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Vorticity existence of an ideal incompressible
fluid in BgOJ(R?’) N LP(R?)

By

Hee Chul PAK and Young Ja PARK

Abstract
We prove a local (in time) unique vorticity existence for the Eu-
ler equation of an ideal incompressible fluid in a critical Besov space
B2, .1 (R*)NLP(R?) with the initial vorticity wo € B, ; (R*) NLP(R?) for
some 1 < p < 3.

1. Introduction

In this paper, we consider the non-stationary Euler equations of an ideal
incompressible fluid

0 - .
gujifzuiaiuj*ajpa 1<j<n,
i=1

divu = Zﬁjuj =0,

j=1
u(z,0) = uo(z), = eR".

Here u(z,t) = (u1,uz, ..., uy) is the Eulerian velocity of a fluid flow and 9; =
%. For n = 3, by taking curl on (1.1), we get the vorticity equation

(1.2) z,t) = —(u, VIw + (w, V)u, w = curlu.

ot
Existence and uniqueness theories of (2 or 3 dimensional) solutions of the Euler
equations are studied by many mathematicians and physicists. L. Lichtenstein,
N. Gunther and Wolibner started the subject on Hélder classes. D. Ebin and
J. Marsden, J. Bourguignon and H. Brezis, R. Temam, T. Kato and G. Ponce
studied this subject on Sobolev spaces. The work on the Euler equation in
Besov spaces has been done by M. Vishik in [12] and [13]. In [12], he proved
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that the solution w(t) constructed stays globally in B;)ﬁl by developing an
elegant logarithmic inequality, where the initial velocity ug belongs to B;fll
with the condition sp = n = 2. He has also proven the uniqueness of the
n-dimensional Euler equations (n > 2) with vorticity bounded in Besov-type
spaces that contain essentially unbounded functions ([13]).

In this paper, we investigate the question of local existence of the solution
to the 3-D vorticity equation (1.2) and prove that the vorticity w(z,t) stays
locally in BY_ ;(R?) N LP(R3) if the initial vorticity wo(x) is in BY, ;(R3) N
LP(R3).

The Besov space BY, ;(R™) is seemed of particular interest in the sense
that these function spaces are very close to the space C'(R™) of continuous
functions, but on which pseudo-differential operators (with rough symbols) act.
The following is our main result.

Theorem 1.1.  Let 1 < p < 3. Assume that wy € BY, ;(R?) N L*(R?).
There exists a positive constant T > 0 such that the initial value problem for
the wvorticity equation (1.2) with initial vorticity w(x,0) = wo(x) has a unique
solution w(x,t) € L>=([0,T]; B, | (R*) N LP(R?)).

The proof of the main theorem is divided into two parts—Sections 3 and
4. A collection of a-priori estimates which is used in the proof of the main
theorem is located in Section 4 after the proof of the main theorem (Section 3).
The essential tools for the estimates are Bony’s para-product formula and the
Littlewood-Paley decomposition. In Section 3, we use a compactness argument
([13], [14]) to get a local existence of the solution rather than a standard iterative
algorithm ([6]), mainly because the priori estimates used in the proof are much
dependent on the fact that the vector fields in arguments are divergence free.
To complete the compactness argument, an Osgood-type ordinary differential
inequality is solved (page 7).

We close this section with some remarks on the Biot-Savart’s law that
explains the relationship between the divergence free velocity u(x,t) and its
vorticity w(z, t);

i j k
. . 1
(1.3) u(x,t) = urd + uoj + usk = y 31‘%'* agﬁ* 83‘%'* ,
wi(z,t) wa(z,t) ws(z,t)
where * represents the convolution operation
(F+o)a) = [ = oy

We denote the right hand side of (1.3) as K xw (with a little notational abuse).

Notation.  Throughout this paper, C' denotes various real positive con-
stants.
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2. Littlewood-Paley analysis

Let S(R™) be the Schwartz class. We choose a radial function de C§°(R™)
and a radial function @ € C§°(R™ \ {0}) such that the following properties are
satisfied:

. supp@c{lflﬁ%};
. 3 5
. supp@C{gSIélég};
¢ () +D Pi(e)=1, EeRr"
§j=0

where ¢;(x) = 20"p(27z) (that is, $;(€) = $(2779¢)), and f represents the
Fourier transform of f € S defined by

fl€) = F0O) = Gmyare [ eSS @i

Notation. Let f € S’. Then
A f=0D)f=xf
For j > 0, Ajf=¢;(D)f = ;= f.
For j < —2, A;f=0.
Forke€Z,  Spf=)Y Af.
i<k

Definition 2.1. Assume s € R, and 1 < p < o0. For 1 < ¢ < o0, the
Besov spaces B, ,(R") are defined by

fEBy(R") & [12°A; ], < oo,
JEL

and B, . (R") are defined by

f € By (R") S_UIZWSHAMIILP < 0.
Jje

Hereafter, the corresponding spaces of vector-valued functions will be de-
noted by bold faced symbols. For example, we denote the product space
LP(R™)% by LP(R™) and the corresponding triple Besov spaces Bj ,(R?) by
B; ,(R%) = B; (R*)®. The Besov spaces BS, , (R") are known as Lipschitz
spaces A*(R™) and also, equivalent to the classical Holder Spaces C*(R") (see,
e.g., [6, p. 26] or [9]). We use the notation A*(R™) for the Besov spaces
B, oo (R"), ie., A%(R") = BS, (R™).

We define Bony’s para-product formula which decomposes the product f-g
of two functions f and g into three parts:

fr9=Trg+T,f + R(f,9)
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where Tt g is Bony’s "para-product” of f and g defined by
Trg= D AifAjg=) SiafAjg
i<j—2 J
and R(f,g) denotes the remainder of the para-product
R(f,9)= Y. AifAg.
li—j|<1
Remark 1. We have the following expression:

(Sj_z’u, V)Ajw - A]‘ (u, V)w

3 3 3
= — Z AjTBiwui + Z[Tuﬁ“ Aj]w - Z Tui_sjizuiaiAjw
(21) i=1 i=1 i=1

3
- Z{A]R(U“ &w) - R(Sj_gui, Ajalw)}
i=1

In fact, we expand (S;j_ou, V)A;w — Aj(u, V)w by Bony’s para-product
formula to get the right hand side of (2.1) plus zero terms. The details can be
found in [12, p. 204].

The following Remark shows the relationship between the role of the scal-
ing factor 27° and the role of the differentiation index s in B; ,- The proof of
the remark can be found in [6, p. 16].

Remark 2 (Bernstein’s Lemma).  Assume f € S'(R™) and supp f C
{€ e R™: || <r}. Then there exists a constant C' = C(s) such that

(%)
[fller < Crovr 2| fllze, 1< p<p1 < o0,
ID*fllze < Cr¥||fllze, 1<p < oo
For f € LP(R™) with p € [1,00] and supp f C {€ € R™ : 21—1 < |¢| < 2041},
there exists a constant C(s) such that
C12%%|| fllLe < |D°fllLe < C 2| f Lo
Remark 3. Let 1 < p < n and w = curlu. Then we have
L [[AsyufLe < CllAwllLe,
2. 1Ajullue < C277|Ajwll=, 520,
3. IVullLe < C(llwllse, , + llwller)-
Proof. The proof of the first inequality can be found in [13]. Take x €
C§°(R™) with x =1 near the origin. Then
1A ullie < 1000 * A rwlle + (1= )K) * A_ywlp
< IXKllpr[[ArwllLee + [[(1 = x) K| Lal|Arw|Le
< CllAow|r,
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where YK € L', (1 — x)K € L9 and % + % = 1. The second inequality follows
from the fact stated at the bottom of [5, p. 676]. Using these estimates, we get

oo
IVulee < IA-1Vulle + ) 14, Vul|pe
j=0

<C | wlle + > 14|~
=0

< C(lwler + s, ,).

3. The proof of the main theorem

Let 1 < p < 3, and we are given initial vorticity w|i—¢g = wy € Bgo)l NLP. In
order to prove that the vorticity w(t) (representing the solution of the vorticity
equation (1.2)) stays (locally) in the function space BY ; NL?, we define a
sequence {wy, }nen of vector fields depending on time by means of the following
restrictions on each initial vector field:

Wn|t=0 = Snwo, n=123,...
0
(3'1) a wn(l',t) = —(un,V)wn + (wn,V)um

un(x,t) = K xwp(z,t).

Then w,(0) € A* NLP for any s € (0,00). Therefore, for fixed s € (0, 00),
according to classical results (see [6]), for each n, there exist a maximal time
T € (0,00] and a solution wy, to the equation (3.1) in L2 ([0,7,); A*(LP).

loc

First, we will find a positive lower bound 77 with 0 < T} < T}7, where the
constant 77 depends on wy but not on n, and show that the sequence {wy, }nen
is bounded in L>°([0,71];BS, ; N L?). In fact, we will see that the positive
number 7' depends only on [lwo|go  ~rr and find a continuous positive non-

decreasing function A(¢) satisfying: for t < T}

[wn()lBo. ALe < A(t), forallneN.
The function A(-) defined on (at least) [0,77] is a solution of the following
ordinary differential equation:

4

dt
where the constant Cy > 0 will be chosen later. Then from the well-known
Beale-Kato-Majda type blow-up criterion ([6]) stating that

A=CoX, A0) = Collwollse,rs-

T,
T <oo= / [lwn (T)||LecdT = o0,
0
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and the fact that [lwy,(7)|lLe~ < [lwn(7)[Bo, |, We observe that 71 > 0 is a lower
bound of {TF : n € N}.

Taking A; operator on both sides of (3.1) and adding (S;—2un, V)Ajwy
on both sides (in order to count Remark 1), we have

0
E A]‘wn + (Sj_zun, V)Ajwn
= (Sj_gun, V)Ajwn — Aj (un, V)wn + Aj (wn, V)un

By considering the trajectory flow {X7'(z,t)} along Sj_ou, defined by the so-
lution of the ordinary differential equations

%X]”(x,t) = (Sj—oun) (X} (2,1),1),

X7(x,0) = =,

we observe that div S;_ou,, = 0 implies z — X7 (z,t) is a volume preserving
J J
mapping) we get

t
[Ajwn () |lLe < [|AjSnwollLes +/0 14 ((wn, V)un)|lLedr

t
4 / 155 —2ttn, V) Ajewn — A (4, V)w) ||~ -
0
Or

t
lon(®)llgs. . < [Sawolle . + / (s Vtinllgo_dr

t
+/ > (S —2tn, V)Ajwn — Aj((un, V)wn) || Lo dr.
0

j>—1

From Proposition 4.1, 4.2 (which will be found in Section 4), we get an estimate:

t
(3.2) lwn(D)llBY, , < Cllwollsy, , + C/ lunllB, , llwn(T)lIBY, , dr-
, : o : :

On the other hand, using the trajectory flow {Y,,(z,t)} along u, we obtain
from equation (3.1)

(3-3) |wn (Y (2, 8), £)] < [Snwo ()] +/0 [((wn - V)un) (Y (2, 7), 7)|dT.

By taking LP-norm on both sides of (3.3) and using the fact that @ — Y;,(z, t)
is volume preserving, we have

t
[lwn () lle < [[SnwollLe +/ [ Vtun, (7) lLes [l (7) lLr d7
(3.4) 0

t
< sup | Snwio | + C / lunllge wnllo dr.
n 0 ’
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Let V denote the space BY ;(R*) N L?(R?). Then putting (3.2) and (3.4)
together and counting Remark 3, we get

t
lwn(B)llv < Cllwollv + C/ unllsr | llwn(7)lvdr
(3.5) 0

t
< Collwnllv + Co / lwon ()13 d,
0

for some constant Cy. By virtue of Gronwall’s inequality this leads to

t
(3.6) sup lwn (7)|lv < COIIwollvexp{Co/ sup IIwn(T’)IvdT}-
0

0<r<t o<r'<r
Let A(+) satisfy the following ordinary differential equation:

d
(3.7) TA=CoX% A0) = Collwollv,

and let

¢
A1 (t) = Collwol|v exp {CO/ sup ||wn(7")||vd7} )
0

o<r'<r

Then from (3.6) and the definition of A;(t), we can notice that
d >
(3.8) M S CoA A(0) = Gollwollv-

The time 77 > 0 is chosen to be less than the blow-up time for (3.7). Then

by solving the separable ordinary differential inequality (3.8), we observe that

1
A1(t) < A(t) for t € [0,71]). Indeed, (3.8) leads to —% ()\—) < Cp. This
1

C
implies that for ¢ € [0,T1], A\ (t) < m = A(t). Hence we get
1 —tCglwollv

(3.9) lwn@llv < ), t€[0,T1]

for all n € N, that is, the sequence {wy, }nen is bounded in L*°([0,71]; V), and
we also see that T > 0 is a lower bound of {7} : n € N}.

Next, we will find a strictly positive time T, (depending on |lwpl|,,) such
that the sequence {u, }nen is a Cauchy sequence in L>([0,73]; BS, ;(R?)). To
do this, we subtract the two relations on the corresponding FEuler equations of
the vorticity equations (3.1) to get

0
& (un+1 - un) + (U7L+17 v)(u7L+1 - un) + (un+1 — Un, v)un

(3.10) — Py — VPt

(Un+1 - Un)\t:O = An+1U0~
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Taking A; operator, and adding (S;—2tn+1, V)A;(tn41 — uy,) on both sides of
(3.10), we have

(ttnss — wn)(@)llgs, < 1 Dusruolles,,

t
+/ Z [(Sj—2tnt1, V)A; (Uns1 — un) — Aj(tng1, V) (Ungr — un)|lLedr
0.
j>—1

t t
+/ ||(un+l - unav)unHBgC 1d7‘ + / van - an-&-l”Bgo 1dT-
0 ' 0 ,
We notice that
vpn - vpn+1 = W(un+1 — Un, un+1) + W(unvun+1 - un)7
where we define

3
m(ug, ug) = Z VA~18,u] 0;ub,.

i,j=1

Hence, by Proposition 4.1, 4.2, 4.3, Remark 3 and estimate (3.9), we get

[tnt1 = tnllp= (om0, ) < [[Antauollse,,

+ CLTND) lunt1 = unll Lo o,7):B2, )

IN

27" Antruolse

+ CLTANT) [unt1 = unll Lo o,7):B2. )

for T < T3 and some constant C7 > 0. Choosing 75 > 0 small enough to ensure
Ty < min {Tl, m}, we get

l[tins1 — Un||Loo([0,Tz];B20,1) < 2_7L+1||An+1uo||B;o)1-

This implies that {un}nen is a Cauchy sequence in L>([0, To); B ; (R?)).
Hence there exists a strong limit u of the sequence {u,}nen in the space
L>([0,T3]; BY, 1 (R?)) N C([0, To); B, 1 (R?)). Indeed,“classical” solutions used
in our approximation scheme are continuous with values in BgOJ.

Since the sequence {wy, }nen is bounded in L>([0, T3); BY, ; N L*) (in par-
ticular, it is bounded in L*°([0,75]; LP(R?))) there exists a weak*-limit w for
a subsequence of the sequence {wy}nen in L([0,T3]; LP(R3)). Also, since
Uy, = K * wy, it follows from the Hardy-Littlewood-Sobolev inequality that
(possibly after choosing a subsequence)

3p
3—p

(3.11) up, —u  weak® in L=([0, To]; L"° " (R?)).

(Here the weak-* limit « in (3.11) is the same as the strong limit of the Cauchy
sequence {uytnen in L([0,T2]; BY, 1 (R?)).) Therefore (u — K * w)(z,t) is a
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3p
harmonic vector field in 2 that belongs to L ([0, T5]; L”"" (R?)). We conclude
that v = K *xw. (We borrowed this argument from [14].) Also, since the
sequence {wn, }nen is bounded in L ([0, To]; B, | (R?)), it weak*-converges (up
to a subsequence) to w in L>°([0,73]; BY, ;(R?)). Hence we conclude that w
stays in L>([0, To}; BS ; M LP).

We claim that u satisfies the Euler system (1.1). Since the sequence
{tn }nen converges strongly to u in L°°([0, Ty]; B, ; (R?)), it converges strongly

to u in L>°([0, T3] x R3). For test functions ¢, ¢ € S(R?) with divg = 0 and
0 € C§°([0,T3]), we have from the Euler equation corresponding to (3.1)

T
(1 (0), 6)0(0) + / (n(7), ) —-0(r)dr
T2
4 / (tn(7), (tn(7), V) B)0(r)dr = 0,
0
(tn, Vi) = 0.
We can observe
<un(0)7¢> = <Snu07¢> - <U07¢>,
T b T B
/0 (un(7), 6) S 0(7)dT — / (), 6) 2o (r)dr,
| ). (wn(0). D)oty — / 2 ), V)$)0(r)dr,
0
and 0 = (up, V) — (u, Vip) =0

as n — 00. Therefore the limit u satisfies the Euler equation and the initial
condition

2 u+ (u, V)u=—Vp,

ot
divu = 0,
U|t:0 = Up.

We may continue to use this argument until the value [|w(7™)||go_ Ar» blows up,
e., tlTi% Hw(t)||Bgo$10Lp = 0o. This completes the proof of the local existence.
In order to prove the uniqueness, consider u and v two solutions of the
system (1.1) such that their vorticities curl u and curl v belong to the space
L>([0, To]; BY, ; (R?) (LP(R?)) with the same initial function. By subtraction,
we observe that the vector field u — v obeys

9 (u—v)+ (u,V)(u—v)=(v—u,V)v+7(u,u) — w(v,v),

ot
(u - U)|t:0 =0,
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where 7(u,v) is defined in page 8. By Proposition 4.1, 4.2, 4.3 and estimate
(3.9), we get as before

T
J=vlme,, < € [ el + o) = vl .

By virtue of Gronwall’s inequality, this implies that « = v. The uniqueness of
solution for (1.2) in Lj3,([0,77); B, ; (N LP) is now proved. O

loc

4. A priori estimates

In this section, we will state a collection of a-priori estimates which was
used in the proof of the main theorem. Those a-priori estimates are discussed
in arbitrary dimension n > 2 containing the case of the dimension 3 which was
essentially needed in the proof of the main Theorem.

Thanks to the Bony’s para-product formula, we have the following esti-
mate.

Proposition 4.1.  Let u and w be divergence free vector fields. We have:
|, Vyullgs , < Cllullgswlss._ -

Proof. Since w is a divergence free vector field, we notice that

Xn:wi ot = Zn: di(w'uk)
i=1 1=1

for k =1,2,...,n. Then applying Bony’s formula, we get

(4.1) > AW o) =D {0 Tpiu+ AjThw' + ;0 R(w',u)}.

i=1 =1

The second term in the right side of (4.1) follows from the observation that

i 32'AjTuwi = Z Aj Xn: 3i(5j/_2u Aj/wi)
i=1 3’ i=1

= Z A]’ Z(Sj/,gaiu Aj/wi) = Z A]‘Tgiuwi,
3’ i=1 =1

since divw = 0. To estimate the first term in the right side of (4.1) we notice
n n (o) )

(4.2) Z@lA]Twlu = Z Z 8iAj{Sj/_2(wz)Aj/u},
i=1 i=1j/=1

since Sji_o(w') = 0 for j' < 0. Hence from the fact that

(4.3) supp F(Sjr—a(w')Aju) C {27 < J¢) <2772,
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and by the Bernstein’s Lemma (Remark 2), we get

n n
D ATl <OY D [Sy-ae = (@45 ul)
i=1 Lo i=1 |j—j'|<3,
(4.4) i'>1
<Clwlse, > 2 Aull~.
[7—3"1<3
Similarly, we have
n ) n .
S AT <Y e P [y
i=1 Loo =15 ]|<3
(4.5) i'>1
<Clullsy, > lAjw|Le.
l7=3"1<3

Next, we estimate the third part of the right-side of the identity (4.1). Consid-
ering the supports of functions in the third term of (4.1), we may assume that
j —3<j'. Hence we have

n
<Y Y YA A A
Lee ik=1]j'—5"|<1,
j—j'<3

<C Y AjwlL=2T 242" A ul|pe)

53" 1<1,
j—3'<3

<C Y 1Awle=2 (ulpy )
i—5'<3

-
< Cllulls:, >, 277 1A wl|Le.
J—i'<3

zn: @AjR(wi, u)

=1

From this, we get

Z Z(‘)ARw w)

j=-1

o0
<Cllulgr,, > 27" Y A mwllee

Lo m>—3 Jj=-1

(4.6) .
<Clulls:,, | D 2 lwlise_,

m>—3

< Cllullsr,, llwlsy, , -
By combining (4.4), (4.5) and (4.6), we get

l(w, V)ulge, , < Cllulls,lwlsy,_,-
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|
From Remark 1, we write
4
(Sj—2u, V)Aju — Aj(u, V)v = Z R} (u, ),
m=1
where we set
n ) n (oo} )
Rj(uw,v) = =) AToou' == > 8{Sy2(dw)A5u'},
i=1 i=1 j'=—o0
R_]z(u, ’U) - Z[Twaz, Aj}va
i=1
R?(u,v) =— ZTui,SJ,_Qui&-AjU, and
i=1
n ) )
Ri(u,v) = = > {A;R(u',0;v) — R(S;_ou’, A;00)}.
i=1
We have learned the following Lemma from M. Vishik.
Lemma 4.1.  For any divergence free vector fields u,v, we have the fol-

lowing estimates:

IR (w,0) [l <C D (1552 Vol|ues || A rul|ee,

i—5'1<3

IR} (u,v)[[Lee <C D (1852 Vul|Le [ Ajv]lLe,
i—4'1<3

RS (u,0)[Lee <C > (145 VLo + [|A qul|ne)||A v Lo,
i—4'1<1

IR} (w, o)l <C D> D (1A Vulie + A qul=) | Ao

l7=3"1<3 15/ —=3" <1
0 Y 2 Y Ay Vulue Aol

J'23=3 3 —3"1<1

Proof. Estimate for le(u, v) : By the same arguments used in (4.2) and
(4.3), we get

IR} (w,v)[lLe <C> 0 > [I1Sy-2(0i0) e | AL

i=1]j—5'|<3, j'>1

<C Y 18-2VollLes A ulles.
i—4'1<3
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Estimate for RJ? (u,v) : From the fact that u is divergence free, we observe

n

R} (u,v) = > [T:0;, Ajv

i=1

=3 D Sy aut Ay (9 A) — Aj(Syou' DA )}

i=1|j—35'1<3

Yy [ st = )(Sy-au'(@) = Sy-au' W) vlu)dy

1= 1‘] ]‘<3

SY Y e [ 0002w = ) (8y-20 (@)  Symau )} Ayl

=1 |j—j'|<3

_Z T 2m+1)/a¢21 r—y
i=1|j—5'1<3
(Z | $p-atmita g - o) - >dT)A/u<y>dy

n 1
= Z Z 0i0(2) </ S _20pmu' (x — 72_jz)z7’LdT> Ajv(z —2772)dz.
0

t,m=1|j—j'|<

Hence we get

RS (w,0) L <CD Y > (1S —20m | | Ajv]|Lee.

=1 |j—j/|<3m=1

Estimate for R;f”(u, v) : Note that

_ i Tu*ij_QuiaiAj'U

:_Z Z Sir_o(u’ — S _ou") Ay (0;Av)

i=1|5—4'|<1

:—zn: Z Sj/_2< i Amul) &-AJ—«AJ-U
m=j5—1

i=1]j—j5'|<1

n J
= —Z Z Sj/_g ( Z Amuz) 8¢Aj/AjU.
m=j5—1

i=1]j—j'|<1
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Therefore we have

RS (u,0)[Lee <D D> 1Sj—2(Aj 1t + Aju’) e 9:(A 0 Ajv) L

i=1[j—j'|<1

<Oy Y (Ajrules + 1A5u =) 10:(2;A0)||Le

i=1 |j—j'|<1
<C Y 27744 Vullue + 2774 V| 27| Aol
i—4'I<1
+CIA qufie Y (A0l
li—5'1<1
<C > (1A Vullue + 1A yulle )[4 v]Le.
li—5'1<1

Estimate for RJfl(u, v) : We divide ij"(u, v) into two parts as following:

R (u Z{ARu d;v) — R(S;_ou’, A;0;v)}

J

:—Z{A OiR(u' — Sj_ou',v)}

- E {AjR(Sj,Q’LLi, (“)Zv) - R(ijgui, A]aﬂ})}
4,1 4,2
=R (u,v) + R (u,0).

The first term R;l’l(u, v) can be considered with two subparts:

R41uv Z@A Z Ajs S —ou")Ajnv
7/ =3""1<1
=—28A > A Sj—2u")Ajrv
\1+J”|<1
- ZaiAi Yo Ajp(u’ = Sjau) A
=1 l7"—3"1<1,5" 20

= R4’1’1(u v) + R4 L2 (4, v).

In order to estimate R4’1’1(u7 v), we first note that

supp F(A_q(u' — Sj_ou’)) =supp F | A_, Z A ul #* O
m=j—1
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if and only if j = —1,0,1. Hence we have

RS (u, 0) [z <CZ Z A1 (u" = Sjou’)||Leel| AL

i=1j"=—1
(4.7) 0
C Y A qufuel|Ajollue i j=—=1,0,1,
= j”:—l
0 if j > 2.

Considering the supports of functions in R;l’l’z(u,v), we may assume that
j—3<j'. Hence we get

(4.8)

IR (w0)llee <CY 2 A7 Y Ap(u' = Sjopu) Ay

i=1 7' =3"1<1,5" >0

L()C
n
<y Y 27 N 2 A || AL
i=1j>5-3 57— 1<1,5720
<C N 27 N Ay Vi | A L.
i3 5 =3"|<1

Now we will take care of R;l’z(u, v).

R} (u,v) Z > > 1A, AySouf] A0

i=1 j—3<4'<j—1 |5/ —j"|<1

To take a closer look at [Aj, A;/S;_ou’]A;nd;v, we use the explicit represen-
tation of Aj:

[Aj, Aj/ Sj_gui]Aj//aﬂ}
=7 [ )85 8500 () — S ()i ey
=20 [ 0,010 — ) {878, -a'(s) — By 8,3 ()} A vy

_ 9i(n+1) /81-90(2j($ —v))

n 1
{ Z / Aj/Sj_Qamui(x + T(y — x))(ym - $m)d7'} Aj//’[)dy
m=1 0

:—E;/@ma

1
{/ AjrSj_00mut(z — 2_sz)zde} Ajro(z —2792)dz.
0
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So we have

H[Ajv Aj/Sj_Qui]Aj//ai’U”Loo S C Z ||Aj/Sj_28mui||Loc HAj//’UHLoo
m=1

< CllAjSj—2Vul[Le [ Ajrv|Lee.

Then,
4,2
(4.9) IR (w0l <C >0 Y A Vaulue||A ]|
li—3"1<3 15" —3""1<1
From (4.7), (4.8), and (4.9), we have the estimate for [|R§(u,v)]|re. O

From the Lemma above, we get the following Propositions.

Proposition 4.2.  Letu and w be divergence free vector fields. We have:

S 1(85-20, V) Ajew = A5 (V) eoe < Clullgs_ lllsy

jz—=1

Proof. From Lemma 4.1, we get

IR} () [[Le <C Y [1Sj—a(Vew) Lo | A e

li—3"1<3
<C Y PS4y ul
li—3"1<3
(410) j’_g

<C > | Y 1apwlie | 27 1A ulLe

li—3"1<3 \J"”=0

v
<Olwlss,, D 214 ulue;

[7—3"1<3
and
RS (1, w) L~ < C Y [1Sj—2VulLe|Ajw]Le
(4 11) [7—3"1<3
<Cllulls, S 18wl

li—3"1<3
Also, we have
RS (w,w) L= < C([Vaulle + [Aqull=) D> A 0]
li—7'1<1

<Clullgs,, Y 18w,

l7—3'1<1

(4.12)
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and
(4.13)
IR} (u,w) [l <C Y > (1A VulLe + A _yullLe)|Ajrw]|Le

l7—3'1<3 |3'=5"]<1

+C >0 27 N A Vi | 4w

J'2j=3 [/ —=3" <1
< Cllullsy, > l1AjwllLe
l7—3"1<5
+ Cllulls_, > 2 N Apwe.
J'23-3 7/ =3"1<1
We observe that
(4.14)
J'+1
o,
Yo PN Al <C Y23 ) A el
jz-1j'2j-3 j"=j'—1 m>—3 j>—1
<o 3 o wllse
m>—3 '
< Cllollpy -

By putting estimates (4.10), (4.11), (4.12), (4.13) and (4.14) together we get

D I(Si—2u, V)Aw = Aj((u, Vo)l < D0 D IR (u, )|

i>-1 j>—1m=1

< Cllulsy, llwlls_, -
We now present the estimates for the potential term.

Proposition 4.3. Let 1 <p <mn, and let u;, i = 1,2 be divergence free
vector fields and w; = curlu;, 1 = 1,2. We have the following estimate:

(415)  fr(un,u)lse, < Cllwnllme, + ) fuslss_ .
or
(416) i uo)llse, < Cllurllso, (lwellms_, + lwelles),

where we set

m(ug, us) = Z VA_laiu{8jué = VA~ div((ug, V)us).

ij=1
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Proof. The lack of the isometric inequality for the case of j = —1 in the
Bernstein’s Lemma (Remark 2) forces to consider two cases.
Case 1: j > 0. We observe that

div((Sj_2u1, V)Ajus) = zn: S;_90mul A;Opuy',
m,l=1
due to the fact that divus = 0. So, we have
A div((u1, V)uz)||Le
< [ div{A;(u1, V)ug — (Sj—2u1, V)Ajust|[Le + [| div(Sj—su1, V) AjuzlL-
< 27| A (ur, V)ug — (Sj-2u1, V)Ajus||Le + Z 15— 20muy A Ot |
m,l=1
On the other hand, since
Aj m(ur,ug) = F €| T2 F (A div(ur, V)us)),
we have for j > 0
1A m(ur, uz) L < C277)|A; div((u, V)uz)||pe.

Hence from the fact that

oo

n
Z > 278 20mul A Oug e
1=135=0
n o
Z > 1S —20mua [l (277 | A 0us | )
1=175=0
< CHU'IHB},OJHU2HB‘;C,17

and Proposition 4.2, we obtain

DIy wur,uz) [l < €Y 279 Ay div((ur, V)uz)

Jj=0 Jj=0

Lo

<C) A (ur, V)ug — (Sj-2u1, V)Ajus||Le=
(4.17) Z ’ ’ ’

+C YD 2718 00mut A O |

m,l=1j=0

< Cllurllgs_ lusllss_,-

Since m(uy, uz) = m(ug, u1), we also get

(4.18) ZHA m(ur, uz)||Lee < Clluallgo, fluzllsr_ -
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Case 2: j = —1. Let ¢ = n”—_";). Using the Bernstein’s inequality and the
boundedness of the Riesz Transforms on L%, we have
1A 17 (ur, us) Lo = A1 VAT div((u, V)ug) Lo

< CIIVA~ div A_; ((u1, V)uz)||Le

< Cl|AZ1 div(ug ® ug)|Le

< CHA,l(’Uq (9 u2)||Lq

< Clluallelluz L~

(4.19)

< Cllwr[lue flug e

The last inequality follows from the Hardy-Littlewood-Sobolev inequality. Since
m(uy, uz) = 7(ug, uy), we also have

(4.20) A 17 (u, uz)||Lee < Cllwelleelluallgo_, -

The estimates (4.17)and (4.19) imply inequality (4.15), and the estimates (4.18)
and (4.20) imply inequality (4.16). |
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