotics of N±(λ). For this, Casher
and Neuberger [15] showed

(1.12) N±(λ) ∼ c
√
λ as λ ↓ 0,
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when Bω(x) is a Gaussian white noise with mean zero, by a heuristic argument
using Aharonov and Casher’s theory and a techniques in the field theory. The
equation (1.12) means that (1.5) may hold without the strict positivity of H+

ω

and that (1.10) may not hold at λ = 0. More interesting point of (1.12) is that
the decay of N±(λ) as λ ↓ 0 is slower than that of the free Hamiltonian −∆.
This behavior is in contrary to those of other random Schrödinger operators
(cf.[14], [46]). The same type of behavior was also shown by Comtet, Georges
and Le Doussal [16], [17], where

(1.13) N±(λ) ∼ c(log(1/λ))−3 as λ ↓ 0.

is shown when A1
ω(x) is a Gaussian white noise depending only on x1 and

A2
ω = 0 by a heuristic argument reducing the problem to a 1-dimensional

problem and representing N±(λ) in terms of Bessel functions. More recently,
Ludwig, Fisher, Shankar and Grinstein [40], Motrunich, Damle and Huse [44]
and Fukui [27] investigated the asymptotics of the density of states of the Dirac
operator by various heuristic arguments when A1

ω and A2
ω are independent

Gaussian white noises. In this case, their theory implies

(1.14) N±(λ) ∼ cλα as λ ↓ 0,

where α is a constant in the interval (0, 1) determined by the covariance of the
white noise. The same behavior was also shown by a heuristic argument in
Horovitz and Le Doussal [30] when Aω(x) = (−∂2Cω(x), ∂1Cω(x)) and Cω(x)
is a Gaussian random field such that E[(Cω(x) − Cω(x′))2] ∼ log |x − x′| as
|x− x′| → ∞.

In this paper, we give a rigorous lower estimate proven by slightly modi-
fying the argument used in the lower estimate for (1.10). We consider simple
cases as follows:

(a-vi) Bω(x) = B1
ω(x1) + B2

ω(x2), where B1
ω(x1) and B2

ω(x2) are inde-
pendent Gaussian random processes with the mean zero and the covariance
βj(xj) = E[Bj

ω(xj)Bj
ω(0)], j = 1, 2 satisfying 0 ≤ βj(xj) ∈ L1(R) and

inf |xj |≤r β
j(xj) > 0 for some r > 0.

(a-vii) Bω(x) = B1
ω(x1), where B1

ω(x1) is a Gaussian random process with
the mean zero and the covariance β1(x1) = E[B1

ω(x1)B1
ω(0)] satisfying 0 ≤

β1(x1) ∈ L1(R) and inf |x1|≤r β
1(x1) > 0 for some r > 0.

In these cases, we have the following:

Theorem 1.3. Under the conditions (a-i), (a-ii) and either (a-vi) or
(a-vii), the integrated density of states N±(λ) of the operators H±

ω satisfy

(1.15) lim inf
λ↓0

N±(λ)(log(1/λ))1/3 > 0.

This theorem indicates that our integrated density of states decays slower
than those in any known results for random Schrödinger operators whose infi-
mum of the spectrum is 0. We prove this theorem in Section 6 below.

The organization of this paper is as follows. In the next section, we formu-
late our problem in a general setting and state the general theorems, Theorem
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2.1 and Theorem 2.2. In Section 3, we first recall a representation of the in-
tegrated density of states by the Feynman-Kac-Itô formula in [53] to prove an
upper estimate for Theorem 2.2. The same representation is used to prove The-
orem 2.1 by using also a supersymmetry in Section 4. After that, in Section 5,
we prove a lower estimate for Theorem 2.2 by referring Aharonov and Casher’s
theory. The same techniques are used in Section 6 to prove Theorem 1.3.

2. A general setting

Let d = 2h be a positive even number. Let B = (Bj
ω,k(x))1≤j,k≤d (ω ∈

Ω, x ∈ Rd) be a real skew-symmetric matrix valued random field such that
(b-i) B is stationary and ergodic with respect to the shift in the variable x;
(b-ii) the sample path x �→ Bω(x) is continuous;
(b-iii) the corresponding form is closed: d{∑j<k B

j
ω,k(x)dxj ∧ dxk} = 0 in

the sense of distributions;
(b-iv) there exists α > 0 such that E[exp(α|Bj

ω,k(0)|)] < ∞ for any 1 ≤
j < k ≤ d;

We give a vector potential Aω = (Aj
ω(x))1≤j≤d by the Poincaré gauge:

(2.1) Aj
ω(x) :=

∫ 1

0

d∑
k=1

Bk
ω,j(tx)tx

kdt.

This vector potential is continuous in x and satisfies

d


d∑

j=1

Aj
ω(x)dxj

 =
∑
j<k

Bj
ω,k(x)dxj ∧ dxk

in the sense of distributions. Let γ1, γ2, . . . , γd be Hermitian matrices acting
a 2h-dimensional complex Hilbert space V and satisfying the commutation
relation

(2.2) γjγk + γkγj =
{

2I if j = k,
O if j �= k,

where I and O are the identity and the zero matrices, respectively (see e.g. [18,
§12.2]). Then we can define the random Dirac operator by

Dω :=
d∑

j=1

γj(i∂j +Aj
ω(x))

acting on the space C∞
0 (Rd → V ) of V -valued smooth functions with com-

pact supports. It is known that this operator is essentially self-adjoint in the
space L2(Rd → V ) of V -valued L2-functions (cf. [35], [34, §9.2.1]). We de-
note the unique self-adjoint extension by the same symbol. The random Pauli
Hamiltonian is the self-adjoint operator defined by Hω = D2

ω.
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We use an Hermitian matrix Γ = ihγ1γ2 · · · γd, which depends on the
orientation of Rd. The eigenvalues of this matrix are 1 and −1. The projection
to the eigenspace V± = {Φ ∈ V : ΓΦ = ±Φ} is Γ± = (I ± Γ)/2. Since
DωΓ = −ΓDω, the operator Hω is regarded as the direct sum of the two self-
adjoint operators H+

ω and H−
ω on the space L2(Rd → V+) and L2(Rd → V−),

respectively.
We define the integrated density of states N±(λ), λ ∈ R, of the random

Pauli Hamiltonian H±
ω by the usual method: for each R > 0, let Λ(R) :=

(−R/2, R/2)d. Let H±,R
ω be the self-adjoint operator on the space L2(Λ(R) →

V±) with the Dirichlet boundary condition: H±,R
ω is the self-adjoint opera-

tor corresponding to the closure of the quadratic form qω(Φ,Ψ) := 〈DωΦ(x),
DωΨ(x)〉V with the domain C∞

0 (Λ(R) → V±), where 〈·, ·〉V is the Hermitian
inner product of the space L2(Rd → V ). Then the spectra of H±,R

ω are purely
discrete. Let N±,R

ω (λ) be its counting function, which is the number of eigen-
values of H±,R

ω (λ) not exceeding λ. Then, by the method by Kirsch-Martinelli
(cf. [14], [37]), we can show the existence of a deterministic, right continuous,
increasing function N±(λ) such that

(2.3) R−dN±,R
ω (λ) −→ N±(λ)

as R → ∞ for any point of continuity of N±(λ) and almost all ω. We here
remark that the method by Kirsch-Martinelli cannot be applied directly since
the vector potential Aω(x) appearing in the Hamiltonian is not stationary.
However this difficulty can be overcome by using the gauge invariance as in
Lemma 3.1 of [53].

Remark 1. (i) As is stated in Remark 2.1 in [53], we can use other
boundary conditions to define the integrated density of states: if we define
an operator Ĥ±,R

ω with a Neumann boundary condition by the corresponding
self-adjoint operator to the quadratic form

q̂ω(Φ,Ψ) :=
d∑

j=1

〈(i∂j +Aj
ω(x))Φ(x), (i∂j +Aj

ω(x))Ψ(x)〉V

+〈Φ(x),
∑
j<k

iγjγkB
j
ω,k(x)Ψ(x)〉V(2.4)

with the domain

W 1,2(Λ(R) → V±)
:= {Φ ∈ L2(Λ(R) → V±) : ∂jΦ ∈ L2(Λ(R) → V±) for j = 1, 2, . . . , d}

and denote the corresponding counting function of the spectra by N̂±,R
ω (λ),

then we have

(2.5) R−dN̂±,R
ω (λ) −→ N±(λ)

as R → ∞ for any point of continuity of N±(λ) and almost all ω. For the
details, refer [19], [31], [32] and [45].
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(ii) To define the integrated density of states by a Neumann boundary
condition, it is important to use the form q̂ω instead of qω, since the spectrum
of the self-adjoint operator H̃±,R

ω corresponding to the quadratic form qω with
the domain

Q :=

Φ ∈ L2(Λ(R) → V±) :
d∑

j=1

γj∂jΦ ∈ L2(Λ(R) → V±)


may not be discrete. In fact, when d = 2 and the magnetic field is a positive
constant B, the Dirac operator and the above domain are represented as

D = −2i
(

0 ∂/(∂z) −Bz/4
∂/(∂z) −Bz/4 0

)
and

Q = {Φ = t(Φ1,Φ2) : Φ1,Φ2, ∂Φ1/(∂z), ∂Φ2/(∂z) ∈ L2(Λ(R))},
respectively, in terms of the complex coordinate z = x1 + ix2 by the represen-
tation of {γj}j in (2.12) below. Then the functions

Φn = t(zn exp(−B|z|2/4), 0), n ∈ N,

satisfy DΦn = 0 and belong to Q. Thus they belong to the kernel of the Hamil-
tonian. Moreover they are linearly independent by the uniqueness theorem in
the complex analysis. Therefore the dimension of the kernel of the Hamiltonian
is infinity. This fact does not contradict a general theory on the discreteness
of the spectrum of an elliptic differential operator on a bounded domain (cf.
[1, Theorem 14.6]). In fact the domain of the Hamiltonian does not satisfy the
conditions in Theorem 14.6 in [1].

For any real skewsymmetric matrix B = (Bj
k)1≤j,k≤d, the Pffafian, Pff(B),

is defined by

Pff(B) =
1

2hh!

∑
σ∈S(d)

(sgnσ)Bσ(1)
σ(2)B

σ(3)
σ(4) · · ·Bσ(d−1)

σ(d) ,

where S(d) is the set of all permutation of {1, 2, . . . , d} and sgnσ is the signature
for each permutation σ (cf. [18, Definition 12.15]).

Then Theorem 1.1 is extended as follows:

Theorem 2.1. Under the conditions (b-i)–(b-iv), let N±(λ) be the in-
tegrated density of states of the random Pauli Hamiltonian H±

ω . Then it holds
that

(2.6) N+(λ) −N−(λ) =
(−1

2π

)h

E[Pff(Bω(0))]

for each λ ≥ 0.
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We prove this theorem in Section 4.
We next state a generalization of Theorem 1.2. For this we introduce the

following conditions:
(b-v) there exist c > 0 and ν > 1 such that E[exp(α|Bj

ω,k(0)|)] ≤ c exp(αν)
for any α > 0 and 1 ≤ j < k ≤ d;

(b-vi) P (rankBω(0) = d) > 0;
(b-vii) there exist a complex structure valued random variable Jω =

(Jj
ω,k)1≤j,k≤d and R0 > 0 such that JωBω(x) = Bω(x)Jω for any x ∈ Λ(R0)

and the Hermitian matrix Bω(0)/i is nonnegative definite on the complex vector
space (Cd)(1,0)

ω := {v ∈ Cd : Jωv = iv}.
We use the condition (b-vii) only to prove the lower estimate for the strong-

magnetic-field asymptotics: in Lemma 5.1 below, we use the theory of the Dol-
beault complex to solve the Dirac equation locally. This condition is equivalent
with the following:

(b-vii)′ there exist a d×d orthogonal matrix valued random variable Uω =
(U j

ω,k)1≤j,k≤d and R0 > 0 such that the skew-symmetric matrix valued random
field B′

ω(x) = (B′,j
ω,k(x))1≤j,k≤d defined by B′

ω(x) = U∗
ωBω(x)Uω satisfies

(2.7) B′,2�−1
ω,2m−1(x) = B′,2�

ω,2m(x) and B′,2�−1
ω,2m (x) = −B′,2�

ω,2m−1(x)

for any 1 ≤ � ≤ m ≤ h and x ∈ Λ(R0), and becomes the direct sum of B(�)
ω J ,

� = 1, 2, . . . , h, at x = 0, where B(�)
ω ≥ 0 and

(2.8) J =
(

0 1
−1 0

)
.

(2.7) means that B′
ω(x) is a representation by a real matrix of a skew-

Hermitian matrix Bω(x) = (B�
ω,m(x))1≤�,m≤h, where ReB�

ω,m(x) = B′,2�−1
ω,2m−1(x)

= B′,2�
ω,2m(x) and ImB�

ω,�(x) = B′,2�−1
ω,2m (x) = −B′,2�

ω,2m−1(x) for any 1 ≤ �,m ≤ h.
We use the condition (b-vii) in the form of (b-vii)′. This condition is always
satisfied when d = 2. For the higher dimensional case, we give the following
example:

Example 2.1. For a 4 × 4 real skew symmetric matrix valued random
field Bω(x) to be commutative with the matrix

J2 =
(

J O
O J

)
,

it is necessary and sufficient that

Bω(x) =
(

aω(x)J cω(x)E + dω(x)J
−cω(x)E + dω(x)J bω(x)J

)
,

where E is the 2 × 2 identity matrix. For this random field to satisfy the
condition (b-vii) with the complex structure J2, it is necessary and sufficient
that

(2.9) aω(0)bω(0) ≥ cω(0)2 + dω(0)2.
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We define Dξ
ω, H±,ξ

ω , H±,R,ξ
ω , qξ

ω, N±,R
ω (λ; ξ) and N±(λ; ξ) by replacing the

vector potential Aω by ξAω in the definitions of Dω, H±
ω , H±,R

ω , qω, N±,R
ω (λ)

and N±(λ), respectively.
Then Theorem 1.2 is extended as follows:

Theorem 2.2. Under the conditions (b-i)–(b-iii), (b-v)–(b-vii), let
N±(λ; ξ) be the integrated density of states of the random Pauli Hamiltonian
H±,ξ

ω . Then it holds that

(2.10) lim
ξ↑∞

N±(λ; ξ)
ξh

= E

[{(−1
2π

)h

Pff(Bω(0))

}
±

]

for each λ > 0.

Since Pff(B)2 = det(B), to prove Theorem 2.2, we have only to prove

(2.11) lim
ξ↑∞

N(λ; ξ)
ξh

=
E[
√

detBω(0)]
(2π)h

,

where N(λ; ξ) = N+(λ; ξ) +N−(λ; ξ) is the integrated density of states of the
Pauli Hamiltonian Hξ

ω = H+,ξ
ω ⊕H−,ξ

ω .
We prove the upper estimate in the next section and the lower estimate in

Section 5.
In Section 1, we use the following representation of the matrices {γj}j :

(2.12) γ1 =
(

0 1
1 0

)
and γ2 =

(
0 i
−i 0

)
on V = C2. Then we have

Dω =
(

0 Aω

A∗
ω 0

)
,

where

(2.13) Aω = (i∂1 +Aω
1 (x)) + i(i∂2 +Aω

2 (x))

and A∗
ω is its formal adjoint.

Remark 2. We can replace the condition (b-i) by
(b-i)′ B is Zd-stationary and Zd-ergodic with respect to the shift in the

variable x.
In this condition, the random field B is called Zd-stationary if there exist

measure preserving transformations {Ta}a∈Zd on the underlying probability
space Ω such as BTaω(x) = Bω(x + a) for all x ∈ Rd and a ∈ Zd. The Zd-
stationary random field B is called Zd-ergodic if the transformations {Ta}a∈Zd

are ergodic (cf. [36]).
Under this condition, we replace the conditions (b-iv)–(b-vii) appropri-

ately. Then the integrated density of states N±(λ) or N±(λ; ξ), λ ∈ R, of the



�

�

�

�

�

�

�

�

626 Naomasa Ueki

random Pauli Hamiltonian H±
ω or H±,ξ

ω is defined similarly, Theorem 2.1 is
modified as

(2.14) N+(λ) −N−(λ) =
(−1

2π

)h ∫
Λ(1)

E[Pff(Bω(x))]dx

for each λ ≥ 0, and Theorem 2.2 is modified as

(2.15) lim
ξ↑∞

N±(λ; ξ)
ξh

=
∫

Λ(1)

E

[{(−1
2π

)h

Pff(Bω(x))

}
±

]
dx

for each λ > 0.
The proof is reduced to that for the case of the condition (b-i) as follows.

We use a probability space zΩ defined by the product of the original probability
space Ω and the closed box Λ(1) with the Lebesgue measure. On this space,
we define a random fields zB on Rd by zB(ω,y)(x) = Bω(x+ y) for (ω, y) ∈ zΩ
and x ∈ Rd. Then it is easy to see that this random field satisfies all conditions
required in Theorems 2.1 and 2.2 except for the ergodicity in the condition (b-i).
However in the following proof of Theorems 2.1 and 2.2, the ergodicity is used
only in Lemma 3.1 below. That lemma is extended to the present situation by
slightly modifying its proof.

3. Proof of Theorem 2.2: (I) Upper estimate

In this section we assume (b-i)–(b-iii) and (b-v)–(b-vi). As in [53], we
use Lemma 3.1 below: for each R > 0, we define a vector potential AR =
(AR,j

ω (x))1≤j≤d by

(3.1) AR,j
ω (x) =

−Γ(h)
2πh

∫ ∑
k 
=j

xk − yk

|x− y|dB
R,j
ω,k (y)dy,

where Γ(·) is the Gamma function,

BR,j
ω,k (y) = Bj

ω,k(y)ρ
( y
R

)
+

1
R

(
(∂jρ)

( y
R

)
Ak

ω(y) − (∂kρ)
( y
R

)
Aj

ω(y)
)

and ρ ∈ C∞
0 (Λ(2) → [0, 1]) such that ρ = 1 on Λ(1). Let ˜

HR,ξ
ω be the operator

obtained by replacing A by AR in the definition of HR,ξ
ω = H+,R,ξ

ω ⊕H−,R,ξ
ω .

Then ˜
HR,ξ

ω is unitarily equivalent with HR,ξ
ω and satisfies the following:

Lemma 3.1. Let

Ñ

(
t

2
; ξ
)

:=
∫ ∞

0

e−tλ/2dN(λ; ξ)

and

ÑR

(
t

2
; ξ
)

:=
1
Rd

∫
Λ(R)

E

[
Tr
[
exp

(
− t

2
˜
H2R,ξ

ω

)
(x, x)

]]
dx
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for any t, ξ, R > 0, where exp(−t˜H2R,ξ
ω /2)(x, y), (t, x, y) ∈ (0,∞) × Λ(2R) ×

Λ(2R) is the integral kernel of the heat semigroup exp(−t˜H2R,ξ
ω /2) generated

by ˜H2R,ξ
ω /2. Then there exist finite constants c1, c2 and c3 independent of t, ξ

and R such that

(3.2)
∣∣∣∣Ñ (

t

2
; ξ
)
− ÑR

(
t

2
; ξ
)∣∣∣∣ ≤ c1

th
exp

(
c2(ξt)ν − c3

R2

t

)
for any t, ξ, R > 0.

The proof of this lemma is same with that of Lemma 3.1 in [53]. The fun-

damental tool is the representation of exp(−t˜H2R,ξ
ω /2)(x, y) by the Feynman-

Kac-Itô formula: let w = (w1(t), w2(t), . . . , wd(t)) be a d-dimensional Wiener
process starting at 0 and Mξ

x(t) be the solution of the ordinary differential
equation

(3.3)

{
d

dt
Mξ

x(t) = ξMξ
x(t)Ξx(t),

Mξ
x(0) = I

on the space End(V ) of the endomorphisms on V , where

Ξx(t) := −1
2

∑
j<k

iγjγkB
j
ω,k(x+ w(t)).

Then exp(−t˜H2R,ξ
ω /2)(x, y) is represented as

exp(−t˜H2R,ξ
ω /2)(x, y)

= Ew

exp

−iξ
d∑

j=1

∫ t

0

A2R,j
ω (x+ w(s))dwj(s)

Mξ
x(t)

× χ{x+ w(s) ∈ Λ(2R) for any 0 ≤ s ≤ t}
∣∣∣∣∣∣x+ w(t) = y

(3.4)

× 1
(2πt)h

exp
(
−|x− y|2

2t

)
,

where Ew is the expectation with respect to a d-dimensional Wiener process,
dwj(s) is the Itô stochastic differential, and, for each Borel set A in the Wiener
space, χ(A) is its indicator function (cf. [12], [33], [52]). As in (3.4) of [53] we
have

(3.5) Eω[‖Mξ
x(t)‖p

2] ≤ cp1 exp(c2(pξt)ν)

for any p ≥ 1, where ‖ · ‖2 is the Hilbert-Schmidt norm.
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We now proceed to prove the upper estimate. By using

◦
A

2R,j

ω (x) :=
−Γ(h)
2πh

∫ ∑
k 
=j

xk − yk

|x− y|d {dρ(y/(2R))
◦
Aω(y)}j

kdy,

◦
A

j

ω(x) :=
d∑

k=1

Bk
ω,j(0)

xk

2

and
◦
M

ξ

(t) := exp(ξtΞ0(0)), we decompose ÑR(t/2; ξ) as the sum of the follow-
ing three terms:

ÑR
0

(
t

2
; ξ
)

:=
∫

Λ(R)

dx

Rd
E

exp

−iξ
d∑

j=1

∫ t

0

◦
A

2R,j

ω (x+ w(s))dwj(s)

Tr[
◦
M

ξ

(t)]

× χ{x+ w(s) ∈ Λ(2R) for any 0 ≤ s ≤ t}
∣∣∣∣∣∣w(t) = 0

 1
(2πt)h

,

ÑR
1

(
t

2
; ξ
)

:=
∫

Λ(R)

dx

Rd
E

exp

−iξ
d∑

j=1

∫ t

0

◦
A

2R,j

ω (x+ w(s))dwj(s)


× Tr[Mξ

x(t) − ◦
M

ξ

(t)]

× χ{x+ w(s) ∈ Λ(2R) for any 0 ≤ s ≤ t}
∣∣∣∣∣∣w(t) = 0

 1
(2πt)h

and

ÑR
2

(
t

2
; ξ
)

:=
∫

Λ(R)

dx

Rd
E

exp

−iξ
d∑

j=1

∫ t

0

A2R,j
ω (x+ w(s))dwj(s)


− exp

−iξ
d∑

j=1

∫ t

0

◦
A

2R,j

ω (x+ w(s))dwj(s)

Tr[Mξ
x(t)]

× χ{x+ w(s) ∈ Λ(2R) for any 0 ≤ s ≤ t}
∣∣∣∣∣∣w(t) = 0

 1
(2πt)h

.

Since the magnetic field for A◦2R
ω (x) is constant on Λ(2R), we have

ÑR
0

(
t

2
; ξ
)

=
∫

Λ(R)

dx

Rd
E

exp

i ξ
2

d∑
j,k=1

Bk
ω,j(0)

∫ t

0

w(s)kdwj(s)

Tr[
◦
M

ξ

(t)]

× χ{x+ w(s) ∈ Λ(2R) for any 0 ≤ s ≤ t}
∣∣∣∣∣∣w(t) = 0

 1
(2πt)h

.
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By the same argument in the proof of Lemma 3.1, we can estimate this as

(3.6)
∣∣∣∣ÑR

0

(
t

2
; ξ
)
− Ñ0

(
t

2
; ξ
)∣∣∣∣ ≤ c1

th
exp

(
c2(ξt)ν − R2

2t

)
,

where

Ñ0

(
t

2
; ξ
)

= E

exp

i ξ
2

d∑
j,k=1

Bk
ω,j(0)

∫ t

0

w(s)kdwj(s)

Tr[
◦
M

ξ

(t)]

∣∣∣∣∣∣w(t) = 0

 1
(2πt)h

.

For each ω, there exists an orthogonal matrix Uω such that U∗
ωBω(0)Uω is the

direct sum of B(�)
ω J , � = 1, 2, . . . , h, where B

(1)
ω , . . . , B

(h)
ω ≥ 0 and J is the

matrix defined in (2.8). Since the system of the Hermitian matrices {γ̂k :=∑
j U

j
ω,kγj} also satisfies the relation (2.2), we have

Tr[
◦
M

ξ

(t)] =
h∏

�=1

2 cosh
(
ξt

2
B(�)

ω

)
.

Moreover, by the O(d)-invariance of the Wiener measure and the formula for
the stochastic area due to P. Lévy (cf.[33, VI-(6.10)]), we have

Ew

exp

i ξ
2

d∑
j,k=1

Bk
ω,j(0)

∫ t

0

w(s)kdwj(s)

∣∣∣∣∣∣w(t) = 0

 =
h∏

�=1

ξtB
(�)
ω /2

sinh(ξtB(�)
ω /2)

.

Thus we have

(3.7)
Ñ0(t/2; ξ)

ξh
= E

[
h∏

�=1

B
(�)
ω

2π
coth

(
ξtB

(�)
ω

2

)]
.

For ÑR
1 (t/2; ξ), we use

Mξ
x(t) − ◦

M
ξ

(t) = ξ

∫ t

0

Mξ
x(s)(Ξx(s) − Ξ(0))

◦
M

ξ

(t− s)ds

and

|Tr[Mξ
x(t) − ◦

M
ξ

(t)]| ≤ ξ

∫ t

0

ds‖Ξx(s) − Ξ0(0)‖op‖
◦
M

ξ

(t− s)‖2‖Mξ
x(s)‖2,

where ‖ · ‖1, ‖ · ‖2 and ‖ · ‖op are the trace norm, the Hilbert-Schmidt norm and
the operator norm, respectively. Then we have

(3.8)
∣∣∣∣ÑR

1

(
t

2
; ξ
)∣∣∣∣ ≤ c1ξ

th−1
sup

x∈Λ(2R)

E[‖Bω(x) −Bω(0)‖3
2]

1/3 exp(c2(ξt)ν).
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For ÑR
2 (t/2; ξ), we use Lemma 2.3 in [23] (Lemma 2.2 in [42]) as follows:

E


∣∣∣∣∣∣

d∑
j=1

∫ t

0

A2R,j
ω (x+ w(s))dwj(s) −

d∑
j=1

∫ t

0

◦
A

2R,j

ω (x+ w(s))dwj(s)

∣∣∣∣∣∣
2

× χ{x+ w(s) ∈ Λ(2R) for any 0 ≤ s ≤ t}
∣∣∣∣∣∣w(t) = 0

(3.9)

≤ E

∣∣∣∣∣∣
d∑

j=1

∫ t

0

(A2R,j
ω − ◦

A
2R,j

ω )(x+ w(s))

× χΛ(2R)(x+ w(s))dwj(s)

∣∣∣∣∣∣
2 ∣∣∣∣∣∣w(t) = 0


≤ ct3/4E

[∫ t

0

|(A2R
ω − ◦

A
2R

ω )(x+ w(s))|8χΛ(2R)(x+ w(s))ds
∣∣∣∣w(t) = 0

]1/4

,

where χA(x) is the indicator function on Rd for a Borel set A in Rd. By the
definition (3.1) of the vector potential we have

Eω[|(A2R
ω − ◦

A
2R

ω )(x+ w(s))|8] ≤ cR8 sup
y∈Λ(4R)

E[‖Bω(y) −Bω(0)‖8
2].

Thus we have

(3.10)
∣∣∣∣ÑR

2

(
t

2
; ξ
)∣∣∣∣ ≤ c1ξR

th−1/2
sup

y∈Λ(4R)

E[‖Bω(y) −Bω(0)‖8]1/8 exp(c2(ξt)ν).

By (3.2), (3.6), (3.7), (3.8) and (3.10), we obtain

Ñ(t/2; ξ)
ξh

≤ E

[
h∏

�=1

B
(�)
ω

2π
coth

(
ξtB

(�)
ω

2

)]
+

c1
(ξt)h

exp
(
c2(ξt)ν − R2

2t

)
+

c3
(ξt)h−1

(
1 +

R√
t

)
B(R) exp(c4(ξt)ν),(3.11)

where B(R) is a strictly increasing continuous function such that B(0) = 0 and

B(R) ≥ sup
x∈Λ(4R)

E[‖Bω(x) −Bω(0)‖8]1/8.

The function B(R) exists because of the conditions (b-ii) and (b-v). We will take
the limit as ξ → ∞, t → 0 and R → 0 so that ξt → ∞, c2(ξt)ν − R2/(2t) = 0
and B(R) exp(c4(ξt)ν) = exp(−c2(ξt)ν), where c2 and c4 are the constants in
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(3.11). It is possible, for example, by setting

R = R(Ξ) = B−1(exp(−(c2 + c4)Ξν)),

t = t(Ξ) = B−1(exp(−(c2 + c4)Ξν))2
/

(2c2Ξν),

ξ = ξ(Ξ) = 2c2Ξν+1
/
B−1(exp(−(c2 + c4)Ξν))2

and letting Ξ → ∞. Then we obtain

lim sup
Ξ→∞

Ñ(t(Ξ)/2; ξ(Ξ))
ξ(Ξ)h

≤ E

[
h∏

�=1

B
(�)
ω

2π

]
=
E[
√

detBω(0)]
(2π)h

.

Since Ñ(t/2; ξ) ≥ e−tλ/2N(λ; ξ) for each λ > 0, we obtain

lim sup
ξ↑∞

N(λ; ξ)
ξh

≤ E[
√

detBω(0)]
(2π)h

.

4. Proof of Theorems 2.1

In this section we assume the conditions (b-i)–(b-iv).
We first prove the following:

Lemma 4.1. Ñ+(t) − Ñ−(t) is independent of t > 0, where Ñ±(t) :=∫∞
0
e−tλdN±(λ).

Proof. Since the condition (b-v) is replaced by (b-iv), Lemma 3.1 is mod-
ified as follows: there exist t0 > 0 and c1, c2 such that

(4.1)
∣∣∣∣Ñ±

(
t

2

)
− Ñ±,R

(
t

2

)∣∣∣∣ ≤ c1
th

exp
(
−c2R

2

t

)
for any 0 ≤ t ≤ t0, where

Ñ±,R

(
t

2

)
:=

1
Rd

∫
Λ(R)

E

[
Tr
[
exp

(
− t

2
H̃2R

ω

)
(x, x)Γ±

]]
dx

and H̃2R
ω is the operator ˜

H2R,ξ
ω with ξ = 1. We next define the operator Ĥ4R

ω

on L2(Rd → V ) by replacing A by A4R in the definition of Hω, set

Ñ±,R
f

(
t

2

)
= E

[
Tr
[
f exp

(
− t

2
Ĥ4R

ω

)
Γ±f

]]
for any f ∈ C(Rd → [0,∞)) such that

∫
f2dx = 1, and show the following:

(4.2)
∣∣∣∣Ñ±,R

(
t

2

)
− Ñ±,R

f

(
t

2

)∣∣∣∣ ≤ c3
th

{
exp

(
−c4R

2

t

)
+
∫

Λ(R)c

f2(x)dx

}
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for any 0 ≤ t ≤ t0. For this we use the Feynman-Kac-Itô formula and Mercer’s
expansion theorem to rewrite Ñ±,R

f (t/2) as∫
Rd

E

[
Tr
[
exp

(
− t

2
Ĥ4R

ω

)
(x, x)Γ±

]]
f(x)2dx.

By using

Ñ±,R

(
t

2

)
≤ sup

y∈Λ(R)

E

[
Tr
[
exp

(
− t

2
H̃2R

ω

)
(y, y)Γ±

]]

and the nonnegativity of Tr[exp(−tH̃2R
ω )(y, y)Γ±] and Tr[exp(−tĤ4R

ω )(x, x)Γ±],
we estimate as∣∣∣∣Ñ±,R

(
t

2

)
− Ñ±,R

f

(
t

2

)∣∣∣∣
≤
∫ ∣∣∣∣∣ sup

y∈Λ(R)

E

[
Tr
[
exp

(
− t

2
H̃2R

ω

)
(y, y)Γ±

]]
−E

[
Tr
[
exp

(
− t

2
Ĥ4R

ω

)
(x, x)Γ±

]]∣∣∣∣ f(x)2dx

≤ sup
x,y∈Λ(R)

∣∣∣∣E [Tr
[
exp

(
− t

2
Ĥ4R

ω

)
(x, x)Γ±

]]
− E

[
Tr
[
exp

(
− t

2
H̃2R

ω

)
(y, y)Γ±

]]∣∣∣∣
+

(∫
Λ(R)c

f2dx

)(
sup
x∈Rd

E

[
Tr
[
exp

(
− t

2
Ĥ4R

ω

)
(x, x)Γ±

]]

+ sup
y∈Λ(R)

E

[
Tr
[
exp

(
− t

2
H̃2R

ω

)
(y, y)Γ±

]])
.

As in (4.1) we have

sup
y∈Λ(R)

E

[
Tr
[
exp

(
− t

2
H̃2R

ω

)
(y, y)Γ±

]]
≤ c5
th

and

(4.3) sup
x∈Rd

E

[
Tr
[
exp

(
− t

2
Ĥ4R

ω

)
(x, x)Γ±

]]
≤ c6
th

for any 0 ≤ t ≤ t0. In the representation of the Feynman-Kac-Itô formula, if x,
y ∈ Λ(R) and y + w(s) ∈ Λ(2R) for any 0 ≤ s ≤ t, then x+ w(s) ∈ Λ(4R) for
any 0 ≤ s ≤ t. Thus, by the stationarity of the random magnetic field and the
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gauge invariance, we have

E

[
Tr
[
exp

(
− t

2
H̃2R

ω

)
(y, y)Γ±

]]

= E

exp

−i
d∑

j=1

∫ t

0

A4R,j
ω (x+ w(s))dwj(s)

Tr[M̂4R
x (t)Γ±]

× χ{y + w(s) ∈ Λ(2R) for some 0 ≤ s ≤ t}
∣∣∣∣∣∣w(t) = 0

 1
(2πt)h

,

where M̂4R
x (t) is the endomorphism valued process obtained by replacing Bω

by B4R
ω in the definition (3.3) of Mξ

x(t) with ξ = 1. Therefore we have

E

[
Tr
[
exp

(
− t

2
Ĥ4R

ω

)
(x, x)Γ±

]]
− E

[
Tr
[
exp

(
− t

2
H̃2R

ω

)
(y, y)Γ±

]]

= E

exp

−i
d∑

j=1

∫ t

0

A4R,j
ω (x+ w(s))dwj(s)

Tr[M̂4R
x (t)Γ±]

× χ{y + w(s) �∈ Λ(2R) for some 0 ≤ s ≤ t}
∣∣∣∣∣∣w(t) = 0

 1
(2πt)h

.

Then, by a standard argument on the Wiener process, we have∣∣∣∣E [Tr
[
exp

(
− t

2
Ĥ4R

ω

)
(x, x)Γ±

]]
− E

[
Tr
[
exp

(
− t

2
H̃2R

ω

)
(y, y)Γ±

]]∣∣∣∣
≤ c7
th

exp
(
−c8R

2

t

)
and we obtain (4.2) for any 0 ≤ t ≤ t0.

We decompose ˜N±,R
f (t/2) as the sum of the following three terms:

˜N±,R
f,ε,1 := E[Tr[fE([0, ε] : ̂H±,4R

ω )Γ±f ]],

˜N±,R
f,ε,2

(
t

2

)
:= E

[
Tr
[
f

{
exp

(
− t

2
̂H±,4R

ω

)
− 1

}
E([0, ε] : ̂H±,4R

ω )Γ±f
]]

and

˜N±,R
f,ε,3

(
t

2

)
:= E

[
Tr
[
f exp

(
− t

2
̂H±,4R

ω

)
E((ε,∞) : ̂H±,4R

ω )Γ±f
]]
,

where ε ∈ (0,∞) and E(Λ : ̂H±,4R
ω ), Λ ∈ B(R), is the resolution of the identity

of the Pauli Hamiltonian ̂H±,4R
ω . It is easy to show

(4.4)
∣∣∣∣˜N±,R

f,ε,2

(
t

2

)∣∣∣∣ ≤ (etε/2−1)E
[
Tr
[
f exp

(
− t

2
̂H±,4R

ω

)
f

]]
≤ (etε/2−1)

c9
th
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for any 0 ≤ t ≤ t0.
A key estimate is

(4.5)
∣∣∣∣˜N+,R

f,ε,3

(
t

2

)
− ˜N±,R

f,ε,3

(
t

2

)∣∣∣∣ ≤ c10
εth

(
1 +

1
t2

+ ‖∇f‖2

)1/2

‖∇f‖

for any 0 ≤ t ≤ t0, where ‖ · ‖ is the L2-norm. To prove this, we use a
theory on the supersymmetry (cf. [18, §6.3]): let D̂4R

ω be the Dirac operator
obtained by replacing A by A4R in the definition of Dω. Then (Ĥ4R

ω ,Γ, D̂4R
ω )

has supersymmetry in the sense of §6.3 in [18]. As in the proof of Theorem 6.3
in [18], D̂4R

ω is invertible on RanE((ε,∞) : Ĥ4R
ω ) and

exp
(
− t

2
̂H+,4R

ω

)
E((ε,∞) : ̂H+,4R

ω )Γ+

= (D̂4R
ω )−1 exp

(
− t

2
̂H−,4R

ω

)
E((ε,∞) : ̂H−,4R

ω )Γ−D̂4R
ω .

Since

D̂4R
ω f2 − f2D̂4R

ω = 2f
d∑

j=1

γj(i∂jf),

we have

˜N+,R
f,ε,3

(
t

2

)
− ˜N−,R

f,ε,3

(
t

2

)

= 2E

Tr

f(D̂4R
ω )−1 exp

(
− t

2
̂H±,4R

ω

)
E((ε,∞) : ̂H−,4R

ω )
d∑

j=1

γj(i∂jf)

 .
By (D̂4R

ω )−1 = D̂4R
ω (Ĥ4R

ω )−1, we have∣∣∣∣˜N+,R
f,ε,3

(
t

2

)
− ˜N−,R

f,ε,3

(
t

2

)∣∣∣∣
≤ 2E

[∣∣∣∣∣∣∣∣∣∣∣∣fD̂4R
ω exp

(
− t

4
̂H−,4R

ω

)
E((ε,∞) : ̂H−,4R

ω )
∣∣∣∣∣∣∣∣∣∣∣∣2

2

]1/2

×E


∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣( ̂H−,4R

ω )−1 exp
(
− t

4
̂H−,4R

ω

)
E((ε,∞) : ̂H−,4R

ω )
d∑

j=1

γj(i∂jf)

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

2


1/2

,

where ||| · |||2 is the Hilbert-Schmidt norm of the operators acting on L2(Rd →
V ). The first factor is estimated as

E

[∣∣∣∣∣∣∣∣∣∣∣∣fD̂4R
ω exp

(
− t

4
̂H−,4R

ω

)
E((ε,∞) : ̂H−,4R

ω )
∣∣∣∣∣∣∣∣∣∣∣∣2

2

]
(4.6)

≤ c11

(
1 +

1
t2

+ ‖∇f‖2

)
.
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In fact, for any Φ ∈ RanE((ε,∞) : ̂H−,4R
ω ), we have

‖fD̂4R
ω Φ‖2

V = 〈fΦ, f ̂H−,4R
ω Φ〉V + 2

〈
d∑

j=1

γj(i∂jf)Φ, fD̂4R
ω Φ

〉
V

≤ 1
2
‖fΦ‖2

V +
1
2
‖f ̂H−,4R

ω Φ‖2
V +

1
η

∥∥∥∥∥∥
d∑

j=1

γj(i∂jf)Φ

∥∥∥∥∥∥
2

V

+ η‖fD̂4R
ω Φ‖2

V

for any η ∈ (0,∞) and

‖fD̂4R
ω Φ‖2

V ≤ c12

‖fΦ‖2
V + ‖f ̂H−,4R

ω Φ‖2
V +

∥∥∥∥∥∥
d∑

j=1

γj(i∂jf)Φ

∥∥∥∥∥∥
2

V

 .

Then, by ||| ̂H−,4R
ω exp(−t ̂H−,4R

ω /8)||| ≤ c13/t and (4.3), we have (4.6). Simi-
larly we have

E


∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣( ̂H−,4R

ω )−1 exp
(
− t

4
̂H−,4R

ω

) d∑
j=1

γj(i∂jf)

∣∣∣∣∣∣
∣∣∣∣∣∣
∣∣∣∣∣∣
2

2

 ≤ c14
εth

‖∇f‖2.

Thus we obtain (4.5).
We take the function f as

fa(x) :=
1

(2πa)h/2
exp

(
−|x|2

4a

)
for a > 0. Then we have∫

Λ(R)c

f2
a (x)dx ≤ c15 exp

(
−c16R

2

a

)
.

To obtain the decay in (4.2) as R → ∞, we take a as a(R) = R2−α for α > 0.
Then we have ‖∇fa(R)‖ =

√
d/(2R1−α/2). To obtain the decay in (4.4) and

(4.5) as R → ∞, we take ε as ε(R) = Rα/2+β−1 and take α, β > 0 so that
α/2 + β < 1. Then we obtain

Ñ+

(
t

2

)
− Ñ−

(
t

2

)
= lim

R→∞

(
Ñ+,R

fa(R),ε(R),1 − Ñ−,R
fa(R),ε(R),1

)
for any 0 ≤ t ≤ t0. The right hand side is independent of t. By the theorem of
the identity of analytic functions, Ñ+(t)−Ñ−(t) is independent of all t > 0.

Remark 3. If we replace the condition (b-ii) by
(b-ii)′ the sample path x �→ Bω(x) is differentiable,

then we can give a simple proof of Lemma 4.1: in this case, the vector potential
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Aω by the Poincaré gauge is differentiable and the integral kernel
exp(−tHω/2)(x, y) is represented by the Feynman-Kac-Itô formula. Then we
can show N±(λ) = E[Tr[fE([0, λ] : H±

ω )f ]] for any f ∈ C(Rd → [0,∞)) such
that

∫
f2dx = 1 (cf. [14, Proposition VI.1.3]). As in the proof of (4.5), we have

|(N+(λ) −N−(λ)) − (N+(ε) −N−(ε))|
= |E[Tr[fE((ε, λ] : H+

ω )f ]] − E[Tr[fE((ε, λ] : H−
ω )f ]]|

=

∣∣∣∣∣∣2E
Tr

fD−1
ω E((ε, λ] : H−

ω )
d∑

j=1

γj(i∂jf)

∣∣∣∣∣∣
≤ c

ε
(1 + λ2 + ‖∇f‖2)1/2‖∇f‖

for any 0 < ε < λ. Since f is arbitrary, N+(λ)−N−(λ) is independent of λ ≥ 0
and Ñ+(t) − Ñ−(t) is independent of t ≥ 0.

Proof of Theorem 2.1. The rest of the proof is only to show

lim
t↓0

{
Ñ+

(
t

2

)
− Ñ−

(
t

2

)}
=
(−1

2π

)h

E[Pff(Bω(0))].

For this we use the heat equation method to prove the index theorem (cf. [18,
§12]). By (4.1), it is sufficient to show

(4.7) lim
t↓0

{
Ñ+,1

(
t

2

)
− Ñ−,1

(
t

2

)}
=
(−1

2π

)h

E[Pff(Bω(0))].

By the scaling property of the Wiener process, we have

Ñ+,1

(
t

2

)
− Ñ−,1

(
t

2

)
(4.8)

=
∫

Λ(1)

dxE

exp

−i√t
d∑

j=1

∫ 1

0

A2,j
ω (x+

√
tw(s))dwj(s)

Str[M (t)
x (1)]

× χ{x+
√
tw(s) ∈ Λ(2) for any 0 ≤ s ≤ 1}

∣∣∣∣∣∣w(1) = 0

 1
(2πt)h

,

where, for any M ∈ End(V ), Str[M ] = Tr[MΓ] is the supertrace, {M (t)
x (s) :

s ≥ 0} is the endomorphism valued process obtained by replacing Ξx(s) and ξ
by

Ξ(t)
x (s) := −1

2

∑
j<k

iγjγkB
j
ω,k(x+

√
tw(s))

and t, respectively, in the ordinary differential equation (3.3). By using the
ordinary differential equation, we have

M (t)
x (1) = I + tM1 + t2M2 + · · · + tnMn + tn+1Mn,R
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for any n ∈ N, where

Mp =
∫

· · ·
∫

0≤sp≤···≤s2≤s1≤1

Ξ(t)
x (sp) · · ·Ξ(t)

x (s2)Ξ(t)
x (s1)dsp · · · ds2ds1

for p = 1, 2, . . . , n, and

Mn,R =
∫

· · ·
∫

0≤sn+1≤···≤s2≤s1≤1

M (t)
x (sn+1)Ξ(t)

x (sn+1)

· · ·Ξ(t)
x (s2)Ξ(t)

x (s1)dsn+1 · · · ds2ds1.
We now use the Berezin formula:

(4.9) Str

 d∑
p=0

∑
1≤j1<j2<···<jp≤d

Cj1j2···jp
γj1γj2 · · · γjp

 = (−2i)hC12···d

(cf. [18, §12.2]). Then we have Str[Mp] = 0 for any p < h. Therefore we take
n = h. Since Eω[‖M (t)

x (s)‖2
2] ≤ c for 0 ≤ t ≤ t0 and 0 ≤ s ≤ 1 as in (3.5), we

can show that the function obtained by replacing M (t)
x (1) by th+1Mh,R in (4.8)

tends to zero as t → 0. Moreover, by Lemma 2.3 in [23] (Lemma 2.2 in [42]),
we have

sup
0<t≤1

E


∣∣∣∣∣∣

d∑
j=1

∫ 1

0

A2,j
ω (x+

√
tw(s))dwj(s)

∣∣∣∣∣∣
2 ∣∣∣∣∣∣w(1) = 0

 <∞.

Therefore the right hand side of (4.7) equals

lim
t↓0

∫
Λ(1)

dxE[Str[Mh]χ{x+
√
tw(s) ∈ Λ(2) for any 0 ≤ s ≤ 1}|w(1) = 0]

1
(2π)h

.

Since the integrand is uniformly integrable, this equals

E

Str


−1

2

∑
j<k

iγjγkB
j
ω,k(0)

h

 1
h!(2π)h

.

By using again the Berezin formula (4.9), we can show that this coincides with
the right hand side of (4.7).

5. Proof of Theorem 2.2: (II) Lower estimate

In this section we assume the conditions (b-i)–(b-iii) and (b-v)–(b-vii). By
the orthogonal matrix Uω in the condition (b-vii)′, we define a distance on Rd

by

dω(x, y) := max
1≤�≤h

 2�∑
j=2�−1

{
d∑

k=1

Uk
ω,j(x

k − yk)}2

1/2
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for any x, y ∈ Rd. For each p ∈ Rd and r > 0, we define a polydisk by
Dω(p, r) := {x ∈ Rd : dω(p, x) < r}. We take an osculatory packing of the unit
cube Λ(1) by the polydisks inductively so that the related quantities are mea-
surable as follows: we first set rω

1 := sup{r > 0 : Dω(p, r) ⊂ Λ(1) for some p ∈
Λ(1)}, which is measurable in ω. Then the set Sω(1, 0) := {p ∈ Λ(1) :
Dω(p, rω

1 ) ⊂ Λ(1)} is not empty. We next set pω,1
1 := sup{p1 : p ∈ Sω(1, 0)}

and Sω(1, 1) := {p ∈ Sω(1, 0) : p1 = pω,1
1 }. Then pω,1

1 is measurable in ω and
Sω(1, 1) is not empty. Similarly, when the numbers pω,1

1 , pω,2
1 , . . . , pω,j−1

1 and
the nonempty sets Sω(1, 0), Sω(1, 1), . . . , Sω(1, j − 1) are obtained for some
j ≤ d, we set pω,j

1 := sup{pj : p ∈ Sω(1, j − 1)} and Sω(1, j) := {p ∈
Sω(1, j − 1) : pj = pω,j

1 }. Then pω,j
1 is measurable in ω and Sω(1, j) is not

empty. By continuing this procedure, we obtain a Λ(1)-valued random vari-
able pω

1 = (pω,1
1 , pω,2

1 , . . . , pω,d
1 ). Similarly when Λ(1)-valued random variables

pω
1 , p

ω
2 , . . . , p

ω
ν−1 are obtained for some ν ≥ 2, we set

rω
ν := sup

{
r > 0 : Dω(p, r) ⊂ Λ(1) −

ν−1⋃
µ=1

Dω
µ for some p ∈ Λ(1)

}

and

Sω(ν, 0) :=

{
p ∈ Λ(1) : Dω(p, rω

ν ) ⊂ Λ(1) −
ν−1⋃
µ=1

Dω
µ

}
,

where Dω
µ is the closure of the domain Dω

µ := Dω(pω
µ , r

ω
µ ). Moreover, when

the positive numbers pω,1
ν , pω,2

ν , . . . , pω,j−1
ν and the nonempty sets Sω(ν, 0),

Sω(ν, 1), . . . , Sω(ν, j − 1) are obtained for some j ≤ d, we set pω,j
ν := sup{pj :

p ∈ Sω(ν, j − 1)} and Sω(ν, j) := {p ∈ Sω(ν, j − 1) : pj = pω,j
ν }. By continuing

this procedure, we obtain the decreasing sequence of positive random variables
{rω

ν }∞ν=1 and Λ(1)-valued random variables {pν}∞ν=1 so that the sets {Dω
ν }∞ν=1

are mutually disjoint and is included in Λ(1). As in the usual proof of Vitali’s
covering theorem, we can show that this packing is a complete packing:

(5.1)
∞∑

ν=1

|Dω
ν | = 1 = |Λ(1)|,

where | · | is the volume.
In the following we use the ω-dependent complex coordinate (z1

ω, . . . , z
h
ω)

defined by z�
ω = x2�−1

ω + ix2�
ω and xj

ω =
∑d

k=1 U
k
ω,jx

k. In terms of this coordi-
nate, the polydisk Dω(p, r) is the usual polydisk {zω ∈ Ch : |z�

ω − z�
ω(p)| <

r for � = 1, 2, . . . , h} and the cube Λ(1) is a domain obtained by rotating
(−1/2, 1/2)d. On the other hand, the magnetic field is represented as the
complex 2-form

Bω(zω) =
1
2

∑
�,m

B�
ω,m(zω)dz�

ω ∧ dzm
ω



�

�

�

�

�

�

�

�

Random Pauli Hamiltonians 639

and the vector potential defined in (2.1) is represented as the complex 1-form

Aω(zω) =
h∑

�=1

(A�
ω(zω)dz�

ω + A�
ω(zω)dz�

ω)

on Λ(R0), where R0 and (B�
ω,m(zω))1≤�,m≤h are the positive number and the

skew Hermitian matrix valued random field, respectively, defined in Section 2,
and

A�
ω(zω) =

1
2

∫ 1

0

h∑
m=1

Bm
ω,�(tzω)tzm

ω dt.

The Hermitian matrices γω,1, γω,2, . . . , γω,d defined by γω,j =
∑d

k=1 U
k
ω,jγk

also satisfies the commutation relation (2.2). We represent these matrices as
γω,2�−1 = ext(δ�) + int(δ�), γω,2� = i(ext(δ�) − int(δ�)) for � = 1, 2, . . . , h, on
V = Λ(Ch), where {δ1, δ2, . . . , δh} is a unitary basis of Ch, ext is the exterior
multiplication, i.e., ext(δ�)ψ = δ� ∧ψ and int is the interior multiplication, i.e.,
the adjoint of ext. Then the Dirac operator is represented as
(5.2)

Dξ
ω =

h∑
�=1

{
ext(δ�)2

(
i
∂

∂z�
ω

+ ξA�
ω(zω)

)
+ int(δ�)2

(
i
∂

∂z�
ω

+ ξA�
ω(zω)

)}

on Λ(R0).
Until (5.12) below we fix ω and omit to indicate the ω-dependence. For

each ν = 1, 2, . . . and 0 < R < R0, we introduce a vector potential

Aν,R(z) =
h∑

�=1

(Aν,R,�(z)dz� + Aν,R,�(z)dz�)

by Aν,R,�(z) :=
◦
A

ν,R,�(z) + A∆,�(z), where

◦
A

ν,R,�(z) := iB(�)(z� −Rp�
ν)/4,

A∆,�(z) :=
1
2

∫ 1

0

h∑
m=1

B
∆,m
� (tz)tzmdt

and B∆(z) := B(z) − B(0). Let D̂ν,R,ξ be the Dirac operator obtained by
replacing A� by Aν,R,� in the definition of the operator Dξ. Let Hν,R,ξ be the
self-adjoint operator on the space L2(RDν → V ) corresponding to the closure
of the quadratic form qξ(Φ,Ψ) with the domain C∞

0 (RDν → V ) and Ĥν,R,ξ

be the operator obtained by replacing Dξ by D̂ν,R,ξ in the definition of the
operator Hν,R,ξ. Then Hν,R,ξ and Ĥν,R,ξ are unitarily equivalent by the gauge
invariance.

We use a uniform estimate of the solution of the ∂-equation by Berndtsson
[9]:
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Lemma 5.1. Let B(r) := {z ∈ Ch : |z| < r} for r > 0. Then, for any
R > 0 such that 2R

√
d < R0, there exists a function ψR on B(R

√
d) such that

(5.3) ∂ψR = i
h∑

�=1

A∆,�(z)dz�

and

sup
z∈Λ(R)

|ψR(z)| ≤ CdR
2 sup

z∈B(R
√

d)

max
1≤�,m≤h

|B∆,�
m (z)|,

where Cd depends only on the dimension.

Proof. By Theorem 2 in Berndtsson [9], there exists a function ΨR on
B(1) such that

∂ΨR = i

h∑
�=1

A∆,�(R
√
dz)dz�

on B(1) and

sup
z∈B(1/2)

|ΨR(z)| ≤ C ′
d sup

x∈B(1)

max
1≤�≤h

|A∆,�(R
√
dz)|.

We set ψR(z) := R
√
dΨR(z/(R

√
d)). Then (5.3) holds and

sup
z∈B(R

√
d/2)

|ψR(z)| ≤ C ′
dR

√
d sup

z∈B(R
√

d)

max
1≤�≤h

|A∆,�(z)|

≤ CdR
2 sup

z∈B(R
√

d)

max
1≤�,m≤h

|B∆,�
m (z)|.

We now take R > 0 so that 2R
√
d < R0, and set

ψν,R(z) := −
h∑

�=1

B(�)

4
|z� −Rp�

ν |2 + ψR(z)

and φν,R(z) := exp(ξψν,R(z)). Then we have

D̂ν,R,ξ

(
h∏

�=1

(z� −Rp�
ν)n(�)

)
φν,R(z) = 0

for any n = (n(1), n(2), . . . , n(h)) ∈ Zh
+. To obtain functions in the domain of

Ĥν,R,ξ, we introduce ζ ∈ C∞
0 (C → [0, 1]) such that

(5.4) ζ(z) =
{

0 if z �∈ B2(1),
1 if z ∈ B2(1 − δ)
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and |∇ζ| ≤ c/δ, where B2(r) := {x ∈ C : |z| < r} for r > 0, 0 < δ < 1/2
is an arbitrary small constant and c is a constant independent of δ. For any
n = (n(1), n(2), . . . , n(h)) ∈ Zh

+, we set

φν,n(z) :=

(
h∏

�=1

ζ

(
z� −Rp�

ν

Rrν

)
(z� −Rp�

ν)n(�)

)
φν,R(z).

Then we have

‖D̂ν,R,ξφν,n‖2 ≤ c

(Rrνδ)2

h∑
�=1

∫
B2(Rrν)−B2(Rrν(1−δ))

|z1|2n(�)

× exp(−ξB(�)|z1|2/2)dx1dx2

×
∏

m 
=�

∫
ζ2

(
z1

Rrν

)
|z1|2n(m) exp(−ξB(m)|z1|2/2)dx1dx2


× exp

(
2ξ sup

z∈Λ(R)

|ψR(z)|
)

and

‖D̂ν,R,ξφν,n‖2

‖φν,n‖2
≤ c

(Rrνδ)2
exp

(
4ξ sup

z∈Λ(R)

|ψR(z)|
)

×
h∑

�=1

∫
B2(Rrν)−B2(Rrν(1−δ))

|z1|2n(�) exp(−ξB(�)|z1|2/2)dx1dx2

×
{∫

B2(Rrν(1−δ))

|z1|2n(�) exp(−ξB(�)|z1|2/2)dx1dx2

}−1

.

We now assume

sup
z∈B(R

√
d)

max
1≤�,m≤h

|B∆,�
m (z)| < η.

Then we have

‖D̂ν,R,ξφν,n‖2

‖φν,n‖2
≤ c1

(Rrν)2δ

h∑
�=1

{(1 − δ)2n(�)I(n(�), ξB(�)(Rrν(1 − δ))2/2)

× exp(−ξc2ηR2)}−1,

where

(5.5) I(n, a) :=
∫ 1

0

sn exp(a(1 − s))ds

for n, a ≥ 0.
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We fix λ > 0 arbitrarily. For

(5.6) ‖D̂ν,R,ξφν,n‖2/‖φν,n‖2 ≤ λ

to hold, it is sufficient that

(5.7)
c1h

(Rrν)2δλ(1 − δ)2n(�)
≤ I(n(�), ξB(�)(Rrν(1 − δ))2/2) exp(−ξc2ηR2),

for all � ∈ {1, 2, . . . , h}. Introducing 0 < σ < 1/2, we use the estimate

(5.8) I(n, a) ≥
{
σ(n/(ae))n exp(a(1 − σ)) if σ + n/a ≤ 1,
σ(1 − σ)n if σ + n/a ≥ 1.

Then, for (5.7) to hold, it is sufficient that

(5.9)
c1h

(Rrν)2δλσ

(
ξB(�)(Rrν)2e

2n(�)

)n(�)

≤ exp(ξB(�)(Rrν(1− δ))2(1 − σ)/2 − ξc2ηR
2)

when n(�) ≤ ξB(�)(Rrν(1 − δ))2(1 − σ)/2, and

(5.10)
c1h

(Rrν)2δλσ((1 − δ)2(1 − σ))n(�)
≤ exp(−ξc2ηR2)

when n(�) ≥ ξB(�)(Rrν(1 − δ))2(1 − σ)/2. However (5.10) is impossible for
sufficiently large ξ. Therefore we consider only (5.9). This is rewritten as
gν

� (n(�)) ≤ 0 and n(�) ≤ ξB(�)(Rrν(1−δ))2(1−σ)/2, where gν
� (n) := −n log n+

nAν
� − Bν

� for n > 0, Aν
� := log(ξB(�)(Rrν)2e/2) and Bν

� := ξB(�)(Rrν(1 −
δ))2(1−σ)/2−ξc2ηR2+log((Rrν)2δλσ/(c1h)). The function gν

� (n) is increasing
on (0, exp(Aν

� − 1)] and its maximum is

gν
� (exp(Aν

� − 1)) = exp(Aν
� − 1) − Bν

�

= ξB(�)(0)(Rrν)2(1 − (1 − δ)2(1 − σ))/2 + ξc2ηR
2 − log((Rrν)2δλσ/(c1h)).

We now assume η < (rν)2B(�)(1− (1− δ)2(1− σ))/(2c2). Since δ, σ < 1/2, by
taking ξ large enough, we may regard that limn↓0 gν

� (n) < 0 and gν
� (exp(Aν

� −
1)) > 0. We put

(5.11) kν,ξ
� := inf{k > 1 : gν

� (exp(Aν
� − 1)/k) ≤ 0}

and take another small ϑ > 0. Then gν
� (n) < 0 for n ≤ exp(Aν

� − 1)/(kν,ξ
� + ϑ).

For n ≥ exp(Aν
� −1)/(kν,ξ

� +ϑ), we use log n ≥ Aν
� −1−log(kν,ξ

� +ϑ) to estimate
as gν

� (n) ≤ n(1 + log(kν,ξ
� + ϑ)) − Bν

� . Therefore, for gν
� (n(�)) ≤ 0 to hold, it is

sufficient that

(5.12) n(�) ≤ Bν
� /(1 + log(kν,ξ

� + ϑ)).
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The right hand side is less than ξB(�)(0)(Rrν(1− δ))2(1− σ)/2. Consequently,
for (5.6) to hold, it is sufficient that (5.12) holds for all � ∈ {1, 2, . . . , h}.

Thus the counting function Nω(λ; ξ, RDω
ν ) of the eigenvalues of the oper-

ator Hν,R,ξ
ω is greater than or equal to

h∏
�=1

(
Bν

�,ω

1 + log(kν,ξ
�,ω + ϑ)

− 1

)
.

On the other hand, kν,ξ
�,ω in (5.11) is rewritten as

(5.13)

kν,ξ
�,ω = K

(
(1 − δ)2(1 − σ) − 2c2η

B
(�)
ω (rω

ν )2
+

2

ξB
(�)
ω (Rrω

ν )2
log

(Rrω
ν )2δλσ
c1h

)
,

where K is the inverse of the function F (k) = (1 + log k)/k, k > 1. Since
F is strictly decreasing continuous function and limk↓1 F (k) = 1, K is also
strictly decreasing continuous function on the interval (0, 1) and limf↑1K(f) =
1. Therefore we obtain

lim inf
ξ↑∞

Nω(λ; ξ, RDω
ν )

ξh
≥

h∏
�=1

B
(�)
ω (Rrω

ν (1 − δ))2(1 − σ)/2 − c2ηR
2

1 + logK((1 − δ)2(1 − σ) − 2c2η/(B
(�)
ω (rω

ν )2))

for almost all ω. We take another small υ > 0 and set µω(υ) := max{µ : rω
µ ≥

υ}. By the min-max principle, we have

NR
ω (λ; ξ) ≥

µω(υ)∑
ν=1

Nω(λ; ξ, RDω
ν ).

Thus we have

lim inf
ξ↑∞

NR
ω (λ; ξ)
ξhRd

≥
µω(υ)∑
ν=1

|Dω
ν |

h∏
�=1

B
(�)
ω (1 − δ)2(1 − σ)/(2π) − c2η/(πυ2)

1 + logK((1 − δ)2(1 − σ) − c2η/(B
(�)
ω υ2))

.

We now take the expectation in ω. By the Akcoglu-Krengel superadditive
ergodic theorem (cf. [3], [14], [37]) and Fatou’s lemma, we have

lim inf
ξ↑∞

N(λ; ξ)
ξh

≥ E

µω(υ)∑
ν=1

|Dω
ν |

h∏
�=1

B
(�)
ω (1 − δ)2(1 − σ)/(2π) − c2η/(πυ2)

1 + logK((1 − δ)2(1 − σ) − c2η/(B
(�)
ω υ2))

: B(1)
ω , . . . , B(h)

ω > ε, sup
z∈B(R

√
d)

max
1≤�,m≤h

|B∆,�
ω,m(z)| < η

 ,
where ε > 0 is arbitrary and 0 < η < ευ2(1− (1− δ)2(1− σ))/(2c2). By taking
the limit as R, η, σ, δ, ε, υ → 0, we obtain

lim inf
ξ↑∞

N(λ; ξ)
ξh

≥ E[
√

detBω(0)]
(2π)h

.
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6. Proof of Theorem 1.3

We first consider the case that the conditions (a-i), (a-ii) and (a-vi) are
satisfied. Setting

Cj
ω(xj) =

∫ xj

0

dt

∫ t

0

dsBj
ω(s),

we take the following vector potential:

Aj
ω(x) = (−1)j d

dxo(j)
Co(j)

ω (xo(j)) = (−1)j

∫ xo(j)

0

dtBo(j)
ω (t)

for j = 1, 2, where o(1) = 2 and o(2) = 1. Then the functions φω
n(x) =

zn exp(−C1
ω(x1)−C2

ω(x2)), n = 0, 1, 2, . . ., satisfy Aωφ
ω
n = 0, where z = x1+ix2

and Aω is the operator defined in (2.13). By a family of functions {ζR}R>1 ⊂
C∞

0 (R → [0, 1]) satisfying

(6.1) ζR(t) =

{
0 if |t| ≥ R+ 1,
1 if |t| ≤ R,

and supR,t |ζ ′R(t)| <∞, we restrict φω
n as φω

n,R(x) = ζR(x1)ζR(x2)φω
n(x). Then

we have

‖Aωφ
ω
n,R‖2 ≤ c1

2∑
j=1

∫
R≤|xj |≤R+1

dxj exp(−2Cj
ω(xj))

×
∫
dxo(j)ζR(xo(j))2 exp(−2Co(j)

ω (xo(j)))|x|2n.

When R ≤ |xj | ≤ R+ 1 and |xo(j)| ≤ R+ 1, we have |x|2 ≤ 5(xj)2. Using also
|x|2 ≥ (xj)2 for ‖φω

n,R‖2, we have

‖Aωφ
ω
n,R‖2

‖φω
n,R‖2

≤ c15n
2∑

j=1

∫
R≤|t|≤R+1

t2n exp(−2Cj
ω(t))dt

×
{∫

|t|≤R

t2n exp(−2Cj
ω(t))dt

}−1

.

By the uniform estimate, we have∫
R≤|t|≤R+1

t2n exp(−2Cj
ω(t))dt ≤ 2(R+ 1)2n exp

(
−2 inf

R≤|t|≤R+1
Cj

ω(t)
)
.

Moreover, by restricting the integral to ηR/2 ≤ |t| ≤ ηR, we have∫
|t|≤R

t2n exp(−2Cj
ω(t))dt ≥ (ηR)2n+1

2n+ 1
exp

(
−2 sup

ηR/2≤|t|≤ηR

Cj
ω(t)

)
,
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where 0 < η < 1 is specified later. To estimate these quantities, we use the
process Dj

ω(t) := Cj
ω(t)/t2 instead of Cj

ω(t), since the covariance of Dj
ω(t) is

bounded in t.
We now estimate the probability

pj(a1, a2) := P

(
inf

R≤|t|≤R+1
Dj

ω(t) ≥ a1 and sup
ηR/2≤|t|≤ηR

Dj
ω(t) ≤ a2

)
from below for any a1, a2 ≥ 0. Let Dj,k

ω (t) = (Dj
ω(t) + (−1)kDj

ω(−t))/2,
k = 1, 2, be the even and odd parts of Dj

ω(t), respectively. Then we have

pj(a1, a2) ≥ P

(
inf

R≤t≤R+1
Dj,1

ω (t) ≥ a1 + a3 and sup
ηR/2≤t≤ηR

Dj,1
ω (t) ≤ a2 − a3

)

×P
(

sup
ηR/2≤t≤ηR or R≤t≤R+1

|Dj,2
ω (t)| ≤ a3

)
for any a3 ≥ 0, since Dj,1

ω and Dj,2
ω are independent as random processes. We

decompose the process Dj,1
ω as the sum of

◦
D

j,1

ω (t) = E[Dj,1
ω (t)|Dj,1

ω (R)] and

Dj,1
ω (t) = Dj,1

ω (t) − ◦
D

j,1

ω (t). These processes are independent and
◦
D

j,1

ω (t) =
Xj(t)W j

ω, where W j
ω is a random variable obeying the standard normal distri-

bution and Xj(t) = E[Dj,1
ω (t)Dj,1

ω (R)]/E[Dj,1
ω (R)2]1/2.

In the following we assume 0 < r < 1/3. This is always possible under the
condition (a-vi). By the representation

E[Dj,1
ω (t)Dj,1

ω (s)](6.2)

=
1
2

∫ 1

0

du1

∫ u1

0

du2

∫ 1

0

dv1

∫ v1

0

dv2{βj(tu2 − sv2) + βj(tu2 + sv2)}

and the condition inf |xj |≤r β
j > 0, we have

E[Dj,1
ω (t)Dj,1

ω (R)] ≥ c2

∫ 1

0

du1

∫ u1

0

du2

∫ 1

0

dv1

∫ v1

0

dv2χ(|tu2 −Rv2| ≤ r)

= c2

∫ 1

0

du(1 − u)
∫ 1

0

dv(1 − v)χ(|tu−Rv| ≤ r)

for R ≤ t ≤ R+ 1. Then, by a simple calculation, we have

inf
R>1

inf
R≤t≤R+1

RE[Dj,1
ω (t)Dj,1

ω (R)] > 0.

On the other hand, by (6.2), we have

RE[Dj,1
ω (R)2] =

1
2

∫ 1

0

du1

∫ u1

0

du2

∫ 1

0

dv1

∫ Rv1

0

dv2{βj(Ru2 − v2)

+ βj(Ru2 + v2)}

→ 1
2

∫ 1

0

du1

∫ u1

0

du2

∫ 1

u2

dv1

∫
R

βj(t)dt =
1
6

∫
R

βj(t)dt
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as R → ∞. Therefore we have

sup
R>1

RE[Dj,1
ω (R)2] <∞

and

inf
R≤t≤R+1

Xj(t) ≥ c3√
R

for any R > 1. Using also the Schwarz inequality, we have

sup
ηR/2≤t≤R+1

Xj(t) ≤ sup
ηR/2≤t≤R+1

E[Dj,1
ω (t)2]1/2 ≤ c4√

ηR

for any R > 1. Therefore we have

pj(a1, a2) ≥ P

(√
R

c3
(a1 + a3 + a4) ≤W j

ω ≤
√
ηR

c4
(a2 − a3 − a4)

)

×P
(

sup
ηR/2≤t≤ηR or R≤t≤R+1

|Dj,1
ω (t)| ≤ a4

)

×P
(

sup
ηR/2≤t≤ηR or R≤t≤R+1

|Dj,2
ω (t)| ≤ a3

)
for any a4 ≥ 0.

By Fernique’s theorem [26], we have

P

(
sup

ηR/2≤t≤ηR

|Dj,2
ω (t)| ≤ Ξ

{
sup

ηR/2≤t≤ηR

E[Dj,2
ω (t)2]1/2 + 2

∫ ∞

1

ϕ(2−u2
)du

})

≤ 40
∫ ∞

Ξ

e−u2/2du

for any Ξ ≥ √
1 + 8 log 2, where

ϕ(h) = sup{E[(Dj,2
ω (t) −Dj,2

ω (s))2]1/2 : ηR/2 ≤ t, s ≤ ηR, |t− s| ≤ ηRh/2}.
By the representation

E[Dj,2
ω (t)Dj,2

ω (s)]

=
1
2

∫ 1

0

du1

∫ u1

0

du2

∫ 1

0

dv1

∫ v1

0

dv2{βj(tu2 − sv2) − βj(tu2 + sv2)},

we have

E[Dj,2
ω (t)2] ≤ c5

t ∨ 1
.

Since

E[(t2Dj,2
ω (t) − s2Dj,2

ω (s))2]

=
1
2

∫ t

s

du1

∫ u1

0

du2

∫ t

s

dv1

∫ v1

0

dv2(βj(u2 − v2) − βj(u2 + v2))

≤ c6(t− s)2t(1 ∧ t)
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for t > s, we have

E[(Dj,2
ω (t) −Dj,2

ω (s))2] ≤ {2c6|t− s|(t2 ∧ t) + 2|t2 − s2|2c5/(s ∨ 1)}/t4

and ϕ(h) ≤ c7h/(1 ∨√
ηR). Therefore we have

P

(
sup

ηR/2≤t≤ηR

|Dj,2
ω (t)| ≥ a3√

ηR ∨ 1

)
≤ 1

3

for some 0 < a3 <∞. Similarly we have

P

(
sup

R≤t≤R+1
|Dj,2

ω (t)| ≥ a3√
R ∨ 1

)
≤ 1

3
.

Therefore we have

P

(
sup

ηR/2≤t≤ηR or R≤t≤R+1

|Dj,2
ω (t)| ≥ a3√

ηR ∨ 1

)
≥ 1

3
.

By the same argument, we have

P

(
sup

ηR/2≤t≤ηR or R≤t≤R+1

|Dj,1
ω (t)| ≥ a4√

ηR ∨ 1

)
≥ 1

3

for some 0 < a4 <∞. With these a3 and a4, we have

pj(a1, a2) ≥ 1
9
P

(√
R

c3

(
a1 +

a3 + a4√
ηR ∨ 1

)
≤W j

ω ≤
√
ηR

c4

(
a2 − a3 + a4√

ηR ∨ 1

))
.

For any a1 > 0, we take a2 so that
√
ηR

c4

(
a2 − a3 + a4√

ηR ∨ 1

)
=

√
R

c3

(
a1 +

a3 + a4√
ηR ∨ 1

)
+ 1.

Then we have

(6.3) a2 =
c4

c3
√
η
a1 +

(
c4

c3
√
η

+ 1
)

a3 + a4√
ηR ∨ 1

+
c4√
ηR

and

pj(a1, a2) ≥ 1
9
√

2π
exp

(
− ηR

2c24

(
a2 − a3 + a4√

ηR ∨ 1

)2
)

≥ c8 exp(−c9Ra2
1 − c10/η).

We now assume that the events in the probability pj(a1, a2) with (6.3) for
both j = 1 and 2 occurs. Then we have

‖Aωφ
ω
n,R‖2

‖φω
n,R‖2

≤ c11
ηR

(
6
η

)2n

exp
(
−R2

(
a1 − c12η

3/2

√
ηR ∨ 1

))
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for 0 < η < c13 and R ≥ c14. Therefore, for ‖Aωφ
ω
n,R‖2/‖φω

n,R‖2 ≤ λ to hold,
it is sufficient that

n ≤ R2(a1 − c12η
3/2/(

√
ηR ∨ 1)) + log(ληR/c11)

2 log(6/η)
.

Thus, by restricting to the above events, we have

N−(λ) ≥ R2(a1 − c12η
3/2/(

√
ηR ∨ 1)) + log(ληR/c11)

22(R+ 1)22 log(6/η)
×c28 exp(−2c9Ra2

1 − 2c10/η).

By taking a1 = 1/
√
ηR and R = (2

√
η log(1/λ))2/3 so that

(6.4) R3/2/2 +
√
η log λ = 0,

we have

(6.5) N−(λ) ≥ c15
R3/2(1/2 − c12η

3/2) +
√
η log(ηR/c11)

R2
e−c16/η.

Since R3/2(1/2 − c12η
3/2) +

√
η log(ηR/c11) ≥ R3/2/3 for 0 < η < c17 and

R ≥ c18, we have

N−(λ) ≥ c19e
−c20/η

(
log

1
λ

)−1/3

for 0 < λ ≤ exp(−c21/√η).
We next consider the case that the conditions (a-i), (a-ii) and (a-vii) are

satisfied. We take the vector potential as

A1
ω = 0 and A2

ω =
d

dx1
C1

ω(x1) =
∫ x1

0

dtB1
ω(t).

For any R and S > 0, we restrict the Pauli Hamiltonian to the rectangle
(−R,R)×(−S, S) by the Dirichlet and the periodic boundary conditions in the
first and the second components, respectively: let H−,R,[S]

ω be the self-adjoint
operator on L2((−R,R)×(−S, S)) corresponding to the closure of the quadratic
form (Aωφ,Aωψ) with the domain

{φ ∈ C1([−R,R] × [−S, S]) : φ(±R, ·) = 0, φ(·, S) = φ(·,−S)}.
Now the functions φω

n,S(x) = exp(−C1
ω(x1)− 2πnz/S) satisfy the periodic con-

dition in x2 and Aωφ
ω
n,S = 0 in the sense of distributions. Then the restricted

functions φω
n,R,S(x) = ζR(x1)φω

n,S(x) belong to the domain of the operator

H
−,R+1,[S]
ω and satisfy

‖Aωφ
ω
n,R,S‖2 ≤ c22S exp

(
−2R2 inf

R≤|t|≤R+1
D1

ω(t) + 4πn(R+ 1)/S
)
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when infR≤|t|≤R+1D
1
ω(t) ≥ 0, and

‖φω
n,R,S‖2 ≥ 2SηR exp

(
−2η2R2

(
sup

ηR/2≤|t|≤ηR

D1
ω(t)

)
+

− 4πnηR/S

)
.

When the event in the probability p1(a1, a2) with (6.3) occurs, we have

‖Aωφ
ω
n,R,S‖2

‖φω
n,R,S‖2

≤ c22
ηR

exp
(
−R2

(
a1 − c23η

3/2

√
ηR ∨ 1

)
+

4π(R+ 1)n
S

)
for 0 < η < c24. Then, as in (6.5), the expectation of the counting function
N−

ω (λ : R, [S]) of the eigenvalues of the operator H−,R,[S]
ω is estimated as

E[N−
ω (λ : R+ 1, [S])] ≥ c25

S

R
{R3/2(1 − c23η

3/2) +
√
η log(ηR/c22)}e−c26/η,

where R is taken as in (6.4). By the min-max principle, we see that

E[N−
ω (λ : N(R + 1), [S])] ≥ NE[N−

ω (λ : R+ 1, [S])]

for any N ∈ N. Therefore, by taking the limit as N → ∞ and using the
uniqueness of the integrated density of states [19], [32], [45], we have

N−(λ) ≥ c27
R2

{R3/2(1 − c23η
3/2) +

√
η log(ηR/c22)}e−c26/η

as in the preceding case.
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